

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE PARA LA MEJORA DE LA CONDICIÓN SANITARIA DEL CASERÍO MOLINOPAMPA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY, REGIÓN ANCASH - 2020

TESIS PARA OPTAR EL TÌTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

CASTILLO SUAREZ, DENIS

ORCID: 0000-0002-4346-1857

ASESOR:

LEÓN DE LOS RÍOS, GONZALO MIGUEL

ORCID: 0000-0002-1666-830X

CHIMBOTE – PERÚ

2020

1. Título de la tesis

Diseño del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío Molinopampa, distrito de Malvas, provincia de Huarmey, región Ancash - 2020.

2. Equipo de trabajo

Autor

Castillo Suarez, Denis

Orcid: 0000-0002-4346-1857

Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú

Asesor

Mgtr. León de los Ríos, Gonzalo Miguel Orcid: 0000-0002-1666-830X

Universidad Católica Los Ángeles de Chimbote, Facultad de Ingeniería, Escuela Profesional de Ingeniería Civil, Chimbote, Perú

Jurado

Mgtr. Sotelo Urbano, Johanna Del Carmen Orcid: 0000-0001-9298-4059

Presidente

Dr. Cerna Chávez, Rigoberto Orcid: 0000-0003-4245-5938

Miembro

Mgtr. Quevedo Haro, Elena Charo

Orcid: 0000-0003-4367-1480

Miembro

3. Hoja de firma del jurado y asesor

Ms. Johanna del Carmen Sotelo Urbano Presidente

Dr. Rigoberto Cerna Chávez Miembro

Mgtr. Elena Charo Quevedo Haro Miembro

Mgtr. León de los Ríos, Gonzalo Miguel Asesor

4. Hoja de agradecimiento y/o dedicatoria

Agradecimiento

Agradezco a Dios, por darme la vida y una buena salud, por regalarme la dicha de poder cumplir este sueño maravilloso y hacer realidad la pasión más grande mi vida, "La ingeniería".

A mis padres, José Alfredo Castillo Arrasco y Jovita Suarez Becerra por darme las enseñanzas correctas de la vida e inculcarme a seguir mis sueños.

A cada uno de mis hermanos por aportar su granito de arena y esas palabras de aliento hacia mi persona, para poder lograr mis objetivos.

A mis docentes que me apoyaron durante el camino de mi formación profesional, a mis compañeros y a todos los colaboradores de la Universidad Católica Los Ángeles de Chimbote por facilitar cada inquietud acontecida en el proceso de esta investigación.

Dedicatoria

A Dios por darme la dicha de concluir esa etapa tan linda de mi vida, a mis padres y hermanos por siempre apoyarme en los mejores caminos que decidí seguir, todo esto fue posible con los consejos y apoyo moral de ellos.

Α mi de estudios. La casa Universidad Católica los Ángeles de Chimbote, por brindarme la. oportunidad de poder concluir mis estudios universitarios con formación muy buena para desarrollar mi vida profesional de manera eficiente.

A todos mis docentes universitarios por compartir sus conocimientos de experiencia en el campo de la ingeniería, agradecer al ingeniero Miguel León de los Ríos, quien es el asesor de encargado de darnos las pautas metodológicas y facilitar las investigaciones desarrolladas en mi tesis.

5. Resumen y Abstract

La presente investigación, tuvo como propósito diseñar el sistema de agua potable para el caserío de Molinopampa con el fin de mejorar la condición sanitaria de la población. Por tal motivo se planteó el siguiente enunciado del problema ¿El diseño del sistema de abastecimiento de agua potable del caserío de Molinopampa distrito de malvas, provincia de Huarmey, región Ancash, mejorará la condición sanitaria de la población - 2020? Para ello se tuvo como objetivo general: Diseñar el sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío Molinopampa, distrito de Malvas, provincia de Huarmey, región Ancash – 2020. La **metodología** tuvo las siguientes características: de **Tipo** correlacional y trasversal. El Nivel se estableció de carácter cualitativo y exploratorio. El diseño se optó de forma descriptiva no experimental, se enfocó en. "Búsqueda de antecedentes y elaboración del marco conceptual y se analizó los criterios de diseño del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío de Molinopampa. Los resultados fueron; se diseñó una captación de ladera, línea de conducción con tubería pvc 1" clase 10, reservorio de 10m3 y red de distribución con tubería pvc 1" y ¾" con velocidades de 0.74m/seg hasta 1.22m/seg. Se concluyo que la fuente Chaquimallo tiene un caudal de 2.25 litros/seg. Dicho liquido abastecerá a 252 personas calculadas hasta el año 2040. En lo cual cubrirá a las 68 familias del caserío de Molinopampa.

Palabras claves: Captación de agua potable, Red de distribución de agua potable, Reservorio de agua potable, Sistema de abastecimiento agua potable.

Abstract

The purpose of this research is was design the drinking water system for the Molinopampa farmhouse in order to improve the population's health condition. For this reason, the following problem statement was raised: Will the design of the drinking water supply system of the hamlet of Molinopampa, Malvas district, Huarmey province, Ancash region, improve the health condition of the population -2020? For this, the general objective was: To design the drinking water supply system to improve the sanitary condition of the Molinopampa hamlet, Malvas district, Huarmey province, Ancash region - 2020. The methodology had the following characteristics: Correlational type and transversal. The Level was established of a qualitative and exploratory nature. The design was chosen in a non-experimental descriptive way, focused on. "Search of antecedents and elaboration of the conceptual framework and the design criteria of the drinking water supply system for the improvement of the sanitary condition of the hamlet of Molinopampa were analyzed. The results were; A slope catchment was designed, a conduction line with 1 "class 10" pvc pipe, a 10m3 reservoir and a distribution network with 1" and 3/4 "pvc pipes with speeds from 0.74m / sec to 1.22m / sec. It was concluded that the Chaquimallo source has a flow of 2.25 liters / sec. Said liquid will supply 252 people calculated until the year 2040. In which it will cover the 68 families of the Molinopampa hamlet.

Keywords: Drinking water collection, Drinking water distribution network, Drinking water reservoir, Drinking water supply system.

6. Contenido

. Título de la tesisii
. Equipo de trabajoiii
3. Hoja de firma del jurado y asesor iv
. Hoja de agradecimiento y/o dedicatoria v
S. Resumen y Abstractvii
5. Contenido ix
'. Índice de gráficos, tablas y cuadros xiv
. Introducción1
I. Revisión de la literatura.
2.1. Antecedentes 3
2.1.1. Antecedentes Internacionales
2.1.2. Antecedentes Nacionales 6
2.1.3. Antecedentes Locales
2.2. Bases teóricas de la Investigación
2.2.1. Agua
2.2.2. Agua Potable
2.2.3. Aforo
2.2.4. Fuente
2.2.4.1. Tipos de Fuentes

A. Fuentes Superficiales
B. Fuentes subterráneas
2.2.5. Afloramiento
2.2.6. Caudal
2.2.7. Diseño
2.2.8. Calidad y Cantidad de Agua
2.2.8.1. Calidad de Agua
2.2.8.2. Cantidad de Agua
2.2.8.3. Métodos para Calcular el Caudal
A. Método volumétrico
2.2.9. Población de diseño y demanda de agua
2.2.9.1. Población Futura
A. Método de cálculo17
2.2.9.2. Periodo de diseño
2.2.9.3. Demanda de Agua
2.2.9.4. Demanda de Dotaciones
2.2.9.5. Variaciones de consumo
A. Consumo promedio diario anual (Qm)
B. Consumo máximo diario (Qmd)
C. Consumo máximo horario (Qmh)

2.2.10. Sistemas de abastecimiento de agua potable	23
2.2.10.1. Sistema de abastecimiento por gravedad sin tratamiento	. 24
2.2.10.2. Sistema de abastecimiento por gravedad con tratamiento	26
2.2.10.3. Sistema de abastecimiento por bombeo sin tratamiento	26
2.2.10.4. Sistema de abastecimiento por bombeo con tratamiento	27
2.2.11. Componentes de un sistema de agua Potable	. 27
2.2.11.1. Captación	28
A. Tipos de Captación	28
B. Componentes de la captación	29
C. Criterios de diseño para captación de ladera	. 31
D. Criterios de diseño para captaciones de fondo	. 34
2.2.11.2. Línea de conducción.	35
A. Estructuras complementarias:	. 35
B. Criterios de diseño	36
2.2.11.3. Reservorio	. 40
A. Clases de reservorios de regulación	. 41
B. Componentes del reservorio	. 41
C. Criterios de diseño	. 42
2.2.11.4. Línea de a Aducción	. 44
A. Criterios de diseño	44

2.2.11.5. Red de distribución	. 45
A. Tipos de Red de distribución	. 46
B. Criterios de diseño	. 48
C. Válvulas de interrupción	. 49
D. Válvulas de control	. 49
2.2.12. Condición Sanitaria	. 50
2.2.12.1. Factores causales que afectan la condición sanitaria	. 50
2.2.12.2. Factores a tomar en cuenta para la mejora de la condición	
sanitaria.	. 51
A. Calidad del servicio de agua potable	. 51
B. Cantidad del servicio de agua potable	. 52
C. Continuidad del servicio de agua potable	. 52
D. Cobertura del servicio de agua potable.	. 52
III. Hipótesis	. 54
IV. Metodología	. 55
4.1. Diseño de la Investigación	. 55
4.2. Población y muestra	. 56
4.3. Definición y Operacionalización de Variables e Indicadores	. 57
4.4. Técnicas e instrumentos de recolección de datos	. 59
4.5. Plan de análisis	. 60
4.6. Matriz de Consistencia	. 62

4.7. Principios éticos	64
V. Resultados	65
5.1. Resultados	65
5.2. Análisis de Resultados	78
VI. Conclusiones	80
Aspectos complementarios	81
Referencias Bibliográficas.	82
Anevos	88

7. Índice de gráficos, tablas y cuadros

Gráficos

Gráfico 01:	Se puede apreciar el porcentaje de encuestados sobre el
	diseño del sistema de agua potable66
Gráfico 02:	Se puede apreciar el porcentaje de encuestados sobre la
	continuidad del servicio de agua potable67
Gráfico 03:	Se puede apreciar el porcentaje de encuestados sobre la
	cobertura de agua potable
Gráfico 04:	Se puede apreciar el porcentaje de encuestados sobre la
	calidad de agua que requiere la población69

Tablas

Tabla N° 01: Dotación por número de habitantes	21
Tabla N° 02: Dotación por regiones	21
Tabla N° 03: Dotación de agua según guía MEF ámbito rural	21
Tabla N° 04: Clase de tubería según soporte de presión	38
Tabla N° 05: Especificaciones técnicas tubos PVC-U presión	38
Tabla N° 06: Tipo de tubería.	39

Cuadros

Cuadro 01: cuadro de operacionalización de variables	57
Cuadro 02: Técnicas e instrumentos de recolección de datos.	59
Cuadro 03: Cuadro de matriz de consistencia	62
Cuadro 04: Encuesta sobre el diseño del sistema de agua potable	66
Cuadro 05: Encuesta de continuidad del servicio de agua potable	67
Cuadro 06: Encuesta de cobertura de agua potable	68
Cuadro 07: Encuesta sobre calidad de agua potable	69
Cuadro 08: Características de la cámara de captación.	70
Cuadro 09: Características de la línea de conducción	72
Cuadro 10: Características de reservorio	72
Cuadro 11: Características de la línea de aducción y red de distribución	74

I. Introducción

Esta investigación se realizó en el caserío Molinopampa, distrito de Malvas, provincia de Huarmey departamento de Ancash, tuvo como finalidad diseñar el sistema de abastecimiento de agua potable. Según (Jimenes), dicho sistema tiene como fin primordial de entregar a los habitantes de una localidad agua en cantidad y calidad adecuada para satisfacer sus necesidades. (1) El caserío de Molinopampa no cuenta con dicho sistema, y esto hace que los pobladores se expongan a consumir agua contaminada y que afecte su salud. Por tal motivo se planteó el siguiente enunciado del problema ¿El diseño del sistema de abastecimiento de agua potable del caserío de Molinopampa distrito de malvas, provincia de Huarmey, región Ancash, mejorará la condición sanitaria de la población - 2020? Para dar respuesta al problema, se propuso el **objetivo general**: Diseñar el sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío Molinopampa, distrito de Malvas, provincia de Huarmey, región Ancash - 2020. Para obtener dicho objetivo se planteó los siguientes objetivos específicos: Establecer el sistema de agua potable para el caserío Molinopampa, distrito de malvas, provincia de Huarmey, región Ancash – 2020. Describir el sistema de agua potable para la mejora de la condición sanitaria del caserío Molinopampa, distrito de malvas, provincia de Huarmey, región Ancash – 2020. Realizar el diseño del sistema de abastecimiento de agua potable del caserío Molinopampa, distrito de malvas, provincia de Huarmey, región Ancash -2020. La investigación se justificó por la necesidad que tiene el caserío de Molinopampa de contar con un sistema de abastecimiento de agua potable ya que el agua que consumen actualmente los pobladores está expuesto a

contaminaciones y esto genera enfermedades digestivas a la población, este diseño del sistema sirvió para la toma de decisiones de las autoridades de Molinopampa para mejorar el servicio de dicho líquido. La metodología de la investigación tuvo las siguientes características. El **Tipo** fue correlacional y trasversal, correlacional porque determino la incidencia en el diseño del sistema en la condición sanitaria del caserío de Molinopampa, la variable trasversal analizó datos recopilados en un periodo de tiempo de una muestra o población. El Nivel se estableció de carácter cualitativo y exploratorio, cualitativo porque se usó magnitudes numéricas, exploratorio porque no se alteró lo más mínimo el lugar. El diseño se optó de forma descriptiva no experimental, se enfocó en. "Búsqueda de antecedentes y elaboración del marco conceptual y se analizó los criterios de diseño del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío de Molinopampa, así mismo se diseñó y se aplicó instrumentos para la elaboración del diseño del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío de Molinopampa, distrito de Malvas, provincia de Huarmey, región Ancash - 2020., La delimitación espacial estuvo comprendida en el periodo enero 2020 – mayo 2020; **Población y muestra** de la investigación fue compuesta por el sistema de abastecimiento de agua potable del caserío Molinopampa, distrito de Malvas, provincia de Huarmey, región Ancash - 2020. Los resultados obtenidos fueron; se diseñó una captación de ladera, línea de conducción con tubería pvc 1" clase 10, reservorio de 10m3 y red de distribución con tubería pvc 1" y 3/4" con velocidades de 0.74m/seg hasta 1.22m/seg. Con presiones asta 70m.c.a. Se **concluyó** por un diseño del sistema de agua potable por gravedad sin tratamiento.

II. Revisión de la literatura.

2.1. Antecedentes.

2.1.1. Antecedentes Internacionales

a. Estudio y diseño de la red de distribución de agua potable
 para la comunidad puerto ébano km 16 de la parroquia
 Leónidas plaza del cantón sucre – 2015.

Según (Murillo et al.); La presente tesis tuvo como Objetivo **general** realizar el diseño de la red de distribución de agua potable para la comunidad de Puerto Ébano km 16, de la parroquia Leónidas Plaza del cantón Sucre. La cual nos ayudara a radicar la problemática que hace mucho tiempo tiene esta comunidad, y precisamente contribuir con el desarrollo tanto social como económico, cumpliendo así con el buen vivir que establece la Constitución Ecuatoriana. El método fue descriptivo. La conclusiones consistió en: Brindar servicios a 177 familias equivalente a 1062 habitantes que viven en la comunidad de Puerto Ébano actualmente, pero el proyectado está diseñado a 25 años para lo cual la población futura a final del periodo de diseños es de 1574 habitantes, cabe indicar que el periodo de diseños no significa la vida útil del sistema de red de distribución; El estudio de impacto ambiental describe que la zona a estudiar no se verá afectada en su población ni en la flora y fauna: El análisis financiero arroja resultados favorables lo cual garantiza que el proyecto sea sostenible y sustentable. (2)

b. Propuesta de diseño del sistema de distribución de agua
 potable de cruz roja venezolana seccional Carabobo – valencia
 2016.

Según (Castillo et al.); Esta investigación tuvo como objetivo general proponer el diseño del sistema de distribución de agua potable de Cruz Roja Venezolana Seccional Carabobo Valencia, a través del diagnóstico de la situación actual, proponiendo una solución de diseño que sea factible técnicamente, tratando en la mayor medida posible de utilizar los elementos que conforman el sistema existente. El método utilizado es proyectivo con base en un diseño no experimental con técnicas de recolección de datos la observación directa, la entrevista y la documentación existente, a través de la comparación entre ellas. Los resultados fueron, la institución ha crecido sin una planificación ni proyecto, lo cual hace imposible organizar y controlar el servicio de agua, por lo que en varias ocasiones ha sufrido fallas parciales, como filtraciones de agua, falta de presión en algunos puntos, rotura de tuberías y niples, por lo que es necesario proponer un sistema de distribución de agua nuevo e independiente del actual, con recorridos adecuados de forma aérea y embonados en paredes, evitando afectar los acabados de tabillas y cerámicas existentes, modelando los ramales principales, montantes, sub ramales y sistema hidroneumático con el software Ip3- aguas blancas versión 3.5, obteniendo diámetros de 2 pulgadas para los ramales principales, de 3/4 a 1 ½ pulgadas

en montantes y entre 1/2 y 1 pulgadas en sub ramales de distribución, con un hidroneumático de volumen de 8892.48 litros, con 2 bombas de 8 Hp que funcionarán en paralelo, unidos a tres tanques de almacenamiento con capacidad total de 165.85 m³ que trabajarán con 2 bombas de 7.5 Hp; Por último, se calculó un sistema de abastecimiento de emergencia para el área de quirófano y lavandería alimentado desde el tanque elevado. Conclusión, se constató que el sistema de distribución de agua potable de Cruz Roja Venezolana Seccional Carabobo Valencia presenta una serie de problemas de unificación de los sistemas disponibles para abastecer la edificación, aunado a una política de crecimiento no planificado en lo que se refiere a infraestructura, además de la presencia de tuberías de hierro galvanizado que han superado su vida útil, esto trajo como consecuencia fallas en el suministro de agua, ya sea por falta de presión adecuada o rotura de las tuberías de hierros galvanizado. (3)

c. Diseño del sistema de abastecimiento de agua potable para el cantón san José primero del municipio de san Martín utilizando el programa Epanet 2.0 ve – 2016.

Según (Escobar et al.); Este trabajado tuvo como **objetivo general**Diseñar el sistema de abastecimiento de agua potable para el cantón
San José Primero en el municipio de San Martín, con el fin de
mejorar la calidad de vida de sus habitantes. El **método** utilizado
es aritmético para la realización de los cálculos de la investigación

la cual tiene como una alternativa de solución a la problemática que viven los habitantes del cantón. Tuvo como **conclusión** el diseño del sistema de abastecimiento de agua potable realizado para el cantón San José Primero se soluciona la problemática del abastecimiento de agua potable en dicha comunidad; y con la simulación hidráulica realizada mediante el software Epanet 2.0 se garantiza que el sistema funcionara de forma eficiente y podrá satisfacer las necesidades de la comunidad durante un periodo mínimo de 20 años, siendo este el periodo de diseño del proyecto. (4)

2.1.2. Antecedentes Nacionales

 d. Diseño del sistema de agua potable y alcantarillado en el centro poblado de el Charco, distrito de Santiago de Cao, provincia de Ascope, región la Libertad – 2017.

Según (Navarrete), Este trabajo tuvo como **objetivo general** Realizar el Diseño del sistema de agua potable y alcantarillado en el centro poblado de El charco, Distrito de Santiago de Cao, Provincia de Ascope, Región La Libertad; **Metodología** utilizada fue el tipo descriptivo de diseño no experimental. Se llego a las siguientes **conclusiones**, Se realizó el diseño del sistema de agua potable, tomando como fuente el agua subterránea. El centro poblado se abastecerá de un reservorio elevado con capacidad de 70 m3, los cuales que servirán para suministrar de agua potable al balneario consideración una proyección a futuro como una zona de

alto turismo; Se diseñó la red de desagüe y se encontró que el diámetro de la tubería a emplear es de 200 mm, respetándose la normatividad actual correspondiente establecida en el RNE (Saneamiento). Los buzones tienen profundidades que varían entre 1.20m a 5.20m. Las aguas residuales van una cámara de bombeo primero debido a que las lagunas de oxidación existente se encuentran por encima del terreno con una diferencia de cota de 3 m. (5)

e. Mejoramiento del sistema de agua potable y saneamiento en la comunidad de Cullco Belén, distrito de Potoni – Azángaro – Puno – 2018.

Según (Pejerrey), tuvo como **objetivo**, Mejorar la prestación de servicios de agua potable y saneamiento en la Comunidad Cullco Belén. distrito de Potoni, provincia de Azángaro, departamento de Puno; y se llegó a las siguientes **conclusiones**, La fuente de abastecimiento de agua es de manantial y garantiza el servicio del líquido elemento al término del periodo de diseño; Con la puesta en marcha de esta obra se beneficia a la población del caserío San Agustín, siendo un total de 41 familias con una densidad poblacional de 5 hab/fam, resultando 205 pobladores, a su vez se asume 0.55% para el valor de la tasa de crecimiento anual.⁽⁶⁾

2.1.3. Antecedentes Locales

f. Diseño del sistema de abastecimiento de agua potable y alcantarillado del Caserío Anta, Moro - Ancash 2017.

Según (Chirinos); Con referencia al trabajo de investigación tuvo como **objetivo general** realizar el diseño del sistema de abastecimiento de agua potable y alcantarillado en el Caserío Anta, Moro – Ancash 2017; **el método** utilizado fue descriptivo para la recolección de datos básico en campo, protocolo para mi estudio de suelos y la guía de análisis documental para el análisis químico físico y bacteriológico. La población estuvo conformada por los habitantes del caserío Anta, del tipo descriptivo, no experimental; Llegando a la **conclusión**, Se realizó el diseño de abastecimiento de agua potable para 204 habitantes donde la demanda para este proyecto es 100 lt/hab/día, con aportes en época de estiaje es de 0.84 lt/seg. Por consiguiente, el Caudal máximo diario es 0.37 lt/seg caudal necesario para el diseño de la captación, Línea de conducción y Reservorio. El consumo máximo horario es de 0.57 lt/seg.⁽⁷⁾

el Caserío de Mazac, Provincia de Yungay, Ancash – 2017.

Según (Velázquez), La presente tesis tiene como título "Diseño del Sistema de Abastecimiento de Agua Potable para el Caserío de Mazac, Provincia de Yungay, Ancash – 2017", pertenece a la línea de investigación diseño de obras hidráulicas y saneamiento e investigación cuantitativa. Tuvo como **objetivo general,** Diseñar el sistema de abastecimiento de agua potable para el caserío de Mazac, provincia de Yungay, Ancash - 2017. **El método** de

investigación es descriptiva mostrando una variable, su muestra y su resultado, en la presente tesis tanto la población y la muestra es el sistema de abastecimiento de agua potable para el caserío de Mazac, la técnica que se emplea es el análisis documental y para la ejecución de la misma se tuvo como instrumento la guía de análisis documental y las fichas de registro de datos; conclusión, El tipo de Captación que se empleó en el Sistema de Abastecimiento Agua Potable para el Caserío de Mazac es de tipo Ladera y Concentrado según las condiciones de afloramiento observadas en el manantial (Afloramiento en un solo punto), por tener una ligera pendiente (Afloramiento de forma horizontal) y previo a una constatación de una buena calidad de agua de Tipo A1 donde se cumplen los límites máximos permisibles impuestas por el Reglamento de la Calidad del Agua para Consumo Humano DS Nº 031- 2010-SA aplicado para aguas subterráneas, Además según su caudal que este posee es de tipo C-1 ya que tiene un caudal promedio mensual máximo de 2.20 lt/s y un mínimo de 1.4 lt/s en épocas de estiaje cumpliendo de esta forma los requisitos para este tipo de captaciones con un rango entre 0.8 y 2.5 l/seg. Asimismo, el tipo de Reservorio de Almacenamiento que se empleó en el Sistema según su función es de Regulación y Reserva, en función a la correspondida con el suelo es de tipo Apoyado, según los materiales empleados es de Hormigón Armado y según su diseño (Forma geométrica) es de forma circular, en cuanto a la red de distribución se optó por una

red de tipo Ramificada o Abierta por la ubicación de la zona del proyecto (El ámbito geográfico de la zona) que se encuentra en la región sierra donde las viviendas son diseminadas y por la dispersión de la población que tienen más de 20 viviendas con una separación superior a los 50 metros. (8)

h. Evaluación y mejoramiento del sistema de agua potable del
 Asentamiento Humano Héroes del Cenepa, Distrito de
 Buenavista Alta, Provincia de Casma, Ancash – 2017.

Según (Illán), El siguiente proyecto de investigación, tuvo por objetivo general Evaluar y mejorar el sistema de agua potable del Asentamiento Humano Héroes del Cenepa, Distrito de Buenavista Alta, Provincia de Casma en el presente año 2017; El **método** de investigación fue no experimental, transaccional y descriptivo. Se llego a las siguientes conclusiones; La velocidad determinada en la línea de aducción es de 1.17 m/s y el diámetro de 4 plg, los cuales están dentro de los parámetros establecidos entre 0.6 m/s y 3.0 m/s, según RNE OS. 050; La red de distribución es uno de los componentes del sistema que no cumple los parámetros del reglamento, primero presenta diámetro de 2 plg. y como segundo que las presiones dinámicas en los 41 nudos es de 1 m H2O presión mínima y 9 m H2O presión máxima. según el RNE-OS.050, las presiones deben estar entre 10 a 50 m H2O y de diámetro mínimo de 75mm; La calidad de agua en general no está apta para consumo humano, puesto que superan los LMP del Reglamento de la Calidad del Agua para, Consumo Humano DS N° 031-2010-SA. Como Dureza Cálcica, Dureza Magnesiana, Alcalinidad Total, Salinidad, Coliformes Fecales y Coliformes Totales. (9)

2.2. Bases teóricas de la Investigación

2.2.1. Agua

Es una sustancia liquida, inodora insípida y transparente, incolora y verdosa o azulada en grandes masas, compuesta de oxígeno e hidrógeno, elemento de vital importancia para la vida humana.

2.2.2. Agua Potable.

Según (Cordero et al.), Significa que el agua debe estar libre de microorganismos patógenos, de minerales y sustancias orgánicas que puedan producir efectos fisiológicos adversos. Debe ser estéticamente aceptable y, por lo tanto, debe estar exenta de turbidez, color, olor y sabor desagradable. Puede ser ingerida o utilizada en el procesamiento de alimentos en cualquier cantidad, sin temor por efectos adversos sobre la salud. (10)

2.2.3. Aforo.

El aforo es la medición del volumen de agua en un tiempo determinado, el caudal que pasa por una sección de un curso de agua donde se controla el tiempo en el trayecto determinado. El valor del caudal mínimo debe ser mayor que el consumo máximo diario de la población con la finalidad de cubrir la demanda de agua de la población futura. Lo ideal sería que los aforos se efectúen en las

temporadas críticas de los meses de estiaje (los meses secos) y de lluvias, para conocer caudales mínimos y máximos. Es necesario medir la cantidad de agua de las fuentes, y determinar si esa fuente tendrá la capacidad de abastecer con un servicio permanente a la población beneficiada.

2.2.4. Fuente

La fuente es el punto más importante para poder diseñar nuestro proyecto de abastecimiento de agua potable, donde nosotros captaremos el agua una vez aforado la fuente y tener resultados positivos para poder satisfacer las necesidades de la población, y poder conducirlo y distribuirlo a la población proyectada.

2.2.4.1. Tipos de Fuentes

A. Fuentes Superficiales

Según (Agüero), Las aguas superficiales están constituidas por los arroyos, ríos, lagos, etc. que discurren naturalmente en la superficie terrestre. Estas fuentes no son tan deseables, especialmente si existen zonas habitadas o de pastoreo animal aguas arriba. Sin embargo a veces no existe otra fuente alterativa en la comunidad, siendo necesario para su utilización, contar con información detallada y completa que permita visualizar su estado sanitario, caudales disponibles y calidad de agua⁽¹¹⁾

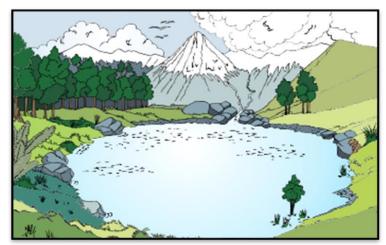


Figura 01: Aguas superficiales

Fuente: Camarona A. (2016)

B. Fuentes subterráneas

Según (Agüero), Parte de la precipitación en la cuenca se infiltra en el suelo hasta la zona de saturación, formando así las aguas subterráneas. La explotación de éstas dependerá de las características hidrológicas y de la formación geológica del acuífero. La captación de aguas subterráneas se puede realizar a través de manantiales, galerías filtrantes y pozos (excavados y tubulares). (11)

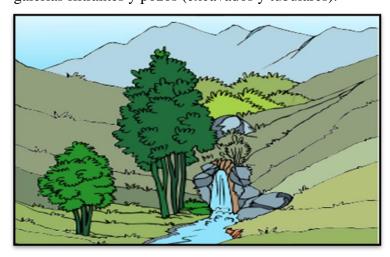


Figura 02: Aguas subterráneas

Fuente: Camarona A. (2016)

2.2.5. Afloramiento.

Es el punto de donde nace el agua proveniente de las grandes bolsas de agua (Acuíferos), que sobresale hacia la superficie terrestre.

2.2.6. Caudal

Según (Monge), Caudal se define como El volumen de agua (litros, metros cúbicos, etc.) que atraviesa una superficie (canal, tubería, etc.) en un tiempo determinado (segundos, minutos, horas)⁽¹²⁾

2.2.7. **Diseño**

El diseño se hará de acuerdo a como lo requiera el proyecto y para qué tipo de captación estará apto el terreno donde se ubicará de acuerdo al manantial elegido para el proyecto planificado.

2.2.8. Calidad y Cantidad de Agua

2.2.8.1. Calidad de Agua

Para determinar la calidad del agua tenemos que estar completamente seguros que este líquido deberá estar en óptimas condiciones, con los estudios y análisis de laboratorios respectivos y con resultados positivos, que no pueda ser una amenaza de contaminación para los pobladores de la zona quienes serán los consumidores de este servicio de abastecimiento de agua potable.

Figura 03: Muestra de agua para análisis en laboratorio.

Fuente: Elaboración propia. (2020)

2.2.8.2. Cantidad de Agua

La cantidad de agua es la parte fundamental del proyecto, tiene que tener un caudal suficiente para poder abastecer a la población que se beneficiara en la actualidad y a futuro como el diseño establecido según la tasa de crecimiento del lugar, aun así, en épocas de verano el caudal tiene que ser permanente para brindar un buen servicio a la población.

2.2.8.3. Métodos para Calcular el Caudal

A. Método volumétrico

El método consiste en tomar el tiempo que demora en llenarse un recipiente de volumen conocido. Posteriormente se divide el volumen en litros entre el tiempo promedio en segundos, obteniéndose el caudal en lts./seg. Formula:

$$Q = V/t....(1)$$

Donde:

Q = Caudal

V = Volumen

T = Tiempo

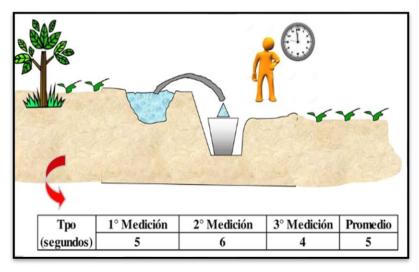


Figura 04: Método volumétrico.

Fuente: Silva C. (2018)

2.2.9. Población de diseño y demanda de agua

Según (Agüero), Las obras de agua potable no se diseñan para satisfacer solo una necesidad del momento actual, sino que deben prever el crecimiento de la población en un periodo de tiempo prudencial que varía entre 10 y 40 años; siendo necesario estimar cual será la población futura al final de este periodo. Con la población futura se determina la demanda de agua para el final del periodo de diseño. La dotación o la demanda per cápita, es la cantidad de agua que requiere cada persona de la población, expresada en litros/habitante/día. Conocida la dotación, es necesario estimar el

consumo promedio diario anual, el consumo máximo diario y el consumo máximo horario. El consumo promedio diario anual servirá para el cálculo del volumen del reservorio de almacenamiento y para estimar el consumo máximo diario y horario. El valor del consumo máximo diario es utilizado para el cálculo hidráulico de la línea de conducción; mientras que el consumo máximo horario, es utilizado para el cálculo hidráulico de la línea de aducción y red de distribución.

2.2.9.1. Población Futura

Para el cálculo de la población futura en las zonas rurales es se tiene métodos que determina el diseño a futuro, de acuerdo a la pasa de crecimiento de la zona donde se desarrollara este proyecto.

A. Método de cálculo

-Método Analítico:

Según (Agüero), Presuponen que el cálculo de la población para una región dada es ajustable a una curva matemática. Es evidente que este ajuste dependerá de las características de los valores de población censada, así como de los intervalos de tiempo en que estos se han medido. Dentro de los métodos analíticos tenemos el aritmético, geométrico, de la curva normal, logística, de la ecuación de segundo grado, el exponencial, de los incrementos y de los mínimos cuadrados.

(11)

-Método comparativo

Son aquellos que mediante procedimientos gráficos estiman valores de población, ya sea en función de datos censales anteriores de la región o considerando los datos de poblaciones de crecimiento similar a la que se está estudiando.

-Método Racional

Según (Vierendel), se basa en un estudio socioeconómico del lugar considerado el crecimiento vegetativo que, en función de los nacimientos, difusiones inmigraciones, emigraciones y población flotante. (13)

Formula:

$$P = (N + 1) - (D + E) + Pf \dots \dots (2)$$

Donde:

P = Población

Pf = Población flotante

E = Emigraciones

I = Inmigraciones

D = Defunctiones

N = Nacimientos

-Método aritmético

Se usa cuando no se tiene mucha información del lugar La fórmula de crecimiento aritmético es:

$$Pf = Pa\left(1 + \frac{rt}{1000}\right)....(3)$$

Dónde:

Pf = Población futura.

Pa = Población actual.

R = Coeficiente de crecimiento anual por 1000 habitantes

t = Tiempo en años.

-Método de interés simple

Cundo se tiene datos censales:

Formula:

$$P = Po[1 + r(t - to)].....(4)$$

$$r = \frac{Pi + 1 - Pi}{Pi(ti + 1 ti)} \dots \dots (5)$$

Donde:

P = Población a calcular

Po = Población inicial

r = Razón de crecimiento

t = Tiempo futuro

to = Tiempo inicial

2.2.9.2. Periodo de diseño

Según (Ministerio de Vivienda Construcción y Saneamiento), determina que Los periodos de diseño de los diferentes componentes del sistema se determinarán considerando los siguientes factores:

Vida útil de las estructuras y equipos

 Grado de dificultad para realizar la ampliación de la infraestructura.

o Crecimiento poblacional.

o Economía de escala

 Los periodos de diseño máximos recomendables, son los siguientes

o Capacidad de las fuentes de abastecimiento: 20 años

Obras de captación: 20 años

o Pozos: 20 años

 Plantas de tratamiento de agua de consumo humano, reservorio: 20 años.

o Tuberías de conducción, impulsión, distribución: 20 años

o Equipos de bombeo: 10 años

o Caseta de bombeo: 20 años⁽¹⁴⁾

2.2.9.3. Demanda de Agua

De acuerdo al número de habitantes de la población elegida y el tipo de la comunidad, se determina la variación del consumo de agua debido a que la temperatura y el clima juegan un papel importante en la población y por ende los factores económicos y sociales, en las comunidades rurales y las regiones del país se proyectan las dotaciones en base al número de habitantes.

2.2.9.4. Demanda de Dotaciones

En las siguientes tablas se muestran las dotaciones por la cantidad de habitantes en las localidades rurales del país.

Tabla N° 01: Dotación por número de habitantes

POBLACION (Habitantes)	DOTACION (1/hab/día)
Hasta 500	60
500 – 1000	60 – 80
1000 - 2000	80 - 100

Fuente: ministerio de salud (1962)

Tabla N° 02: Dotación por regiones

REGION	DOTACION (1/hab/día)
SELVA	70
COSTA	60
SIERRA	50

Fuente: Ministerio de Salud (1984)

Tabla N° 03: Dotación de agua según guía MEF ámbito rural.

Cr	iterios		Costa	Sierra	Selva
Letrinas hidráulico.	sin	arrastre	50-60	40-50	60-70
Letrinas hidráulico.	con	arrastre	90	80	100

Fuente: Ministerio de vivienda construcción y saneamiento (2016)

2.2.9.5. Variaciones de consumo

A. Consumo promedio diario anual (Qm)

Según (Agüero), El consumo promedio diario anual, se define como el resultado de una estimación del consumo per cápita para la población futura del periodo de diseño, expresada en litros por segundo (Vs) y se determina mediante la siguiente relación. (11)

Formula:

$$Qm = \frac{\text{Pf x Dotacion(d)}}{86,400 \text{ s/dia}}....(6)$$

Dónde:

Qm = Consumo promedio diario (1/s).

Pf = Población futura (hab.).

D = Dotación (l/hab./día).

B. Consumo máximo diario (Qmd)

El consumo máximo diario correspondiente al día de máximo consumo de la serie de datos medidos, de igual manera en ausencia de datos este igual se consigue mediante la aplicación de un coeficiente de variación diaria.

Formula:

$$Qmd = Qm * K1 (7)$$

Dónde:

Qmd= Consumo máximo diario (l/s).

Qm= Consumo promedio diario (l/s).

K1= coeficiente de variación diaria, normalmente se aplica 1.3

C. Consumo máximo horario (Qmh)

Es el caudal máximo correspondiente a la hora de mayor consumo en el día de máximo consumo y se obtiene a partir del caudal medio y un coeficiente de variación horaria.

Formula:

$$Qmh = Qm * K2 (8)$$

Dónde:

Qmh = Consumo máximo horario (l/s).

Qmd = Consumo promedio diario (l/s).

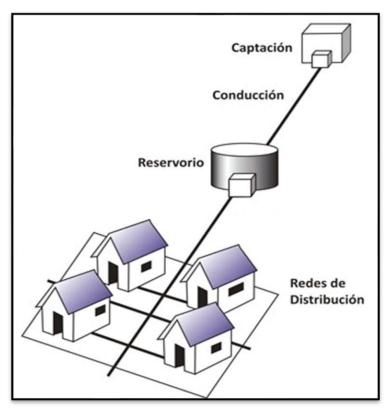
K2 = coeficiente de variación diaria, normalmente se

Aplica 1.5

2.2.10. Sistemas de abastecimiento de agua potable

Según (Jimenes), Un sistema de abastecimiento de agua potable, tiene como finalidad primordial, la de entregar a los habitantes de una localidad, agua en cantidad y calidad adecuada para satisfacer sus necesidades, ya que como se sabe los seres humanos estamos compuestos en un 70% de agua, por lo que este líquido es vital para la supervivencia. Uno de los puntos principales de este capítulo, es entender el término potable. El agua potable es considerada aquella que cumple con la norma establecida por la Organización Mundial de la Salud (OMS), la cual indica la cantidad de sales minerales disueltas

que debe contener el agua para adquirir la calidad de potable. Sin embargo, una definición aceptada generalmente es aquella que dice que el agua potable es toda la que es "apta para consumo humano", lo que quiere decir que es posible beberla sin que cause daños o enfermedades al ser ingerida. La contaminación del agua ocasionada por aguas residuales municipales, es la principal causa de enfermedades de tipo hídrico por los virus, bacterias y otros agentes biológicos que contienen las heces fecales (excretas), sobre todo si son de seres enfermos. Por tal motivo es indispensable conocer la calidad del agua que se piense utilizar para el abastecimiento a una población. (15)


2.2.10.1. Sistema de abastecimiento por gravedad sin

tratamiento

Según (Barrios et al.), Son sistemas donde la fuente de abastecimiento de agua es de buena calidad y no requiere tratamiento complementario previo a su distribución; adicionalmente, no requieren ningún tipo de bombeo para que el agua llegue hasta los usuarios. Las fuentes de abastecimiento son aguas subterráneas o subálveas. Las primeras afloran a la superficie como manantiales y la segunda es captada a través de galerías filtrantes. La captación, de manantiales puede ser de ladera o de fondo, y para galerías filtrantes por drenes sub superficiales. En estos sistemas, la desinfección no es muy exigente, ya que el agua

que ha sido filtrada en los estratos porosos del subsuelo, presenta buena calidad bacteriológica. Los sistemas por gravedad sin tratamiento tienen una operación bastante simple, sin embargo, requieren un mantenimiento mínimo para garantizar el buen funcionamiento. Las ventajas de los sistemas de gravedad sin tratamiento son:

- o Bajo costo de inversión, operación y mantenimiento.
- Requerimientos de operación y mantenimiento reducidos.
- o No requiere operador especializado.
- o Baja o nula contaminación. (16)

Figura 05: Sistema de agua potable sin tratamiento.

Fuente: Lopèz R. (2010)

2.2.10.2. Sistema de abastecimiento por gravedad con

tratamiento

Según (Barrios et al.), Cuando las fuentes de abastecimiento son aguas superficiales captadas en canales, acequias, ríos, etc., requieren ser clarificadas y desinfectadas antes de su distribución. Cuando no hay necesidad de bombear el agua, los sistemas se denominan "por gravedad con tratamiento .⁽¹⁶⁾

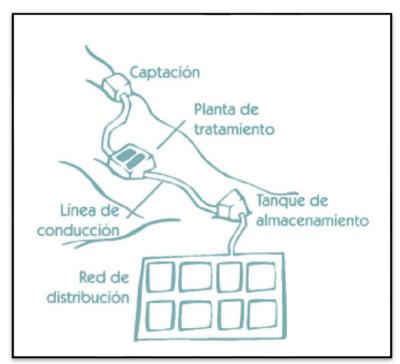


Figura 06: Sistema de agua potable con tratamiento.

Fuente: Programa de agua Potable y alcantarillado.

2.2.10.3. Sistema de abastecimiento por bombeo sin tratamiento

Estos sistemas también se abastecen con agua de buena calidad que no requiere tratamiento previo a su consumo. Sin embargo, el agua necesita ser bombeada para ser distribuida al usuario final. Generalmente están constituidos por pozos.

Que requiere de personales capacitados para controlar y poner en manteniendo el equipo de bombeo. (16)

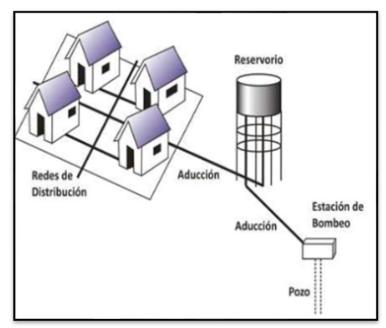


Figura 07: Abastecimiento por bombeo sin tratamiento.

Fuente: Estrella G, Gonzales, A. (2014)

2.2.10.4. Sistema de abastecimiento por bombeo con tratamiento

Los sistemas por bombeo con tratamiento requieren tanto la planta de tratamiento de agua para adecuar las características del agua a los requisitos de potabilidad, como un sistema de bombeo para impulsar el agua hasta el usuario final. (16)

2.2.11. Componentes de un sistema de agua Potable

Este sistema está constituido por partes elementales que son el complemento para un correcto funcionamiento del sistema de abastecimiento de agua potable.

2.2.11.1. Captación

Según (Ayala et al.), la captación es una estructura destinada a recoger o extraer una determinada cantidad de agua de la fuente que se ha seleccionado y descargarla en la conducción del sistema de agua potable, estas obras pueden ser tanto para aguas superficiales como para subterráneas, teniendo para estas últimas un diseño especial de captación, que pueden ser:

- o Captación en vertientes
- Captación en galerías filtrantes
- O Captación en pozos someros (17)

A. Tipos de Captación

Para (Agusti), el primer elemento de cualquier sistema de abastecimiento de agua es la captación. Ésta puede ser de aguas superficiales o de aguas subterráneas. (18)

-Fondo:

Según (Ministerio de Vivienda Construcción Saneamiento), señala que: Cuando se capta agua que emerge en terreno llano. La estructura de captación es una cámara sin losa de fondo que rodea el punto de brote del agua; consta de cámara húmeda que sirve para almacenar el agua y regula el caudal al utilizarse y una cámara seca que protege las válvulas de control de salida, rebose y limpia. (14)

-Ladera:

Cuando se realiza la protección de una vertiente que aflora a una superficie tipo plano inclinado con carácter puntual disperso.

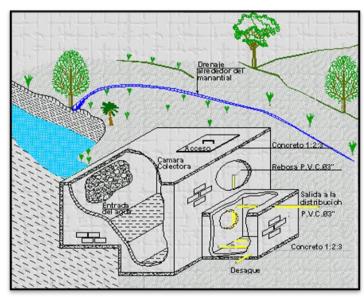


Figura 08: Captación de ladera.

Fuente: EPAM. (1992)

B. Componentes de la captación

-Cámara de protección

La captación se puede hacer mediante cajas cerradas de concreto reforzado o mampostería denominadas cajas colectora, por lo cual cámara de protección deber tener formas y demisiones las cuales deben estar de acuerdo a la localización y las vertientes para poder permitir captar el agua para el proyecto, la cámara debe contar con una losa removible y accesible.

-Tuberías y accesorios

Según (Agüero), las tubería cumplen la función de trasladar el agua de un lugar a otro , para el cálculo del diámetro de tubería estará en función al caudal máximo diario ,para estructuras de captación deben preverse válvulas, accesorios, tubería de limpieza ,rebose, tapa de inspección, al inicio de la tubería de conducción se instalara su correspondiente canastilla. (11)

-Protección perimetral

La protección perimétrica o cerco, en las captaciones de agua, cumplen una función muy importante, porque de esa manera se protege el acceso a las personas o animales que pueden de cualquier modo mesclar algún agente que pueda mostrar indicios de contaminación y poder dar a la población servida aguas de excelente calidad.

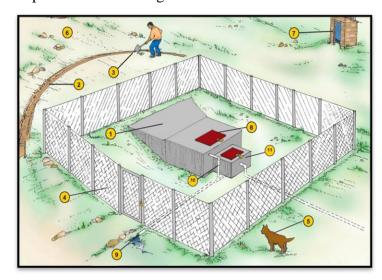


Figura 09: Protección perimetral de captación.

Fuente: Unicef, Centro de Aguas y Saneamiento Ambiental, Ministerio de Medio Ambiente y Agua. (2008)

C. Criterios de diseño para captación de ladera.

Según (Ministerio de Vivienda Construcción y Saneamiento), señala lo siguiente:

-Cálculo de distancia y afloramiento y la cámara húmeda (L):

Se necesitará conocer el la velocidad de pase y la perdida de carga sobre el orificio de salida.

En primer lugar, se necesita la perdida de carga:

Formula:

$$ho = 0.051 \frac{\text{v2}}{cd} \dots \dots (9)$$

Donde:

ho = Carga necesaria sobre el orificio de entrada (m)

V2 = Velocidad de pase (se recomienda ≤ 0.6 m/s

cd = Coeficiente de descarga (usualmente 0.8)

$$H = ho + hf \dots (10)$$

hf = Perdida de carga para determinar la distancia entre el afloramiento y la caja de captación (L)

$$hf = 0.30 * L....(11)$$

La distancia de afloramiento y cámara húmeda se obtiene de la siguiente formula:

$$L = hf/0.30.....(12)$$

-Cálculo de ancho de la pantalla:

Para determinar el ancho de la pantalla es necesario conocer el diámetro y el número de orificios que permitirán fluir el agua desde la zona de afloramiento hacia la cámara húmeda. Para el cálculo del diámetro de la tubería de entrada (D), se utilizan las siguientes ecuaciones:

Formula:

$$Qmax = V * A * Cd \dots (13)$$

$$Qmax = A * Cd * \frac{(2gh)}{1/2}....(14)$$

Dónde:

Qmax = Caudal máximo de la fuente l/s

 $V = velocidad de paso (\le 0.6 m/s)$

A =Área de la tubería en m2

Cd = coeficiente de descarga (0.6 a 0.8)

g = aceleración de la gravedad

 $\mathbf{h} = \text{carga sobre el centro del orificio.}$

Despejando:

$$A = \frac{Qmax}{cd * v} = \frac{\pi * D2}{4}....(15)$$

El diámetro será:

$$D = (4A) * \frac{1}{2} \dots \dots (16)$$

-Número de orificios:

Se recomienda usar diámetros (D) menores o Iguales a 2". Si se obtuvieran diámetros mayores será necesario aumentar el número de orificios (NA).

Formula:

$$NA = (D1/D2)^2 + 1 \dots (17)$$

Donde:

NA = número de orificios

D1 = área del diámetro calculado

D2 = área del diámetro asumido

Para el cálculo del ancho de pantalla b, se calcula con la siguiente expresión:

Formula:

$$b = 2(6 * D) + NA * D + 3 * D * (NA - 1) ... (18)$$

Dónde:

b = ancho de la pantalla (m)

D = diámetro del orificio (m)

NA = número de orificios

-Altura de la cámara húmeda:

La altura total de la cámara húmeda se calcula con la siguiente ecuación:

$$Ht = A + B + H + D + E \dots (19)$$

$$H = 1.56 * \frac{V2}{2g} \dots (20)$$

Donde:

A= Altura mínima de 10 cm. que permite la sedimentación de la arena

B= Se considera la mitad del diámetro de la canastilla de salida

H= Altura de agua sobre la canastilla (>30cm).

D = Desnivel mínimo entre el nivel de ingreso del agua de afloramiento y el nivel de agua de la cámara húmeda (mínimo 5 cm.).

E= Borde libre (mínimo 30 cm.).

-Dimensionamiento de la canastilla:

Formula:

$$D = \frac{0.71 * Q0.38}{hf0.71} \dots (21)$$

D = Diámetro en pulg.

Q = Gasto máximo de la fuente en l/s

.hf = Perdida de carga unitaria en m/m.

D. Criterios de diseño para captaciones de fondo

Para determinar la altura total de la cámara húmeda (Ht) se consideran los siguientes elementos:

$$Ht = A + B + C + H + E \dots (22)$$

Donde:

A: Altura del filtro de 10 a 20 cm.

B: Se considera una altura mínima de 10 cm.

C: Se considera la mitad del diámetro de la canastilla de salida.

H: Altura de agua.

E: Bordo libre de 10 a 30 cm. (14)

2.2.11.2. Línea de conducción.

Según (García), es la línea que transporta el agua desde la captación hasta el punto de entrega, que usualmente es el reservorio de regulación, pero eventualmente puede ser la planta de tratamiento o puede ser directamente a la red de distribución cuando el caudal de conducción corresponde al caudal máximo horario, lo que hace innecesario el reservorio de regulación. Sólo se requiere un pequeño reservorio para la cloración. (19)

A. Estructuras complementarias:

-Válvulas de aire. - Según (García), se utiliza para eliminar bolsones de aire en los lugares de contrapendiente, que de no eliminarse produce cavitaciones en la tubería. Se debe colocar en el punto más alto de la tubería. ⁽¹⁹⁾

-Válvula de compuerta.- Según (García), se instalará al inicio de la línea para el cierre del agua en caso se requiera realizar reparaciones en la línea.⁽¹⁹⁾

-Válvulas de purga.- Según (García) se utiliza en sifones, en el punto más bajo para eliminar sedimentos. (19)

-Cámaras rompe-presión. - Según (Vargas et al.), son estructuras pequeñas, su función principal es de reducir la presión hidrostática a cero u a la atmosfera local, generando un nuevo nivel de agua. (20)

B. Criterios de diseño

-Relación caudal, velocidad, área de la tubería:

$$A = \pi * \frac{D2}{4} ... (23)$$

D = diámetro

A = área de la tubería

-Caudal de diseño

El caudal de diseño para la línea de conducción será el Qmd.

-Velocidades admisibles

Las velocidades en la línea de conducción serán mínimas 0.60m/s y máxima 5 m/s.

$$V = 1.9735 * \frac{Q}{D2} ... (23)$$

Q= el gasto en l/s

D = el diámetro en pulg.

V = velocidad del flujo m/s

-Para el cálculo de perdida unitaria:

Se usará la más usada la de Hazen-Williams:

$$Q = 0.2785 * C * D \frac{(4.87)}{(1.85)} * S \frac{(1)}{(1.85)} \dots (24)$$

Donde:

D = Diámetro de la tubería (pulg).

Q = Caudal (1/s).

hf = Perdida de carga unitaria (m/Km).

C = Coeficiente de Hazen - Williams

-Diámetro

Es el tamaño necesario para poder trasladar el caudal de diseño podemos hallar de la siguiente formula:

$$D = \frac{0.71 * Q^{0.38}}{hf^{0.21}} \dots \dots (25)$$

Donde:

D = Diámetro de la tubería (m)

Hf = Perdida de carga unitaria (m/Km)

Q = Caudal (1/s)

-Presión

Según (Agüero) en la línea de conducción, la presión representa la cantidad de energía Gravitacional contenida en el agua. En un tramo de tubería que está Operando a tubo lleno, podemos plantear la ecuación de Bernoulli:⁽¹¹⁾

Formula:

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + hf \dots (26)$$

Dónde:

Z = Cota del punto respecto a un nivel de referencia arbitraria (m).

 P/γ = Altura o carga de presión "P es la presión y el peso específico del fluido" (m).

V = Velocidad media del punto considerado (m/s).

Hf = Es la perdida de carga que se produce en el tramo de 1 a 2 (m).

Tabla N° 04: Clase de tubería según soporte de presión.

CLASE	Presión máxima de prueba (m)	Presión máxima de trabajo (m)
5	50	35
7.5	75	50
10	105	70
15	150	100

Fuente: NTP 399.002. (2015)

Tabla N° 05: Especificaciones técnicas tubos PVC-U presión.

Diámet ro Nomina l (pulg)	Diámetro entero (mm)	Diámetro Interior (mm)	Espesor mínimo (mm)	Longitud total Lt(m)
PN 5 bar (clase 5)				

2	60.0	56.4	1.8	5	
2	00.0	30.4	1.0	3	
2 1/2	73.0	69.4	1.8	5	
	PN 7	.5 bar (clase	e 7.5)		
1 1/4	42.0	38.4	1.8	5	
1 1/2	48.0	44.4	1.8	5	
2	60.0	55.4	2.2	5	
	PN 10 bar (clase 10)				
1/2	21.0	17.4	1.8	5	
3/4	26.5	22.9	1.8	5	
1	33.0	29.4	1.8	5	
1 1/4	42.0	38.0	2.0	5	
1 1/2	48.0	43.4	2.3	5	
2	60.0	54.2	2.9	5	
2 1/2	73.0	66.0	3.5	5	

Fuente: NTP 399.002. (2015)

-Perdida de carga

Para calcular las pérdidas de cargas por fricción de tuberías de conducción existen la Darcy, Hazen Williams y manning.

Ecuación de Darcy:
$$hf = f \frac{LV^2}{D2g} \dots \dots (27)$$

hf = perdida de energía en m.

f = coeficiente de perdidas

L Y D =longitud y diámetro de la tubería (m)

V = velocidad media del flujo m/s

Tabla N° 06: Tipo de tubería.

Tipo de tubería		
Hierro galvanizado	100	

Polietileno, Asbesto cemento	140
Poli (cloruro de vidrio) (PVC)	150

Fuente: Norma OS.010

2.2.11.3. Reservorio

Este tipo de obra se realiza con la función de almacenar y distribuir el agua que ha llegado de la captación por la línea de conducción, Este tanque se realiza de acuerdo a la cantidad de agua que se desea almacenar con el fin de abastecer a la población.

Es un tanque de almacenamiento y reserva de agua para abastecer a la población con las cantidades requeridas diariamente, En los proyectos de agua potable mayormente se usan los reservorios apoyados, que ya como algo empírico tienen forma rectangular y circular, son construidos directamente sobre la superficie del suelo.

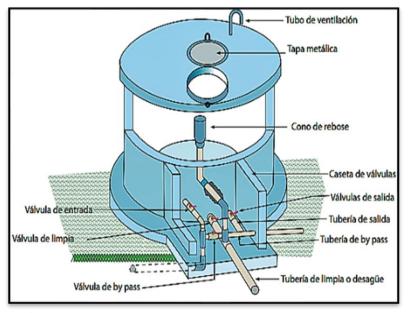


Figura 10: Reservorio de almacenamiento de agua potable

Fuente: Pérez L. (2016)

A. Clases de reservorios de regulación

- o Reservorios apoyados.
- o Reservorio enterrados o semi enterrados.
- o Reservorios elevados.

Estos pueden ser Circulares, rectangulares y cuadrados.

B. Componentes del reservorio

- -Válvula de entrada.-Para (Agüero), el diámetro está definido por la tubería de conducción, debiendo estar provista de una válvula compuerta de igual diámetro antes de la entrada al reservorio de almacenamiento; debe proveerse de un by pass para atender situaciones de emergencia. (11)
- -Válvula de Salida.- Para (Agüero), el diámetro de la tubería de salida será el correspondiente al diámetro de la línea de aducción, y deberá estar provista de una válvula compuerta que permita regular el abastecimiento de agua a la población.⁽¹¹⁾
- -Válvula de rebose. Para (Agüero), la tubería de limpia deberá tener un diámetro tal que facilite la limpieza del reservorio de almacenamiento en un periodo no mayor de 2 horas. Esta tubería será provista de una válvula compuerta. La tubería de rebose se conectará con descarga libre a la tubería de limpia y no se proveerá de válvula

compuerta, permitiéndose la descarga de agua en cualquier momento. (11)

BY – PASS.- Para (Agüero), Se instalara una tubería con una conexión directa entre la entrada y la salida, de manera que cuando se cierre la tubería de entrada al reservorio de almacenamiento, el caudal ingrese directamente a la línea de aducción. Esta constara de una válvula compuerta que permita el control del flujo de agua con fines de mantenimiento y limpieza del reservorio. (11)

-Caseta o cámara de válvulas. - Es una pequeña estructura adosada al reservorio de concreto simple que lleva una tapa metálica como protección y cuidado a las válvulas de control.

C. Criterios de diseño

-Volumen. - El volumen de almacenamiento será el 25% de la demanda diaria promedio anual siempre que el suministro de agua de la fuente sea continuo, si el suministro de descontinuo la capacidad será como mínimo del 30% del Qm.

$$V = Qm * 0.25 \dots \dots (28)$$

V = volumen de reservorio considerando el 25% del Qm.

-Cálculo del volumen de reserva:

$$Vr = 7\% * Qmd * 86400 \dots (29)$$

-Cálculo del tiempo de llenado

$$Tll = \frac{VR}{Qmd} \dots \dots (30)$$

Dónde:

Tll: Tiempo de llenado (seg)

VR: Volumen del reservorio (m3)

Qmd: Caudal máximo diario (m3/s)

-Tiempo de vaciado del reservorio

Según (García), se recomienda un tiempo máximo de 4 horas que depende básicamente de la carga hidráulica y diámetro del tubo de salida. (19)

Para determinar el tiempo se usa la relación siguiente:

$$Tv = \frac{2S\sqrt{h}}{CA\sqrt{2g}}\dots\dots(31)$$

Dónde:

Tv = tiempo de vaciado en segundos

S = área tanque (m2).

h = carga hidráulica (m).

C = coeficiente (0.6 - 0.65).

A =área tubo desagüe (m2).

g = aceleración gravedad (9.81 m/seg.2).

e. Dimensionamiento

-Dimensionamiento

Una vez determinado el volumen del reservorio se hace el dimensionamiento del ancho de la pared, altura de agua, borde libre, y la altura total del reservorio.

2.2.11.4. Línea de a Aducción

Según (García), la línea de aducción es la línea entre el reservorio y el inicio de la red de distribución. El caudal de conducción es el máximo horario. (19)

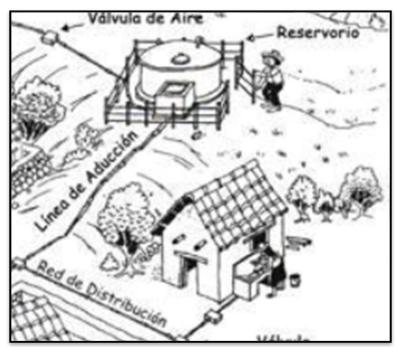


Figura 11: Línea de aducción

Fuente: Municipalidad distrital de Shapaja.

A. Criterios de diseño

-Diámetro

El diámetro de la tubería de aducción es la que saldrá del reservorio hacia las líneas de distribución.

-Caudal de diseño

El caudal de diseño para la línea de conducción es el caudal máximo horario.

-Velocidad

Para tuberías rugosas con régimen en transición o turbulento y agua a presión (Recomendada para diámetros cuyo valor oscila entre los 50 y 3.500 mm).

$$V = 0.355CD^{0.63} * hf^{0.54} (32)$$

Dónde:

V = Velocidad de circulación del agua.

D = Diámetro interior de la tubería.

hf = Pérdida de carga unitaria en la tubería.

C: coeficiente

2.2.11.5. Red de distribución

Para la (Comisión Nacional del Agua). Es el conjunto de tuberías, accesorios y estructuras que conducen el agua desde tanques de servicio o de distribución hasta la toma domiciliaria o el hidrante público. Su finalidad es proporcionar agua a los usuarios para consumo doméstico, público, comercial, industrial y para condiciones extraordinarias como el extinguir incendios. La red debe proporcionar este servicio todo el tiempo, en cantidad

suficiente, con la calidad requerida y a una presión adecuada. (21)

A. Tipos de Red de distribución

-Redes abiertas

Para (Fernández), las redes de distribución abiertas o ramificadas, tienen como característica que el agua discurre siempre en el mismo sentido. Se componen esencialmente de tuberías primarias, las cuales se ramifican en conducciones secundarias y éstas, a su vez, se ramifican también en ramales terciarios.

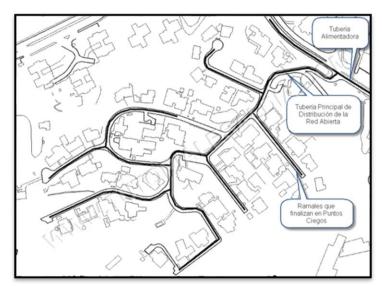


Figura 12: Redes abiertas

Fuente: Tutoriales ingeniería civil. (2017)

El caudal del ramal será:

$$Qramal = K * \sum Qg \dots (33)$$

Donde:

Qramal = caudal en cada ramal en 1/s

Qg = caudal de grifo (l/s),> 10 l/s

K= coeficiente de simultaneidad entre 0.2 a 1

ventajas:

O Ser el más sencillo de calcular.

Desventajas:

- Una rotura puede originar el entorpecimiento e incluso el corte general.
- Los extremos o finales de la ramificación presentan el inconveniente de que el agua queda estancada
- La economía que resulta del menor desarrollo es más bien aparente que real. (22)

-Redes cerradas

Para (Fernández), en las redes malladas, las tuberías principales se comunican unas con otras, formando circuitos cerrados.

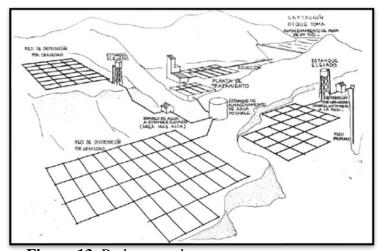


Figura 13: Redes cerradas

Fuente: Unefm. (2010)

Ventajas

- o Libertad en el sentido de la circulación del agua.
- o Mejor repartición de la presión.
- o Mayor seguridad en el servicio
- El montaje de la red, resulta más caro que cuando se trata de un montaje de red ramificada. (22)

B. Criterios de diseño

-Diámetros

Según (Ministerio de Vivienda Construcción y Saneamiento) señala: Los diámetros mínimos en tuberías principales para redes abiertas se admite un diámetro de 20mm (3/4") y en redes cerradas deben ser de 25mm (1").

-Caudal de diseño

Las redes de distribución se diseñarán con el caudal máximo horario

-Velocidades admisibles

La velocidad mínima no será mayor de 0.60m/s, y no de deberá ser inferior a 0.30 m/s. La velocidad máxima admisible será de 3m/s. (14)

-Presiones de servicio

La presión mínima de servicio no cualquier punto de la red o línea de alimentación de agua no será menor de 5 m.c.a y la presión estética no será mayor de 60m.c.a

C. Válvulas de interrupción

Son válvulas que tienen la función de permitir o impedir el flujo el agua en la tubería dentro de ellas tenemos: Válvula compuerta, Válvula compuerta, Válvulas reductoras de presión. (14)

Figura 14: Válvula reductor de presión.

Fuente: Amazon.es. (2020)

D. Válvulas de control

En todo sistema de distribución se deben contar con válvulas de control o también denominados válvulas compuertas instalados a lo largo de la red, para aislar sectores en caso de roturas de tuberías y poder abastecer a la población o para atender las actividades de mantenimiento de las redes. (14)

Figura 15: Válvula compuerta

Fuente: Promart. (2020)

2.2.12. Condición Sanitaria

Los seres humanos en diferentes actividades que realizan durante su vida tienen la necesidad de tener una buena salud por ese motivo hasta la zona rural más alejado los pobladores deben tener un servicio de agua que cumpla con los requisitos del ministerio de salud.

2.2.12.1. Factores causales que afectan la condición sanitaria

Según (Ministerio de economía y finanzas), los factores causales identificados son los siguientes:

- Infraestructura de saneamiento mal utilizada, deteriorada o inexistente.
- o Pobre o nula gestión del servicio.
- Escasez o no disponibilidad de fuentes de abastecimiento de agua.

- Dispersión de las poblaciones (estrategia de ocupación del territorio).
- o Inadecuada manipulación del agua.
- Ausencia de proveedores de infraestructura y accesorios rurales.
- Contaminación de fuentes.
- o Ausencia de gestores de los servicios.
- Inversión en infraestructura sin sostenibilidad (agua en cantidad y calidad adecuadas)
- Escaso conocimiento/ costumbres ciudadanas hacia el uso racional del agua, con visión integrada. (23)

2.2.12.2. Factores a tomar en cuenta para la mejora de la condición sanitaria.

A. Calidad del servicio de agua potable.

Según (Organización Mundial de la Salud), la calidad del agua potable preocupa en países en desarrollo y desarrollados de todo el mundo, por su repercusión en la salud de la población, los agentes infecciosos, los productos químicos tóxicos y la contaminación radiológica son factores de riesgo, la experiencia pone de manifiesto el valor de los enfoques de gestión preventivos que abarcan desde los recursos hídricos al consumidor. (24)

Figura 16: Extracción de muestra para determinar en laboratorio la calidad del agua.

Fuente: Elaboración propia. (2020)

B. Cantidad del servicio de agua potable.

Es la cantidad de agua que brota desde el sub suelo en un manantial, para ser trasportado hacia la población mediante tuberías satisfaciendo lo mínimo a la población.

C. Continuidad del servicio de agua potable.

Es la permanencia de agua potable que se brinda a la población ya sea de 24 horas a menos.

D. Cobertura del servicio de agua potable.

Según (Instituto Nacional de Estadística e Informática), En el año móvil febrero 2017-enero 2018, el 10,6% de la población total del país, no accede a agua por red pública, es decir, se abastecen de agua de otras formas: camión-

cisterna (1,2%), pozo (2,0%), río, acequia, manantial (4,0%) y otros (3,3%). $^{(25)}$

Figura 17: Cobertura de agua potabilizada.

Fuente: Descalcificador. (2017)

III. Hipótesis

No se aplica porque es una investigación descriptiva.

IV. Metodología

4.1. Diseño de la Investigación

El tipo de la investigación fue correlacional y trasversal, correlacional porque determinó la incidencia en el diseño del sistema de agua potable en la condición sanitaria del caserío de Molinopampa, la variable trasversal analizó datos de variables recopilados en un periodo de tiempo una muestra o población.

El nivel de investigación, se estableció de carácter cualitativo y exploratorio, cualitativo porque se usó magnitudes numéricas, exploratorio porque no se alteró lo más mínimo el lugar estudiado.

El diseño de la investigación fue comprendido:

- Búsqueda de antecedentes y elaboración del marco conceptual, para diseñar el sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío de Molinopampa.
- Analizar criterios de diseño para elaborar el diseño del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío de Molinopampa,
- Diseño de los instrumentos que permitió elaborara el diseño del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío de Molinopampa.
- Aplicar los instrumentos para elaborar el diseño del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío de Molinopampa, distrito de Malvas, provincia de Huarmey, región Ancash 2020.

El diseño de la investigación para el presente estudio fue descriptiva no experimental.

Este diseño se graficó de la siguiente manera:

Leyenda de diseño:

Mi: Muestra. Sistema de agua potable en el caserío de Molinopampa.

Xi: Variable independiente: Diseño del sistema de abastecimiento de agua potable.

Yi: Variable dependiente: Mejora de la condición sanitaria del caserío de Molinopampa.

Oi: Resultados.

Fuente: Elaboración propia (2020)

4.2. Población y muestra

Para la siguiente investigación estuvieron conformados por el sistema de abastecimiento de agua potable del caserío Molinopampa, distrito de Malvas, provincia de Huarmey, región Ancash - 2020.

.

4.3. Definición y Operacionalización de Variables e Indicadores

Cuadro 01: cuadro de operacionalización de variables.

VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN			
	Según (Jimenes), Un sistema de abastecimiento de agua		- Captación	CaudalDiámetroPendiente	-Nominal			
(Variable Independiente)	potable, tiene como finalidad primordial, la de entregar a los habitantes de una localidad, agua en cantidad y calidad	Se diseñó el sistema de			Se diseñó el sistema de	- Línea de conducción	-Diámetro - Presión - Velocidad - Tipo de tubería	-Nominal
SISTEMA DE	adecuada para satisfacer sus necesidades, ya que como se	potable del caserío Molinopampa, haciendo	- Reservorio	- Tipo - Volumen	-Nominal			
ABASTECIMIENTO DE AGUA POTABLE	sabe los seres humanos estamos compuestos en un 70% de agua, por lo que este líquido es vital para la supervivencia. Uno de	uso de las normas del reglamento nacional de edificaciones.	- Línea de aducción	-Diámetro - Presión - Velocidad - Tipo de tubería	-Nominal			
	los puntos principales de este capítulo, es entender el término potable. (1)		- Red de distribución	DiámetroPresiónVelocidadTipo de tubería	- Nominal			
	Los seres humanos en diferentes actividades que realizan durante su vida tienen	Se obtuvo la información mediante un cuestionario	-Cobertura de agua	- Número de viviendas	- Nominal			
(Variable dependiente)	la necesidad de tener una buena salud por ese motivo hasta la	usando la técnica de la encuesta a la población para recaudar la información y luego se analizó en gabinete.	-Cantidad de agua	- Caudal	-Nominal			
CONDICIÓN SANITARIA	zona rural más alejado los pobladores deben tener un servicio de agua que cumpla		-Continuidad del servicio	- Horas del servicio	- Nominal			

con los requisitos del ministerio de salud.		- Parámetros de calidad.	- Nominal
---	--	--------------------------	-----------

Fuente: Elaboración Propia 2020.

4.4. Técnicas e instrumentos de recolección de datos

4.1.1. Técnica

Se realizó las visitas correspondientes al caserío de Molinopampa y se procedió recolectar los datos respectivos de la población utilizando la técnica correlacional con la obtención de información necesaria se identificó a la población actual, dotaciones y sus respectivas ubicaciones de los componentes del sistema de agua potable.

4.1.2. Instrumento

Para la recolección de información se empleó fichas técnicas de inspección, protocolo, cuestionario; como instrumento de recolección de datos. Donde se recolecto datos para el diseño del sistema de abastecimiento de agua potable para el caserío de Molinopampa.

Cuadro 02: Técnicas e instrumentos de recolección de datos.

VARIABLE	TÈCNICA	INSTRUMENTO	TIPO DE INVESTIGACIÒN
Sistema de			
abastecimiento	Observación	Ficha técnica	Experimental
de agua	Observacion		
potable.			
Condición	Encuesta	Cuestionario	Básico
sanitaria	Encuesta	Cuestionario	Dasico

Fuente: Elaboración Propia 2020.

Fichas técnicas: Con este formato se recolectó todos los datos posibles y los más importantes que me sirvió de aporte para el desarrollo del diseño del sistema de abastecimiento de agua potable en el caserío de Molinopampa.

Guía de observación: Se constató de una manera visual a modo de conformidad de existencia de la fuente de agua que fue seleccionada y se realizó el aforo correspondiente para determinar el caudal de la fuente, también se determinó el número de usuarios (viviendas), tipo de comercio, economía y la población en general que servirá para el diseño del sistema de agua potable del caserío de Molinopampa.

Protocolo de estudios

a. Estudio topográfico.

Se realizó como parte principal el estudio topográfico que me facilito para ubicar la línea de conducción, aducción y distribución, así mismo para la ubicación de reservorio y cámaras rompe presión.

b. Estudio de Agua.

Consistió en el estudio físico, químico y bacteriológico del agua que permitió saber y tener la confianza de la fuente elegida.

c. Estudio de Suelos.

El estudio de suelos permitió reconocer y determinar el tipo de suelos donde será proyectada el sistema de agua potable.

4.5. Plan de análisis

Para el análisis de los datos se tuvo en cuenta:

- Se visitó el caserío Molinopampa para las coordinaciones respectivos con el teniente gobernador, agente municipal y presidente del JASS.
- Se realizó el estudio topográfico con estación total y GPS, estudio de agua y estudio de suelo, y luego se realizó los cálculos en gabinete para

el diseño del sistema de agua potable teniendo en cuenta las normas del Reglamento Nacional de Edificaciones.

4.6. Matriz de Consistencia

Cuadro 03: Cuadro de matriz de consistencia

DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE PARA LA MEJORA DE LA CONDICIÓN SANITARIA DEL CASERÍO MOLINOPAMPA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY, REGIÓN ANCASH - 2020.

Caracterización del Problema

El problema que tiene el caserío de Molinopampa, es la falta del sistema de abastecimiento de agua potable, ya que la población consume agua proveniente de canales de irrigación, y dicho líquido no es apta para consumo sin un adecuado humano tratamiento ya que el agua está expuesto a muchas contaminaciones y esto provoca enfermedades digestivas hacia la población, es por ello el proyecto se identifica una necesidad urgente en el caserío ya que esto beneficiara a la población a la mejora de la condición sanitaria.

Enunciado del problema.

¿El diseño del sistema de abastecimiento de agua potable mejorará la condición sanitaria del investigación Objetivo general

de

*Objetivos

Diseñar el sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío Molinopampa, distrito de Malvas, provincia de Huarmey, región Ancash -2020.

Objetivos Específicos

- a. Establecer el sistema de agua potable para el caserío Molinopampa, distrito de malvas. provincia de Huarmey. región Ancash - 2020.
- b. Describir el sistema de agua potable para la mejora de la condición sanitaria

Marco teórico y conceptual Antecedentes

Se consultó en diferentes tesis. internacionales nacionales así también se consultó en las tesis que existen diferentes bibliotecas en el de entorno Chimbote.

Bases teóricas

Está compuesto por diferentes componentes como captación, línea de conducción, reservorio, línea de aducción v red de distribución.

Tienen la función de captar agua de un

Metodología

El tipo El tipo de la investigación fue correlacional y trasversal, correlacional porque determino la incidencia en el diseño del sistema de agua potable en la condición sanitaria del caserío de Molinopampa, variable la trasversal analizó datos de recopilados en variables un periodo de tiempo una muestra o población.

El nivel El nivel de investigación, carácter estableció de cualitativo exploratorio, porque cualitativo se usó magnitudes numéricas. exploratorio porque no se alteró lo más mínimo el lugar estudiado.

*Diseño de la Investigación:

fue descriptiva no experimental, se enfocó en. "Búsqueda de antecedentes y elaboración del

Bibliografía

4) Escobar RO, Rivera DA. Diseño del sistema de abastecimiento de agua potable para el Cantón San José Primero del municipio de San Martín utilizando el programa epanet 2.0 ve; [Tesis para optar el título de Ingeniero Civil]. Ciudad Universitaria: E1Salvador: Universidad de el Salvador; 2015. [citado 2020 Mzo. 18]. Disponible en: http://ri.ues.edu.sv/id /eprint/9229/1/Dise% C3%B1o%20del%20 sistema%20de%20ab

caserío de Molinopampa distrito	del caserío	manantial estos son	marco conceptual y se analizó los	astecimiento%20de
de malvas, provincia de Huarmey,	Molinopampa,	trasportados mediante	1 2	%20agua%20potable
región Ancash - 2020?	distrito de malvas,	tuberías hasta llegar al		%20agua%20potable %20para%20el%20c
region i measir 2020.	·	pueblo.	\mathcal{C} 1	
	provincia de	pucoio.	para la mejora de la condición	ant%C3%B3n%20Sa
	Huarmey, región		sanitaria del caserío de	n%20Jos%C3%A9%
	Ancash – 2020.		Molinopampa, así mismo se	20Primero%20del%2
	c. Realizar el diseño del		diseñó y se aplicó instrumentos	Omunicipio%20de%
	sistema de		para la elaboración del diseño del	20San%20Mart%C3
	abastecimiento de		sistema de abastecimiento de agua	%ADn%20utilizando
	agua potable del		potable para la mejora de la	%20el%20programa
	caserío		condición sanitaria del caserío de	<u>%20EPANET%202.</u>
	Molinopampa,		Molinopampa, distrito de Malvas,	<u>0%20vE.pdf</u>
	distrito de malvas,		provincia de Huarmey, región	
	provincia de		Ancash - 2020	
	Huarmey, región		*Definición y Operacionalización	V stuss más
	Ancash -2020 .		de las Variables	Y otros más.
			- variable	
			 definición conceptual 	
			- dimensiones	
			- definición operacional	
			- indicadores	
			*Técnicas e Instrumentos	
			*Plan de Análisis	
			*Matriz de consistencia	
			*Principios éticos.	
			-	

Fuente: Elaboración Propia 2020.

4.7. Principios éticos

a. Responsabilidad para la recolección de datos.

La recolección de datos se realizó de una manera responsable con juntamente con las autoridades del lugar y apoyados en la población para obtener datos reales.

b. Ética para el inicio y final del recojo de información.

Al principio se inició mediante coordinaciones con las autoridades del caserío Molinopampa, ya que ellos hicieron saber a la población de una manera muy respetuosa sobre los permisos solicitados para la realización de nuestra investigación.

c. Ética para la solución de los resultados.

Los resultados nos llevaron a tener datos certeros que se emplearon de manera real en el proyecto para tener un diseño de calidad para un buen funcionamiento del sistema de abastecimiento.

d. Ética ambiental.

Se tuvo en cuenta el impacto ambiental que ocasiono el proyecto, se acordó con la población para que no se den casos extremos de contaminación ambiental.

V. Resultados

5.1. Resultados

1.- Resultado del primer objetivo específico. - Establecer el sistema de agua potable para el caserío Molinopampa, distrito de malvas, provincia de Huarmey, región Ancash – 2020.

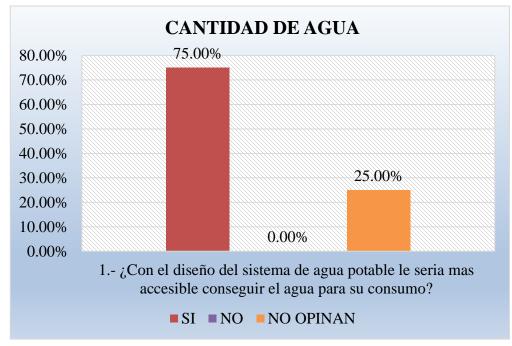
Se estableció por un sistema de agua potable por gravedad sin tratamiento en lo cual trasportara el agua desde la captación hasta llegar a los domicilios de cada poblador del caserío de Molinopampa.

2.- Resultado del segundo objetivo específico. - Describir el sistema de agua potable para la mejora de la condición sanitaria del caserío Molinopampa, distrito de malvas, provincia de Huarmey, región Ancash – 2020.

El sistema de abastecimiento de agua potable contará con una cámara de captación de ladera, con una línea de conducción con la que trasportará el agua hasta el reservorio de almacenamiento, seguidamente de una línea de aducción y al final una red de distribución que llevará el agua a cada domicilio para su abastecimiento de la población.

Encuesta para la mejora de la condición sanitaria:

- ¿Con el diseño del sistema de agua potable le sería más accesible conseguir el agua para su consumo?


Cuadro 04: Encuesta sobre el diseño del sistema de agua potable

DESCRIPCIÓN	CANTIDAD	PORCENTAJE
SI	153.00	75.00%
NO	0.00	0.00%
NO OPINAN	51.00	25.00%
TOTAL		100.00%

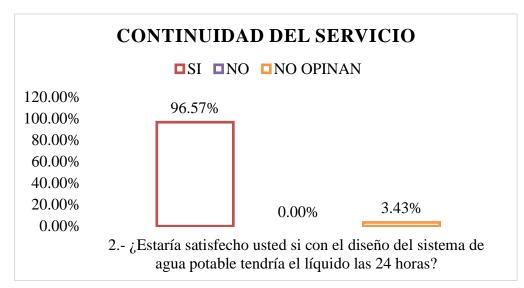
Fuente: Elaboración propia 2020.

Interpretación:

En el cuadro se puede apreciar la cantidad de personas encuestadas en las cuales de los 204 habitantes el 75% de las personas que conforman un total de 153 respondieron que con el diseño le sería más accesible y menos tiempo en conseguir el agua, y el 25% conformado por 51 personas no opinan o no saben

Gráfico 01: Se puede apreciar el porcentaje de encuestados sobre el diseño del sistema de agua potable.

 ¿Estaría satisfecho usted si con el diseño del sistema de agua potable tendría el líquido las 24 horas?


Cuadro 05: Encuesta de continuidad del servicio de agua potable

DESCRIPCIÓN	CANTIDAD	PORCENTAJE
SI	197.00	96.57%
NO	0.00	0.00%
NO OPINAN	7.00	3.43%
TOTAL		100.00%

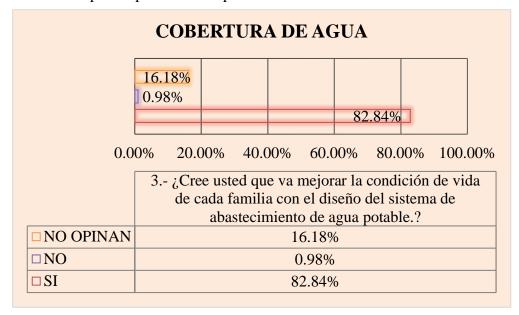
Fuente: Elaboración propia 2020.

Interpretación:

Se observa en el cuadro las personas encuestadas del caserío de Molinopampa de los 204 habitantes el 96.57% de las personas conformados por un total de 197 respondieron que estarían muy satisfechos con contar agua las 24 horas del día y el 3.43% conformado por 7 personas no opinan o no saben.

Gráfico 02: Se puede apreciar el porcentaje de encuestados sobre la continuidad del servicio de agua potable.

 - ¿Cree usted que va mejorar la condición de vida de cada familia con el diseño del sistema de abastecimiento de agua potable??


Cuadro 06: Encuesta de cobertura de agua potable

DESCRIPCIÓN	CANTIDAD	PORCENTAJE
SI	169.00	82.84%
NO	2.00	0.98%
NO OPINAN	33.00	16.18%
TOTAL		100.00%

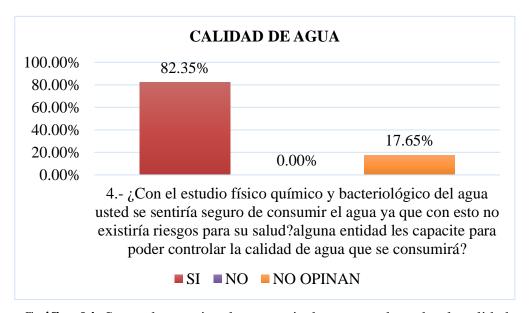
Fuente: Elaboración propia 2020.

Interpretación:

Se aprecia en el cuadro 204 personas encuestadas del caserío de Molinopampa, el 82.8% de las personas conformados por 169 respondieron que si mejorara la condición de vida de todas las familias beneficiarias con el agua y el 16.18% conformado por 33 personas no opinan o no saben.

Gráfico 03: Se puede apreciar el porcentaje de encuestados sobre la cobertura de agua potable.

- ¿Con el estudio físico químico y bacteriológico del agua usted se sentiría seguro de consumir el agua ya que con esto no existiría riesgos para su salud?


Cuadro 07: Encuesta sobre calidad de agua potable

DESCRIPCIÓN	CANTIDAD	PORCENTAJE
SI	168.00	82.35%
NO	0.00	0.00%
NO OPINAN	36.00	17.65%
TOTAL		100.00%

Fuente: Elaboración propia 2020.

Interpretación:

En el cuadro se observa los datos de las 204 personas encuestadas del caserío de Molinopampa, el 82.35% de las personas que son 168 respondieron que con un estudio que garantice la calidad de agua en todos los parámetros del ministerio de salud sería muy bueno para la población y el 17.65% no opinan.

Gráfico 04: Se puede apreciar el porcentaje de encuestados sobre la calidad de agua que requiere la población.

- **3.- Resultado del tercer objetivo específico. -** Realizar el diseño del sistema de abastecimiento de agua potable del caserío Molinopampa, distrito de malvas, provincia de Huarmey, región Ancash 2020.
- a) El sistema de abastecimiento de agua potable diseñado para el caserío de Molinopampa en cuanto al diseño de la cámara de captación tienen las siguientes características que se puede apreciar en el Cuadro 08, ver mas detalles en Anexo 7 (memoria de cálculo). Además, se puede verificar la estructura en Anexo 8 (planos).

Cuadro 08: Características de la cámara de captación.

	CAPTACIÒN			
Nº	DESCRIPCION	CARACTERÍSTICAS		
1	Tipo de captación	Ladera		
2	Caudal de la fuente	2.25lit/seg.		
3	Caudal máximo diario	0.50lit/seg		
4	Ancho de la pantalla	1 m		
5	Número de orificios de la pantalla	3 orificios		
6	Diámetro de entrada	1 1/2 pulg.		

7	Distancia entre el lugar de afloramiento y la captación	1.27 m
8	Altura húmeda	1.00 m
9	Dimensionamiento de la Canastilla(ranuras)	28 ranuras
10	Longitud de la canastilla	20 cm
11	Largo de la ranura	7 mm
12	Ancho de la ranura	7 mm
13	Diámetro de la canastilla	2 pulg.
14	Diámetro de la Tubería de Rebose y Limpia	2 pulg.
15	Diámetro de tubería de salida	1 pulg.
16	Pendiente	1%

Fuente: Elaboración propia 2020.

b) En cuanto al diseño de la línea de conducción cuenta con una longitud de 1040m de tubería de 1" de clase 10. Las siguientes características se puede apreciar en el Cuadro 09, ver más detalles en Anexo 7 (memoria de cálculo). Además, se puede verificar la estructura en Anexo 8 (planos).

Cuadro 09: Características de la línea de conducción

LÍNEA DE CONDUCCIÓN					
Descripción	Diámetro	Presión	Longitud	Velocidad	Tipo
	(pulg.)	(m.c.a.)	(m)	(m/seg.)	de
					tubería
Captación hasta					Pvc
reservorio de	1	67.22	1040	0.74	Clase
almacenamiento	1	<u> </u>	1010	5.71	10

Fuente: Elaboración propia 2020.

c) En cuanto al diseño del reservorio de almacenamiento de agua potable para el caserío de Molinopampa tiene las siguientes características que se puede ver en el cuadro 10. ver más detalles en Anexo 7 (memoria de cálculo). Además, se puede verificar la estructura en Anexo 8 (planos).

Cuadro 10: Características de reservorio

RESERVORIO		
Descripción	Características	
Volumen del reservorio	10 m3	
Tipo	Apoyado	

Forma	Cuadrado			
Lado mayor interior adoptado	1.70 m			
Lado menor interior adoptado	1.70 m			
Altura de agua adoptada	1.40 m			
Volumen de reserva	3.02 m3			
Volumen de regulación	3.78 m3			
Borde libre	0.50 m			
Altura total en el tanque	2.30 m			
Tiempo de llenado	4 horas			

Fuente: Elaboración propia

d) En cuanto al diseño de la línea de aducción y la red de distribución tiene tuberías de 1 pulgada y ¾ pulgada. En todo el tramo cuenta con cámaras rompe presión tipo 7 para más detalle ver Anexo 8 (planos). Los cálculos para su ubicación se observan en el cuadro 11. ver más detalles en Anexo 7 (memoria de cálculo).

Cuadro 11: Características de la línea de aducción y red de distribución

	TRAMO		Longitu d Tomad a	Diámetro Nominal	TIPO TUBERI	V	PRESION	
	ZIÓN	INICIO	PUNTO FINAL	(m)	(pulg.)	A	(m/s)	FINAL
	DESCRIPCIÓN	RESER VORIO	FINAL ALINEAMIEN TO 02	5054.4	1 "	PVC. 70psi	0.74	300.85
		RESER VORIO	CRP-01 - TIPO7	1024.6 8	1"	PVC. 70psi	0.74	70.00
	ALINEAMIENTO 02	CRP-01 -TIPO7	CRP-02 - TIPO7	1055.0	1"	PVC. 70psi	0.74	70.00
		CRP-02 -TIPO7	CRP-03 - TIPO7	1065.6	1"	PVC. 70psi	0.74	70.00
		CRP-03 -TIPO7	CRP-04 - TIPO7	1044.7 7	1"	PVC. 70psi	0.74	56.28
		CRP-04 -TIPO7	FINAL DE TRAMO	163.98	1"	PVC. 70psi	0.74	34.59

ALINEAMI ENTO 02 - ALINEAMI ENTO 06	CRP-04 -TIPO7	FINAL ALINEAMIEN TO 06	632	3/4"	PVC. 70psi	1.22	5.50
ALINEA MIENTO 02 - ALINEA MIENTO 03	CRP-01 -TIPO7	FINAL ALINEAMIEN TO 03	1080	1"	PVC. 70psi	0.74	27.28
EAMIENTO	RESER VORIO	CASA 1 - ALINEAMIEN TO 04	430	1"	PVC. 70psi	0.74	26.78
ALINEAMIENTO 02 - ALINEAMIENTO 04	RESER VORIO	CASA 2 - ALINEAMIEN TO 04	456	1"	PVC. 70psi	0.74	24.93
	RESER VORIO	CASA 4 - ALINEAMIEN TO 04	560	1"	PVC. 70psi	0.74	19.18
ALINEAMI ENTO 02 - ALINEAMI ENTO 03	CRP-01 -TIPO7	CASA 64 - ALINEAMIEN TO 03	766.28	1"	PVC. 70psi	0.74	33.78
ALINEAMIENTO 02 - ALINEAMIENTO 10	CRP-01 -TIPO7	CASA 40 - ALINEAMIEN TO 10	755	1"	PVC. 70psi	0.74	46.18
	CRP-01 -TIPO7	CASA 42 - ALINEAMIEN TO 10	765	1"	PVC. 70psi	0.74	44.68

	CRP-01 -TIPO7	CASA 37 - ALINEAMIEN TO 10	783	1"	PVC. 70psi	0.74	44.68
	CRP-01 -TIPO7	CASA 35 - ALINEAMIEN TO 10	804	1"	PVC. 70psi	0.74	43.28
ALINEAMIENTO 02 - ALINEAMIENTO 11	CRP-01 -TIPO7	CASA 32 - ALINEAMIEN TO 11	803	1"	PVC. 70psi	0.74	42.28
	CRP-01 -TIPO7	CASA 30 - ALINEAMIEN TO 11	826	1"	PVC. 70psi	0.74	41.28
	CRP-01 -TIPO7	CASA 27 - ALINEAMIEN TO 11	860	1"	PVC. 70psi	0.74	40.28
ALINEAMIENTO 02 - ALINEAMIENTO 09	CRP-01 -TIPO7	CASA 21 - ALINEAMIEN TO 09	660	1"	PVC. 70psi	0.74	38.28
	CRP-01 -TIPO7	CASA 22 - ALINEAMIEN TO 09	680	1"	PVC. 70psi	0.74	36.28
	CRP-01 -TIPO7	CASA 23 - ALINEAMIEN TO 09	694	1"	PVC. 70psi	0.74	34.28

	CRP-01 -TIPO7	CASA 24 - ALINEAMIEN TO 09	703	1"	PVC. 70psi	0.74	32.78
	CRP-01 -TIPO7	CASA 25 - ALINEAMIEN TO 09	715	1"	PVC. 70psi	0.74	31.28
ALINEA MIENTO 02 - ALINEA MIENTO 08	CRP-01 -TIPO7	CASA 10 - ALINEAMIEN TO 08	564	1"	PVC. 70psi	0.74	35.28
	CRP-01 -TIPO7	CASA 08 - ALINEAMIEN TO 08	586	1"	PVC. 70psi	0.74	32.28
ALINEAMIENTO 02	CRP-01 -TIPO7	CASA 07 - ALINEAMIEN TO 02	503	1"	PVC. 70psi	0.74	31.28
	CRP-01 -TIPO7	CASA 15 - ALINEAMIEN TO 02	512	1"	PVC. 70psi	0.74	33.28
	CRP-01 -TIPO7	CASA 18 - ALINEAMIEN TO 02	473	1"	PVC. 70psi	0.74	28.28

Fuente: Elaboración propia 2020.

5.2. Análisis de Resultados

- 1.- Se estableció el sistema de agua potable constatando la norma OS.100 del Reglamento Nacional de Edificaciones y las normas del Ministerio de Vivienda Construcción y Saneamiento. Nos mencionan dos tipos de sistemas. Entre ellos el sistema de agua potable por gravedad sin tratamiento.
- 2.- El sistema de agua potable cumple con los parámetros del Reglamento Nacional de Edificaciones, RM N° 192-2018 Ministerio de Vivienda Construcción y Saneamiento, en el cual, con el diseño de la cámara de captación de ladera, línea de conducción, reservorio de almacenamiento línea de aducción y red de distribución, mejorara la condición sanitaria del caserío de Molinopampa ya que cumple en brindar calidad, continuidad, cobertura y cantidad de agua potable a la población.
- 3.- Se obtuvieron los resultados y se tuvieron en cuenta los parámetros para el diseño del sistema de abastecimiento de agua potable en al caserío de Molinopampa. La captación fue de ladera según la condición topográfica. El caudal máximo diario fue 0.27 litros/seg. Según la RM Nº 192-2018 Ministerio de Vivienda Construcción y Saneamiento, nos dice que el caudal máximo diario debe ser redondeado a mayor por lo cual se trabajó con un caudal de 0.50litros/seg. Así mismo se diseñó la línea de conducción donde cuenta con una tubería clase 10 de 1" soportando una presión de agua 70m.c.a. la velocidad fue de 0.74m/seg. Ya que en la norma OS.010 nos dice que la velocidad mínima debe ser 0.60m/seg y un máximo de 5m/seg. El reservorio

de almacenamiento para la población se requiere un volumen de 6.8m3, según en la RM N° 192-2018 Ministerio de Vivienda Construcción y Saneamiento, nos dice que se debe redondear a mayor por lo tanto fue diseñado para un volumen de 10m3. Para el cálculo se consideró la norma OS.030 del Reglamento Nacional de Edificaciones para el volumen de regulación se consideró el 25% de la norma, y para el volumen de reserva se tuvo el 7% según SEDAPAL. La línea de aducción y la red de distribución se diseñó con la norma OS.050 del Reglamento Nacional de Edificaciones en la cual tenemos velocidades de 0.74m/seg hasta 1.22m/seg, en la red contara con tuberías pvc clase 10, con diámetro de 1" a ¾". Todas las presiones cumplen con lo recomendado por la norma.

VI. Conclusiones

El diseño del sistema de abastecimiento de agua potable del caserío de Molinopampa, es concluido de una manera favorable y con un porcentaje satisfactorio, se obtuvo las siguientes conclusiones:

- Se concluye por un sistema de agua potable por gravedad sin tratamiento ya que el agua es subterránea y aflorando mediante un manantial.
- 2. Se finaliza que la fuente del agua tiene un caudal de 2.25 litros/seg. Dicho liquido abastecerá a 252 personas calculadas hasta el año 2040. En lo cual cubrirá a las 68 familias del caserío de Molinopampa, los componentes del sistema diseñados fueron una cámara de captación, línea de conducción, reservorio de almacenamiento y red de distribución. Con la cual se prevé mejorar la condición sanitaria de la población de Molinopampa.
- 3. Se diseñó una captación de tipo ladera, que tiene 3 orificios en la pantalla de 1 ½", con una canastilla de diámetro 2 pulg y una longitud de 0.20m. Se diseñó la línea de conducción con una tubería de 1" de diámetro con velocidades de 0.74m/seg con presión de 67.22m.c.a. con una tubería de clase 10. El reservorio de almacenamiento fue tipo apoyado de forma cuadrada con un volumen de 10m3. La línea de conducción y red de distribución tienen tubería clase 10 de 1" y ¾" con presiones no mayores a 70m.c.a. así mismo cuenta con 4 cámaras rompe presiones tipo 7, y con válvulas de control en la red.

Aspectos complementarios

- Se recomienda realizar el estudio topográfico de manera correcta y con datos reales de acorde al terreno para que el diseño sea de una manera correcta en su funcionamiento.
- Se debe realizar evaluaciones en el sistema de agua potable para prevenir algunas deficiencias del sistema con el pasar del tiempo y así la población no quede desabastecida por el líquido.
- 3. Se recomienda utilizar válvulas de aire para evitar acumulación de aire en la tubería y así el agua pase con todo el caudal diseñado, además instalar válvulas de purga para evitar sedimentaciones en la tubería. Así mismo se recomienda instalar un cerco perimétrico en el reservorio ya que este protege de los animales o personas no autorizadas que pueden ocasionar cualquier incidente en el manejo del sistema.

Referencias Bibliográficas.

- Jiménez TJ. Manual para el diseño de sistemas de agua potable y alcantarillado sanitario facultad de ingeniería civil campus xalapa universidad veracruzana [internet]. universidad veracruzana; 2013 [cited 2020 Mrz. 21]. Available from: https://www.uv.mx/ingenieriacivil/files/2013/09/Manual-de-Diseno-para-Proyectos-de-Hidraulica.pdf
- 2. Murillo CA, Alcívar JJ. Estudio y diseño de la red de distribución de agua potable para la comunidad puerto ébano km 16 de la parroquia Leónidas Plaza del Cantón Sucre; [Tesis para optar el título de Ingeniero Civil]. Manabí; Ecuador: Universidad Técnica de Manabí; 2015. [citado 2020 Mzo. 18]. Disponible en: http://repositorio.utm.edu.ec/bitstream/123456789/605/1/ESTUDIO%20Y%20D ISENO%20DE%20LA%20RED%20DE%20DISTRIBUCION%20DE%20AGU A.pdf
- 3. Castillo VM, López MJ. Propuesta de diseño del sistema de distribución de agua potable de Cruz Roja Venezolana Seccional Carabobo-Valencia; [Tesis para optar el título de Ingeniero Civil]. Bárbula; Venezuela: Universidad de Carabobo; 2016. [citado 2020 Mzo. 18]. Disponible en: http://mriuc.bc.uc.edu.ve/bitstream/handle/123456789/4916/vicamalo.pdf?seque nce=3
- 4. Escobar RO, Rivera DA. Diseño del sistema de abastecimiento de agua potable para el Cantón San José Primero del municipio de San Martín utilizando el programa epanet 2.0 ve; [Tesis para optar el título de Ingeniero Civil]. Ciudad

Universitaria; El Salvador: Universidad de el Salvador; 2015. [citado 2020 Mzo. 18].

Disponible en: http://ri.ues.edu.sv/id/eprint/9229/1/Dise%C3%B1o%20del%20sistema%20de% 20abastecimiento%20de%20agua%20potable%20para%20el%20cant%C3%B3n %20San%20Jos%C3%A9%20Primero%20del%20municipio%20de%20San%20 Mart%C3%ADn%20utilizando%20el%20programa%20EPANET%202.0%20vE .pdf

- 5. Navarrete EE. Diseño del sistema de agua potable y alcantarillado en el centro poblado de el Charco, distrito de Santiago de Cao, provincia de Ascope, región la Libertad; [Tesis para optar el título de Ingeniero Civil]. Trujillo, Perú: Universidad César Vallejo; 2017. [Citado 2020 Mzo. 18]. Disponible en: http://repositorio.ucv.edu.pe/bitstream/handle/UCV/11743/navarrete_ze.pdf?sequ ence=1&isAllowed=y
- 6. Pejerrey L. "Mejoramiento del sistema de agua potable y saneamiento en la comunidad de Cullco Belén, distrito de Potoni Azángaro Puno". [Tesis para optar el título de Ingeniero Agrícola]. Lambayeque, Perú: Universidad Nacional Pedro Ruiz gallo; 2018. [Citado 2020 Mzo. 18]. Disponible en: http://repositorio.unprg.edu.pe/bitstream/handle/UNPRG/4166/BC-TES-TMP-2981.pdf?sequence=1&isAllowed=y
- 7. Chirinos SB. Diseño del sistema de abastecimiento de agua potable y alcantarillado del Caserío Anta, Moro Ancash 2017; [Tesis para optar el título de Ingeniero Civil]. Chimbote, Perú: Universidad Cesar Vallejo; 2017. [Citado 2020 Mzo. 18]. Disponible en: http://repositorio.ucv.edu.pe/handle/UCV/12193

- Velásques JJ. Diseño del Sistema de Abastecimiento de Agua Potable para el Caserío de Mazac, Provincia de Yungay, Ancash 2017; [Tesis para optar el título de Ingeniero Civil]. Nuevo Chimbote, Perú: Universidad Cesar Vallejo; 2017.
 [Citado 2020 Mzo. 19]. Disponible en: http://repositorio.ucv.edu.pe/handle/UCV/12264
- 9. Illán NV. Evaluación y mejoramiento del sistema de agua potable del Asentamiento Humano Héroes del Cenepa, Distrito de Buenavista Alta, Provincia de Casma, Ancash 2017; [Tesis para optar el título de Ingeniero Civil]. Chimbote, Perú: Universidad Cesar Vallejo; 2017. [Citado 2020 Mzo. 19]. Disponible en: http://repositorio.ucv.edu.pe/bitstream/handle/UCV/12203/illan_mn.pdf?sequenc e=1&isAllowed=y
- 10. Cordero ML, Ullauri PN. Filtros caseros, utilizando ferrocemento, diseño para servicio a 10 familias, constante de 3 unidades de filtros gruesos ascendentes (fgas), 2 filtros lentos de arena (fla), sistema para aplicación de cloro y 1 tanque de almacenamiento; [monografia previa a la optención del titulo de ingeniero civil]. Cuenca, Ecuador, Universidad de cuenca; 2011 [citado 2020 Mzo. 20]. Disponible en:

http://dspace.ucuenca.edu.ec/bitstream/123456789/747/1/ti874.pdf

- 11. Agüero R. Agua potable para poblaciones rurales. Servicio E. Lima, Perú; 1997.
 167 p. Disponible en: https://es.slideshare.net/yanethyovana/agua-potable-parapoblacionesruralesroger-aguero-pittman
- 12. Monge MA. Sobre el caudal y la presión del agua Universidad de Riego.

- Plataforma de transferencia de conocimientos e innovación en riego [Internet]. 7/11. 2017 [cited 2020 Mzo. 21]. p. 8. Available from: https://www.universidadderiego.com/sobre-el-caudal-y-la-presion-del-agua/
- 13. Vierendel. Abastecimiento de agua y alcantarillado. cuarta edición; 2009. 147p.
- 14. Ministerio de Vivienda Construcción y Saneamiento. Parametros de diseño de infraestructura de agua y saneamiento para centros poblados rurales setiembre 2004; [Internet]. Lima Perù; 2004 [cited 2018 Mzo. 21]. Available from: https://www.mef.gob.pe/contenidos/inv_publica/docs/instrumentos_metod/sanea miento/_3_Parametros_de_dise_de_infraestructura_de_agua_y_saneamiento_CC _PP_rurales.pdf
- 15. Jiménez TJ. Manual para el diseño de sistemas de agua potable y alcantarillado sanitario facultad de ingeniería civil campus xalapa universidad veracruzana [internet]. universidad veracruzana; 2013 [cited 2020 Mzo 21]. Available from: https://www.uv.mx/ingenieriacivil/files/2013/09/Manual-de-Diseno-para-Proyectos-de-Hidraulica.pdf
- 16. Barrios C, Torres R, Cristina T. Agüero P. Guía de orientación en saneamiento básico para alcaldes y alcaldesas de municipios rurales y pequeñas comunidades [Seriado en linea]. 2009 [Citado 2020 Mzo. 21]. Disponible en: https://sswm.info/sites/default/files/reference_attachments/BARRIOS%20et%20 al%202009%20Guia%20de%20orientacion%20alcaldes.pdf
- 17. Ayala GF, Lárraga RO. Diseño del sistema de agua potable para augusto valencia, canton vinces, provincia de los rios [seriado en linea]. Quito; 2016 [Citado 2020
 Mzo. 21]. disponible en:

- http://repositorio.puce.edu.ec/bitstream/handle/22000/13464/BOLÍVAR
 PATRICIO LÁRRAGA JURADO_.pdf?sequence=1&isAllowed=y
- 18. Agustí Pérez-Foguet. Abastecimiento de agua y Saneamiento [Seriado en linea]. Catalunya; 2016 [Citado 2020 Mzo. 21]. Disponible en: https://upcommons.upc.edu/bitstream/handle/2117/25169/M9_Abastecimiento de agua y saneamiento.pdf?sequence=10&isAllowed=y
- Garcia E. Agua Potable En Poblaciones Rurales, Slideshare: [seriado en linea].
 2009. Disponible en: https://es.slideshare.net/rubenfloresyucra5/manual-de-agua-potable-en-poblaciones-rurales-64745166
- 20. Vargas E, Huerta M, Soto L, Garcia C, Briceño M. Cámaras Rompe Presión [Internet].
 2014. Available from: https://www.academia.edu/16516478/Camarasrompepresion-141014205508-conversion-gate02
- 21. Comision Nacional del Agua. Manual de agua potable, alcantarillado y saneamiento [Seriado en linea]. Mexico; 2007 [Citado 2020 Mzo. 27]. Available from: ftp://ftp.conagua.gob.mx/Mapas/libros pdf 2007/Redes de distribuci%F3n.pdf
- 22. Álvarez V. Red de Abastecimiento [Internet]. 2013 [Citado 2020 Mzo. 27]. Available from: http://www.lis.edu.es/uploads/8b982502_2156_46f9_8799_603901b43c8d.pdf
- 23. Ministerio de economía y finanzas. Diseño del Programa Estratégico "Acceso a agua potable y disposición sanitaria de excretas para poblaciones rurales, [Seriado en línea]. 2008 [Citado 2020 Mzo. 28]. (14,15,16,17); p. 41. Disponible en:

- https://www.mef.gob.pe/contenidos/presu_publ/documentac/programa_estart/Programas_Estrategicos_Saneamiento_rural_-_Diseno_del_programa.pdf
- 24. Organización Mundial de la Salud. Calidad del agua potable. [Internet]. 2018 [citado 2020 Mzo. 29]. p. 1. Disponible en: https://www.who.int/water_sanitation_health/dwq/es/
- 25. Instituto Nacional de Estadística e Informática. Formas de acceso al agua [Seriado en línea]. INEI. 2018 [citado 2020 Mzo. 30]; (8): [69 pagina]. Disponible en: https://www.inei.gob.pe/media/MenuRecursivo/boletines/boletin_agua_y_sanea miento.pdf

Anexos

Anexo 1: Normas

tudios que aseguren la calidad y cantidad que requiere el sistema, entre los que incluyan: identificación de fuentes alternativas, ubicación geográfica, topografía, rendimientos mínimos, variaciones anuales, análisis físico químicos, vulnerabilidad y microbiológicos y otros estudios que sean necesarios.

La fuente de abastecimiento a utilizarse en forma di-

recta o con obras de regulación, deberá asegurar el cau-dal máximo diario para el período de diseño. La calidad del agua de la fuente, deberá satisfacer los requisitos establecidos en la Legislación vigente en el País.

4. CAPTACIÓN

El diseño de las obras deberá garantizar como mínimo la captación del caudal máximo diario necesario pro-tegiendo a la fuente de la contaminación.

Se tendrán en cuenta las siguientes consideraciones

4.1. AGUAS SUPERFICIALES

a) Las obras de toma que se ejecuten en los cursos de aguas superficiales, en lo posible no deberán modificar el flujo normal de la fuente, deben ubicarse en zonas que no causen erosión o sedimentación y deberán estar por debajo de los niveles mínimos de agua en periodos de estiaje. b) Toda toma debe disponer de los elementos necesa-

rios para impedir el paso de sólidos y facilitar su remo-ción, así como de un sistema de regulación y control. El exceso de captación deberá retornar al curso original. c) La toma deberá ubicarse de tal manera que las variaciones de nivel no alteren el funcionamiento normal de

la captación.

4.2. AGUAS SUBTERRÁNEAS

El uso de las aguas subterráneas se determinará mediante un estudio a través del cual se evaluará la disponibilidad del recurso de agua en cantidad, calidad y oportunidad para el fin requerido

4.2.1. Pozos Profundos

a) Los pozos deberán ser perforados previa autoriza-ción de los organismos competentes del Ministerio de Agricultura, en concordancia con la Ley General de Aguas vigente. Así mismo, concluida la construcción y equipa-miento del pozo se deberá solicitar licencia de uso de agua al mismo organismo.
b) La ubicación de los pozos y su diseño preliminar

serán determinados como resultado del correspondiente estudio hidrogeológico específico a nivel de diseño de obra. En la ubicación no sólo se considerará las mejores condiciones hidrogeológicas del acuífero sino también el suficiente distanciamiento que debe existir con relación a otros pozos vecinos existentes y/ o proyectados para evitar problemas de interferencias.

c) El menor diámetro del forro de los pozos deberá ser por lo menos de 8 cm mayor que el diámetro exterior de

por lo menos de 8 cm mayor que el diametro exterior de los impulsores de la bomba por instalarse.

d) Durante la perforación del pozo se determinará su diseño definitivo, sobre la base de los resultados del estudio de las muestras del terreno extraído durante la perforación y los correspondientes registros geofísicos. El ajuste del diseño se refiere sobre todo a la profundidad final de la perforación, localización y longitud de los filtros.

e) Los filtros serán diseñados considerando el caudal de perforación de la perforación d

e) Los nitros serán disenados considerando el caudal de bombeo; la granulometría y espesor de los estratos; velocidad de entrada, así como la calidad de las aguas. f) La construcción de los pozos se hará en forma tal que se evite el arenamiento de ellos, y se obtenga un óptimo rendimiento a una alta eficiencia hidráulica, lo que

se conseguirá con uno o varios métodos de desarrollo. g) Todo pozo, una vez terminada su construcción, deberá ser sometido a una prueba de rendimiento a caudal variable durante 72 horas continuas como mínimo, con la finalidad de determinar el caudal explotable y las condi-ciones para su equipamiento. Los resultados de la prueba deberán ser expresados en gráficos que relacionen la depresión con los caudales, indicándose el tiempo de

h) Durante la construcción del pozo y pruebas de ren-dimiento se deberá tomar muestras de agua a fin de determinar su calidad y conveniencia de utilización.

a) Salvo el caso de pozos excavados para uso doméstico unifamiliar, todos los demás deben perforarse previa

II.3. OBRAS DE SANEAMIENTO

NORMA OS.010

CAPTACIÓN Y CONDUCCIÓN DE AGUA PARA CONSUMO HUMANO

1 OBJETIVO

Fijar las condiciones para la elaboración de los prorectos de captación y conducción de agua para consumo

2. ALCANCES

Esta Norma fija los requisitos mínimos a los que deben sujetarse los diseños de captación y conducción de agua para consumo humano, en localidades mayores de 2000 habitantes.

3. FUENTE

A fin de definir la o las fuentes de abastecimiento de agua para consumo humano, se deberán realizar los es-

Difundido por: ICG - Instituto de la Construcción y Gerencia www.construccion.org / icg@icgmail.org / Telefax : 421 - 7896

autorización del Ministerio de Agricultura. Así mismo, concluida la construcción y equipamiento del pozo se deberá

- solicitar licencia de uso de agua al mismo organismo.
 b) El diámetro de excavación será aquel que permita realizar las operaciones de excavación y revestimiento del pozo, señalándose a manera de referencia 1,50 m.
- c) La profundidad del pozo excavado se determinará en base a la profundidad del nivel estático de la napa y de la máxima profundidad que técnicamente se pueda exca-
- var por debajo del nivel estático.
 d) El revestimiento del pozo exavado deberá ser con anillos ciego de concreto del tipo deslizante o fijo, hasta el nivel estático y con aberturas por debajo de él.
- e) En la construcción del pozo se deberá considerar una escalera de acceso hasta el fondo para permitir la limpieza y mantenimiento, así como para la posible profundización en el futuro.
- f) El motor de la bomba puede estar instalado en la superficie del terreno o en una plataforma en el interior del pozo, debiéndose considerar en este último caso las medidas de seguridad para evitar la contaminación del
- g) Los pozos deberán contar con sellos sanitarios, ce-rrándose la boca con una tapa hermética para evitar la contaminación del acuífero, así como accidentes perso-nales. La cubierta del pozo deberá sobresalir 0,50 m como
- mínimo, con relación al nivel de inundación. h) Todo pozo, una vez terminada su construcción, deberá ser sometido a una prueba de rendimiento, para determinar su caudal de explotación y las características determinar su caudai de exploración, y las salestatécnicas de su equipamiento.

 i) Durante la construcción del pozo y pruebas de ren-
- dimiento se deberá tomar muestras de agua a fin de determinar su calidad y conveniencia de utilización.

4.2.3. Galerías Filtrantes

- a) Las galerías filtrantes serán diseñadas previo estu-dio, de acuerdo a la ubicación del nivel de la napa, rendimiento del acuífero y al corte geológico obtenido median-te excavaciones de prueba.

 b) La tubería a emplearse deberá colocarse con jun-
- tas no estancas y que asegure su alineamiento.
 c) El área filtrante circundante a la tubería se formará
 con grava seleccionada y lavada, de granulometría y espesor adecuado a las características del terreno y a las
- perforaciones de la tubería. d) Se proveerá cámaras de inspección espaciadas convenientemente en función del diámetro de la tubería, que permita una operación y mantenimiento adecuado. e) La velocidad máxima en los conductos será de
- 0.60 m/s.
- f) La zona de captación deberá estar adecuadamente protégida para evitar la contaminación de las aguas sub-
- g) Durante la construcción de las galerías y pruebas de rendimiento se deberá tomar muestras de agua a fin de determinar su calidad y la conveniencia de utilización.

4.2.4. Manantiales

- a) La estructura de captación se construirá para obtener el máximo rendimiento del afloramiento.
- b) En el diseño de las estructuras de captación, debe-rán preverse válvulas, accesorios, tubería de limpieza. rebose y tapa de inspección con todas las protecciones
- sanitariás correspondientes.
 c) Al inicio de la tubería de conducción se instalará su correspondiente canastilla.
- d) La zona de captación deberá estar adecuadamente protégida para evitar la contaminación de las aguas.
 e) Deberá tener canales de drenaje en la parte supe-
- rior y alrededor de la captación para evitar la contamina-ción por las aguas superficiales.

5. CONDUCCIÓN

Se denomina obras de conducción a las estructuras y elementos que sirven para transportar el agua desde la captación hasta al reservorio o planta de tratamiento. La estructura deberá tener capacidad para conducir como mínimo, el caudal máximo diario.

5.1. CONDUCCIÓN POR GRAVEDAD

5.1.1. Canales

- a) Las características y material con que se constru-yan los canales serán determinados en función al caudal
- la calidad del agua. b) La velocidad del flujo no debe producir depósitos ni
- erosiones y en ningún caso será menor de 0,60 m/s c) Los canales deberán ser diseñados y construidos teniendo en cuenta las condiciones de seguridad que ga-ranticen su funcionamiento permanente y preserven la cantidad y calidad del agua.

5.1.2. Tuberías

- a) Para el diseño de la conducción con tuberías se tendrá én cuenta las condiciones topográficas, las características del suelo y la climatología de la zona a fin de determinar el tipo y calidad de la tubería.
 b) La velocidad mínima no debe producir depósitos ni
- erosiones, en ningún caso será menor de 0,60 m/s c) La velocidad máxima admisible será:

En los tubos de concreto En tubos de asbesto-cemento, acero y PVC

Para otros materiales deberá justificarse la velocidad máxima admisible.

d) Para el cálculo hidráulico de las tuberías que traba-jen como canal, se recomienda la fórmula de Manning, con los siguientes coeficientes de rugosidad:

Asbesto-cemento y PVC Hierro Fundido y concreto

Para otros materiales deberá justificarse los coeficientes de rugosidad.

e) Para el cálculo de las tuberías que trabajan con flujo a presión se utilizarán fórmulas racionales. En caso de aplicarse la fórmula de Hazen y Williams, se utilizarán los coeficientes de fricción que se establecen en la Tabla Nº Para el caso de tuberías no consideradas, se deberá justificar técnicamente el valor utilizado.

TABLA Nº1

COEFICIENTES DE FRICCIÓN «C» EN LA FÓRMULA DE HAZEN Y WILLIAMS

TIPO DE TUBERIA	«C»
Acero sin costura	120
Acero soldado en espiral	100
Cobre sin costura	150
Concreto	110
Fibra de vidrio	150
Hierro fundido	100
Hierro fundido con revestimiento	140
Hierro galvanizado	100
Polietileno, Asbesto Cemento	140
Poli(cloruro de vinilo)(PVC)	150

5.1.3. Accesorios

a) Válvulas de aire

En las líneas de conducción por gravedad y/o bombeo, se colocarán válvulas extractoras de aire cuando haya cambio de dirección en los tramos con pendiente positiva. En los tramos de pendiente uniforme se colocarán cada 2.0 km como máximo.

Si hubiera algún peligro de colapso de la tubería a cau-sa del material de la misma y de las condiciones de traba-jo, se colocarán válvulas de doble acción (admisión y ex-

El dimensionamiento de las válvulas se determinará en función del caudal, presión y diámetro de la tubería.

b) Válvulas de purga Se colocará válvulas de purga en los puntos bajos, te-niendo en consideración la calidad del agua a conducirse y la modalidad de funcionamiento de la línea. Las válvuy la modalidad de funcionamiento de la liniea. Las varva las de purga se dimensionarán de acuerdo a la velocidad de la compordable que el diámetro de la de drenaje, siendo recomendable que el diámetro de la válvula sea menor que el diámetro de la tubería.

Difundido por: ICG - Instituto de la Construcción y Gerencia www.construccion.org / icg@icgmail.org / Telefax : 421 - 7896

c) Estas válvulas deberán ser instaladas en cámaras adecuadas, seguras y con elementos que permitan su fácil operación y mantenimiento.

5.2. CONDUCCIÓN POR BOMBEO

a) Para el cálculo de las líneas de conducción por bombeo, se recomienda el uso de la fórmula de Hazen y Williams. El dimensionamiento se hará de acuerdo al estudio del diámetro económico.

b) Se deberá considerar las mismas recomendaciones para el uso de válvulas de aire y de purga del numeral 5.1.3

5.3. CONSIDERACIONES ESPECIALES

a) En el caso de suelos agresivos o condiciones seve-ras de clima, deberá considerarse tuberías de material adecuado y debidamente protegido.

b) Los cruces con carreteras, vías férreas y obras de arte, deberán diseñarse en coordinación con el organismo competente.

c) Deberá diseñarse anclajes de concreto simple, concreto armado o de otro tipo en todo accesorio, ó válvula, considerando el diámetro, la presión de prueba y condición de instalación de la tubería.

d) En el diseño de toda línea de conducción se deberá tener en cuenta el golpe de ariete.

GLOSARIO

ACUIFERO.- Estrato subterráneo saturado de agua del

cual ésta fluye fácilmente.

AGUA SUBTERRANEA.- Agua localizada en el subsuelo y que generalmente requiere de excavación para

AFLORAMIENTO.- Son las fuentes o surgencias, que en principio deben ser consideradas como aliviaderos

turales de los acuíferos. CALIDAD DE AGUA.- Características físicas, químicas, y bacteriológicas del agua que la hacen aptas para el consumo humano, sin implicancias para la salud, incluyendo apariencia, gusto y olor.

CAUDAL MAXIMO DIARIO.- Caudal más alto en un

día, observado en el periodo de un año, sin tener en cuenta los consumos por incendios, pérdidas, etc.

DEPRESION.- Entendido como abatimiento, es el descenso que experimenta el nivel del agua cuando se está bombeando o cuando el pozo fluye naturalmente. Es la disconsión modida ou entre entre o livel estático y el disconsión modida de entre entre el production de la constanta de diferencia, medida en metros, entre el nivel estático y el nivel dinámico.

nivel dinámico.

FILTROS.- Es la rejilla del pozo que sirve como sección de captación de un pozo que toma el agua de un acuífero de material no consolidado.

FORRO DE POZOS.- Es la tubería de revestimiento colocada unas veces durante la perforación, otras después de acabada ésta. La que se coloca durante la perforación puede ser provisional o definitiva. La finalidad más frecuente de la primera es la de sectora el terror misor frecuente de la primera es la de sostener el terreno mien-

recuente de la primera es la de sostener el terreno mientras se avanza con la perforación. La finalidad de la segunda es revestir definitivamente el pozo.

POZO EXCAVADO.- Es la penetración del terreno en forma manual. El diámetro mínimo es aquel que permite el trabajo de un operario en su fondo.

POZO PERFORADO.- Es la penetración del terreno utilizando maquinaría. En este caso la perforación puede ser inicipido con un entrese hectures reforied de porporación.

iniciada con un antepozo hasta una profundidad conveniente

y, luego, se continúa con el equipo de perforación. SELLO SANITARIO.- Elementos utilizados para mantener las condiciones sanitarias óptimas en la estructura

de ingreso a la captación. **TOMA DE AGUA** - Dispositivo o conjunto de dispositivos destinados a desviar el agua desde una fuente hasta los demás órganos constitutivos de una captación

NORMA OS.030

ALMACENAMIENTO DE AGUA PARA CONSUMO HUMANO

1. ALCANCE

Esta Norma señala los requisitos mínimos que debe cumplir el sistema de almacenamiento y conservación de la calidad del agua para consumo humano.

Los sistemas de almacenamiento tienen como función suministrar agua para consumo humano a las redes de distribución, con las presiones de servicio adecuadas y en cantidad necesaria que permita compensar las variaciones de la demanda. Asimismo deberán contar con un volumen adicional para suministro en casos de emergen-cia como incendio, suspensión temporal de la fuente de abastecimiento y/o paralización parcial de la planta de tratamiento.

3. ASPECTOS GENERALES

3.1. Determinación del volumen de almacenamiento

El volumen deberá determinarse con las curvas de variación de la demanda horaria de las zonas de abastecimiento ó de una población de características similares.

3.2. Ubicación

Los reservorios se deben ubicar en áreas libres. El proyecto deberá incluir un cerco que impida el libre acceso a las instalaciones.

3.3. Estudios Complementarios
Para el diseño de los reservorios de almacenamiento se deberá contar con información de la zona elegida, como fotografías aéreas, estudios de: topografía, mecánica de suelos, variaciones de niveles freáticos, características químicas del suelo y otros que se considere necesario.

3.4. Vulnerabilidad

Los reservorios no deberán estar ubicados en terrenos sujetos a inundación, deslizamientos ú otros riesgos que afecten su seguridad.

3.5. Caseta de Válvulas

Las válvulas, accesorios y los dispositivos de medi-ción y control, deberán ir alojadas en casetas que permitan realizar las labores de operación y mantenimiento con facilidad.

3.6. Mantenimiento

Se debe prever que las labores de mantenimiento sean efectuadas sin causar interrupciones prolongadas del servicio. La instalación debe contar con un sistema de «by pass» entre la tubería de entrada y salida ó doble cámara de almacenamiento.

3.7. Seguridad Aérea

Los reservorios elevados en zonas cercanas a pistas de aterrizaje deberán cumplir las indicaciones sobre lu-ces de señalización impartidas por la autoridad compe-

4. VOLUMEN DE ALMACENAMIENTO

El volumen total de almacenamiento estará conformado por el volumen de regulación, volumen contra incendio y volumen de reserva.

4.1. Volumen de Regulación El volumen de regulación será calculado con el diagra-ma masa correspondiente a las variaciones horarias de la demanda.

Cuando se comprueba la no disponibilidad de esta información, se deberá adoptar como mínimo el 25% del promedio anual de la demanda como capacidad de regulación, siempre que el suministro de la fuente de abaste-cimiento sea calculado para 24 horas de funcionamiento. En caso contrario deberá ser determinado en función al horario del suministro.

4.2. Volumen Contra Incendio

En los casos que se considere demanda contra incen-dio, deberá asignarse un volumen mínimo adicional de acuerdo al siguiente criterio:

50 m3 para áreas destinadas netamente a vivienda. Para áreas destinadas a uso comercial o industrial deberá calcularse utilizando el gráfico para agua contra incendio de sólidos del anexo 1, considerando un volu-men aparente de incendio de 3000 metros cúbicos y el coeficiente de apilamiento respectivo.

Independientemente de este volumen los locales especiales (Comerciales, Industriales y otros) deberán te-ner su propio volumen de almacenamiento de agua con-

4.3. Volumen de Reserva

De ser el caso, deberá justificarse un volumen adicional de reserva

5. RESERVORIOS: CARACTERÍSTICAS E INSTALA-CIONES

5.1. Funcionamiento

Deberán ser diseñados como reservorio de cabecera. Su tamaño y forma responderá a la topografía y calidad del terreno, al volumen de almacenamiento, presiones necesarias y materiales de construcción a emplearse. La forma de los reservorios no debe representar estructuras de elevado costo.

5.2. Instalaciones

Los reservorios de agua deberán estar dotados de tu-berías de entrada, salida, rebose y desagüe. En las tuberías de entrada, salida y desagüe se insta-lará una válvula de interrupción ubicada convenientemente para su fácil operación y mantenimiento. Cualquier otra válvula especial requerida se instalará para las mismas

Las bocas de las tuberías de entrada y salida deberán estar ubicadas en posición opuesta, para permitir la renovación permanente del agua en el reservorio.

La tubería de salida deberá tener como mínimo el diámetro correspondiente al caudal máximo horario de

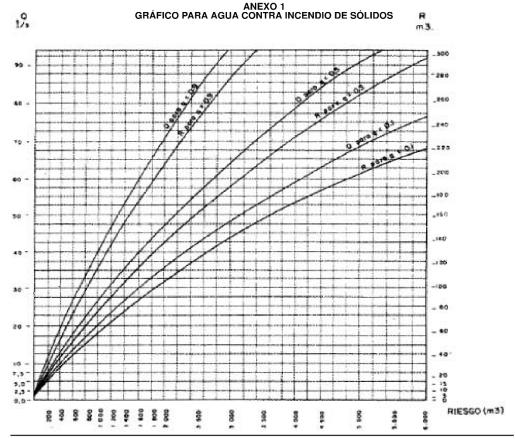
La tubería de rebose deberá tener capacidad mayor al caudal máximo de entrada, debidamente sustentada.

El diámetro de la tubería de desagüe deberá permitir un tiempo de vaciado menor a 8 horas. Se deberá verificar que la red de alcantarillado receptora tenga la capacidad hidráulica para recibir este caudal.

El piso del reservorio deberá tener una pendiente hacia el punto de desagüe que permita evacuarlo completa-

El sistema de ventilación deberá permitir la circulación del aire en el reservorio con una capacidad mayor que el caudal máximo de entrada ó salida de agua. Estará provisto de los dispositivos que eviten el ingreso de partícu-las, insectos y luz directa del sol.

Todo reservorio deberá contar con los dispositivos que permitan conocer los caudales de ingreso y de salida, y el


nivel del agua en cualquier instante. Los reservorios enterrados deberán contar con una cubierta impermeabilizante, con la pendiente necesaria que facilite el escurrimiento. Si se ha previsto jardines sobre la cubierta se deberá contar con drenaje que evite la acumulación de agua sobre la cubierta. Deben estar alejados de focos de contaminación, como pozas de percolación, letrinas, botaderos; o protegidos de los mismos. Las paredes y fondos estarán impermeabilizadas para evitar el ingreso de la napa y agua de riego de jardines.

La superficie interna de los reservorios será, lisa y resistante a la correction

sistente a la corrosión.

5.3. Accesorios

Los reservorios deberán estar provistos de tapa sa-nitaria, escaleras de acero inoxidable y cualquier otro dispositivo que contribuya a un mejor control y funcionamiento.

Difundido por: ICG - Instituto de la Construcción y Gerencia www.construccion.org / icg@icgmail.org / Telefax : 421 - 7896

- Q: Caudal de agua en l/s para extinguir el fuego
 R: Volumen de agua en m3 necesarios para reserva
 g: Factor de Apilamiento
 g = 0.9 Compacto
 g = 0.5 Medio
 g = 0.1 Poco Compacto
- R: Riesgo, volumen aparente del incendio en m3

OS.050

REDES DE DISTRIBUCIÓN DE AGUA PARA CONSUMO HUMANO

ÍNDICE

1. 2. 3. 4.	OBJETIVO ALCANCE DEFINICIONES DISPOSICIONES ESPECÍFICAS PARA DISEÑO	PAG. 2 2 2 2
	 4.1 Levantamiento Topográfico 4.2 Suelos 4.3 Población 4.4 Caudal de Diseño 4.5 Análisis Hidráulico 4.6 Diámetro Mínimo 4.7 Velocidad 4.8 Presiones 4.9 Ubicación y recubrimiento de tuberías 4.10 Válvulas 4.11 Hidrantes contra incendio 4.12 Anclajes y Empalmes 	2 3 3 3 4 4 4 5 6 6 6
5.	CONEXIÓN PREDIAL	6
	5.1. Diseño5.2. Elementos de la Conexión5.3. Ubicación5.4. Diámetro Mínimo	6 6 6
An	exo:	
	Esquema Sistema con Tuberías Principales y Ramales Distribuidores de Agua	7

OS.050 REDES DE DISTRIBUCIÓN DE AGUA PARA CONSUMO HUMANO

1. OBJETIVO

Fijar las condiciones exigibles en la elaboración de los proyectos hidráulicos de redes de agua para consumo humano.

2. ALCANCES

Esta Norma fija los requisitos mínimos a los que deben sujetarse los diseños de redes de distribución de agua para consumo humano en localidades mayores de 2000 habitantes.

3. DEFINICIONES

Conexión predial simple. Aquella que sirve a un solo usuario

Conexión predial múltiple. Es aquella que sirve a varios usuarios

Elementos de control. Dispositivos que permiten controlar el flujo de agua.

Hidrante. Grifo contra incendio.

Redes de distribución. Conjunto de tuberías principales y ramales distribuidores que permiten abastecer de agua para consumo humano a las viviendas.

Ramal distribuidor. Es la red que es alimentada por una tubería principal, se ubica en la vereda de los lotes y abastece a una o más viviendas.

Tubería Principal. Es la tubería que forma un circuito de abastecimiento de agua cerrado y/o abierto y que puede o no abastecer a un ramal distribuidor.

Caja Portamedidor. Es la cámara en donde se ubicará e instalará el medidor

Profundidad. Diferencia de nivel entre la superficie de terreno y la generatriz inferior interna de la tubería (clave de la tubería).

Recubrimiento. Diferencia de nivel entre la superficie de terreno y la generatriz superior externa de la tubería (clave de la tubería).

Conexión Domiciliaria de Agua Potable. Conjunto de elementos sanitarios incorporados al sistema con la finalidad de abastecer de agua a cada lote.

Medidor. Elemento que registra el volumen de agua que pasa a través de él.

4. DISPOSICIONES ESPECÍFICAS PARA DISEÑO

4.1 Levantamiento Topográfico

La información topográfica para la elaboración de proyectos incluirá:

 Plano de lotización con curvas de nivel cada 1 m. indicando la ubicación y detalles de los servicios existentes y/o cualquier referencia importante.

2

Difundido por: ICG - Instituto de la Construcción y Gerencia www.construccion.org / icg@icgmail.org / Telefax : 421 - 7896

- Perfil longitudinal a nivel del eje del trazo de las tuberías principales y/o ramales distribuidores en todas las calles del área de estudio y en el eje de la vía donde técnicamente sea necesario.
- Secciones transversales de todas las calles. Cuando se utilicen ramales distribuidores, mínimo 3 cada 100 metros en terrenos planos y mínimo 6 por cuadra donde exista desnivel pronunciado entre ambos frentes de calle y donde exista cambio de pendiente. En Todos los casos deben incluirse nivel de lotes.
- Perfil longitudinal de los tramos que sean necesarios para el diseño de los empalmes con la red de agua existente.
- Se ubicará en cada habilitación un BM auxiliar como mínimo y dependiendo del tamaño de la habilitación se ubicarán dos o más, en puntos estratégicamente distribuidos para verificar las cotas de cajas a instalar.

4.2 Suelos

Se deberá realizar el reconocimiento general del terreno y el estudio de evaluación de sus características, considerando los siguientes aspectos:

- Determinación de la agresividad del suelo con indicadores de PH, sulfatos, cloruros y sales solubles totales.
- Otros estudios necesarios en función de la naturaleza del terreno, a criterio del consultor.

4.3 Población

Se deberá determinar la población y la densidad poblacional para el periodo de diseño adoptado.

La determinación de la población final para el periodo de diseño adoptado se realizará a partir de proyecciones, utilizando la tasa de crecimiento distrital y/o provincial establecida por el organismo oficial que regula estos indicadores.

4.4 Caudal de diseño

La red de distribución se calculará con la cifra que resulte mayor al comparar el gasto máximo horario con la suma del gasto máximo diario más el gasto contra incendios para el caso de habilitaciones en que se considere demanda contra incendio.

4.5 Análisis hidráulico

Las redes de distribución se proyectarán, en principio y siempre que sea posible en circuito cerrado formando malla. Su dimensionamiento se realizará en base a cálculos hidráulicos que aseguren caudal y presión adecuada en cualquier punto de la red debiendo garantizar en lo posible una mesa de presiones paralela al terreno

Para el análisis hidráulico del sistema de distribución, podrá utilizarse el método de Hardy Cross o cualquier otro equivalente.

Para el cálculo hidráulico de las tuberías, se utilizarán fórmulas racionales. En caso de aplicarse la fórmula de Hazen y Williams, se utilizarán los coeficientes de fricción que se establecen en la tabla No 1. Para el caso de tuberías no contempladas, se deberá justificar técnicamente el valor utilizado del coeficiente de

fricción. Las tuberías y accesorios a utilizar deberán cumplir con las normas técnicas peruanas vigentes y aprobadas por el ente respectivo.

TABLA N° 1 COEFICIENTES DE FRICCIÓN "C" EN LA FÓRMULA DE HAZEN Y WILLIAMS

TIPO DE TUBERÍA	"C"
Acero sin costura Acero soldado en espiral Cobre sin costura Concreto Fibra de vidrio Hierro fundido Hierro fundido dúctil con revestimiento Hierro galvanizado Polietileno Policloruro de vinilo (PVC)	120 100 150 110 150 100 140 100 140 150

4.6 Diámetro mínimo

El diámetro mínimo de las tuberías principales será de 75 mm para uso de vivienda y de 150 mm de diámetro para uso industrial.

En casos excepcionales, debidamente fundamentados, podrá aceptarse tramos de tuberías de 50 mm de diámetro, con una longitud máxima de 100 m si son alimentados por un solo extremo ó de 200 m si son alimentados por los dos extremos, siempre que la tubería de alimentación sea de diámetro mayor y dichos tramos se localicen en los límites inferiores de las zonas de presión.

El valor mínimo del diámetro efectivo en un ramal distribuidor de agua será el determinado por el cálculo hidráulico. Cuando la fuente de abastecimiento es agua subterránea, se adoptará como diámetro nominal mínimo de 38 mm o su equivalente.

En los casos de abastecimiento por piletas el diámetro mínimo será de 25 mm.

4.7 Velocidad

La velocidad máxima será de 3 m/s.

En casos justificados se aceptará una velocidad máxima de 5 m/s.

4.8 Presiones

La presión estática no será mayor de 50 m en cualquier punto de la red. En condiciones de demanda máxima horaria, la presión dinámica no será menor de 10 m

4

En caso de abastecimiento de agua por piletas, la presión mínima será 3,50 m a la salida de la pileta.

4.9 Ubicación y recubrimiento de tuberías

Se fijarán las secciones transversales de las calles del proyecto, siendo necesario analizar el trazo de las tuberías nuevas con respecto a otros servicios existentes y/o proyectos.

- En todos los casos las tuberías de agua potable se ubicarán, respecto a las redes eléctricas, de telefonía, conductos de gas u otros, en forma tal que garantice una instalación segura.
- En las calles de 20 m de ancho o menos, las tuberías principales se proyectarán a un lado de la calzada como mínimo a 1.20 m del límite de propiedad y de ser posible en el lado de mayor altura, a menos que se justifique la instalación de 2 líneas paralelas.

En las calles y avenidas de más de 20 m de ancho se proyectará una línea a cada lado de la calzada cuando no se consideren ramales de distribución.

- El ramal distribuidor de agua se ubicará en la vereda, paralelo al frente del lote, a una distancia máxima de 1.20 m. desde el límite de propiedad hasta el eje del ramal distribuidor.
- La distancia mínima entre los planos verticales tangentes más próximos de una tubería principal de agua potable y una tubería principal de aguas residuales, instaladas paralelamente, será de 2 m, medido horizontalmente.

En las vías peatonales, pueden reducirse las distancias entre tuberías principales y entre éstas y el límite de propiedad, así como los recubrimientos siempre y cuando:

- Se diseñe protección especial a las tuberías para evitar su fisuramiento o ruptura.
- Si las vías peatonales presentan elementos (bancas, jardines, etc.) que impidan el paso de vehículos.

La mínima distancia libre horizontal medida entre ramales distribuidores y ramales colectores, entre ramal distribuidor y tubería principal de agua o alcantarillado, entre ramal colector y tubería principal de agua o alcantarillado, ubicados paralelamente, será de 0,20 m. Dicha distancia debe medirse entre los planos tangentes más próximos de las tuberías.

 En vías vehiculares, las tuberías principales de agua potable deben proyectarse con un recubrimiento mínimo de 1 m sobre la clave del tubo. Recubrimientos menores, se deben justificar. En zonas sin acceso vehicular el recubrimiento mínimo será de 0.30 m.

El recubrimiento mínimo medido a partir de la clave del tubo para un ramal distribuidor de agua será de $0.30\ m.$

4.10 Válvulas

La red de distribución estará provista de válvulas de interrupción que permitan aislar sectores de redes no mayores de 500 m de longitud.

Se proyectarán válvulas de interrupción en todas las derivaciones para ampliaciones.

Las válvulas deberán ubicarse, en principio, a 4 m de la esquina o su proyección entre los límites de la calzada y la vereda.

Las válvulas utilizadas tipo reductoras de presión, aire y otras, deberán ser instaladas en cámaras adecuadas, seguras y con elementos que permitan su fácil operación y mantenimiento.

Toda válvula de interrupción deberá ser instalada en un alojamiento para su aislamiento, protección y operación.

Deberá evitarse los "puntos muertos" en la red, de no ser posible, en aquellos de cotas mas bajas de la red de distribución, se deberá considerar un sistema de purga.

El ramal distribuidor de agua deberá contar con válvula de interrupción después del empalme a la tubería principal.

4.11 Hidrantes contra incendio

Los hidrantes contra incendio se ubicarán en tal forma que la distancia entre dos de ellos no sea mayor de 300 m.

Los hidrantes se proyectarán en derivaciones de las tuberías de 100 mm de diámetro o mayores y llevarán una válvula de compuerta.

4.12 Anclajes y Empalmes

Deberá diseñarse anclajes de concreto simple, concreto armado o de otro tipo en todo accesorio de tubería, válvula e hidrante contra incendio, considerando el diámetro, la presión de prueba y el tipo de terreno donde se instalarán.

El empalme del ramal distribuidor de agua con la tubería principal se realizará con tubería de diámetro mínimo igual a 63 mm.

CONEXIÓN PREDIAL

5. 5.1 **Diseño**

Deberán proyectarse conexiones prediales simples o múltiples de tal manera que cada unidad de uso cuente con un elemento de medición y control.

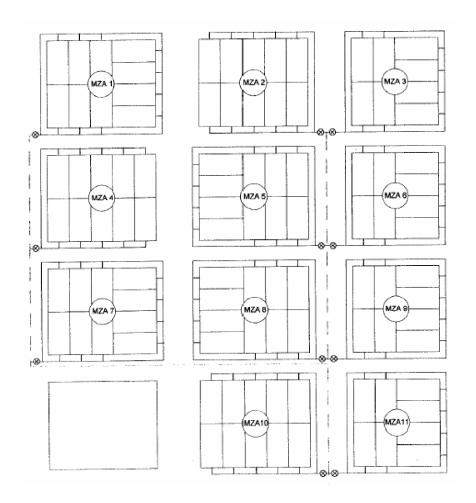
5.2 Elementos de la conexión

Deberá considerarse:

- Elemento de medición y control: Caja de medición
- Elemento de conducción: Tuberías
- · Elemento de empalme

5.3 Ubicación

El elemento de medición y control se ubicará a una distancia no menor de 0,30 m del límite de propiedad izquierdo o derecho, en área pública o común de fácil y permanente acceso a la entidad prestadora de servicio, (excepto en los casos de lectura remota en los que podrá ubicarse inclusive en el interior del predio).


5.4 Diametro mínimo

El diámetro mínimo de la conexión predial será de 12,50 mm.

ANEXO

ESQUEMA SISTEMA DE DISTRIBUCIÓN CON TUBERÍAS PRINCIPALES Y RAMALES DISTRIBUIDORES DE AGUA

LEYENDA:	
Tubería Principal de Agua	
Ramal Distribuidor de Agua	1
Válvulas de Compuerta	-⊗-

NORMA OS.100

CONSIDERACIONES BÁSICAS DE DISEÑO DE INFRAESTRUCTURA SANITARIA

1. INFORMACIÓN BÁSICA

1.1. Previsión contra Desastres y otros riesgos En base a la información recopilada el proyectista deberá evaluar la vulnerabilidad de los sistemas ante situaciones de emergencias, diseñando sistemas flexibles en su operación, sin descuidar el aspecto económico. Se deberá explicitar la Expersar de Agra los respectos festivos festigates. deberá solicitar a la Empresa de Agua la respectiva facti-bilidad de servicios. Todas las estructuras deberán contar con libre disponibilidad para su utilización.

1.2. Período de diseño

Para proyectos de poblaciones o ciudades, así como para proyectos de mejoramiento y/o ampliación de servicios en asentamientos existentes, el período de diseño será fijado por el proyectista utilizando un procedimiento que garantice los períodos óptimos para cada componente de los sistemas.

1.3. Población

La población futura para el período de diseño considerado deberá calcularse:

- a) Tratándose de asentamientos humanos existentes, el crecimiento deberá estar acorde con el plan regulador y los programas de desarrollo regional si los hubiere; en caso de no existir éstos, se deberá tener en cuenta las características de la ciudad, los factores históricos, socio-económico, su tendencia de desarrollo y otros que se pudiaren el parter.
- dieren obtener. b) Tratándose de nuevas habilitaciones para viviendas deberá considerarse por lo menos una densidad de 6 hab/

1.4. Dotación de Agua
La dotación promedio diaria anual por habitante, se
fijará en base a un estudio de consumos técnicamente justificado, sustentado en informaciones estadísticas comprobadas.

Si se comprobara la no existencia de estudios de consumo y no se justificara su ejecución, se considerará por lo menos para sistemas con conexiones domiciliarias una dotación de 180 l/hab/d, en clima frío y de 220 l/hab/d en clima templado y cálido.

Para programas de vivienda con lotes de área menor o igual a 90 m2, las dotaciones serán de 120 l/hab/d en

clima frío y de 150 l/hab/d en clima templado y cálido.
Para sistemas de abastecimiento indirecto por surtidores para camión cisterna o piletas públicas, se considerará una dotación entre 30 y 50 l/hab/d respectivamente.

Para habitaciones de tipo industrial, deberá determinarse de acuerdo al uso en el proceso industrial, debida mente sustentado.

Para habilitaciones de tipo comercial se aplicará la Norma IS.010 Instalaciones Sanitarias para Edificaciones.

1.5. Variaciones de Consumo
En los abastecimientos por conexiones domiciliarias,
los coeficientes de las variaciones de consumo, referidos
al promedio diario anual de la demanda, deberán ser fijados en base al análisis de información estadística comprobada.

De lo contrario se podrán considerar los siguientes coeficientes:

- Máximo anual de la demanda diaria: 1,3
- Máximo anual de la demanda horaria: 1.8 a 2.5

1.6. Demanda Contra incendio

- a) Para habilitaciones urbanas en poblaciones menores de 10,000 habitantes, no se considera obligatorio demanda contra incendio
- Para habilitaciones en poblaciones mayores de 10,000 habitantes, deberá adoptarse el siguiente criterio:
- El caudal necesario para demanda contra incendio, podrá estar incluido en el caudal doméstico; debiendo considerarse para las tuberías donde se ubiquen hidrantes, los siguientes caudales mínimos:
 - Para áreas destinadas netamente a viviendas: 15 l/s.
- Para áreas destinadas a usos comerciales e industriales: 30 l/s.

.7. Volumen de Contribución de Excretas

Cuando se proyecte disposición de excretas por diges-tión seca, se considerará una contribución de excretas por habitante y por día de 0,20 kg.

1.8. Caudal de Contribución de Alcantarillado

Se considerará que el 80% del caudal de agua potable consumida ingresa al sistema de alcantarillado.

1.9. Agua de Infiltración y Entradas Ilícitas

Asimismo deberá considerarse como contribución al alcantarillado, el agua de infiltración, asumiendo un cau-dal debidamente justificado en base a la permeabilidad del suelo en terrenos saturados de agua freáticas y al tipo de tuberías a emplearse, así como el agua de lluvia que pueda incorporarse por las cámaras de inspección y conexiones domiciliarias

.10. Agua de Lluvia

En lugares de altas precipitaciones pluviales deberá considerarse algunas soluciones para su evacuación, según lo señalado en la norma OS.060 Drenaje Pluvial

OPERACIÓN Y MANTENIMIENTO DE INFRAESTRUCTURA SANITARIA PARA POBLACIONES URBANAS

1. GENERALIDADES Se refieren a las actividades básicas de operación y mantenimiento preventivo y correctivo de los principales elementos de los sistemas de agua potable y alcantarillado, tendientes a lograr el buen funcionamiento y el incremento de la vida útil de dichos elementos

Cada empresa o la entidad responsable de la administración de los servicios de agua potable y alcantarilla-do, deberá contar con los respectivos Manuales de Operación y Mantenimiento.

Para realizar las actividades de operación y mantenimiento, se deberá organizar y ejecutar un programa que incluya: inventario técnico, recursos humanos y materia-les, sistema de información, control, evaluación y archivos, que garanticen su eficiencia.

2. AGUA POTABLE

2.1. Reservorio

Deberá realizarse inspección y limpieza periódica a fin de localizar defectos, grietas u otros despertectos que pu-

dieran causar fugas o ser foco de posible contaminación. De encontrarse, deberán ser reportadas para que se realice las reparaciones necesarias.

Deberá realizarse periódicamente muestreo y control

de la calidad del agua a fin de prevenir o localizar focos de contaminación y tomar las medidas correctivas del caso. Periódicamente, por lo menos 2 veces al año deberá realizarse lavado y desinfección del reservorio, utilizando cloro en solución con una dosificación de 50 ppm u otro producto similar que garantice las condiciones de potabilidad del agua.

2.2. Distribución

Tuberías y Accesorios de Agua Potable

Deberá realizarse inspecciones rutinarias y periódicas para localizar probables roturas, y/o fallas en las uniones o materiales que provoquen fugas con el consiguiente deterioro de pavimentos, cimentaciones, etc. De detectarse aquellos, deberá reportarse a fin de realizar el mantenimiento correctivo.

A criterio de la dependencia responsable de la operación y mantenimiento de los servicios, deberá realizarse periódicamente, muestreos y estudios de pitometría y/o detección de fugas; para determinar el estado general de la red y sus probables necesidades de reparación y/o ampliación.

Deberá realizarse periódicamente muestreo y control de calidad del agua en puntos estratégicos de la red de distribución, a fin de prevenir o localizar probables focos de contaminación y tomar las medidas correctivas del caso.

La periodicidad de las acciones anteriores será fijada en los manuales respectivos y dependerá de las circunstancias locales, debiendo cumplirse con las recomendaciones del Ministerio de Salud.

Válvulas e Hidrantes:

a) Operación

Toda válvula o hidrante debe ser operado utilizando el dispositivo y/o procedimiento adecuado, de acuerdo al tipo operación (manual, mecánico, eléctrico, neumático, etc.) por personal entrenado y con conocimiento del sistema y tipo de válvulas.

Toda válvula que regule el caudal y/o presión en un sistema de agua potable deberá ser operada en forma tal

que minimice el golpe de ariete. La ubicación y condición de funcionamiento de toda válvula deberán registrarse convenientemente.

Al iniciarse la operación de un sistema, deberá verifi-carse que las válvulas y/o hidrantes se encuentren en un buen estado de funcionamiento y con los elementos de protección (cajas o cámaras) limpias, que permitan su fá-cil operación. Luego se procederá a la lubricación y/o engrase de las partes móviles

Se realizará inspección, limpieza, manipulación, lubricación y/o engrase de las partes móviles con una periodi-cidad mínima de 6 meses a fin de evitar su agarrotamiento e inoperabilidad.

De localizarse válvulas o hidrantes deteriorados o agarrotados, deberá reportarse para proceder a su reparación o cambio.

2.3. Elevación

Equipos de Bombeo

Los equipos de bombeo serán operados y mantenidos siguiendo estrictamente las recomendaciones de los fa-bricantes y/o las instrucciones de operación establecidas en cada caso y preparadas por el departamento de operación v/o mantenimiento correspondiente.

3. MANTENIMIENTO DE SISTEMAS DE ELIMINA-CION DE EXCRETAS SIN ARRASTRE DE AGUA.

.1. Letrinas Sanitarias u Otros Dispositivos

El uso y mantenimiento de las letrinas sanitarias se realizará periódicamente, ciñéndose a las disposiciones del Ministerio de Salud. Para las letrinas sanitarias públicas deberá establecerse un control a cargo de una entidad u organización local.

Difundido por: ICG - Instituto de la Construcción y Gerencia www.construccion.org / icg@icgmail.org / Telefax : 421 - 7896

4. ALCANTARILLADO

4.1. Tuberías y Cámaras de Inspección de Alcantarillado

Deberá efectuarse inspección y limpieza periódica anual de las tuberías y cámaras de inspección, para evitar posibles obstrucciones por acumulación de fango u otros.

En las épocas de lluvia se deberá intensificar la periodicidad de la limpieza debido a la acumulación de arena y/o tierra arrastrada por el agua.

Todas las obstrucciones que se produzcan deberán ser atendidas a la brevedad posible utilizando herramientas, equipos y métodos adecuados.

Deberá elaborarse periódicamente informes y cuadros de las actividades de mantenimiento, a fin de conocer el estado de conservación y condiciones del sistema.

Anexo 2: Fichas Técnicas

Ficha 01: Cámara de captación.

	TITULO:								
ADECH!	TESISTA:				FECHA:	: 1			
OL STREET	ASESOR:								
UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE	LUGAR:			DISTRITO:			NIVEL	1	
CHIMBOTE	PROVINCIA:			DEPARTAMENTO:			ESTATICO		
			CAPTA	CIÓN DE UN MANAI	TIAL				
Caudal máximo:				ALTURA DE L		UMEDA	20.00		
Caudal mínimo:						CHILDIA	T		
Caudal máximo diario:	Altura de	filtro A	ltura mínima	Diámetro de la canast	illa de salida	Borde libre		Altura de	agua
Ancho de la pantalla:									
Diametro de la tubería de salida				-					· · · · · · · · · · · · · · · · · · ·
			Dimens	sionamiento de la cana	stilla				
Altura de la ranura:		Largo de	а гапига			Área total de ranura:	a		
Revoce y limpieza:			Tn/m3 peso espe	cífico del suelo	2	Empuje del su sobre el muro		iente de empuje	
		DISEÑO ESTRUCTURAL	Angulo de rozam	tiento interno del suelo			Siendo la terreno	altura del	
Diámetro en pul:			Coeficiente de fre				Resultado)	
				cífico del concreto				A 1 A 1	
Gasto máximo de la			MOVIMIE	ENTO DE VUELCO		Momento de l	stabilización (1	Mr) y el peso W:	
fuente:		$Mo = P \times Y$		es a Million		w	W (kg)	X (m)	Mr = X*W (Kg/m)
Pérdida de carga		Considerando $Y = h$							(Rg/III)
unitaria:		CHEQUEO DE LA	Por volteo:						
Resultado:		ESTRUCTURA	Maxima carga un						
			Por deslizamiento	D: -			100		

GIRON CHAUCA JAIME
ING. CIVIL
Rro. Colegio de Ingenieros CIP N° 20520

Ficha 02: Línea de conducción.

		(cit)			ITULO: ESISTA:								FECHA:						
		ULADECH			SESOR:								FECHA:	<u></u>					
INI	FRSIDA	D CATÓLICA L	OS ÁNGELES		UGAR:		 			DISTR	TTO:	Γ				Γ			
		СИМВОТЕ	,		OVINCIA:					DEPARTA						NIVEL EST	TATICO		
		1 6 7					'	4.1	LÍNI	A DE CONDUCC		AVEDAD			7.77				1
-								NOTA . (T.)					. IDE I IDDI						
		14,						NOTA: (LA	LINEA DE	CONCUCCIÓ	ON SE ENCU	ENTRA AL	AIRE LIBRE	.)					1911
Tra	mo			Longitud	COT		D.0		m		Q	Diámetro	Diámetro					OTA	
		Viviendas actuales	Viviendas futuras	tomada en	TERR	ENO	Diferencia de cota	% de incremento	Total de tubos	Longit. Del diseño en (m)	Diseño	nominal	interno	TIPO DE TUBERIA	Cte. De Tubería	Perdida Hf tubería	PIEZON	METRICA	OBSERVACIONI
T	P.Q	actuales	Tuturas	(m)	INICIO	FIN	Cola	Incremento	iuoos	discho en (III)	(I/S)	(Pulg.)	(pulg.)	TOBERIA	De Tuberia	HI tuberia	INICIO	FINAL	
+					-		-		-	-									
1										1									
1										1 1									
1										1 1									
1							1			1									
			V/1855-00-00 FAR TO WEST AND																
T																			
ı							1 1			1									
1							1			1					1				
1										1									
										1									
+							-												
1										1									
1							1			1									
1																			
1							1 1			1									
T																			
1																			
1															ļ i				
1																			
+					-					-									
1							1							1	l			1	

GIRON CHÂUCA JAIME ING. CIVIL Reg. Colegio de Ingenieros CIP N° 205209

Ficha 03: Reservorio de almacenamiento.

TESISTA:				TITUI	.0:											
LUGAR DISTRITO: DISTRITO: ESTÁTICO		DECH		TESIS	ΓA:		****				FECHA	: T			-	
LUGAR DEPARTAMENTO: STATICO STATICO	(ULASTE		ASES	DR:											
DISENO DE UN RESERVORIO DE ALMACENAMIENTO Peso especifico del agua V = ya x h 2 x b/2 P = ya x h El empuje del agua V = ya x h 2 x b/2 P = ya x h P = ya x	VERSIDAL	CATOLICA L	OS ÁNGELES	LUGA	R:			D	DISTRITO:				NIVEL			
P = ya x h		СНМВОТЕ		PROVIN	CIA:			DEPA	ARTAMENTO:							
P = ya x h						DISE	ÑO DE UN I	RESERVOR	RIO DE ALMAG	ENAMIE	NTO	100		1		
P = γa x h El empuje del agua V = γa x h2 x b/2 P = γa x h El empuje del agua V = γa x h2 x b/2 P = γa x h El empuje del agua V = γa x h2 x b/2 LOSA DE CUBIERTA ESPESOR DE LA PARED DATOS DE DISEÑO Image: Distribución de La ARMADURA LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE PARED Image: Distribución de La ARMADURA LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE PARED	75	Peso espec	ífico del terreno									7 77	Canacidad	l portante de	el terreno	
LOSA DE CUBIERTA ESPESOR DE LA PARED DATOS DE DISEÑO DISTRIBUCIÓN DE LA ARMADURA LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE PARED			T						T					1		
DISTRIBUCIÓN DE LA ARMADURA LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE PARED OUTUBLE DE LA ARMADURA DE PARED OUTUBLE DE LA ARMADURA DE PARED OUTUBLE DE LA ARMADURA DE PARED	$P = \gamma a$	x h	El empuje del	agua $V = \gamma a x$	h2 x b/2		$P = \gamma a \times h$		El empuje de	agua V =	ya x h2 x b/2	P	=γa x h	Ele	mpuje del agua	$V = \gamma a \times h2$
DISTRIBUCIÓN DE LA ARMADURA LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE PARED OUTUBRIDADO DISTRIBUCIÓN DE LA ARMADURA DE PARED																
DISTRIBUCIÓN DE LA ARMADURA LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE PARED O DISTRIBUCIÓN DE LA ARMADURA DE PARED	1	LOSA D	E CUBIERTA				F	SPESOR D	E LA PARED				DAT	OS DE DISE	eño.	
		T			T	T			T	Г		TTT		T DIST		T
	I	ISTRIBUCIÓN	DE LA ARMADI	URA				LOSA DI	E FONDO			DIS	ETRIBLICIÓN DE	LAADMA	DUDA DE DAI	PED
DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO CHEQUEO DE LA LOSA DE FONDO		T	T	T	T		T	T	I	Г			STRIBUCION DE	LA ARNIA	DURA DE PAI	LED
DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE CUBIERTA CHEQUEO DE LA LOSA DE FONDO														1		
DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE CUBIERTA CHEQUEO DE LA LOSA DE FONDO															 	+-+
DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE CUBIERTA CHEQUEO DE LA LOSA DE FONDO ORDINATION DE LA ARMADURA DE LOSA DE CUBIERTA CHEQUEO DE LA LOSA DE FONDO																
DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE CUBIERTA CHEQUEO DE LA LOSA DE FONDO																
DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE CUBIERTA CHEQUEO DE LA LOSA DE FONDO																
DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE FONDO DISTRIBUCIÓN DE LA ARMADURA DE LOSA DE CUBIERTA CHEQUEO DE LA LOSA DE FONDO																
DISTRIBECTON DE LA ARMADORA DE LOSA DE FONDO DISTRIBECTON DE LA ARMADORA DE LOSA DE FONDO CHEQUEO DE LA LOSA DE FONDO	DISTRIBUC	ION DE LA AR	MADURA DE LO	SA DE FOND		DISTRI	DUCIÓN DE	I A ADMA	DUBA DE LOS	DE CUID	TEDT 4		CHIPOLINO D			
	DISTRIBUC	ION DE LA AK	WIADORA DE LO	SA DE FOND		DISTRI	T T	LA ARMAI	DURA DE LOS	A DE CUB	IERIA		CHEQUEOD	E LA LOSA	DE FONDO	
					+	_		-			-+-+	+				+
														_	 	++

GIRON CHAUCA JAINE
NG. CIVIL
Reg. Colegio de lagenieros CIP N° 205209

Ficha 04: Línea de aducción.

	ULADECH		7	ΓΙΤULO: ΓESISTA:								FECHA:						
	1			ASESOR:											,			
NIVERSIDA	D CATOLICA LO CHIMBOTT;	S ANGELES		LUGAR:					DISTR DEPARTA						NIVEL ES	TATICO		
7.75			PR	OVINCIA	V :			LÍNEAD	E CONDUCCIÓ		AVEDAD				L			
Ггато	Viviendas actuales	Viviendas futuras	Longitud tomada en	COT	A DE RENO	Diferencia de cota	% de incremento	Total de tubos	Longit. Del diseño en	Q Diseño	Diámetro nominal	Diámetro interno	TIPO DE TUBERIA	Cte. De Tubería	Perdida	CO	OTA IETRICA	OBSERVACION
P.Q	utuares	Idialas	(m)	INICIO	FIN			1000	(m)	(l/S)	(Pulg.)	(pulg.)	TODEREN	De l'abena	TH tuberia	INICIO	FINAL	

GIRON CHAUCA JAINE
ING. CIVIL
Reg. Colegio de lagenieros CIP N° 205209

Ficha 05: Red de distribución.

								RED	ES DE I	DISTRIBU	CIÓN P	OR GRA	VEDAD						
				T	TTULO:														
		ULADECH		T	ESISTA:								FECHA:				· ·		
		ULA			SESOR:														
UNP	VERSIDA	CATÓLICA LO	S ANGELLS		LUGAR:					DISTI						NIN PR	mirroo		· · · · · · · · · · · · · · · · · · ·
		CHIMBOTE		PRO	OVINCIA	۱:		4		DEPARTA						NIVEL ES	TATICO		
						300			RED DE	DISTRIBUC	CIÓN POR	GRAVEDA	AD .			24 2 2 2 2 2 2 2			
					in the		N	OTA: (LA L	ÍNEA DE	CONCUCCIO	ÓN SE ENC	CUENTRA	AL AIRE	LIBRE)	1 1 1 1 m				
Tı	ramo	Viviendas actuales	Viviendas futuras	Longitud tomada en	COTA		Diferencia de cota	% de incremento	Total de tubos	diseño en	Q Diseño	nominal	Diámetro interno	TIPO DE TUBERIA	Cte. De	Perdida Hf tuberia	PIEZON	OTA METRICA	OBSERVACIONES
1	P.Q			(m)	INICIO	FINAL				(m)	(I/S)	(Pulg.)	(pulg.)		Tubería	121 1400114	INICIO	FINAL	
	-																		
		,																	

GIRON CHAUCA JAIME

NIG. CIVIL

Reg. Collegio de lagenieros CIF N° 205299

Anexo 3: Recolección de datos

UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE

"Año de la lucha contra la corrupción e impunidad"

Molino pampa, 09 de setiembre del 2017

Presente:

Estimado presidente de la junta vecinal: JUAN CASTILLO RODRIGUEZ

Yo, Denis Castillo Suarez, identificado con el Nº DNI: 48542312 CODIGO: 1101131010 me presento y expongo.

Tengo a bien dirigirme a usted para saludarlo cordialmente, y al mismo tiempo, manifestarme que para acciones de investigación de tesis que se viene realizando en la Universidad los Ángeles de Chimbote, para solicitarle a Ud. me otorque el permiso para realizar mi investigación de tesis que se realizará en el Caserío de Molinopampa.

Agradecido por su atención a la presente, lo saluda.

Atentamente.

Denis Castillo Suarez

Presidente de la Junta vecinal

ENCUESTA PARA EL REGISTRO DISTRITAL DE COBERTURA Y CALIDAD DE LOS SERVICIOS DE AGUA Y SANEAMIENTO

FORMATO Nº 06

	ENCU	ESTA PARA (CON SISTEM					AN	
	Centro Poblado	serio: Molinopampa				lenar):	
3.	Anexo /sector:			4. Distrito:	alvas			
5.	Provincia:l.	vərmey			. Anc	ash		
7.	Altura (m.s.n.m.							_
8.	Cuántas familias	s tiene el caserío?:						
9.	Promedio integr	antes / familia (dato de	l INEI, no lle	enar): 3				
10.	¿Explique cómo	se llega al caserío deso	de la capital d	lel distrito?				
	Desde	Hasta	Tipo de vi	Medio de Transporte	Distar (Km		Tiempo (horas)	
	Chimbote	Huarmey)	Asfaltado		1451		8:18	
	Huarmey	Molinopampa	Ashitado	Vehiculo	48 K	n	2:15	
13.	> Energía Eléc ¿Cuenta con fue ¿Cuántas fuente	entes de agua identifica	NO Maria NO Madas el caserí	Secundar o?	ia 🗌 SI 🔀		NO [
Γ			Caudal	N 1 11 11			nd para donar nanantial	
	Fuentes	Nombre del dueño	(lt /seg.)	Nombre del mananti	SI	NO	Por conversar	
	Fuente 1	li presenta la	2.25/11/500	Chaquimallo				
-	Fuente 2							4
- 1	Fuente 3							-
_	Fuente 4							
15.		oyecto para agua potab				7		
	- NO			SI en Gestión	X	J		
		=				7		
		nulación		- SI en Ejecución				
No		ado: Juancito	Velasquez	-				

REGISTRÓ DE PADRON DE HABITANTES

Centro Poblado/Caserio:			
Distrito:	Provincia.	Departamento:	

NUMERO	NOMBRE DEL JEFE DE FAMILIA	EDAD	DNI.	N° DE INTEGRANTES
01	JUSTA HEJIA CARRANZA	40	32119269	Justappe
02	VICTORIA CORONEL AGUIRRE	38	32123862	Verus
03	MIEUFL GASPAR MEGIA	52	32521676	New Burl
04	MIRIAN CARRILLO ENCARNACION	37	45126366	CHRIST .
05	GAUDENCIO TOLEDO FIGUERDA	48	32122473	Construcion Toloro
06	VILMA ESPINOZA CASTILLO	28	32137439	Vantisp ey.
07	ALEX CORONEL YANAULCA	32	45161328	Alex sections
08	ANGEL GASPAR TOLEDO	47	31770151	Angel Parpail
09	CASIMIRO ALEJANDRO ALVAREZ	55	32178287	Cagliopist.
10	IVAN GASPAR TOLEDO	44	44887076	Fub.
11	SOLEDAD FIGHEROA TOLEDO	39	04639480	Steed They
12	DORA MEJIA ROMERO	42	32135635	Dora moral
13	MAURD CORONEL AGUIRRE	40	32 17 91 35	MAJA Colored
14	GILVERTO GASPAR MEJIA	36	32117085	Shuf
15	VICENTE GASPAR HEJIA	41	32117725	VKENTEG
16	JULIO INOCENTE AGUIRRE	58	46443377	Stanly
17	ROMULO DIAZ TOLEDO	30	31769951	Romby Life
18	CAYETANO GASPAR HEJIA	44	32124546	Cay the Gul
19	PABLO CORONEL YANAVILCA	39	43 15 15 73	Poblocy
20	ESTELA ROMERO SIXTO	59	48788307	Citeta for
21	RAMON SALAZAR CHACON	33	321246 42	Rmful
22	MARCELINO CASIMIRO ALVAREZ	43	09468230	Charea AP
23	IRMA GRADOS CAMONES	38	32119446	(Ihrefail
24	LIMBERTO ERAPOS ABALOS	56	18062549	Lewark & Custo
25	GAUDENCIA ESPINOZA ROHIERO	51	08895183	8 elec &
26	FORTUNATO FIGUEROA CASTILLO	47	31764648	Thempung
27	EDILBERTO COMERO PALACIOS	42	32136596	Comfa.

28	FRANCISCA TOLEDO ROPRIGUEZ	27	07206689	+ cuff
29	FUITH GASPAR HEJIA	33	32136019	Eatt 6
30	POSERT MAGUINA GOMERO	66	32131188	(R) confit
31	GREGORIO PALACIOS SANCHEZ	29	32121588	Coule
32	SAYDA SALAZAR CORONEL	47	43087881	saplatalogo
33	ANGEL CARRANZA GRANDA	41	31769842	CAMP CONTE
34	181000 ESPINOZA LAZARO	55	32120220	Isudro Gr
35	CIROCO PALACIOS SANCHEZ	50	32136560	and popolo
36	JESUS GOMERO MALDONADO	48	32118315	July on.
37	CARLOS AREAS RODDIGUEZ	45	3212 11 45	Confert
38	JOSE HAGUINA ROMERO	29	32124065	Lesons
39	JULIA GUERRA TOLEDO	31	32975920	I cherkint
40	JOAQUIN SALAZAR MEJIA	48	45163470	ASS.
41	LORENZO GOMERO MALDONADO	57	08049807	2000CK
42	SANTA MEJIA MEJIA	68	43746508	Guerfi
43	FILMON OECILIO SOTEDO	70	32121030	I Ime Sote
44	MANUEL MAGUINA GOMERO	55	31770051	Howal Maga
45	ANCEL SALAZAR CHACON	29	32121483	A male
46	SANTIAGO CERNA ROSARIO	26	32136545	Sufer
47	HECTOR CERNA QUIROR	40	32119664	Hurch
48	WALTER EERNA QUIROZ	38	32137086	Walterfairy
49	EDELISA GOHERO MALDONADO	48	32951259	Egul
50	ERNESTO GOMERO MALDONADO	55	08467517	Entry
51	SANTOS SALAZAR MORENO	52	26958263	Sonto Salogo
52	EUSENIO CERNA QUIROZ	58	31769710	Euful &
23	JUAN CASTILLO RODRIGUEZ	49	41320624	Youtherf
54	ELMER MAGUINA OLORTEGUI	50	57462181	Smerty
55	NANCY CERNA QUIROZ	38	31770084	Hanch clind
56	VERTILA CERNA QUIROZ	30	31770954	Runke
57	VENJAMIN HUAQUIA CERNA	42	44726644	Vrufuet
58	CENOVIO MANERIQUE HUERTA	48	15634606	Colupul
59	MARGARITA HUERTA RODRIGUEZ	38		Kangarto Au

60	JHON FIGUEROA TOLEDO	28	32413648 Jewil
61	JOSE CHANCA HUARANGA	33	32 133672 Type Ch
62	SANTA GARCIA GARCIA	48	69559322 Sontabaro
63	MIGUEL SALAZAR AUZLA -	52	09412630 MYPRUA
64	LUZHILA MANRRIQUE PINAN	57	33815722 Weleas
65	LUZZ MANREIBUE PENAN	48	33593941 Zsforch
66	Eluzs MAGUINA GILIO	40	33594328 Lagher (4)
67	LORENGO PODRIGUEZ COLONZA	29	31770009 Test-f1-
68	JUAN MAGUINA GZLIO	60	0963408 Al Benef

Anexo 4: Estudio de suelos

GEOGYP S.R

ORATORIO DE MECANICA DE SUELOS - CONCRETO Y ASFALTO - CIMENTACIONES PAVIMENTACIONES - CONSULTORIA Y SUPERVISIONES DE OBRAS CIVILES

INFORME TECNICO ESTUDIO DE MECÁNICA DE SUELOS

SOLICITA:

CASTILLO SUAREZ DENIS

PROYECTO:

"DISEÑO DEL SISTEMA DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DEL CASERIO MOLINO PAMPA, PIRAUYA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY Y REGIÓN ANCASH - 2017"

UBICACIÓN:

DISTRITO

: MALVAS

PROVINCIA

: HUARMEY

DEPARTAMENTO : ANCASH

OCTUBRE DEL 2018

GEOCYP'S.R.L

GEOGYP S.R.L.

LABORATORIO DE MECANICA DE SUELOS - CONCRETO Y ASFALTO - CIMENTACIONES
PAVIMENTACIONES - CONSULTORIA Y SUPERVISIONES DE OBRAS CIVILES

INDICE

- 1.0 GENERALIDADES
 - 1.1 Ubicación y descripción del área de estudio
- 2.0 ASPECTOS GEOLOGICOS
 - 2.1 Clima
 - 2.2 Aspecto Sísmico
- 3.0 INVESTIGACIONES DE CAMPO
 - 3.1 Ubicación de calicatas
 - 3.2 Muestreo y registro de excavaciones
 - 3.3 Ensayos de laboratorio
 - 3.4 Clasificación de suelos
 - 3.5 Perfil Estratigráfico
- 4.0 ANALISIS Y DETERMINACIÓN DE LA CAPACIDAD PORTANTE
 - 4.1 Profundidad y Tipo de cimentación
 - 4.2 Análisis de capacidad de carga
- 5.0 ANALISIS QUIMICO
- 6.0 CONCLUSIONES Y RECOMENDACIONES

Ceise Manrique Cornello
INGENIERO GIVIL
REG. CONSUCODE C29339

RPM: #975489080 - RPC: 992512283 - celman50@hotmail.com

OCYP

ANEXOS

ANEXO I

Registros de Excavaciones

ANEXO II

Resultados de los Ensayos de Laboratorio

ANEXO III

- Plano de Ubicación de calicatas

ANEXO IV

Material Fotográfico

GEOCYP S.R.L.

Celso Monrique Cornelio
INGENIERO GIVIL
REG CONSUCODE C29330

1. GENERALIDADES:.

1.1. Ubicación y descripción del área de estudio:

El proyecto denominado "Diseño del Sistema de Abastecimiento de Agua Potable del Caserio Molino Pampa. Pirauya, Distrito de Malvas, Provincia de Huarmey y Región Ancash - 2017", ubicado en el Caserío Molino Pampa. Pirauya.

Distrito

Malvas

Provincia : Departamento :

Huarmey Ancash

El terreno en estudio tiene una superficie ligeramente accidentada y ondulada, proyectado para la construcción de un reservorio de concreto armado y redes de agua.

2. ASPECTOS GEOLÓGICOS:

2.1. Clima:

El clima de la zona en estudio es templado y cálido. Presentan una temperatura media anual de 13.6 °C y precipitaciones de 270 mm.

2.2. Aspectos sísmico:

El territorio peruano, para un mejor estudio sísmico se ha dividido en zonas, las cuales presentan diferentes características de acuerdo a la mayor o menor presencia de sismos. Según el Nuevo Mapa de zonificación sísmica del Perú y de acuerdo a las Normas Sismo -Resistentes del Reglamento Nacional de Edificaciones E.030, el área en estudio se encuentra ubicado en la zona 3, Tipo S₂ con un periodo de diseño de 1.15 seg., suelos intermedios.

3. INVESTIGACIÓN DE CAMPO:

3.1. Ubicación de las calicatas:

Se hizo un reconocimiento de toda el área del terreno y se procedió a ubicar las calicatas convenientemente en la zona donde se ha previsto la cimentación de la estructura y zona de apoyo de las tuberias, la cual se excavó a cielo abierto con profundidad suficiente de acuerdo a los términos de referencia. El tipo de excavación nos ha permitido visualizar y analizar directamente los diferentes estratos encontrados, así como también sus principales características físicas y mecánicas (granulometría, color, humedad, plasticidad, compactación, etc.).

Las calicatas C-1, C-2 y C-3 se hicieron hasta una profundidad de 3.00 m. y no se encontró el nivel freático.

3.2. Muestreo y Registros de Excavaciones:

GEOCYP S.R.L.

Celso Marrique Cornelio INGENIERO CIVIL REG. CONSUCODE C29330

3.2.1. Muestreo alterado:

Se tomaron muestras alteradas de cada estrato de las calicatas efectuadas, seleccionándose las muestras representativas para ser ensayadas en el laboratorio con fines de identificación y clasificación.

3.2.2. Registro de Excavación:

Se elaboró un registro de excavación, indicando las principales características de cada uno de los estratos encontrados, tales como humedad, compacidad, consistencia, N. F., densidad del suelo, etc.

3.3. Ensayos de Laboratorio:

Los ensayos fueron realizados siguiendo las normas establecidas por la ASTM:
Análisis granulométrico por tamizado (ASTM D-422)
Peso específico (ASTM D-854)
Contenido de humedad (ASTM D-2216)
Limite líquido (ASTM D-423)
Limite plástico (ASTM D-424)
Densidad in situ (ASTM D-1556)
Corte Directo (ASTM D-3080)

3.4. Clasificación de suelos:

Las muestras ensayadas se han clasificado usando el Sistema Unificado de Clasificación de Suelos (SUCS).

3.5. Perfil Estratigráfico:

En base a los trabajos de campo y ensayos de laboratorio se deduce lo siguiente:

Presenta una capa inicial de material de relleno de arcilla limosa de espesor variable de 0.15 m. a 0.20 m., con la presencia de gravas aisladas, pajillas, raíces y vegetación, seguidamente presenta hasta la profundidad de estudio arcillas inorgánicas y gravas de matriz arcillosa, de dura a blanda y de seco a humedo, con la presencia de boloneria de T.M. 8" y bloques de T,M,15".

4. ANÁLISIS Y DETERMINACIÓN DE LA CAPACIDAD PORTANTE DEL SUELO:

4.1. Profundidad y Tipo de Cimentación:

Analizando los perfiles estratigráficos, los resultados de los ensayos de laboratorio, campo y las condiciones del proyecto, se concluye que la estructura a construir de concreto armado deberá llevar zapata corrida, a una profundidad de 1.50 m con respecto al nivel del terreno natural existente.

Ceise Many que Cornelio INGENIERO CIVIL REG. CONSUCODE C29330

GEOCYP

4.2. Análisis de capacidad de carga:

Aplicamos la ecuación general de capacidad de carga de terzaghy:

q ult = c Nc Sc + qo Nq +
$$0.5 B \gamma N \gamma S \gamma$$
(1)

Donde:

 $\begin{array}{ccccc} \varphi & & : & \text{ \'angulo de fricci\'on} \\ \text{Sc, S}\gamma & & : & \text{Factores de forma} \\ \text{Nc, Nq, N}\gamma & : & \text{Factores de carga} \\ \end{array}$

Qo : Presión de sobrecarga (qo = Df γ)
Df : Profundidad de cimentación
B : Ancho de cimentación γ : Peso unitario del suelo

C : Componente cohesiva del suelo

Presentándose para el tipo de suelo los siguientes datos:

Zona de Reservorio:

Sc = 1.00 Sγ = 1.00 γ = 2.231 Tn/m³ φ = 23.50° (De prueba Corte Directo) Nc = 13.89

 $N_{Q} = 5.88$ $N_{Y} = 3.89$ $C = 0.50 \text{ Tn/m}^{2}$ B = 1.80 m. $D_{f} = 1.50 \text{ m.}$

Considerando un factor de seguridad F.S. = 3 (Reglamento Nacional de Construcciones), se considera el siguiente valor de presión admisible para el diseño final de la cimentación de la estructura a ejecutar:

Aplicando la ecuación (1), se obtiene:

q adm = 1.151 Kg/cm² (Profundidad: 1.50 m.)

5. ANALISIS QUIMICO:

Del Análisis Químico efectuado con una muestra representativa de la Calicata C-1, se obtiene los siguientes resultados:

Celso Manrique Cornelio INCENIERO CIVIL REG. CONSUCODE C29330

GEOCYP S.R.L.

CUADRO DE ANALISIS QUIMICO

Calicata	Cloruros	Sulfatos
	%	%
C-1	0.0489	0.0307

Del reporte obtenido los valores superan los permisibles, por lo que se recomienda utilizar Cemento Portland Tipo 2 o MS en la preparación del concreto de los cimientos de la estructura.

6. CONCLUSIONES Y RECOMENDACIONES:

- El Estudio de Mecánica de Suelos corresponde al área del reservorio proyectado y zonas de las redes del proyecto "Diseño del Sistema de Abastecimiento de Agua Potable del Caserio Molino Pampa. Pirauya, Distrito de Malvas, Provincia de Huarmey y Región Ancash 2017". Dicho proyecto se ubica en el Caserío de Molino Pampa, Pirauya, Distrito de Malvas, Provincia de Huarmey y Región Ancash.
- La investigación geotécnica corresponde a trabajos de campo, ensayos de laboratorio y análisis cuyos resultados se han presentado en el presente informe.
- La topografía del terreno presenta superficie ligeramente accidentada y ondulada.
- Presenta una capa inicial de material de relleno de arcilla limosa de espesor variable de 0.15 m. a 0.20 m., con la presencia de gravas aisladas, pajillas, raíces y vegetación, seguidamente presenta hasta la profundidad de estudio arcillas inorgánicas y gravas de matriz arcillosa, de dura a blanda y de seco a humedo, con la presencia de boloneria de T.M. 8" y bloques de T,M,15".
- Se diseñará la estructura para una capacidad portante admisible de 1.151 Kg/cm².
- La profundidad de cimentación, no será menor de 1.50 m., asimismo se recomienda zapata corrida, considerar una sub zapata de 0.20 m. de espesor, de mezcla de concreto 1:10.
- De acuerdo al análisis químico efectuado al terreno de fundación sobre el cual se cimentará, se empleará cemento tipo 2 o MS para la elaboración del concreto de la cimentación de la estructura.

 La zona en estudio se encuentra en la zona 3 del nuevo mapa de Zonificación Sísmica del Perú, por lo que es importante considerar la acción del sismo para cualquier estructura a construir

Celso Manrique Cornelio

Los resultados de este estudio se aplican exclusivamente al área de proyección del reservorio y zona de tuberías del proyecto "Diseño del Sistema de Abastecimiento de Agua Potable del Caserio Molino Pampa. Pirauya, Distrito de Malvas, Provincia de Huarmey y Región Ancash - 2017", del Caserío Molino Pampa, Pirauya, Distrito de Malvas, Provincia de Huarmey y Región Ancash, este estudio no se puede aplicar para otros sectores o para otros fines.

SECCYP S.R.L.

Celso Manrique Cornelio INCENIERO CIVIL REG. CONSUCODE C29330

ANEXO I

Registros de Excavaciones

Celso Marique Cornelio
Reg. CONSUCODE 029330

REGISTRO DE EXCAVACIÓN

SOLICITA	CASTILLO SUAREZ DENIS				
OBRA	DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DEL CASERIO MOLINO PAMPA,				
	PIRAUYA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY Y REGION ANCASH -2017				
LUGAR	MALVAS - PROV. DE HUARMEY - ANCASH	NIVEL FREÁTICO (m.)	NP		
FECHA	OCTUBRE DEL 2018	MÉTODO DE EXCAVACIÓN	Cielo abierto		
CALICATA	C-1	TAMAÑO DE EXCAVACIÓN	1.00 x 1.00 x 3.00		

MUESTRA		PROFUNDIDAD		1	CARACTERISTICAS	
Simbolo	Grafico	En Mts.	Muestra	Densidad	CARACTERISTICAS	
R		0.15	M - 1		De -0.00 a -0.15 m. Material de relleno de arcilla limosa, con la presencia de pajillas, raices y vegetación.	
GC		3.00	M - 2		De -0.15 a -3.00 m. Grava de matriz arcillosa, de compacidad semi compacto, de color marrón claro y de seco a humedo, con presencia de boloneria de T.M. 8" y bloques de T.M. 13".	
				×.,		

GEOCYP S.R.L.

Celso Manrique Cornello
INGEMERO CIVIL
REG. CONSUCODE C29339

LABORATORIO DE MECANICA DE SUELOS - CONCRETO Y ASPALTO - CIMENTACIONES PAVIMENTACIONES - CONSULTORIA Y SUPERVISIONES DE OBRAS CIVILES

REGISTRO DE EXCAVACION

SOLICITA	CASTILLO SUAREZ DENIS					
OBRA	DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DEL CASERIO MOLINO PAMPA,					
PIRAUYA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY Y REGION ANCASH -2017						
LUGAR	MALVAS - PROV. DE HUARMEY - ANCASH	NIVEL FREÁTICO (m.)	NP			
FECHA	OCTUBRE DEL 2018	MÉTODO DE EXCAVACIÓN	· Cielo abierto			
CALICATA	C-2	TAMAÑO DE EXCAVACIÓN	1.00 x 1.00 x 3.00			

MUESTRA		PROFUNDIDAD			CARACTERISTICAS		
Simbolo	Grafico	En Mts.	Muestra	Densidad	CARACTERISTICAS		
R		0.20	M - 1		<u>De -0.00 a -0.20 m</u> . Material de relleno de arcilla limosa, con la presencia de pajillas, raices y vegetación.		
CL		3.00	M - 2		De -0.20 a -3.00 m. Arcilla inorganica, color rojizo amarillento, de compacidad duro a blando y de seco a ligeramente humedo, con la presencia de boloneria de T,M, 4" y bloques de T.M. 15".		
				44			

COLUMN SERVICE CEISO Maprique Cornelio Reg. CONSUCODE C29330

RPM: #975489080 - RPC: 992512283 - celman50@hotmail.com

LABORATORIO DE MECANICA DE SUELOS - CONCRETO Y ASFALTO - CIMENTACIONES PAVIMENTACIONES - CONSULTORIA Y SUPERVISIONES DE OBRAS CIVILES

REGISTRO DE EXCAVACIÓN

SOLICITA	CASTILLO SUAREZ DENIS						
OBRA	DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DEL CASERIO MOLINO PAMPA,						
	PIRAUYA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY Y REGION ANCASH -2017						
LUGAR	MALVAS - PROV. DE HUARMEY - ANCASH	NIVEL FREÁTICO (m.)	NP				
FECHA	OCTUBRE DEL 2018	MÉTODO DE EXCAVACIÓN	· Cielo abierto				
CALICATA	C-3	TAMAÑO DE EXCAVACIÓN	1.00 x 1.00 x 3.00				

MUESTRA		PR	OFUNDIDAD	1	CARACTERISTICAS
Simbolo	Grafico	En Mts.	Muestra	Densidad	CARACTERISTICAS
					De -0.00 a -3.00 m.
					Arcilla inorganica, color rojizo amarillento,
CL		3.00	M - 2		de compacidad duro a blando y de seco a
					ligeramente humedo, con la presencia de
					gravas aisladas.
				-	
	1 1			I .	

LABORATORIOS GEOCYP S.R.L.

Ceiso Manique Cornelio
INGENIE CONSUCODE C29330

RPM: #975489080 - RPC: 992512283 - celman50@hotmail.com

LABORATORIO DE MECANICA DE SUELOS - CONCRETO Y ASFALTO - CIMENTACIONES
PAVIMENTACIONES - CONSULTORIA Y SUPERVISIONES DE OBRAS CIVILES

ANEXO II

Resultados de los Ensayos de Laboratorio

GEOCYP S.R.L.

Ceiso Manique Cornelio
INGENIERO CIVIL
REG. CONSUCODE C29330

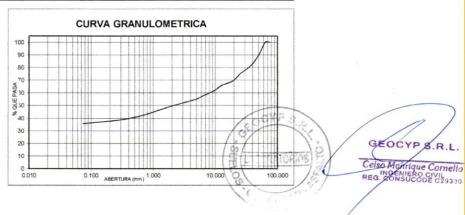
RPM: #975489080 - RPC: 992512283 - - celman50@hotmail.com

LABORATORIO DE MECANICA DE SUELOS - CONCRETO Y ASFALTO - CIMENTACIONES
PAVIMENTACIONES - CONSULTORIA Y SUPERVISIONES DE OBRAS CIVILES

ANALISIS DE SUELOS

SOLICITA : CASTILLO SUAREZ DENIS

PROYECTO: DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DEL CASERIO MOLINO PAMPA,


PIRAUYA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY Y REGION ANCASH -2017

LUGAR : MALVAS - PROVINCIA DE HUARMEY - ANCASH

FECHA : OCT.2018 CALICATA: C-1 ESTRATO: E-2 PROF. (m): 0.00-0.15

	PESO SECO INICIAL	1246.2
	PESO SECO LAVADO	799.90
PES	O PERDIDO POR LAVADO	446.30

TA	AMIZ	PESO RETEN.	% RETENIDO	% RETENIDO	% QUE PASA		
Nº	ABERT. (mm.)	(gr)	PARCIAL	ACUMULADO			
3"	76.200	0.00	0.00	0.00	100.00		
2 1/2"	63.500	0.00	0.00	0.00	100.00	LIMITE LIQUIDO (%)	: 35.26
2"	50.800	117.50	9.43	9.43	90.57	LIMITE PLASTICO (%)	: 19.32
1 1/2"	38.100	107.20	8.60	18.03	81.97	INDICE DE PLASTICIDAD (%)	: 15.94
1"	25.400	80.30	6.44	24.47	75.53	HUMEDAD NATURAL (%)	: 16.48
3/4"	19.100	75.20	6.03	30.51	69.49	PESO ESPECIFICO (gr/cm3)	: 2.731
1/2"	12.700	43.50	3.49	34.00	66.00	CLASIFICACION SUCS	: GC
3/8"	9.520	52.80	4.24	38.24	61.76		
1/4"	6.350	49.30	3.96	42.19	57.81		
N° 4	4.760	35.80	2.87	45.06	54.94		
Nº 10	2.000	64.30	5.16	50.22	49.78		
Nº 20	0.840	75.20	6.03	56.26	43.74		
N° 30	0.590	26.50	2.13	58.39	41.61		
N° 40	0.420	19.30	1.55	59.93	40.07	6	
Nº 60	0.250	21.80	1.75	61.68	38.32		
N° 100	0.149	12.80	1.03	62.71	37.29		
N° 200	0.074	18.40	1.48	64.19	35.81		
PLATO		446.30	35.81	100.00	0.00		
TOTAL		1246.20	100.00				

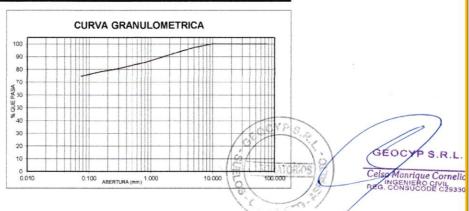
RPM: #975489080 - RPC: 992512283 - celman50@hotmail.com

LABORATORIO DE MECANICA DE SUELOS - CONCRETO Y ASFALTO - CIMENTACIONES PAVIMENTACIONES - CONSULTORIA Y SUPERVISIONES DE OBRAS CIVILES

ANALISIS DE SUELOS

SOLICITA : CASTILLO SUAREZ DENIS

PROYECTO: DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DEL CASERIO MOLINO PAMPA,


PIRAUYA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY Y REGION ANCASH -2017

LUGAR : MALVAS - PROVINCIA DE HUARMEY - ANCASH

FECHA : 0CT.2018 CALICATA: C-2 ESTRATO: E-2 PROF. (m): 0.00-0.20

PESO SECO INICIAL	205.2
PESO SECO LAVADO	51.80
PESO PERDIDO POR LAVADO	153.40

TA	AMIZ	PESO RETEN.	% RETENIDO	% RETENIDO	% QUE PASA	ł	
Nº	ABERT. (mm.)	(gr)	PARCIAL	ACUMULADO			
3"	76.200	0.00	0.00	0.00	100.00	-	
2 1/2"	63.500	0.00	0.00	0.00	100.00	LIMITE LIQUIDO (%)	: 38.46
2"	50.800	0.00	0.00	0.00	100.00	LIMITE PLASTICO (%)	: 19.31
1 1/2"	38.100	0.00	0.00	0.00	100.00	INDICE DE PLASTICIDAD (%)	: 19.15
1"	25.400	0.00	0.00	0.00	100.00	HUMEDAD NATURAL (%)	: 14.86
3/4"	19.100	0.00	0.00	0.00	100.00	PESO ESPECIFICO (gr/cm3)	: 2.717
1/2"	12.700	0.00	0.00	0.00	100.00	CLASIFICACION SUCS	: CL
3/8"	9.520	0.00	0.00	0.00	100.00		
1/4"	6.350	3.70	1.80	1.80	98.20		
N° 4	4.760	2.50	1.22	3.02	96.98		
Nº 10	2.000	11.00	5.36	8.38	91.62		
N° 20	0.840	11.80	5.75	14.13	85.87		
N° 30	0.590	3.40	1.66	15.79	84.21		
N° 40	0.420	3.60	1.75	17.54	82.46		
Nº 60	0.250	4.90	2.39	19.93	80.07		
N° 100	0.149	4.00	1.95	21.88	78.12		
N° 200	0.074	6.90	3.36	25.24	74.76		
PLATO		153.40	74.76	100.00	0.00		
TOTAL		205.20	100.00				

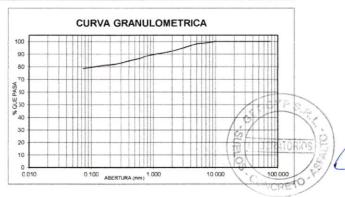
RPM: #975489080 - RPC: 992512283 - - celman50@hotmail.com

LABORATORIO DE MECANICA DE SUELOS - CONCRETO Y ASFALTO - CIMENTACIONES PAVIMENTACIONES - CONSULTORIA Y SUPERVISIONES DE OBRAS CIVILES

ANALISIS DE SUELOS

SOLICITA : CASTILLO SUAREZ DENIS

PROYECTO: DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DEL CASERIO MOLINO PAMPA,


PIRAUYA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY Y REGION ANCASH -2017

LUGAR : MALVAS - PROVINCIA DE HUARMEY - ANCASH

FECHA : OCT.2018 CALICATA: C-3 ESTRATO: E-1 PROF. (m): 0.00-3.00

PESO SECO INICIAL	284.7
PESO SECO LAVADO	60.50
PESO PERDIDO POR LAVADO	224.20

4	% QUE PASA	% RETENIDO	% RETENIDO	PESO RETEN.	NZ	TA
		ACUMULADO	PARCIAL	(gr)	ABERT. (mm.)	Nº
]	100.00	0.00	0.00 .	0.00	76.200	3"
LIMITE LIQUIDO (%)	100.00	0.00	0.00	0.00	63.500	2 1/2"
LIMITE PLASTICO (%)	100.00	0.00	0.00	0.00	50.800	2"
INDICE DE PLASTICIDAD (%	100.00	0.00	0.00	0.00	38.100	1 1/2"
HUMEDAD NATURAL (%)	100.00	0.00	0.00	0.00	25.400	1"
PESO ESPECIFICO (gr/cm3)	100.00	0.00	0.00	0.00	19.100	3/4"
CLASIFICACION SUCS	100.00	0.00	0.00	0.00	12.700	1/2"
]	100.00	0.00	0.00	0.00	9.520	3/8"
]	98.67	1.33	1.33	3.80	6.350	1/4"
]	97.96	2.04	0.70	2.00	4.760	N° 4
]	92.59	7.41	5.37	15.30	2.000	Nº 10
]	89.01	10.99	3.58	10.20	0.840	Nº 20
3	86.62	13.38	2.39	6.80	0.590	N° 30
] .	85.00	15.00	1.62	4.60	0.420	N° 40
1	82.23	17.77	2.77	7.90	0.250	Nº 60
1	81.00	19.00	1.23	3.50	0.149	N° 100
]	78.75	21.25	2.25	6.40	0.074	N° 200
]	0.00	100.00	78.75	224.20		PLATO
1			100.00	284.70		TOTAL

Celso Manrique Cornelio
REG CONSUCODE C29330

SECCYP'S.R.L.

: 44.51 : 23.42 : 21.09 : 2.90 : 2.717 : C L

RPM: #975489080 - RPC: 992512283 - celman50@hotmail.com

Anexo 5: Estudio físico químico y bacteriológico del agua

LABORATORIO DE CONTROL AMBIENTAL INFORME DE ENSAYO FISICOQUÍMICO Y MICROBIOLÓGICO N° 102202_18 - LABCA/USA/DRSPN

SOLICITANTE: Sr. DENIS CASTILLO SUAREZ – DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE PARA LA MEJORA DE LA CONDICIÓN SANITARIA DEL CASERIO MOLINOPAMPA, DISTRITO DE MALVAS, PROVINCIA DE HUARMEY,

REGION ANCASH.						
LOCALIDAD:	CASERÍO DE MOLINOPAMPA	FECHA DE MUESTREO:	19/10/2018			
DISTRITO:	MALVAS	FECHA DE INGRESO AL LABORATORIO:	22/10/2018			
PROVINCIA:	HUARMEY	FECHA DE REPORTE:	24/10/2018			
DEPARTAMENTO: ANCASH		MUESTREADO POR: Muestra tomada el solicitar				
TIPO DE MUESTRA:	AGUA	MUEST READO FOR: Muestra torriada er				

DATOS DE MUESTREO

COD. LAB.	FUENTE - UBICACIÓN DEL PUNTO DE MUESTREO	HORA DE	COORDEN	ADAS UTM					
COD. LAB.	CAMPO	FUENTE - UBICACION DEL FUNTO DE MUESTREO	MUESTREO	ESTE	NORTE				
102202_18	M1	Agua de manantial de ladera conocido como "Chaquimallo" – Caserío de Molinopampa-Pirauya – Malvas / Huarmey / Sr. Denis Castillo Suarez.	15:00	197747	8898945				

RESULTADO DEL ANÁLISIS FISICOQUÍMICO Y MICROBIOLÓGICO

DADÍMETROS	CÓDIGO DE MUESTRA
PARÁMETROS	102202_18
pH	6.99
Turbiedad (UNT)	0.29
Conductividad 25 °C (μs/cm)	393.0
Sólidos Totales Disueltos (mg/L)	213.0
Coliformes Totales (NMP/100mL)	12
Coliformes Termotolerantes (NMP/100mL)	< 1.8
Nota: < "valor" significa no cuantificable inferior al valor indica	ado

Métodos de Ensayo: Conductividad y Sólidos Totales Disueltos: Electrodo APHA. AWW. WEF. 2510 B. 22th Ed.2012. Turbiedad: Nefelométrico: APHA. AWWA. WEF. 2130B. 22nd Ed. 2012. Numeración de Coliformes Totales y Termotolerantes por el Método Estandarizado de Tubos Múltiples APHA. AWWA. WEF. 9221 B y 9221 E 22th Ed.2012.

Atentamente,

CC. USA/RSPN Archivo Laboratorio.

Av. Enrique Meiggs 835 - Miraflores I Zona - Chimbote. Teléfono: (043) 342656. E-mail: saludambiental110@hotmail.com

Anexo 6: Panel fotográfico

Imagen N^{\circ} 01: Se puede apreciar una foto panorámica del Caserío de Molinopampa.

 $\begin{tabular}{ll} \textbf{Imagen N° 02: Coordenadas del caser\'io de } \\ Molinopampa. \end{tabular}$

Imagen N^{\circ} 03: Se puede apreciar recopilando información del caserío de Molinopampa.

Imagen N° 04: Realizando el levantamiento topográfico en el caserío de Molinopampa.

Imagen N^{\circ} 05: Toma de muestra de agua en el manantial para llevar al laboratorio.

Imagen N° 06: Muestra de agua obtenida.

Imagen N $^{\circ}$ **07:** Muestra lista para el traslado al laboratorio

Imagen N° 08: Se puede apreciar realizando la calicata 1 en línea de conducción para el estudio de mecánica de suelos.

Imagen N° 09: Se puede apreciar excavando la calicata 2 en la línea de conducción para su respectivo estudio de mecánica de suelos.

Imagen N^{\circ} 10: Se puede apreciar calicata 3 en donde se proyectará el reservorio de almacenamiento.

Anexo 7: Memoria de calculo

DATOS

Aforo:

Nombre de la fuente: Chaquimallo											
N° de pruebas	Volumen (litros)	Tiempo (segundos)									
1	4	2									
2	3	1									
3	4	2									
4	4	2									
5	3	1									
Total	18	8									

Caudal =>
$$Q = \left(\frac{v}{t}\right)$$

 $Q = \left(\frac{3.6}{1.6}\right)$
 $Q = 2.25 \ lit. seg$

A). Población actual

- Cantidad de viviendas 68
- Densidad de viviendas 3
- Población Actual 204 hab.
- Tasa de crecimiento (r) 0.0118333
- Periodo de diseño (t) 20 Años

B) Población futura

$$\begin{split} &P_f = P_a \; x \; (1 + r(t - to)) \\ &P_f = 204 \; x \; (1 + 0.0118333 * (2040 - 2020)) \\ &P_f = 252 hab. \end{split}$$

C) Dotación (lt/hab/día)

POBLACION (habitantes)	DOTACION
(habitantes)	CO I TIMILA D'IDILA
Hasta 500	60 LT/HAB/DIA
500-1000	60-80 LT/HAB/DIA
1000-2000	80-100 LT/HAB/DIA

Fuente: Ministerio de Salud (1962)

D) Cálculo del caudal promedio anual (lt/seg)

- Para población

$$Qp = (\frac{P_{a \times Dotacion}}{86400})$$

$$Qp = (\frac{252 \times 60}{86400})$$

$$Qp = 0.175 \text{ lt/seg } \dots E1$$

- Para Institución Educativa

$$Qp = (\frac{P_{a \times Dotacion}}{86400})$$

$$Qp = (\frac{58 \times 50}{86400})$$

$$Qp = 0.0335 \text{ lt/seg} \dots E2$$

Caudal promedio => $Q_p = 0.21$ lt/seg.

E) Calculo del caudal máximo diario (lt/seg)

$$Q_{md} = 1.30 \times Q_p$$

 $Q_{md} = 1.30 \times 0.21$

$$Q_{md} = 0.27 \text{ lt/seg}$$

Según Rm Nº192-2018 MVCS

Redondeamos a mayor caudal promedio = 0.50lit/seg

F) Calculo del caudal máximo horario (lt/seg)

$$Q_{mh} = 1.2 \ Ox \ Q_p$$

$$Q_{mh} = 1.20 \times 0.21$$

$$Q_{mh} = 0.25 \text{ lt/seg}$$

DISEÑO HIDRÁULICO DE LA CÁMARA DE CAPTACIÓN

1.- Cálculo de la distancia entre el punto de afloramiento y la cámara húmeda

Sabemos que:
$$H_f = H - h_o$$

$$H_f = H - h_0$$

Dónde: Carga sobre el centro del orificio: H = 0.40 m

Además:
$$h_0 = 1.56 \frac{v_2^2}{2g}$$

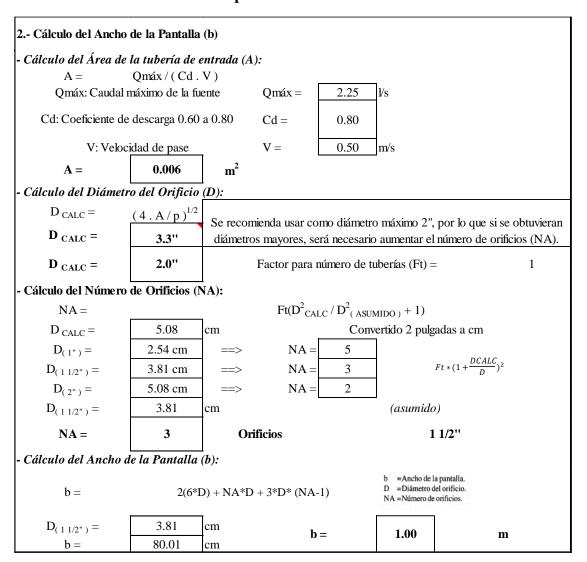
$$h_0 = 1.56 \times \frac{(0.50)^2}{2(9.81)}$$

$$h_0 = 0.02 \text{ m}$$

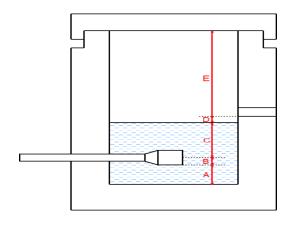
Perdida de carga por tramo afloramiento – reservorio:

$$h_f = 0.40 - 0.02$$

$$h_f = 0.38 \text{ m}$$


Determinación de la distancia entre el afloramiento y la captación

$$L = \frac{Hf}{0.30}$$


$$L = \frac{0.38}{0.30}$$

$$L = 1,27 \text{ m}$$

2.- Determinación del ancho de pantalla

3.- Altura de la cámara húmeda:

Determinamos la altura de la cámara húmeda mediante la siguiente ecuación:

Dónde:

A: Se considera una altura mínima de que permite la sedimentación

$$A = 10.0 \text{ cm}$$

B: Se considera la mitad del diámetro de la canastilla de salida.

$$B = 2.54 \text{ cm}$$

D: Desnivel mínimo entre el nivel de ingreso del agua de afloramiento y el nivel de agua de la cámara húmeda (mínima 3cm).

$$D = 3.0 \text{ cm}$$

E: Borde Libre (se recomienda de 10 a 30cm).

$$E = 30.0 \text{ cm}$$

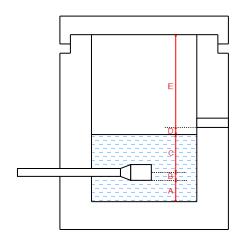
H: Altura de agua para que el gasto de salida de la captación pueda fluir por la tubería de conducción se recomienda una altura mínima de 30cm).

$$A = 30 \text{ cm}$$

Resumen de datos:

$$A = 10.0 \text{ cm}$$

$$B = 2.5 \text{ cm}$$

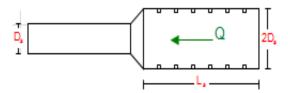

$$H = 30.0 \text{ cm}$$

$$D = 3.0 \text{ cm}$$

$$E = 30.0 \text{ cm}$$

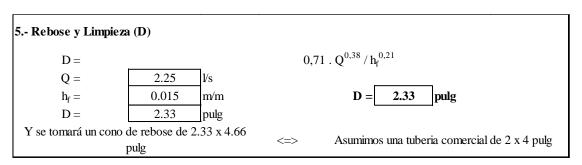
Hallamos la altura total:

$$H_f = A + B + H + D + E$$



$$H_f = 0.76 \text{ m}$$

Altura asumida:


$$H_f = 1.00 \text{ m}$$

4.- Dimensión de la canastilla

4 Dimensionamiento de la Cana	stilla					
- Diámetro de la Tubería de Sali de Conducción (Dc)		I				
Dc = 1 "		- Longitud	l de la Cana	ıstilla:		
•		Ha de ser n	nayor a 3 . D	Ос	-	
- Diámetro de la Canastilla:		3.1	Dc =	7.62	cm	
Se estima que debe ser el doble de l	Dc	Y menor a	6 . Dc		7	
$D_{Canastilla} = 2$	"	6.1	Dc =	15.24	cm	
		L_{Cana}	astilla =	20	cm	
- Área de la Ranura:			- Área Tra	nsversal de	la Tubería.	•
Ancho de la Ranura:	7	mm	A	c =	$p.Dc^2/4$	
Largo de la Ranura:	7	mm	Entonces:			
Entonces:			Δ.	c =	0.00051	m^2
Ar = 3.85E-05	$5 m^2$		A	L —	0.00031	
- Área Total de las Ranuras:						
$At = 2 \cdot Ac$		Ecto vol	or no dobo c	or mover of	500% dalára	a lateral de la
Entonces:		Este vai	of no debe s	Granada (a lateral de la
At = 0.0010	m^2			Oranada (A	ng)	
		A	g =	0,5 . D _{Canas}	tilla . L _{Canasti}	lla
$D_{Canastilla} = 0.0762$	m	A	g =	0.0076	m ²	
$L_{\text{Canastilla}} = 0.2000$	m	I	At	<	Ag	
- Número de Ranuras:		_				
N° de Ranuras =	At / Ar	_				
At =	0.00102	m ²	No	de Ranura	s =	28
Ar =	0.00004	m^2	11	ac Rundia	<i>5</i> –	20

1. Rebose y Limpia

LINEA DE CONDUCCIÓN

Fuente:

				TITULO	DIS	EÑO DEL SI							LA CONDICIÓN , REGIÓN ANCA		A DEL CASE	RÍO	
	ULADECH			Tesista:	Tesista: BACH. CASTILLO SUAREZ, DENIS												
UNIVERSI	DAD CATÓLICA LO	S ÁNGELES	S	Asesor: MGTR. GONZALO MIGUEL LEÓN DE LOS RÍOS													
	CHIMBOTE			LUGAR	LUGAR MOLINOPAMPA DISTRITO								STRITO MALVAS				
				PROVINCIA	ROVINCIA HUARMEY DEPARTAMENTO						то		SH	-I			
				LINE	LINEA DE CONDUCCIÓN								Qmd (Lt/seg) Qmd (m3/seg)		0.50 0.00050		
TRA	АМО	Longitud Tomada	СОТА Г	DE TERRENO	Q	Diametro Nominal	Diametro Interno	TIPO	Cte .	pendiente - perdida de	Perdida por	V	PRESION DI	NAMICA	PRESION I	ESTATICA	
INICIO	PUNTO FINAL	(m)	INICIAL	FINAL	Diseño (m3/s)	(pulg.)	(m)	TUBERIA	de Tuberia	carga unitaria (s)	tramo Hf (m)	(m/s)	INICIAL	FINAL	INICIAL	FINAL	
CAPTACIÓN	RESERVORIO	1040	1003.50	936.28	0.00050	1"	0.0294	PVC. 70psi	150	0.02222	23.104	0.74	0.00	44.12	0.00	67.22	

Elaboración propia

			C A				CEDVOR	2			
	WADECH)	8			ı		SERVORIO				
UNIVERSIDA	AD CATÓLICA I	OS ÁNGELES	Dotac		Do		60	lpd			
	CHIMBOTE		Població		Pf	=	252	hab			
Caudal	promedio A	nual (para di reservorio)	señar el volu	men de	(Pf*)	Dot)	15137	1/s			
	Caudal	diario máxim	o diario		Qho	or=	0.50	1/s			
		e tubo a línea			Dk		1"	pulg			
		álculo de la c		limensiona	ļ		0	F8			
Volume		ción conside						sonas			
, , , , , , ,			rurales en				F				
Donato	Consumo pr	omedio anua	l (Qm)	Formula	$Qm = Pf \times I$	Dotación:					
Donde:	Volumen de	regulación			vr = Qm x (0.25					
	7	Volumen de	regulación		•	VREG=	3.78	m3			
			Volume	n de rese	rva	!		Į.			
SEDAPAI	EDAPAL (Considerar 7% del caudal Maximo $VRE = \frac{[(Qmd)lt/seg * 7\%]}{(60*60*24seg / dia)}$							ia)			
	di	ario)		VIL		1000					
	VRE=	Volumen de I	Reserva	VRES= 3.02 m3							
			Volumen	contra incendio							
				Según la l	Norma OS.	100 del Re	glamento N	acional de			
	N	ota:				-	menores de				
				habitante	es no se con	sidera volu	men contra	incendio.			
			Volumen to	tal del reservorio							
Vt=	- Vregulaci	ón + Vreser	va+ Vincen	dio	Vt=	6.8	m	3			
			ENSIONES	DEL RE	SERVOR	Ю					
Altura con	nsiderada e	ntre los ran	igos		2.:	$5m \le H \le 3$	8m				
	Al	ltura		H=	1.9		m				
	La	argo		L=	2.7		m				
	Aı	ncho		A =	2.7		m				
		Cálculo	del diámet	ro interio	r del reserv	vorio					
	Boro	de libre		B⊨ 0.5 m							
Alt	tura o tirante	e maximo de a	agua	h	1.4		m				
Área cuad	rada A	= (largo x d	ancho) 🗆	A=	7.29		m2				
Volumen u	til <i>Vutil</i> :	= Area * Alt	uraUtil	Vutil=	10.21		m3				
		TIEMPO	DE LLENA	ADO DEI	LRESERV	ORIO					
T= V	t/Qmd	13616.4	seg.	<=>	3.8	horas	<=>	4			
		•			1						

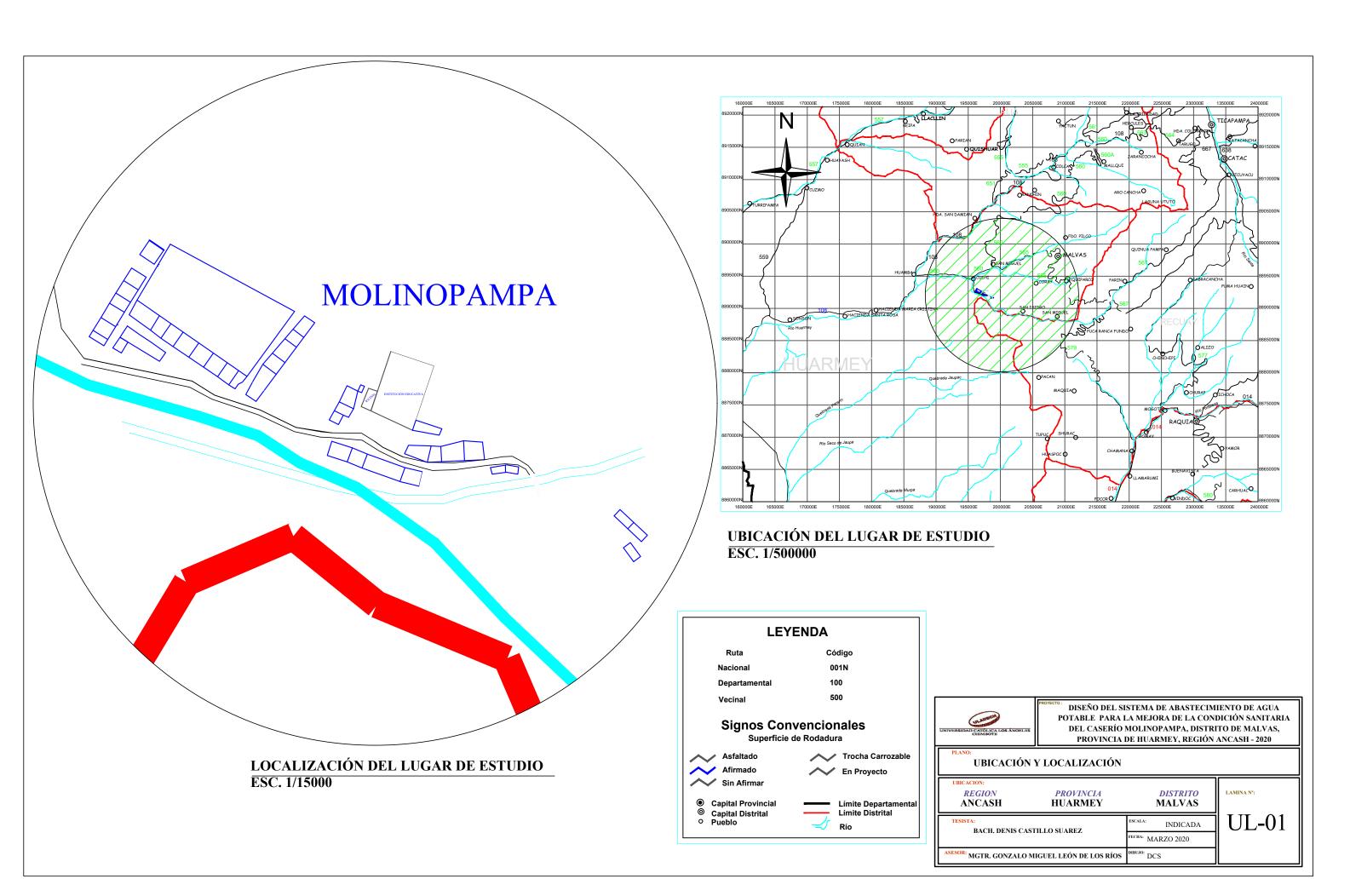
Fuente: Elaboración propia

TITULO	DISEÑO DEL SISTEMA DE ABASTECIMIENTO D MOLINOPAMPA, DISTRITO	E AGUA POTABLE PARA LA MEJO DE MALVAS, PROVINCIA DE HUAI		
Tesista:	BACH. CASTILLO SUAREZ, DENIS			
Asesor:	MGTR. GONZALO MIGUEL LEÓN DE LOS RÍOS			
LUGAR	MOLINOPAMPA	DISTRITO		MALVAS
PROVINCIA	HUARMEY	DEPARTAMENTO		ANCASH
NVDEDD	E DISTRIBUCIÓN		Qmh (Lt/seg)	0.50

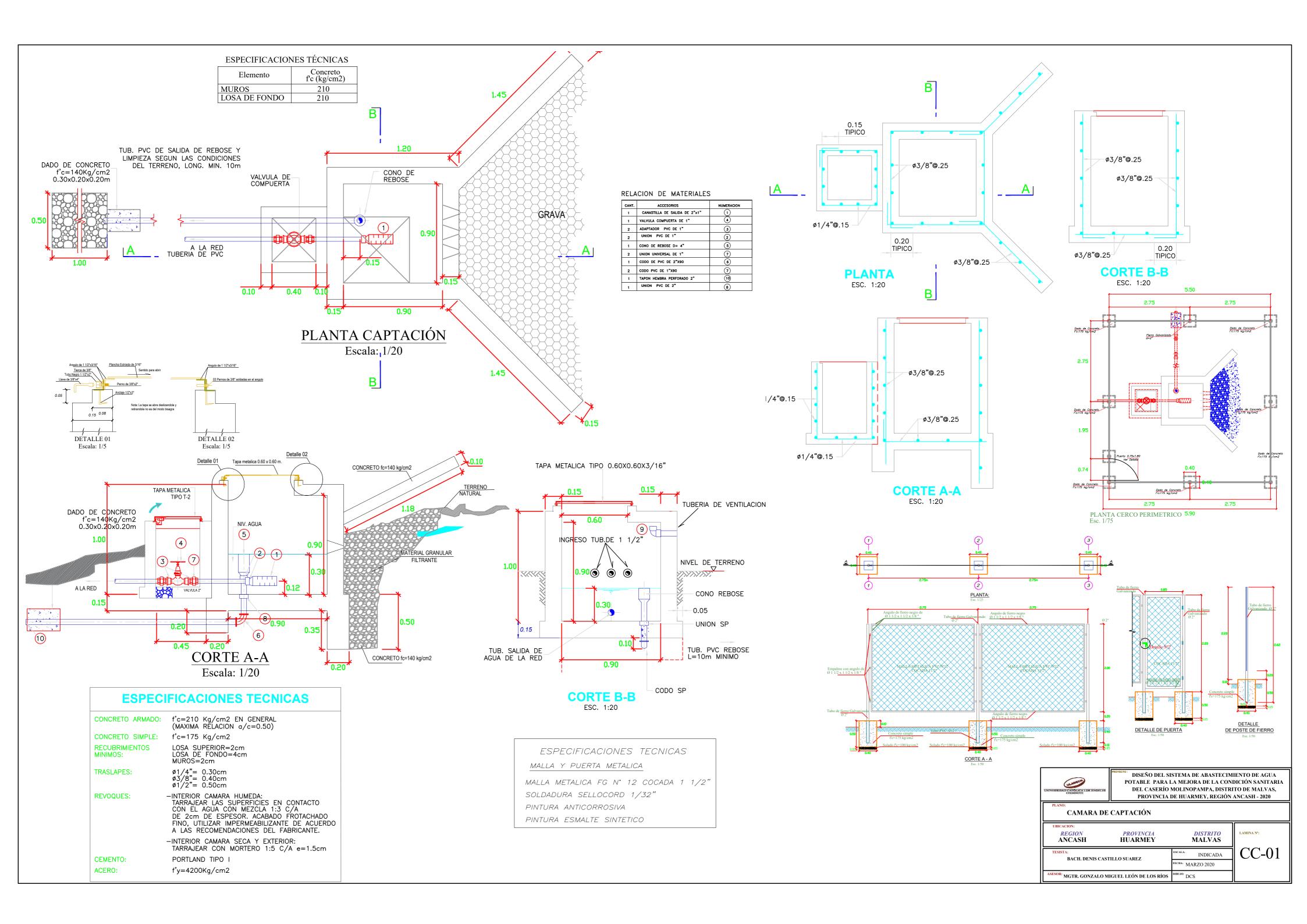
		LI	NEA DE	ADUCCIÓ	ÓN Y RED D	E DISTRI	BUCIÓN						Qmh (m3/seg)		0.00050	
	TRAMO		Longitud Tomada	COTA D	E TERRENO	Diametro Diametro Q Nominal Interno TIPO			Cte . de Tuberia	Perdida por tramo Hf			I DINAMICA PRESION ESTAT		ESTATICA	
.62	INICIO	PUNTO FINAL	(m)	INICIAL	FINAL	(m3/s)	(pulg.)	(m)	TUBERIA	de Tuberia	(m)	(m/s)	INICIAL	FINAL	INICIAL	FINAL
Discount of the Control of the Contr	RESERVORIO	FINAL ALINEAMIENTO 02	5054.43	936.28	635.41	0.00050	1 "	0.0294	PVC. 50psi	150	112.286	0.74	0.000	188.589	0.000	300.875
	RESERVORIO	CRP-01 -TIPO7	1024.68	936.28	866.28	0.00050	1"	0.0294	PVC. 70psi	150	22.764	0.74	0.00	47.24	0.00	70.00
0 02	CRP-01 -TIPO7	CRP-02 -TIPO7	1055.01	866.28	796.28	0.00050	1"	0.0294	PVC. 70psi	150	23.438	0.74	0.00	46.56	0.00	70.00
ALINEAMIENTO 02	CRP-02 -TIPO7	CRP-03 -TIPO7	1065.69	796.28	726.28	0.00050	1"	0.0294	PVC. 70psi	150	23.675	0.74	0.00	46.33	0.00	70.00
AL	CRP-03 -TIPO7	CRP-04 -TIPO7	1044.77	726.28	670.00	0.00050	1"	0.0294	PVC. 70psi	150	23.210	0.74	0.00	33.07	0.00	56.28
	CRP-04 -TIPO7	FINAL DE TRAMO	163.98	670.00	635.41	0.00050	1"	0.0294	PVC. 70psi	150	3.643	0.74	0.00	30.95	0.00	34.59
ALINEAMIENTO 02 - ALINEAMIENTO 06	CRP-04 -TIPO7	INAL ALINEAMIENTO 0	632	670.00	664.50	0.00050	3/4"	0.0229	PVC. 70psi	150	47.352	1.22	0.00	-41.85	0.00	5.50

Fuente: Elaboración propia

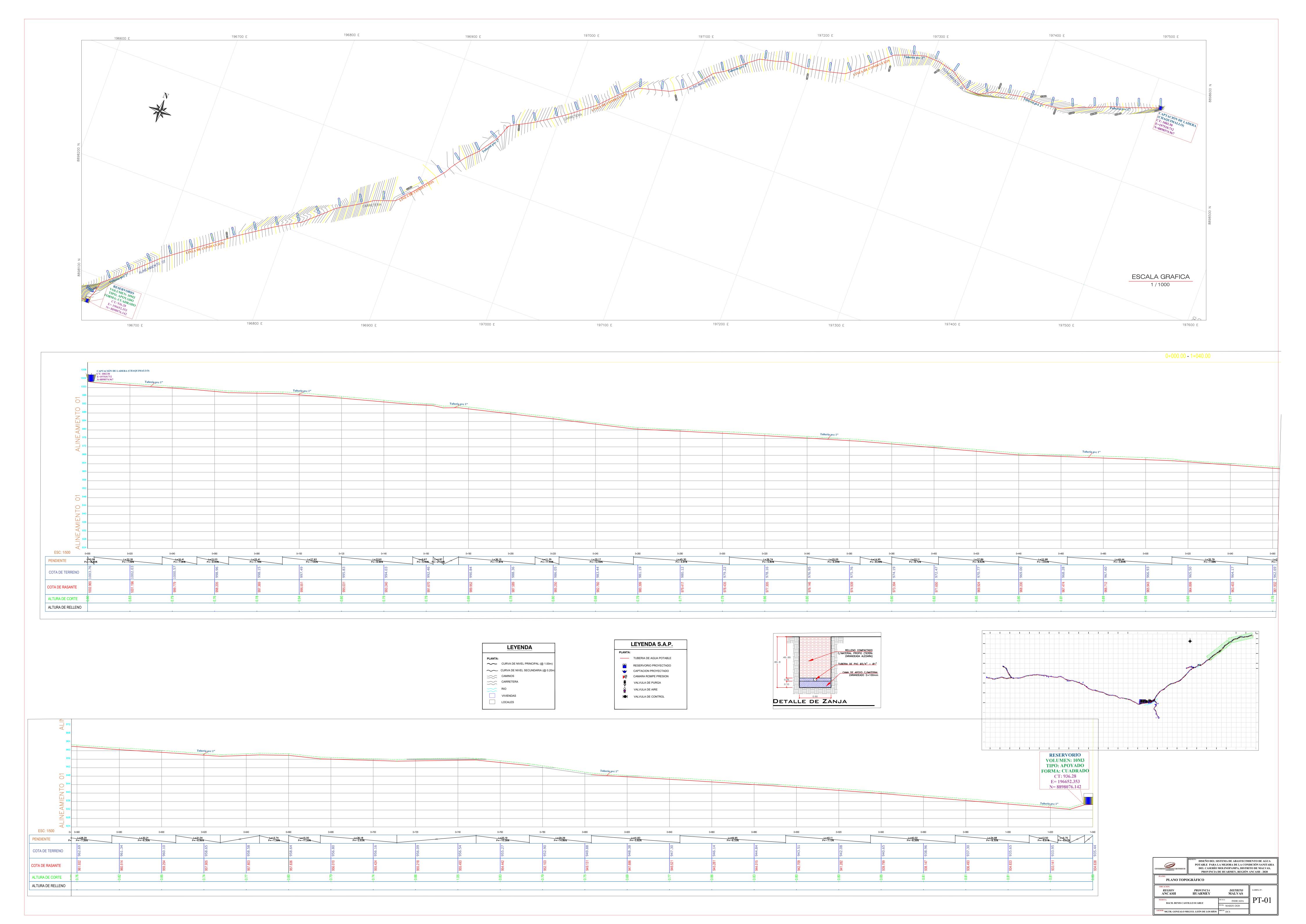
ALINEAMIENTO 02 - ALINEAMIENTO 03	CRP-01 -TIPO7	INAL ALINEAMIENTO 0	1080	866.28	839.00	0.00050	1"	0.0294	PVC. 70psi	150	23.993	0.74	0.00	3.29	0.00	27.28
	RESERVORIO	CASA 1 - ALINEAMIENTO 04	430	936.28	909.50	0.00050	1"	0.0294	PVC. 70psi	150	9.553	0.74	0.00	17.23	0.00	26.78
ALINEAMIENTO 02 - ALINEAMIENTO 04	RESERVORIO	CASA 2 - ALINEAMIENTO 04	456	936.28	911.35	0.00050	1"	0.0294	PVC. 70psi	150	10.130	0.74	0.00	14.80	0.00	24.93
	RESERVORIO	CASA 4 - ALINEAMIENTO 04	560	936.28	917.10	0.00050	1"	0.0294	PVC. 70psi	150	12.441	0.74	0.00	6.74	0.00	19.18
ALINEAMIENTO 02 - ALINEAMIENTO 03	CRP-01 -TIPO7	CASA 64 - ALINEAMIENTO 03	766.28	866.28	832.50	0.00050	1"	0.0294	PVC. 70psi	150	17.023	0.74	0.00	16.76	0.00	33.78
	CRP-01 -TIPO7	CASA 40 - ALINEAMIENTO 10	755	866.28	820.10	0.00050	1"	0.0294	PVC. 70psi	150	16.773	0.74	0.00	29.41	0.00	46.18
ALINEAMIENTO 02 -	CRP-01 -TIPO7	CASA 42 - ALINEAMIENTO 10	765	866.28	821.60	0.00050	1"	0.0294	PVC. 70psi	150	16.995	0.74	0.00	27.69	0.00	44.68
ALINEAMIENTO 10	CRP-01 -TIPO7	CASA 37 - ALINEAMIENTO 10	783	866.28	821.60	0.00050	1"	0.0294	PVC. 70psi	150	17.395	0.74	0.00	27.29	0.00	44.68
	CRP-01 -TIPO7	CASA 35 - ALINEAMIENTO 10	804	866.28	823.00	0.00050	1"	0.0294	PVC. 70psi	150	17.861	0.74	0.00	25.42	0.00	43.28

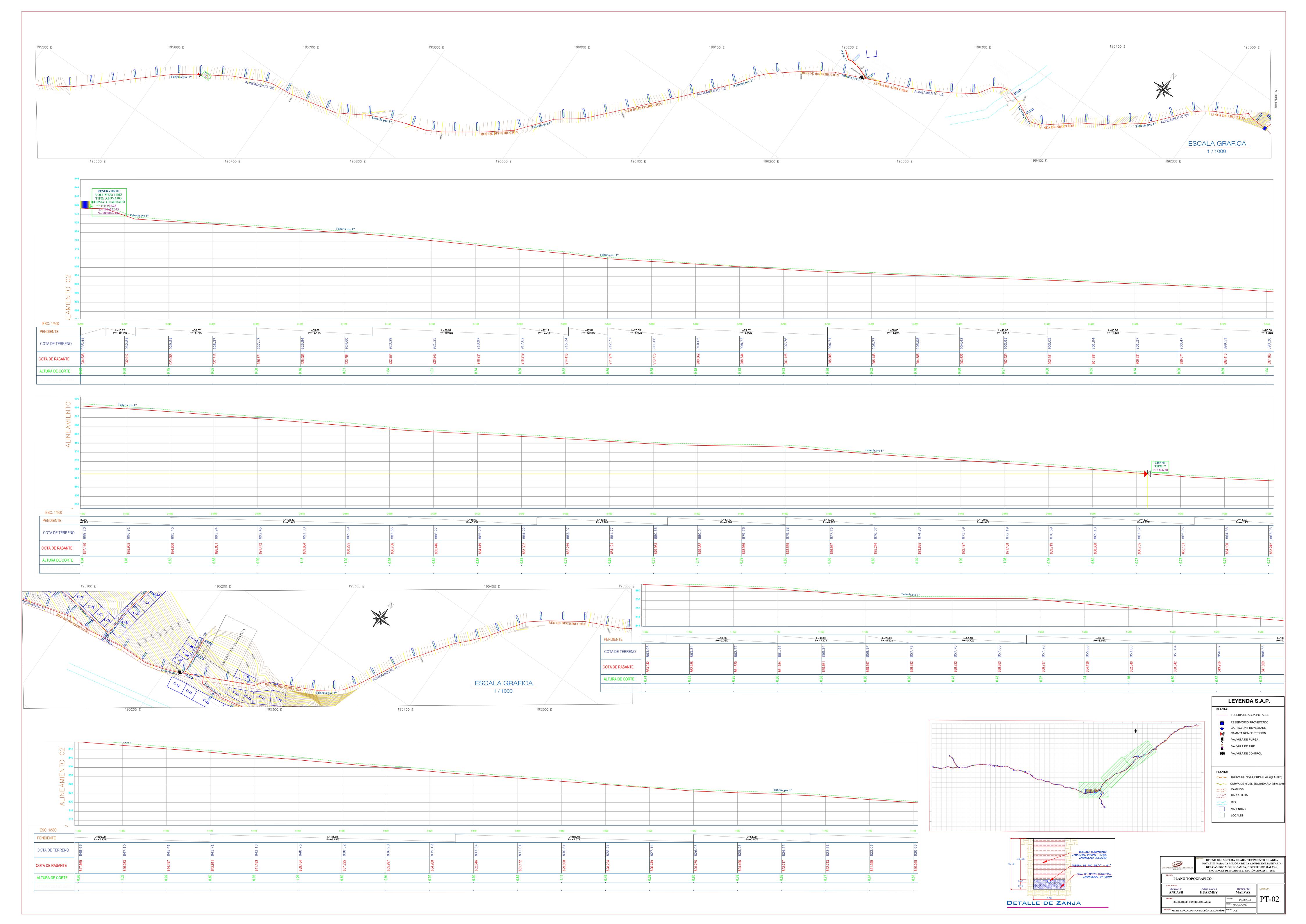

Fuente: Elaboración propia

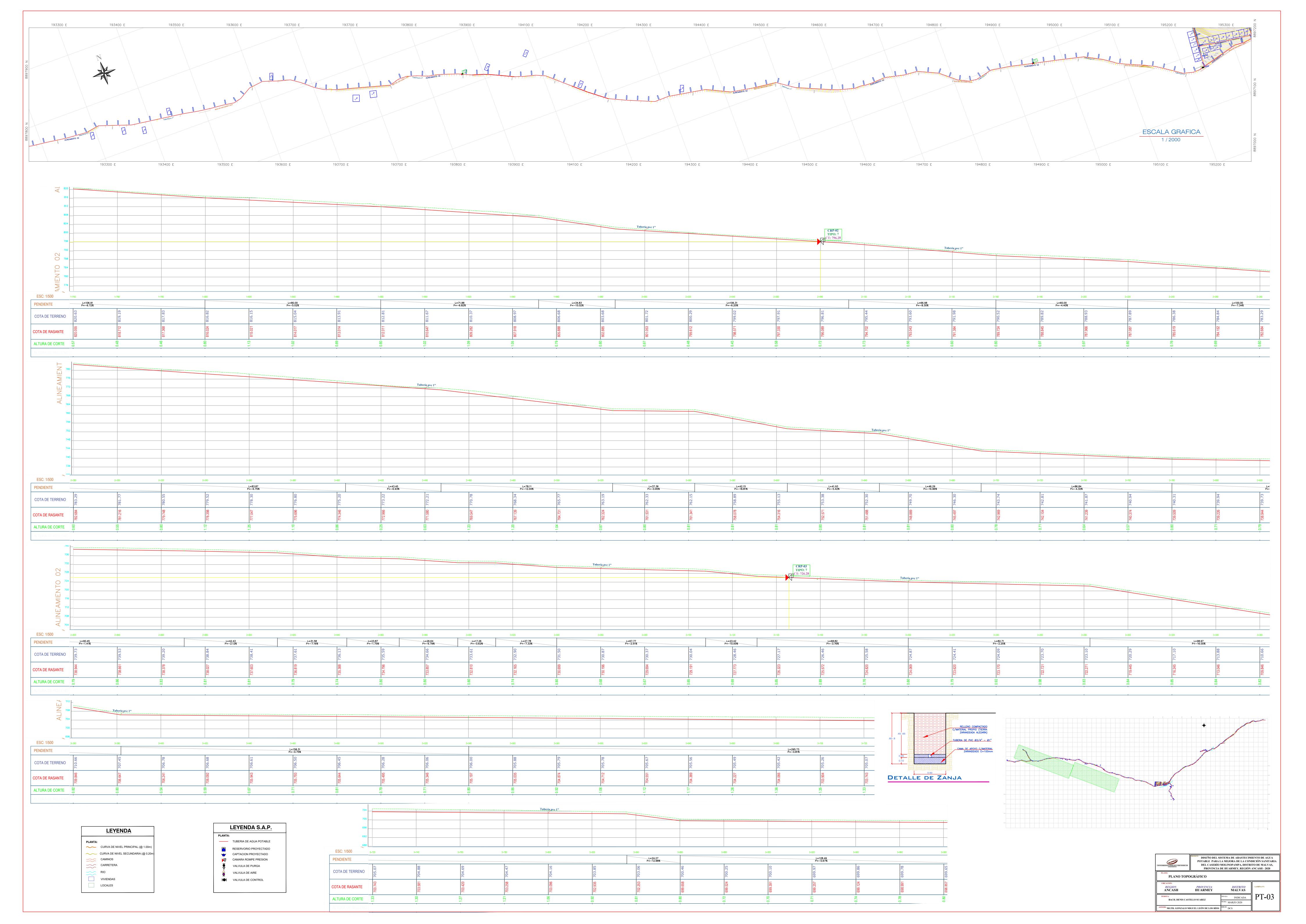
	CRP-01 -TIPO7	CASA 32 - ALINEAMIENTO 11	803	866.28	824.00	0.00050	1"	0.0294	PVC. 70psi	150	17.839	0.74	0.00	24.44	0.00	42.28
ALINEAMIENTO 02 - ALINEAMIENTO 11	CRP-01 -TIPO7	CASA 30 - ALINEAMIENTO 11	826	866.28	825.00	0.00050	1"	0.0294	PVC. 70psi	150	18.350	0.74	0.00	22.93	0.00	41.28
	CRP-01 -TIPO7	CASA 27 - ALINEAMIENTO 11	860	866.28	826.00	0.00050	1"	0.0294	PVC. 70psi	150	19.105	0.74	0.00	21.17	0.00	40.28
	CRP-01 -TIPO7	CASA 21 - ALINEAMIENTO 09	660	866.28	828.00	0.00050	1"	0.0294	PVC. 70psi	150	14.662	0.74	0.00	23.62	0.00	38.28
	CRP-01 -TIPO7	CASA 22 - ALINEAMIENTO 09	680	866.28	830.00	0.00050	1"	0.0294	PVC. 70psi	150	15.107	0.74	0.00	21.17	0.00	36.28
ALINEAMIENTO 02 - ALINEAMIENTO 09	CRP-01 -TIPO7	CASA 23 - ALINEAMIENTO 09	694	866.28	832.00	0.00050	1"	0.0294	PVC. 70psi	150	15.418	0.74	0.00	18.86	0.00	34.28
	CRP-01 -TIPO7	CASA 24 - ALINEAMIENTO 09	703	866.28	833.50	0.00050	1"	0.0294	PVC. 70psi	150	15.617	0.74	0.00	17.16	0.00	32.78
	CRP-01 -TIPO7	CASA 25 - ALINEAMIENTO 09	715	866.28	835.00	0.00050	1"	0.0294	PVC. 70psi	150	15.884	0.74	0.00	15.40	0.00	31.28
ALINEAMIENTO 02 -	CRP-01 -TIPO7	CASA 10 - ALINEAMIENTO 08	564	866.28	831.00	0.00050	1"	0.0294	PVC. 70psi	150	12.530	0.74	0.00	22.75	0.00	35.28
ALINEAMIENTO 08	CRP-01 -TIPO7	CASA 08 - ALINEAMIENTO 08	586	866.28	834.00	0.00050	1"	0.0294	PVC. 70psi	150	13.018	0.74	0.00	19.26	0.00	32.28
	CRP-01 -TIPO7	CASA 07 - ALINEAMIENTO 02	503	866.28	835.00	0.00050	1"	0.0294	PVC. 70psi	150	11.174	0.74	0.00	20.11	0.00	31.28
ALINEAMIENTO 02	CRP-01 -TIPO7	CASA 15 - ALINEAMIENTO 02	512	866.28	833.00	0.00050	1"	0.0294	PVC. 70psi	150	11.374	0.74	0.00	21.91	0.00	33.28
	CRP-01 -TIPO7	CASA 18 - ALINEAMIENTO 02	473	866.28	838.00	0.00050	1"	0.0294	PVC. 70psi	150	10.508	0.74	0.00	17.77	0.00	28.28

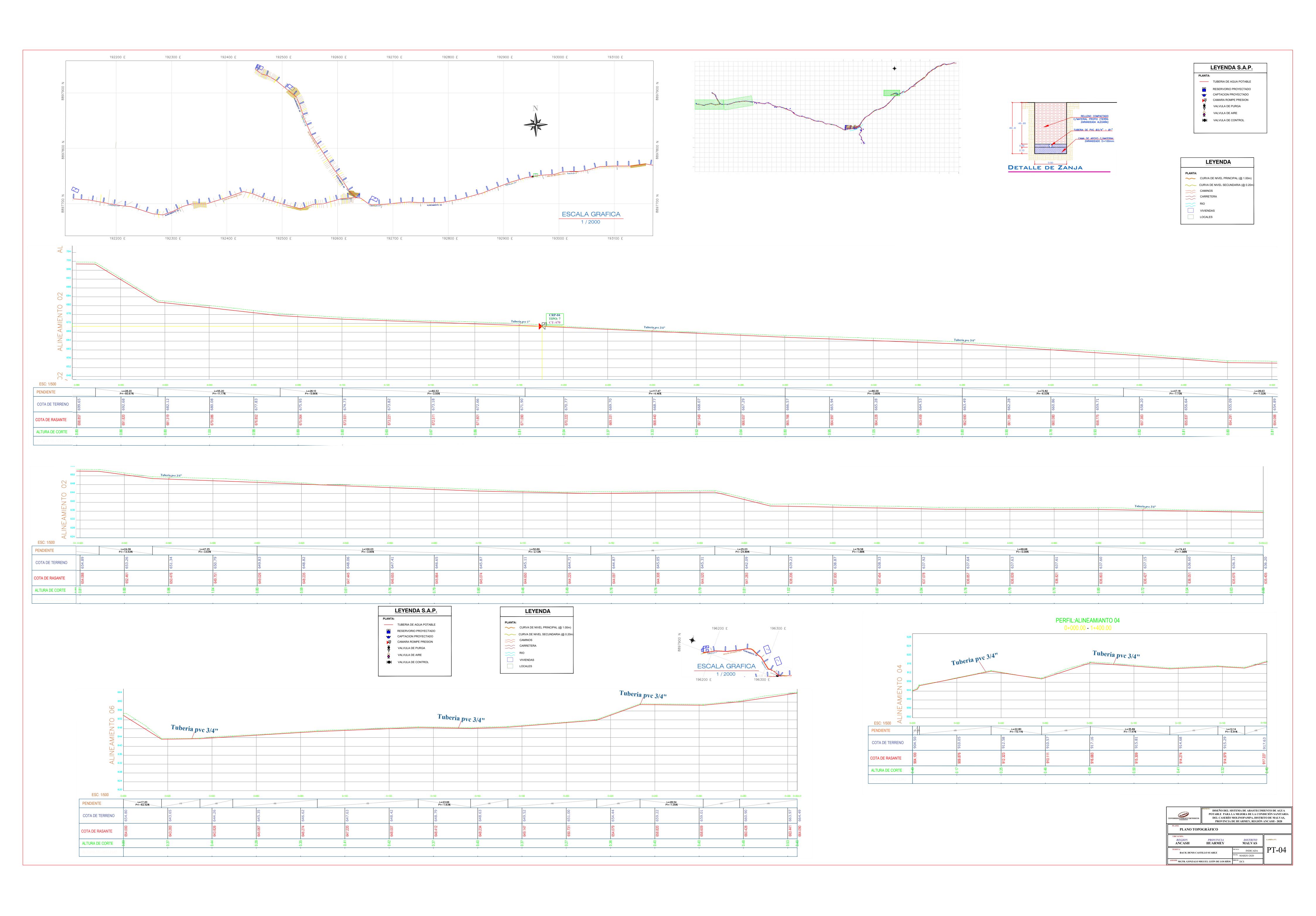

Fuente: Elaboración propia.

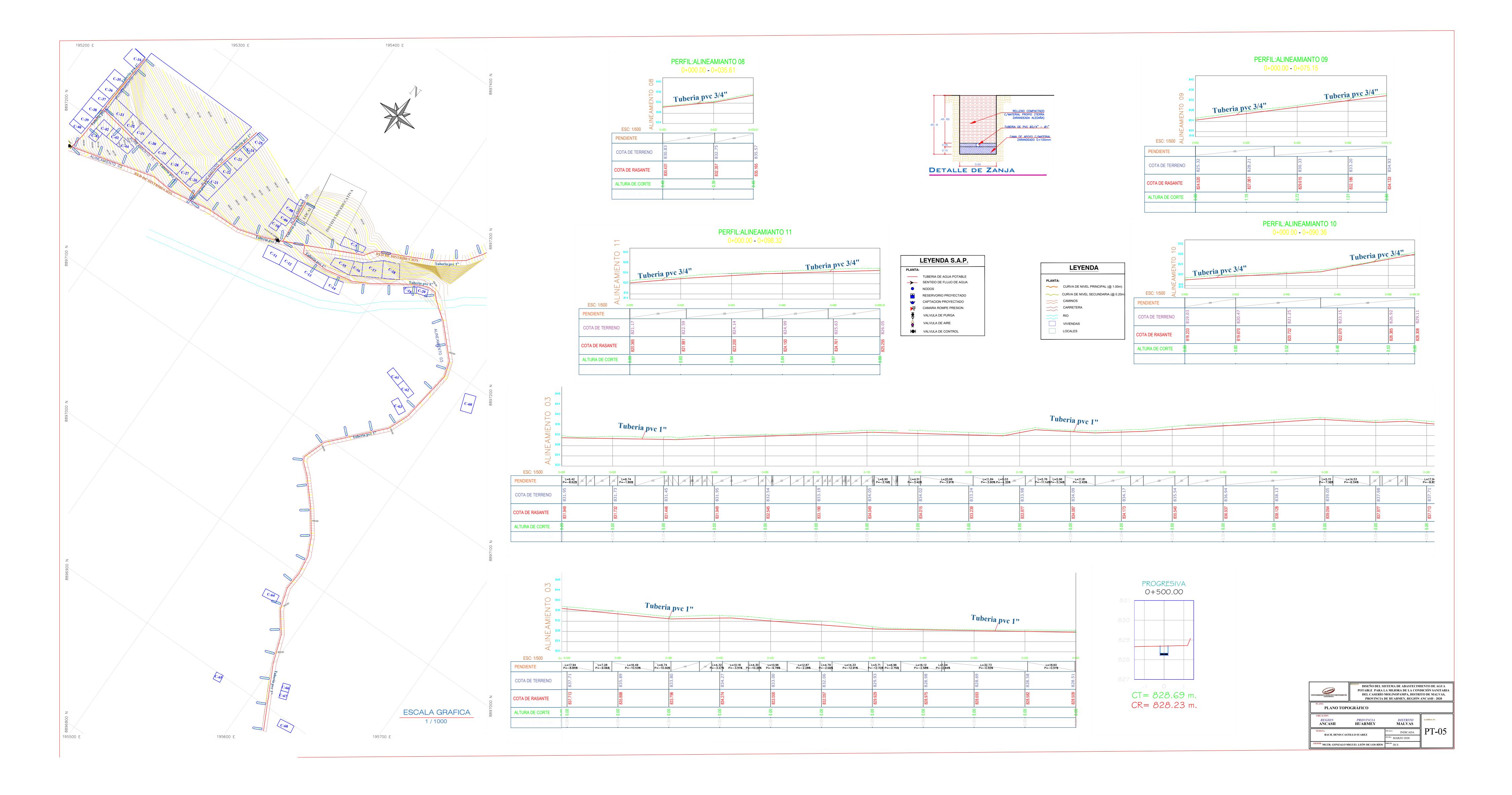
Anexo 8: planos

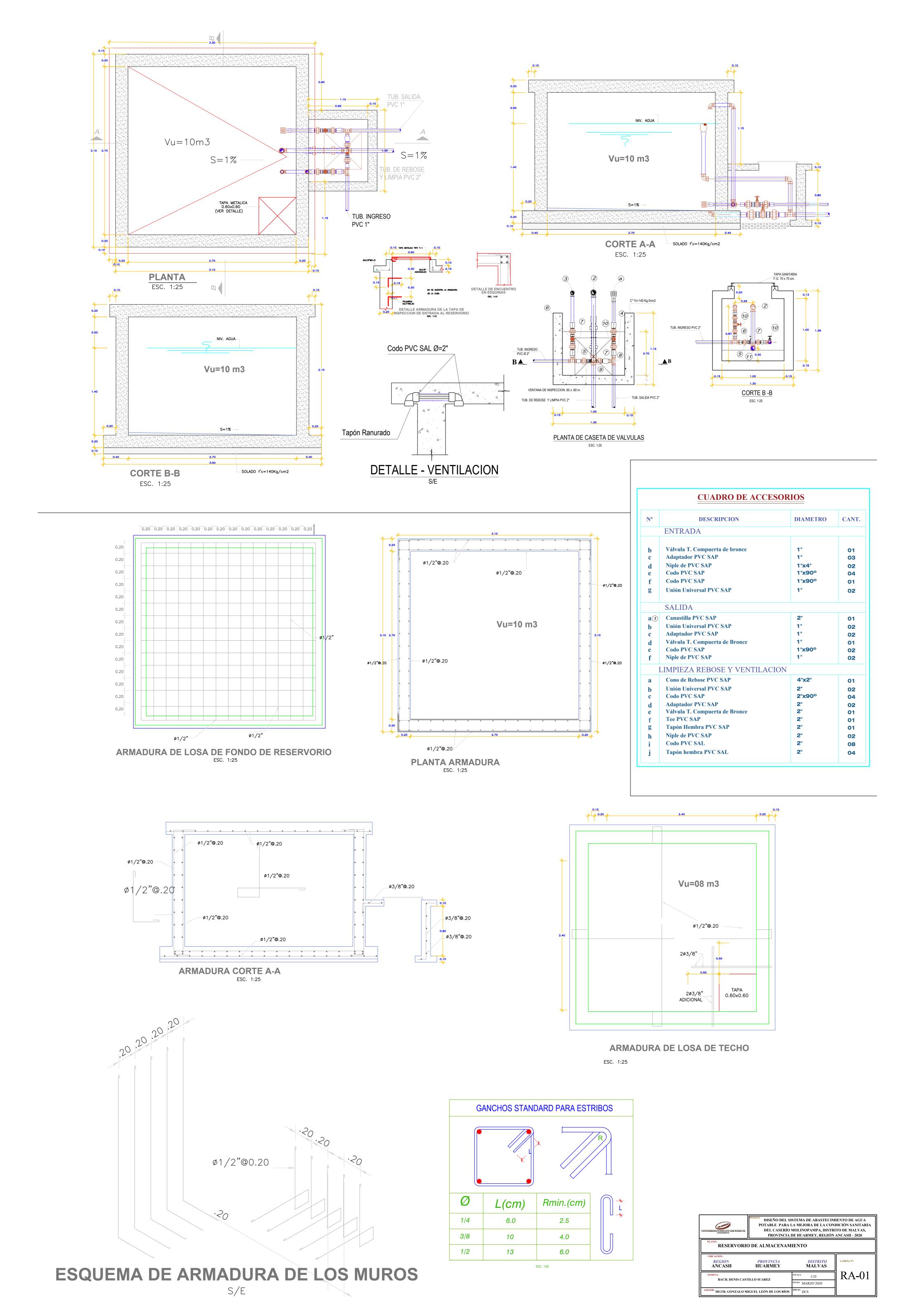

Plano de ubicación y localización

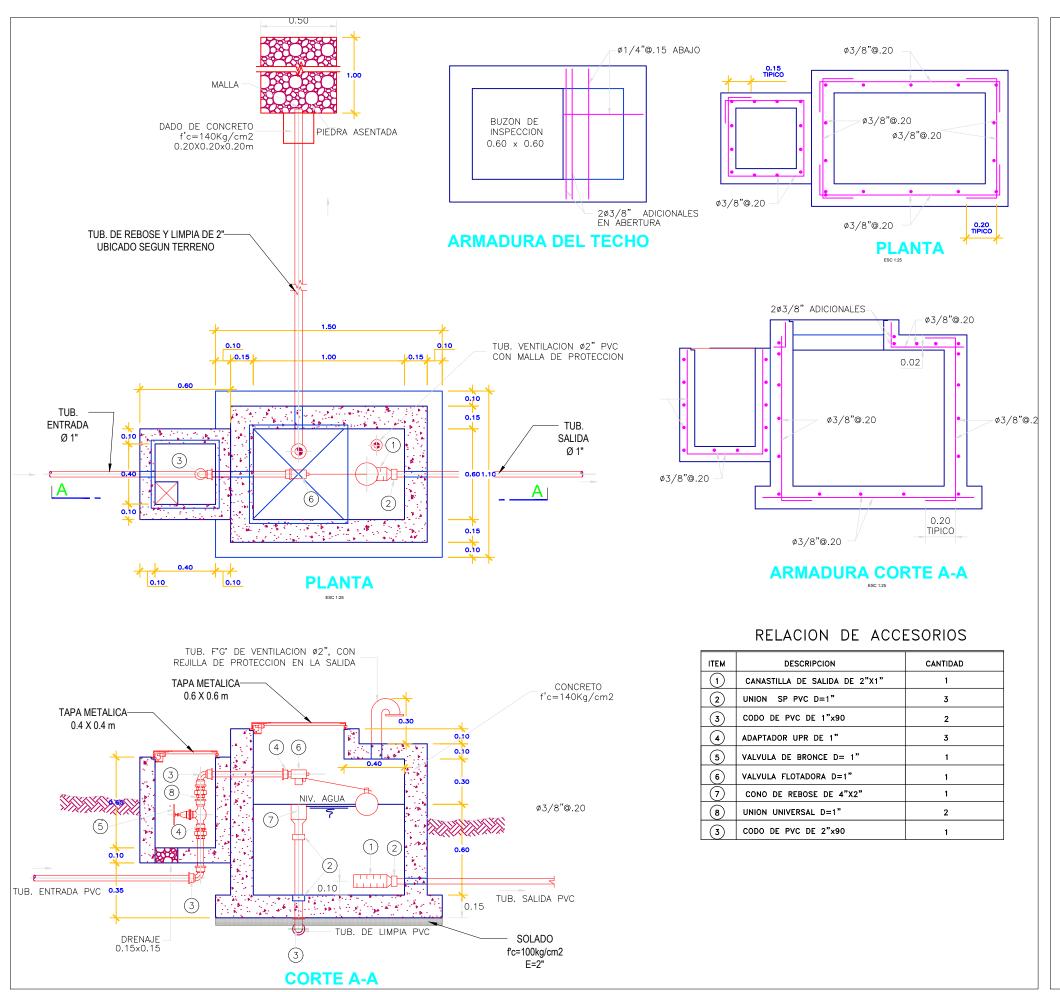


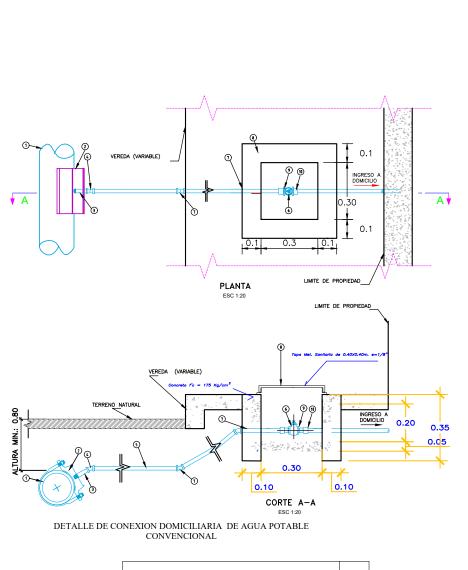

Plano de cámara de captación

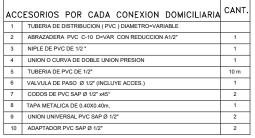



Plano de topografía








Plano de reservorio de almacenamiento

Estructura complementaria

DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA
POTABLE PARA LA MEJORA DE LA CONDICIÓN SANITARIA
DEL CASERÍO MOLINOPAMPA, DISTRITO DE MALVAS,
PROVINCIA DE HUARMEY, REGIÓN ANCASH - 2020

UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE		MOLINOPAMPA, DISTR DE HUARMEY, REGIÓN	,
CRP-7 Y CONE	XIONES DOMICI	LIARIAS	
UBICACION: REGION ANCASH	PROVINCIA HUARMEY	DISTRITO MALVAS	LAMINA N°:
TESISTA: BACH, DENIS CASTII	LO SUAREZ	ESCALA: INDICADA FECHA: MARZO 2020	CR-01
ASESOR: MGTR. GONZALO MIC	UEL LEÓN DE LOS RÍOS	DIBUJO: DCS	