

UNIVERSIDAD CATOLICA LOS ANGELES DE CHIMBOTE

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

DETERMINACIÓN Y EVALUACIÓN DE LAS
PATOLOGÍAS DEL PAVIMENTO FLEXIBLE, PARA
OBTENER EL ÍNDICE DE INTEGRIDAD
ESTRUCTURAL Y CONDICIÓN OPERACIONAL DE
LA SUPERFICIE DE RODADURA DE LA CALLE
TUPAC AMARU CUADRAS 1, 2, 3, 4 Y 5, DISTRITO DE
IQUITOS, PROVINCIA DE MAYNAS, REGION
LORETO, AÑO – 2018.

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE

INGENIERO CIVIL

AUTOR:

BACH. ROBERTO PRENTICE TECO

ASESOR:

ING. LUIS ARTEMIO RAMIREZ PALOMINO

PUCALLPA-PERÚ 2018

1. Título de la Tesis

Determinación y Evaluación de las Patologías del Pavimento Flexible, para obtener el Indice de Integridad Estructural y Condición Operacional de la Superficie de Rodadura de la Calle Túpac Amaru Cuadras 1, 2, 3, 4 y 5, Distrito de Iquitos, Provincia de Maynas, Región Loreto, año – 2018.

2.	Hoja de firma del jurado
	Mgtr. Sotelo Urbano Johanna del Carmen Presidente
	Ing. Veliz Rivera Juan Alberto
	Miembro
	Ing. Monsalve Ochoa Milton Cesar Miembro

3. Hoja de agradecimiento y/o dedicatoria

Agradecimiento

Quiero dar el **agradecimiento en primer lugar mi Dios,** por darme
las fuerzas, en los momentos
buenos y malos. Porque el
siempre será; mi lámpara a mis
pies y su palabra será mi
lumbrera en mi camino.

A la Universidad Católica los Ángeles de Chimbote quien me acogió en sus aulas y por formarme profesionalmente, y así poder hacer realidad mis objetivos trazados.

A mi Asesor, Ing. Luis Artemio
Ramírez Palomino por su
apoyo, y dirección en la asesoría
de mi tesis.

Dedicatoria

A mi Madre:

A mí querida madre, Gloria Milena Teco Torres, por su amor incondicional, por estar siempre conmigo en los momentos importantes de mi vida sin estar presente, porque sus sabios consejos repercutieron en mí para seguir un buen camino y lograr los objetivos que se propone en esta vida.

A mi esposa e hija:

Milagros Vigo y Andrea Alexandra, por apoyarme en todo momento para poder terminar la carrera que tanto me apasiona.

A mis hermanos:

Hugo, Mariana y Carolina, que de alguna u otra forma me brindaron sus apoyos incondicionales en esta etapa de mi vida

4. Resumen y Abstract

RESUMEN

El presente trabajo de investigación tiene la finalidad de avaluar y analizar las 9 muestras obtenidas de la Calle Túpac Amaru, llevado como titulo de tesis Determinación y Evaluación de las Patologías del Pavimento Flexible, para obtener el Índice de Integridad Estructural y Condición Operacional de la Superficie de Rodadura de la Calle Túpac Amaru Cuadras 1, 2, 3, 4 y 5, Distrito de Iquitos, Provincia de Maynas, Región Loreto, Año – 2018, donde el **enunciado del problema de Investigación** para la obtención del índice de integridad estructural que nos permita obtener la condición operacional de la superficie de rodadura.

La metodología de investigación en lo general es de estudio de tipo descriptivo; y no experimental y de corte transversal. Su objetivo general es determinar y evaluar las patologías del pavimento flexible y obtener el índice de integridad estructural del pavimento flexible para tener la condición operacional de la superficie de rodadura. Población y la muestra estará dado por la delimitación geográfica de la superficie de la pista de la Calle Túpac Amaru. La muestra es aquel conjunto de operaciones que se realizan para estudiar determinados caracteres en la totalidad de una población considerada. Se empleó Técnica de Inspección Visual para determinar los tipos de daños y como instrumento la recolección de datos se utilizó una hoja de Inspección para anotar las patologías en el pavimento flexible y luego será procesada en gabinete.

En conclusión se determinó y evaluó los resultados de las muestras UM-01, 02, 03, 04, 05, 06, 07, 08 y 09 son de fallas estructurales de media y baja densidad en toda las muestras en ciertas muestras de acuerdo a la inspección realizada en campo son grietas leves.

Palabras claves: Patologías, patologías del pavimento, determinar y evaluar.

ABSTRACT

The present work of investigation has the purpose of avaluar and analyse the 9 samples obtained of the Street Túpac Amaru, carried as I title of thesis Determination and Evaluation of the Pathologies of the Flexible Paving, to obtain the Index of Structural Integrity and Operational Condition of the Surface of Rolling of the Street Túpac Amaru Stables 1, 2, 3, 4 and 5, District of Iquitos, Province of Maynas, Region Loreto, Year – 2018, where the **billed of the problem of Investigation** for the obtaining of the index of structural integrity that allow us obtain the operational condition of the surface of rolling.

The methodology of investigation in the general is of study of descriptive type; and no experimental and of transversal court. His general aim is to determine and evaluate the pathologies of the flexible paving and obtain the index of structural integrity of the flexible paving to have the operational condition of the surface of rolling. Population and the sample will be given by the geographic delimitation of the surface of the track of the Street Túpac Amaru. The sample is that group of operations that make to study determinate characters in the whole of a population considered. It employed Technician of Visual Inspection to determine the types of damages and as I notarise the recolección of data used a leaf of Inspection to annotate the pathologies in the flexible paving and afterwards will be processed in cabinet.

In conclusion it determined and it evaluated the results of the samples UM-01, 02, 03, 04, 05, 06, 07, 08 and 09 are of fail structural of average and low density in all the samples in some samples of agreement to the inspection made in field are slight cracks.

CONTENIDO

		Pág.
1.	Título de la tesis	ii
2.	Hoja de firma del jurado	iii
3.	. Hoja de agradecimiento y/o dedicatoria	iv
4.	Resumen y Abstract	vi
5.	Contenido	viii
6.	Índice de figuras y tablas	X
I	INTRODUCCION	16
II	PLANTEAMIENTO DE LA INVESTIGACION	18
	2.1. Planteamiento del problema	18
	a) Caracterización del problema	18
	b) Enunciado del problema	19
	2.2. Objetivos de la investigación.	19
	2.2.1. Objetivo general	19
	2.2.2. Objetivos específicos.	19
	2.3. Justificación de la investigación	20
II	I REVISION DE LITERATURA	21
	3.1. ANTECEDENTES	21
	3.1.1. Antecedentes internacionales	21
	3.1.2. Antecedentes nacionales	23
	3.2. BASES TEÓRICAS DE LA INVESTIGACIÓN	24
	a) Pavimento	24
	b) Pavimento Flexible	25
	c) Asfalto	26
	d) Patología	27
	e) Indice de Condición de Pavimento (PCI)	28
I	METODOLOGÍA	32
	4.1. Tipo y Nivel de la investigación de la tesis	32
	4.2. Diseño de la investigación	32

	4.3. Población y muestra	34
	4.4. Definición y Operacionalización de las variables	37
	4.5. Técnicas e Instrumentos de recolección de datos	
	4.6. Plan de análisis	39
	4.7. Matriz de consistencia	39
	4.8. Principios éticos.	41
\mathbf{V}	RESULTADOS	43
	5.1. Resultados.	43
	5 .2. Resumen de resultados	131
VI	CONCLUSIONES	134
VI	I RECOMENDACIONES.	135
Re	ferencias bibliográficas.	136
Δn	nexos.	140

Índice de Figuras, Cuadros, Gráficos y Tablas

	Figura N° 01: Estructura de un pavimento flexible
	Figura N° 02: Vista de pavimento flexible
	Figura N° 03: Causas de las patologías en las Estructuras
	Figura N° 04: Diseño de la investigación
	Figura N° 05: Ubicación Calle Túpac Amaru34
	Figura N° 06: Ubicación de muestreo
6.2	. Indice de cuadros
	Cuadro N° 01: Rangos de clasificación del PCI
	Cuadro N° 02: Unidad de muestra PCI
	Cuadro N° 03: Cuadro de operacionalización de variable
	Cuadro N° 04: Daños encontrado, medidas y nivel de severidad según el PCI44
	Cuadro N° 05: Patologías encontradas en unidades de muestras
	Cuadro N° 06: Resumen del PCI de las UM de la Calle Túpac Amaru133
6.3	. Indice de gráficos
	Grafico N° 01: Indice de daños encontrados en la UM-0156
	Grafico N° 02: Indice de daños encontrados en la UM-0266
	Grafico N° 03: Indice de daños encontrados en la UM-0373
	Grafico N° 04: Indice de daños encontrados en la UM-0485
	Grafico N° 05: Indice de daños encontrados en la UM-0595
	Grafico N° 06: Indice de daños encontrados en la UM-6104
	Grafico N° 07: Indice de daños encontrados en la UM-07

	Grafico N° 08: Indice de daños encontrados en la UM-08
	Grafico N° 09: Indice de daños encontrados en la UM-09
	Grafico N° 10: Densidad de Patologías encontradas en unidades de muestras131
	Grafico N° 11: Patologías encontradas en % de las unidades de muestras132
	Grafico N° 12: Resultado final del PCI
6.3	. Indice de tablas
	Table N° 01: hoja de registro de daños UM-0146
	Table N° 02: Abultamientos y hundimientos de Seve media de la UM-0147
	Table N° 03: Abultamientos y hundimientos de Seve media de la UM-0148
	Table N° 04: Parcheo de severidad media de la UM-0149
	Table N° 05: Parcheo de severidad media de la UM-0150
	Table N° 06: Parcheo de severidad media de la UM-0151
	Table N° 07: Huecos de severidad media de la UM-0152
	Table N° 08: Huecos de severidad media de la UM-0153
	Table N° 09: Cálculo del valor deducido corregido de la UM-0154
	Table N° 10: Cálculo del PCI y de la interpolación del VDC de la UM-0155
	Table N° 11: Área y densidad afectada de la UM-0156
	Table N° 12: Densidad y Valores Deducidos Finales
	Table N° 13: hoja de registro de daños UM-0259
	Table N° 14: Grieta long. y transversal de severidad media de la UM-0260
	Table N° 15: Grieta long. y transversal de severidad baja de la UM-0261
	Table N° 16: Parcheo de severidad media de la UM-0262
	Table N° 17: Parcheo de severidad baja de la UM-0263

Table N° 18: Cálculo del valor deducido corregido de la UM-0264
Table N° 19: Cálculo del PCI y de la interpolación del VDC de la UM-065
Table N° 20: Área y densidad afectada de la UM-0266
Table N° 21: Densidad y Valores Deducidos Finales6
Table N° 22: hoja de registro de daños UM-0369
Table N° 23:Abultamientos y hundimientos de Seve media de la UM-0370
Table N° 24:Grietas Longitudinal y Transversal de Seve media UM-037
Table N° 25: Cálculo del valor deducido corregido de la UM-0372
Table N° 26: Cálculo del PCI y de la interpolación del VDC de la UM-0373
Table N° 27: Área y densidad afectada de la UM-0374
Table N° 28: Densidad y Valores Deducidos Finales7:
Table N° 29: hoja de registro de daños UM-04
Table N° 30:Abultamientos y hundimientos de Seve. media de la UM-0478
Table N° 31: Abultamientos y hundimientos de Seve. baja de la UM-0479
Table N° 32: Grieta long. y transversal de severidad media de la UM-0480
Table N° 33: Parcheo de severidad media de la UM-04
Table N° 34: Parcheo de severidad baja de la UM-0482
Table N° 35: Parcheo de severidad baja de la UM-0483
Table N° 36: Cálculo del PCI y de la interpolación del VDC de la UM-0484
Table N° 37: Área y densidad afectada de la UM-0485
Table N° 38: Densidad y Valores Deducidos Finales
Table N° 39: hoja de registro de daños UM-0588
Table N° 40:Abultamientos y hundimientos de S media de la UM-0589

Table N° 41: Abultamientos y hundimientos de S baja de la UM-05	90
Table N° 42: Parcheo de severidad media de la UM-05	.91
Table N° 43: Parcheo de severidad baja de la UM-05	.92
Table N° 44: Cálculo del valor deducido corregido de la UM-05	.93
Table N° 45: Cálculo del PCI y de la interpolación del VDC de la UM-05	.94
Table N° 46: Área y densidad afectada de la UM-05	95
Table N° 47: Densidad y Valores Deducidos Finales	.96
Table N° 48: hoja de registro de daños UM-06	98
Table N° 49: Grietas Longitudinal y Transversal de S media UM-06	99
Table N° 50: Huecos de severidad media UM-06	100
Table N° 51: Huecos de severidad baja UM-06.	101
Table N° 52: Cálculo del valor deducido corregido de la UM-061	102
Table N° 53: Cal del PCI y de la interpolación del VDC de la UM-06	103
Table N° 54: Área y densidad afectada de la UM-06	104
Table N° 55: Densidad y Valores Deducidos Finales	105
Table N° 56: hoja de registro de daños UM-07	107
Table N° 57: Abultamiento y Hundimiento de severidad media UM-07	108
Table N° 58: Huecos de severidad media UM-07	109
Table N° 59: Huecos de severidad baja UM-07	110
Table N° 60: Cál del PCI y de la interpolación del VDC de la UM-07	111
Table N° 61: Área y densidad afectada de la UM-07	112
Table N° 62: Densidad y Valores Deducidos Finales	113
Table N° 63: hoja de registro de daños UM-08.	115

Table N° 64: Grietas Longitudinal y Transversal de S media UM-08	116
Table N° 65: Huecos de severidad media UM-08	117
Table N° 66: Cálculo del valor deducido corregido de la UM-08	118
Table N° 67: Cál del PCI y de la interpolación del VDC de la UM-08	119
Table N° 68: Área y densidad afectada de la UM-08	120
Table N° 69: Densidad y Valores Deducidos Finales	121
Table N° 70: hoja de registro de daños UM-09	123
Table N° 71: Abultamientos y hundimientos de S media de la UM-09	124
Table N° 72: Parcheo de severidad media de la UM-09	125
Table N° 73: Huecos de severidad media de la UM-09	126
Table N° 74: Cálculo del valor deducido corregido de la UM-09	127
Table N° 75: Cál del PCI y de la interpolación del VDC de la UM-09	128
Table N° 76: Área y densidad afectada de la UM-09	129
Table N° 77: Densidad y Valores Deducidos Finales	130

I. INTRODUCCIÓN:

El presente trabajo de investigación se realizó con la finalidad de determinar y evaluar las patologías del pavimento flexible de la calle Túpac Amaru del distrito de Iquitos, Provincia de Maynas, Región Loreto.

Dentro de la vida útil del pavimento flexible se presentan diversos problemas de falla y daños los cuales pueden afectar a la estructura de la misma, causando entre ellas diferentes tipos de patologías como agrietamientos, hundimientos, huecos, asentamientos, deformaciones plásticas, a consecuencia de los factores climáticos, intensidad de tránsito, sobre cargas de la rodadura, filtraciones de agua de los drenajes.

En la Calle Túpac Amaru, cuadras 1, 2, 3, 4, 5 del Distrito de Iquitos, Provincia de Maynas- Región Loreto, se evidencia los daños patológicos debido a la falta de mantenimiento, malos proceso constructivo o materiales inadecuados en el proceso constructivo.

Para la verificación del estado del pavimento asfaltico, se emplearan diferentes índices que nos permita adquirir y conocer la condición operacional de la superficie de rodadura, aplicando el método de **Paviment Condition Index** (**PCI**) siglas en inglés, el cual nos da un valor de (0 a100) con diferentes clasificaciones que nos permitirá evaluar la condición de la superficie del pavimento de la calle en estudio.

La Calle Túpac Amaru se encuentra ubicada de la ciudad de Iquitos en la Provincia de Maynas Región Loreto. Situada de latitud Sur, a: 3° 44'48" y de longitud Oeste a: 73°15' 10" y a una altura promedio de 257 msnm. Cuenta una temperatura máxima, de 36° en los meses de diciembre hasta marzo y la

mínima de 17° hasta 20° en los meses, de junio a julio. Su clima es cálido y húmedo; tropical y lluvioso.

La población se dedica en gran parte a la construcción civil, a la música y al arte, se puede llegar a ella por medio fluvial y aéreo.

Por anteriormente mencionado la garantía de la durabilidad de la vida útil del pavimento dependerá del mantenimiento adecuado que esta tenga y el interés que sus autoridades encargadas de dichos trabajos le den en el debido momento.

II. PLANTEAMIENTO DE LA INVESTIGACIÓN:

2.1. Planteamiento del problema.

a) Caracterización del problema:

La Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto, se encuentra situada a 3°43′46″ latitud sur y 73°14′18″ longitud oeste, con una temperatura mínima de 20 ° C y máxima de 35° C, los meses más caliente ocurren entre los meses de setiembre – enero y los más fríos los meses de Junio y Julio, por tal motivo los procesos constructivos varían en función a dichas temperaturas y épocas, durante el día el sol calienta la superficie y en la noche rápidamente se enfría produciendo extremos de temperaturas relativas, es por ello se debe considerar todos los aspectos que inciden en forma prioritaria en la estructuración de los pavimentos, el cual requiere de un nivel técnico apropiado para su ejecución.

Las Calles del distrito de Iquitos, se encuentran pavimentadas en un 70 % por pavimento rígido (mortero, c:a) y un 30% pavimento flexible (cemento asfáltico), por lo que la Calle Túpac Amaru, es una de las vías que presentan diversas patologías lo que indica que no hubo un trabajo de mantenimiento y que amerita una rehabilitación.

Por tal motivo fue necesario determinar y evaluarlas patologías en el pavimento flexible de la Calle Túpac Amaru, las mismas que serán muestras de inspección visual, para tomar datos y determinar un índice de condición de pavimento a partir de dichas patologías.

b) Enunciado del Problema:

¿En qué medida la determinación y evaluación de las patologías del pavimento flexible de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto, nos permitirá evaluar el estado actual y obtener un índice de integridad estructural del pavimento y de la condición operacional de la superficie de rodadura?

2.2. Objetivos de la Investigación:

2.2.1. Objetivo General.

Determinar el índice de condición de pavimento, de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto, a partir de la determinación y evaluación de las patologías del mismo.

2.2.2. Objetivos Específicos.

- a) Identificar los tipos de patologías del pavimento que existe en la superficie de rodadura de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto.
- b) Obtener el índice de condición de pavimento para la superficie de rodadura de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto.
- c) Evaluar la integridad estructural del pavimento y la condición operacional de la superficie de rodadura de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto.

2.3. Justificación de la investigación.

La presente investigación se justifica por la necesidad de conocer la condición operacional del pavimento flexible de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto.

Según los tipos de patologías identificadas y evaluadas, se indicara el grado de afectación que cada combinación de clase de daño, nivel de severidad y densidad tiene sobre la condición de pavimento de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto.

El presente trabajo servirá de base para la toma de decisiones que pudiera realizar la municipalidad de la provincia de Maynas de reparar o renovar los tramos del pavimento de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto; de acuerdo al índice de la integridad estructural y la condición operacional de dichos pavimentos obtenidas como resultado del desarrollo del presente trabajo.

III. REVISION DE LITERATURA:

3.1. ANTECEDENTES.

3.1.1 Antecedentes internacionales.

a) Deterioros en pavimentos flexibles, ciudad de Valdivia — Chile.

(Miranda R, Mayo-2010) ⁽⁴⁾ .Esta tesis hace mención a los tipos de pavimentos existentes, así como los tipos de deterioros que se presentan en un pavimento, sus diferentes causas que afectan al pavimento con el transcurrir de los años, además plantea los tipos de técnicas de reparación que se aplican en las obras de pavimentación, mostrando sus procesos constructivos.

Además, se muestra la conservación de pavimentos aplicado al sector 1 y 2 de Valdivia (Anexo A), donde se verán los tipos de fallas ocurridas y la correcta solución de conservación que se le deberá aplicar.

La presente tesis hace una descripción resumida de los principales elementos que conforman las carreteras, de las fallas más importantes que los afectan y de las causas que más comúnmente las originan.

El objetivo general, es identificar las fallas que sufren los pavimentos flexibles y otorgar soluciones para la conservación y rehabilitación de los mismos, al mínimo costo y con el más eficiente resultado posible.

Se tendrá como objetivos específicos:

Desarrollar una guía que permita conocer los diferentes deterioros existentes en pavimentos y sus soluciones constructivas.

- Revisar en la bibliografía existente, fallas típicas en pavimentos flexibles y rígidos.
- Entregar los principales parámetros de construcción para realizar los diferentes trabajos de mantenimiento.

b) Estudio de Patologías en Pavimentos Flexibles en la ciudad la Plata - Argentina, agosto - 2011.

(Prunell S.) ⁽²⁾ La presente investigación muestra una descripción completa de las fallas encontrados en los pavimentos flexibles. Esta investigación analiza las posibles causas que crea el daño y las formas de reparación. Dicha investigación concluye que, la mayoría de los deterioros encontrados, se producen por causa de uno o varios factores simultáneos. Se tiene que tener en cuenta el mantenimiento de los pavimentos como un punto importante para evitar deterioros de severidad alta, ya que, en todos los 11 casos, según el estudio realizado, los defectos con mayor frecuencia de aparición en las superficies de concreto son: fallas de borde 22,3 %, fallas de juntas 19,4 %, fisuras transversales 13,8 %, fisura longitudinales 10,3 %) dislocamiento 9,1 % hundimiento de vías 6,1 %. Nidos de abeja 19 %.

3.1.2 Antecedentes nacionales.

a) Determinación y evaluación de las patologías del pavimento flexible, para obtener el índice de integridad estructural del pavimento flexible y condición operacional de la superficie de rodadura de la avenida Carlos la Torre Cortéz, distrito de Huanta, Provincia de Huanta, Región Ayacucho.

(Cárdenas R. J., Agosto-2016) (3). La presente tesis, evaluó cada una de las patologías del pavimento flexible, determinando la obtención del índice de integridad estructural "PCI" y la condición operacional de la superficie de rodadura de la avenida Carlos la Torre Cortéz, del distrito de Huanta, provincia de Huanta, región Ayacucho; cuyo objetivo principal estuvo relacionada con el estudio de las patologías en cada unidad de muestra y determinación del PCI para dichas unidades permitiéndonos determinar la condición operacional de la superficie de rodadura en el tramo vial estudiado; para lo cual se tomó de base las investigaciones nacionales e internacionales relacionadas a la presente investigación, que aportó a dar solución a la problemática de la investigación. Del mismo modo, la metodología utilizada en el presente trabajo fue del tipo descriptivo porque describe la realidad sin alterarla, predominantemente cuantitativo porque permitió generar datos de campo para su evaluación y con un nivel de diseño de investigación no experimental, porque estudia el problema y analiza sin recurrir a un análisis de laboratorio.

La presente tesis concluyó que la avenida Carlos la Torre Cortéz presentó un índice de integridad estructural de 34, clasificado en la escala de gradación como un pavimento en estado malo.

b) Cálculo del Índice de Condición del Pavimento (PCI) Barranco Surco - Lima.

(Robles B R. 2015) ⁽⁴⁾. La presente tesis aplica la metodología del Índice de Condición de Pavimento (PCI) con el cual se permite calificar al pavimento en un rango de valores que van de 0 a 100, mediante una inspección visual del tipo de daños, identificándolos, cuantificándolos y evaluando su nivel de incidencia sobre el pavimento.

La metodología de la presente tesis es no experimental de tipo descriptiva, donde se analizará el tipo de daños, la severidad y cantidad o densidad del pavimento.

3.2. BASES TEÓRICAS DE LA INVESTIGACIÓN.

a) Pavimento.

(Huamán Guerrero, 2013) ⁽⁵⁾. Un pavimento es una estructura que descansa sobre el terreno de fundación (Subrasante), conformado por capas de materiales de diferentes calidades cuyos espesores están dados de acuerdo al diseño del proyecto y construido con la finalidad de soportar cargas estáticas y móviles en su tiempo de vida útil. Los pavimentos se clasifican básicamente en pavimentos asfálticos e hidráulicos y se diferencian en cómo están conformados cada uno y como se distribuyen las cargas sobre ellos.

(Minaya G. S y Ordoñez H. A .2006) ⁽⁶⁾.Denomina al Pavimento, como la estructura que se apoya en el terreno de fundación o Subrasante y que está conformado por capas de diferentes calidades y espesores que obedecen a un diseños estructural.

b) Pavimento Flexible.

(Miranda R.2010) ⁽¹⁾. Una carpeta constituida por una mezcla asfáltica proporciona la superficie de rodamiento; que soporta directamente las solicitaciones del tránsito y aporta las características funcionales. Estructuralmente, la carpeta absorbe los esfuerzos horizontales y parte de los verticales, ya que las cargas de los vehículos se distribuyen hacia las capas inferiores por medio de las características de fricción y cohesión de las partículas de los materiales y la carpeta asfáltica se pliega a pequeñas deformaciones de las capas inferiores sin que su estructura se rompa.

(Minaya G. S y Ordoñez H. A .2006) ⁽⁶⁾. Los pavimentos flexibles están conformados por una carpeta asfáltica apoyada generalmente sobre dos capas no rígidas (base y sub base). No obstante puede prescindirse de cualquiera de estas capas dependiendo de las necesidades particulares del proyecto.

Figura N° 01. Estructura de un pavimento flexible

Figura N° 02. Vista de pavimento flexible

c) Asfalto

(Miranda R.2010) ⁽¹⁾. Es un material aglomerante de color oscuro, constituidos por mezclas complejas de hidrocarburos no volátiles de alto peso molecular, originarios del petróleo crudo, en el cual están disueltos, pueden obtenerse por evaporación natural de depósitos localizados en la superficie terrestre, denominados Asfaltos Naturales, o por medio de procesos de destilación industrial cuyo componente predominante es el Bitumen.

(Minaya G. S y Ordoñez H. A .2006) ⁽⁶⁾. ASTM lo define como un material cementante, de color oscuro y de consistencia variable, cuya rigidez depende de la temperatura en que se encuentre. A temperatura ambiente el asfalto es sólido o semisólido y cuando su temperatura se eleva se vuelve líquido, esta condición permite que los agregados sean cubiertos completamente durante la mezcla.

d) Patología.

d.1.) Definición.

El término "patología", tiene dos raíces, la palabra deriva del griego pathos, que significa "enfermedad" y logos, que significa "estudio de". Según el diccionario enciclopédico Larousse ⁽⁷⁾, define a la Patología como la "ciencia de las causas, síntomas y evolución de las enfermedades".

d.2.) Patología superficial del pavimento.

Comprende los defectos de la superficie de rodamiento debidos a fallas de la capa asfáltica y no guardan relación con la estructura de la calzada. La corrección de estas fallas se efectúa con sólo regularizar la superficie y conferirle la necesaria impermeabilidad y rugosidad. Ello se logra con capas asfálticas delgadas que poco aportan desde el punto de vista estructural en forma directa.

d.3.) Patología estructural del pavimento.

Comprende los defectos de la superficie de rodamiento cuyo origen es una falla en la estructura del pavimento, es decir de una o más de las capas constitutivas que deben resistir el complejo juego de solicitaciones que impone el tránsito y el conjunto de factores climáticos regionales. En la corrección de este tipo de fallas es necesario un refuerzo sobre el pavimento existente para que el paquete estructural responda a las exigencias del tránsito presente y futuro estimado. Se hace pues necesario el diseño de una estructura nueva formada por las subrasante - pavimento antiguo - refuerzo.

d.4.) Causas de las Patologías estructural del pavimento.

CAUSA **EFECTO** Diseño Asentamiento Defecto Materiales Construcción Deformación Sobrecarga Sismo Daño Fuego Fisuracion Derrame Químico Descascaramiento Secado y mojado Variación térmica Pudrición Celda electro-química Desconchamiento Deterioro Reacción alcalina Ataque de sulfatos Ataque de ácidos Delaminacion Ataque de xilófagos Desintegración

Figura N° 03. Causas de las Patologías en las estructuras

Fuente: León⁽¹⁷⁾

e) Índice de Condición de Pavimento (PCI).

El método de evaluación de pavimento PCI (Pavement Condition Index), fue desarrollado por M.Y. Shahin y S.D. Khon y publicado por el cuerpo de Ingenieros de la Armada de Estados Unidos en 1978.

(Vásquez V. L.R-Febrero 2002) ⁽⁸⁾. El PCI, se constituye en la metodología más completa para la evaluación y calificación objetiva de pavimentos, flexibles y rígidos, dentro de los modelos de Gestión Vial disponibles en la actualidad. La metodología es de fácil implementación y no requiere de herramientas especializadas más allá de las que constituyen el sistema y las cuales se presentan a continuación.

El deterioro de la estructura de pavimento es una función de la clase de daño, su severidad y cantidad o densidad del mismo. La formulación de un índice que tuviese en cuenta los tres factores mencionados ha sido problemática debido al gran número de posibles condiciones. Para superar esta dificultad se introdujeron los "valores deducidos", como un arquetipo de factor de ponderación, con el fin de indicar el grado de afectación que cada combinación de clase de daño, nivel de severidad y densidad tiene sobre la condición del pavimento.

Cuadro N° 01
RANGOS DE CALIFICACIÓN DEL PCI

HANGOS DE CALII ICACION DEL FOI			
Rango	Clasificación		
100 – 85	Excelente		
85 – 70	Muy Bueno		
70 – 55	Bueno		
55 – 40	Regular		
40 – 25	Malo		
25 – 10	Muy Malo		
10 – 0	Fallado		

Fuente: Índice condición del pavimento (PCI)

e.1.) Calculo del P.C.I. para pavimentos con capa de rodadura en Asfáltica.

e.1.1) Primer Paso: Calculo de los Valores Deducidos (VD).

- e.1.1.a) Totalizar cada tipo y nivel de severidad de deterioro y registrarlo en la columna TOTAL del formato PCI-01.

 El deterioro se puede medir en área, longitud o por número según su tipo.
- e.1.1.b) Dividir la CANTIDAD de cada clase de daño, en cada nivel de severidad, entre el ÁREA TOTAL de la unidad de muestreo y exprese el resultado como porcentaje.

Esta es la DENSIDAD del daño, con el nivel de severidad especificado, dentro de la unidad en estudio.

e.1.1.c) Determinar el VALOR DEDUCIDO por cada tipo de daño y su nivel de severidad mediante las curvas llamadas "Valor Deducido del Daño" de acuerdo con el tipo de pavimento inspeccionado.

e.1.2) Segundo Paso: Cálculo del Número Máximo Admisible de Valores Deducidos (m).

- e.1.2.a) Si ningún o sólo uno de los "Valores Deducidos" es mayor que 2, se usa el "Valor Deducido Total" en lugar del mayor "Valor Deducido Corregido", CDV, obtenido en el Cuarto Paso. De lo contrario, deben seguirse los siguientes pasos.
- e.1.2.b) Registre los Valores Deducidos Individuales obtenido de mayor a menor.
- e.1.2.c) Determinar el "Número Máximo Admisible de Valores Deducidos" (m), utilizando la siguiente ecuación.

$$m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$$

Donde: *mi*: Es el Número máximo admisible de "Valores Deducidos", incluyendo fracción, para la unidad de muestreo i.

HDVi: Es el mayor valor deducido individual para la unidad de muestreo *i*.

e.1.2.d) El número de Valores Individuales Deducidos se reduce a m, incluso la parte fraccionaria. Si se dispone de

menos valores deducidos que m se usa todos los que se tengan.

e.1.3) Tercer Paso: Cálculo del "Máximo Valor Deducido Corregido", CDV.

El máximo CDV se determina mediante el siguiente proceso iterativo:

- e.1.3.a) Determine el número de valores deducidos, q, mayores que 2.
- e.1.3.b) Determinar el "Valor Deducido Total" adicionando

 TODOS los valores deducidos individuales.
- e.1.3.c) Determinar el CDV con q y el "Valor Deducido Total" en la curva de corrección adecuado al tipo de pavimento.
- e.1.3.d) Disminuya a 2 el menor de los "Valores Deducidos" individuales que sea mayor que 2.0 y repita los pasos d.5.3.a a d.5.3.c, hasta que "q" sea igual a 1.
- e.1.3.e) El máximo CDV es el mayor de los CDV obtenidos en este proceso.
- e.1.4) Cuarto Paso: Calcule el PCI de la unidad restando de 100 el máximo CDV obtenido en el Tercer paso.

PCI=100-max.CDV.

IV. METODOLOGÍA:

4.1. Tipo y nivel de la investigación de la tesis.

La metodología será del tipo descriptivo, no experimental de fácil implementación y no necesita de herramientas especializadas.

- Es descriptivo, por que describe la realidad de situaciones sin alterarla.

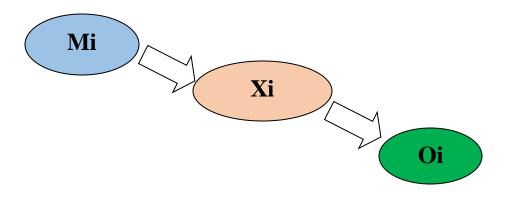
 Las principales etapas a seguir en una investigación descriptiva son:

 examinar las características del tema a investigar, definirlo y formular

 hipótesis, seleccionar la técnica para la recolección de datos y las

 fuentes a consultar.
- ➤ Es no experimental porque se basa fundamentalmente en la observación de fenómenos tal y como se dan en su contexto natural para analizarlos con posterioridad sin alterar el entorno en estudio.

4.2. Diseño de la investigación.


 a) Se desarrollará siguiendo el Índice de Condición del Pavimento (PCI).

El PCI es un índice numérico que varía desde cero (0), para un pavimento fallado o en mal estado, hasta cien (100) para un pavimento en perfecto estado. En el Cuadro N° 01, se presentan los rangos de PCI con la correspondiente descripción cualitativa de la condición del pavimento.

- b) La metodología a utilizar, para el desarrollo del proyecto será:
 - ✓ Recopilación de antecedentes preliminares: En esta etapa se realizará la búsqueda el ordenamiento, análisis y validación de los datos existentes de toda la información necesaria que ayudó a cumplir con los objetivos de este proyecto.

- ✓ Estudio de la aplicación del programa de diagnóstico y seguimiento de pavimentos enfocado al método PCI
- ✓ Para la determinación y evaluación de las patologías del pavimento flexible se tomara todo el ancho y largo del pavimento flexible de la Calle Túpac Amaru Cuadra 1, 2, 3, 4 y 5, distrito de Iquitos, Provincia de Maynas, región Loreto.

Figura N° 04. Diseño de la investigación.

Fuente: Elaboración propia.

Donde:

Mi = Muestra del elemento de estudio – Pavimento

Xi = Variable de estudio – Patologías.

Oi = Resultado.

4.3. Población y muestra.

4.3.1. Población.

Para la presente investigación el universo estará dado por la delimitación geográfica la Calle Túpac Amaru, distrito de Iquitos, Provincia de Maynas, región Loreto.

Figura N° 05. Ubicación Calle Túpac Amaru.

Fuente: elaboración propia

Cuadro N° 02. Unidad de Muestra PCI

ANCHO DE CALZADA	LONG. DE LA UNIDAD DE MUESTRA (m)
5.00	46.00
5.50	41.80
6.00	38.30
6.50	35.40
7.30 (max)	31.50

Fuente: Manual del PCI

Según la sección vía encontrada en campo es de 7.30m, donde la longitud de muestra según el cuadro N° 01 será de 31.50m

Encontrando el número de paños: Ecuación......(1)

$$N^{\circ} = \frac{LT}{L.M}$$

Formula:

Donde:

N°= el número total de muestras.

LT= longitud total de la vía de estudio.

LM= longitud de muestro según sección de vía – PCI

* Remplazando se Obtiene:

$$LM = 31.50m$$

$$N^{\circ} = \frac{531.36}{31.50} = 16.86 = 17$$

N°= 17 unidades de muestras

Encontrando las unidades de muestras a estudiar: Ecuación... (2)

Formula:

$$n = \frac{(N)(\sigma^2)}{\frac{e^2}{4}(N-1) + \sigma^2}$$

Donde:

n: Número mínimo de unidades de muestra a evaluar

N: Número total de unidades de muestreo en la sección del pavimento.

e: Error admisible en el estimativo del PCI de la sección (e = 5%)

σ: Desviación estándar del PCI entre las unidades (10).

Remplazando se obtiene:

$$n = \frac{17x10^2}{\frac{5^2}{4}x(17-1)+10^2} = 8.5 = 9$$

9 muestras de estudio.

Encontrando el intervalo de separación: Ecuación...... (3)

$$i = \frac{N}{n}$$

Donde:

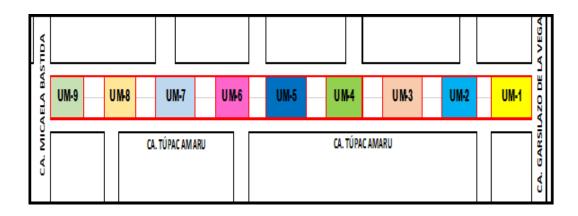
i: intervalo de muestras

N: número total de muestras

n: número de muestras a estudiar

Entonces:

$$n=\frac{17}{8}=2.12=2$$


4.3.2. Muestra.

La muestra será dada por las cuadras 1, 2, 3, 4 y 5 de la Calle Túpac Amaru, distrito de Iquitos, Provincia de Maynas, región Loreto.

4.3.3. Muestreo.

Se seleccionaran de acuerdo a la metodología del PCI (método por lo anteriormente explicado).

Figura N° 06. Ubicación de muestreo.

4.4. Definición y operacionalización de las variables.

Cuadro N° 03. Cuadro de operacionalización de variables.

VARIABLE	DEFINICION CONCEPTUAL	DIMENCIONES	DEFINICION OPERACIONAL	INDICADORES
determinación y		Tipos de		
evaluación de las		patologías que se	Variabilidad	Tipo de presencia
patologías del		presentan en los		de las patologías.
pavimento		pavimentos		
flexible, para	Es la	asfalticos en		
obtener el índice	determinación y	mención Como:		
de integridad	evaluación de las	Corrugación		
estructural y	patologías del	Agretamiento		Clase de falla Nivel de
condición	pavimento	en bloques		severidad
operacional de la	flexible, de la	Cruce de vía		
superficie de	calle tupac amaru	férrea.		
rodadura de la	cuadras 1, 2, 3, 4	Huecos		
calle tupac amaru	y 5, distrito de	Huellamiento.	Grado de	
cuadras 1, 2, 3, 4	iquitos, provincia	Desplazamient	afectación	
y 5, distrito de	de maynas, region	0.		-Bajo
iquitos, provincia	loreto, año – 2018	Grieta		-Medio
de maynas, region		parabólica		-Alto
loreto, año – 2018		(slippage)		
		Grietas long y		
		transversal.		

4.5. Técnicas e Instrumentos de recolección de datos.

4.5.1 Técnicas de recolección de datos

Se empleara la técnica de la evaluación visual, la cual será indispensable para iniciar los trabajos de toma de datos, considerando como método recolección de información de la muestra, según el análisis de muestreo. Donde la toma de datos es elemental contar con los instrumentos necesarios para la elaboración de la misma. El cual será atraves de una hoja de inspección de campo y el manual del PCI.

4.5.2 Instrumentos de recolección de datos

Se utilizaron los siguientes materiales y equipos:

- Plano de vía de pavimento.
- Wincha métrica.
- * Regla de medida de 30cm.
- Calculadora.
- ❖ Cámara digital.
- Otros equipos.

4.6. Plan de análisis.

Los datos y resultados se darán a conocer por los siguientes:

- ❖ La ubicación del área de estudio.
- Los tipos de patologías existentes.
- Inspección de cada unidad de muestra elegido
- Nivel de índice de condición de pavimento.
- Cuadros del ámbito de la investigación.
- Cuadros estadísticos delas Patologías existentes.

4.7. Matriz de consistencia.

Para las matriz de consistencia de creo el siguiente cuadro para una mejor observación de los componentes mencionados.

CUADRO DE MATRIZ DE CONSISTENCIA

"DETERMINACIÓN Y EVALUACIÓN DE LAS PATOLOGÍAS DEL PAVIMENTO FLEXIBLE, PARA OBTENER EL ÍNDICE DE INTEGRIDAD ESTRUCTURAL Y CONDICIÓN OPERACIONAL DE LA SUPERFICIE DE RODADURA DE LA CALLE TUPAC AMARU CUADRAS 1, 2, 3, 4 Y 5, DISTRITO DE IQUITOS, PROVINCIA DE MAYNAS, REGION LORETO, AÑO – 2018".

	PROVINCIA DE MAYNAS, REG	ION LORETO, ANO – 2018".	
PROBLEMA	OBJETIVO	VARIABLE	MARCO TEORICO, CONCEPTUAL Y METODOLOGIA
Caracterización del problema:	Objetivo General:	Variable Independiente:	* Marco Teórico y Conceptual:
La Calle Túpac Amaru, Distrito de Iquitos,	Determinar el índice de condición de	Determinación y evaluación de	En el presente trabajo de investigación se
Provincia de Maynas, Departamento de	pavimento, de la Calle Túpac	las patologías del pavimento	consultaron diversas tesis, estudios o
Loreto, se encuentra situada a 3°43'46"	Amaru, Distrito de Iquitos, Provincia	flexible.	trabajos de relacionados al tema.
latitud sur y 73°14′18′′ longitud oeste, con	de Maynas, Departamento de Loreto,		- Antecedentes internacionales.
una temperatura mínima de 20 ° C y	a partir de la determinación y	Variable Dependiente:	- Antecedentes nacionales.
máxima de 35° C, los meses más caliente	evaluación de las patologías del	Índice de integridad y	❖ Bases Teóricas:
ocurren entre los meses de setiembre -	mismo.	condición operacional de la	- Pavimento.
enero y los más fríos los meses de Junio y		superficie de rodadura.	- Pavimento flexible.
Julio, por tal motivo los procesos			- Asfalto.
constructivos varían en función a dichas	Objetivos Especifico:		- Patología.
temperaturas y épocas, durante el día el sol	a) Identificar los tipos de patologías		- Índice de condición de pavimento (PCI)
calienta la superficie y en la noche	del pavimento que existe en la		* Metodología:
rápidamente se enfría produciendo extremos	superficie de rodadura de la Calle		> Tipo y nivel de la investigación de la
de temperaturas relativas, es por ello se	Túpac Amaru, Distrito de Iquitos,		tesis.
debe considerar todos los aspectos que	Provincia de Maynas,		La metología será del tipo descriptivo,
inciden en forma prioritaria en la	Departamento de Loreto.		no experimental de fácil implementación
estructuración de los pavimentos, el cual			y no necesita de herramientas
requiere de un nivel técnico apropiado para			especializadas.
su ejecución.	b) Obtener el índice de condición de		Diseño de la investigación.
	pavimento para la superficie de		Se desarrollará siguiendo el Índice de
Las Calles del distrito de Iquitos, se	rodadura de la Calle Túpac Amaru,		Condición del Pavimento (PCI).
encuentran pavimentadas en un 70 % por	Distrito de Iquitos, Provincia de		El PCI es un índice numérico que varía

pavimento rígido (mortero, c:a) y un 30% pavimento flexible (cemento asfáltico), por lo

que la Calle Túpac Amaru, es una de las vías que presentan diversas patologías lo que indica que no hubo un trabajo de mantenimiento y que amerita una rehabilitación.

Por tal motivo fue necesario determinar y evaluarlas patologías en el pavimento flexible de la Calle Túpac Amaru, las mismas que serán muestras de inspección visual, para tomar datos y determinar un índice de condición de pavimento a partir de dichas patologías.

Enunciado del problema:

¿En qué medida la determinación y evaluación de las patologías del pavimento flexible de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto, nos permitirá evaluar el estado actual y obtener un índice de integridad estructural del pavimento y de la condición operacional de la superficie de rodadura?

Maynas, Departamento de Loreto.

c) Evaluar la integridad estructural del pavimento y la condición operacional de la superficie de rodadura de la Calle Túpac Amaru, Distrito de Iquitos, Provincia de Maynas, Departamento de Loreto. desde cero (0), para un

pavimento fallado o en mal estado, hasta cien (100) para un pavimento en perfecto estado. En el Cuadro N° 01, se presentan los rangos de PCI con la correspondiente descripción cualitativa de la condición del pavimento.

Mediante recopilación de datos de campo.

> Población y muestra.

- Población
- Muestra.
- Muestreo.

Definición y operacionalización de la variable.

- Variable.
- Definición conceptual.
- Dimenciones.
- Definición operacional.
- Indicadores.

Fécnicas e instrumentos de recolección de datos.

- Manual del PCI.
- Hoja de inspección del PCI.
- Wincha métrica, etc.

Plan de análisis.

Se realizara según el área de estudio y tipo de patología existente, representado en cuadros estadísticos.

4.8. Principios éticos.

Como profesionales en la ingeniería civil, estamos para servir a la sociedad, asumiendo compromisos el de brindar apoyo al bienestar humano, dando sobre todo la honestidad a la sociedad y esforzándonos en calidad de la profesión con trabajos y proyectos de buena calidad que aporten al desarrollo de la humanidad y sobre todo a la satisfacción de las necesidades de la vida cotidiana teniendo como principios éticos las siguientes responsabilidades:

- La garantizar la buena ejecución de todas las obras civiles para su buen funcionamiento destinado, se han estos de edificación, viales entre otros.
- La responsabilidad hacer cumplir las normar y reglamentos que norman en nuestro país.
- Respetar las opiniones de los demás colegas con el fin de tener un clima armónico entre profesionales de la misma carrera,
- Respetar las organizaciones civiles de trabajares haciendo cumplir los jornales del trabajador civil.
- Velar por el beneficio de los proyectos en ejecución en cada momento mediante su asesoramiento.

V. RESULTADOS:

5.1 Resultados.

El objetivo principal de la investigación es de determinar y evaluar las patologías del pavimento flexible existente para obtener el índice de integridad estructural y la condición de la superficie de la rodadura de la calle Túpac Amaru cuadra 1. 2, 3, 4 y 5. Distrito de Iquitos, Provincia de Maynas, Región Lotero, por el cual presentamos a continuación los resultados obtenidos de manera objetiva y lógica a través de tablas y gráficos de cada unidad de muestra evaluada en función:

- Tipos de patologías encontradas de cada unidad de muestra.
- Nivel de severidad de fallas encontradas en el pavimento flexible.
- Porcentaje total de área afectada de cada unidad de muestra, con el fin de establecer el grado de afectación.

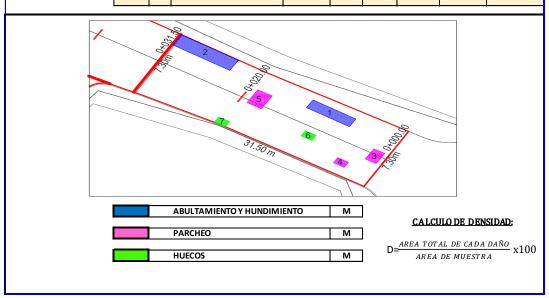
 ${\bf Cuadro}\;{\bf N}^{\circ}{\bf 04}$: Da ${f nos}\;$ encontrados, medidas y nivel de severidad según el PCI

DAÑOS ENCONTRADOS - PCI	LARGO (m)	ANCHO (m)	TOTAL (m2)	NIVEL DE SEVERIDAD
• Unidad de Muestra 01	(111)	(111)	(1112)	SE VERIDITO
4 Abultamiento y hundimiento	6.00	1.50	9.00	Media
4 Abultamiento y hundimiento	8.00	2.00	16.00	Media
11 Parcheo	2.00	1.50	3.00	Media
11 Parcheo	1.50	1.00	1.50	Media
11 Parcheo	2.50	2.00	5.00	Media
13 Huecos	1.00	1.50	1.50	Media
13 Huecos	1.50	0.80	1.20	Media
• Unidad de Muestra 02	1.30	0.80	1.20	Ivieuia
10 Grieta Long. Y Transversal	12.30		12.30	Media
10 Grieta Long. Y Transversal	5.00		5.00	
13 Huecos		2.40	3.84	Bajo Media
13 Huecos	1.60	2.40 1.50	1.50	
• Unidad de Muestra 03	1.00	1.30	1.30	Bajo
	4.65	4.65	21.62	Media
4 Abultamiento y hundimiento	ł	4.03		
10 Grieta Long. Y Transversal	15.20		15.20	Media
• Unidad de Muestra 04	2.50	2.50	C 25	D 41:-
4 Abultamiento y hundimiento	2.50	2.50	6.25	Media
4 Abultamiento y hundimiento	1.50	1.50	2.25	Bajo
10 Grieta Long. Y Transversal	7.80	2.20	7.80	Bajo
11 Parcheo	3.20	2.30	7.36	Media
11 Parcheo	2.40	2.40	5.76	Bajo
• Unidad de Muestra 05				
4 Abultamiento y hundimiento	3.20	2.00	6.40	Media
4 Abultamiento y hundimiento	2.20	2.00	4.40	Bajo
11 Parcheo	2.80	2.80	7.84	Media
11 Parcheo	1.80	2.00	3.60	Bajo
• Unidad de Muestra 06				l
10 Grieta Long. Y Transversal	10.55		10.55	Media
13 Huecos	2.00	2.80	5.60	Media
13 Huecos	1.50	1.35	2.03	Bajo
• Unidad de Muestra 07	1	l		l
4 Abultamiento y hundimiento	2.00	1.00	2.00	Media
13 Huecos	1.00	1.00	1.00	Media
13 Huecos	1.20	1.20	1.44	Bajo
• Unidad de Muestra 08		ı		
10 Grieta Long. Y Transversal	7.70		7.70	Media
13 Huecos	1.20	0.85	1.02	Media
• Unidad de Muestra 09				<u> </u>
4 Abultamiento y hundimiento	3.20	0.80	2.56	Media
11 Parcheo	3.00	1.80	5.40	Media
13 Huecos	1.30	1.20	1.56	Media

UNIDAD DE MUESTRA N°01 PROGRESIVA 0+000 AL 0+031.50

CDRA. 1 DE LA CALLE TUPAC AMARU
IQUITOS – MAYNAS – LORETO

Tabla N°01: hoja de registro de daños UM-01


HOJA DE INSPECCIÓN DE CONDICION DEL PAVIMENTO FLEXIBLE - PCI **UNIDAD DE MUESTREO** UNIVERSIDAD: CATÓLOCA LOS ÁNGELES DE CHIMBOTE FECHA DE EVALUACION: JULIO-2018 EVALUADOR: BACH. ROBERTO PRENTICE TECO MUESTRA: UM-01 PSJE./CALLE/JIRON/AV.: CALLE. TUPAC AMARU CUADRA: TIPO DE USO: VEHICULAR DIMENCIONES DE MUESTRA ANCHO (m): LONGITUD (m): 31.50 ARÉA DE MUESTRA (m2) AÑO DE CONSTRUCCION: 229.95 DISTRITO: IQUITOS PROVINCIA: MAYNAS DEPARTAMENTO: LORETO

	INDICE DE CONDICION DEL PAVIMENTO (PCI - PAVIMENT CONDITION INDEX)									
N°	TIPO DE DAÑO	N°	TIPO DE DAÑO							
1	Piel de Cocodrilo	11	Parcheo							
2	Exudación	12	Pulimento de Agregados							
3	Agrietamiento en Bloque	13	Huecos							
4	Abultamientos y Hundimiento	14	Cruce de Vía Férrea							
5	Corrugación	15	Ahuellamiento							
6	Depresión	16	Desplazamiento							
7	Grieta de Borde	17	Grieta Parabólica (slippage)							
8	Grieta de Reflexión de junta	18	Hinchamiento							
9	Desnivel de Carril / Berma	19	Desprendimiento de Agregado							
10	Grieta Long. Y Transversal									

NIVEL DE SEVERIDAD
SEVERIDAD ALTA
Α
SEVERIDAD MEDIA
М
SEVERIDAD BAJA
В

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL	DENSIDAD (%)	VALOR DEDUCIDO
1	4	Abultamiento y hundimient		6.00	1.50	9.00	3.91	25.18
2	4	Abultamiento y hundimient	М	8.00	2.00	16.00	6.96	34.29
3	11	Parcheo	М	2.00	1.50	3.00	1.30	11.36
4	11	Parcheo	М	1.50	1.00	1.50	0.65	7.85
5	11	Parcheo	М	2.50	2.00	5.00	2.17	14.83
6	13	Huecos	М	1.00	1.50	1.50	0.65	24.90
7	13	Huecos	М	1.50	0.80	1.20	0.52	21.18


Tabla N^{\circ}02: Abultamientos y hundimientos de severidad media de la UM-01

N° TIPO DE DAÑO 4 ABULTAMIENTOS Y HUNDIMIENTOS UBICACIÓN: CA. TUPAC AMARUN° DE ORDEN: 1 CUADR	NIVE	L DE SEVE	DID A D		
			CIDAD	MUESTRA	
LIRICACIÓN: CA TUPAC AMADUNO DE ODDEN. 1 CHADO		Media		01	
CA. ICI AC AMARUN DEURDEN: 1 CUADR	RA: 1	DENSIDAI):	3.91	%
CALCULO DE VALOR DEDUCIDO AI	BACO DE VA	LORES DE	DUCIDO P	ARA PAVI	MENTO S
		VAI	OR DEDUC	сто	
	DENSIDAD	Baja	Media	Alta	
[3.0 21.9]]	0.1				
\[\big _{3.91} \cdots X \]	0.2				
4.0 25.5	0.3		4.4	20.5	
	0.4	0.9	6.4	23.1	
	0.5	1.6	7.9	25.3	
3.91 - 3.0 X - 21.9	0.6	2.2	9.2	27.3	
4.0 - 3.0	0.7	2.7	10.2	29.1	
	0.8	3.2	11.2	30.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.9	3.6	12.0	32.3	
1.00 3.6 1	1.0	3.9	12.7	33.7	
	2.0	6.8	17.6	44.8	
X = 25.18	3.0	8.0	21.9	50.5	
	4.0	9.2	25.5	55.0	
	5.0	10.4	28.7	58.8	
	6.0	11.5	31.7	62.1	
VALOR DEDUCIDC 25.18	7.0	12.7	34.4	65.0	
	8.0	13.9	36.9	67.6	
	9.0	15.1	39.3	70.0	
	10.0	16.3	41.6	72.3	
	20.0	28.1	60.2	88.8	
	30.0	39.9	74.8	100.2	
	32.0	40.0	75.0	100.3	
	50.0				
	60.0				
	70.0				
	80.0				
	90.0				
	100.0				

 $\textbf{Tabla N}^{\circ}\textbf{03: A} \textbf{bultamientos y hundimientos de severidad media de la UM-01}$

CALCULO DEL VALOR	DEDUC	<u>DO</u>			
N° TIPO DE DAÑO	NIVE	L DE SEVER	RIDAD	MUESTRA	
4 ABULTAMIENTOS Y HUNDIMIENTOS		Media		01	
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 2 CUADRA	A: 1	DENSIDAI):	6.96	%
CALCULO DE VALOR DEDUCIDO AB	ACO DE VA	LORES DE	DUCIDO P	ARA PAVI	MENTO S
		VAL	OR DEDUC	сто]
	DENSIDAD	Ваја	Media	Alta	1
[6.0 31.7]	0.1	-	-	_	
6.96 X	0.2	-	-	-	
7.0 34.4	0.3	-	4.4	20.5	
	0.4	0.9	6.4	23.1	
	0.5	1.6	7.9	25.3	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.6	2.2	9.2	27.3	
7.0 - 6.0 34.40 - 31.7	0.7	2.7	10.2	29.1	
	0.8	3.2	11.2	30.8	
$\frac{0.96}{} = \frac{31.7}{} = \frac{2.592}{} + \frac{31.7}{}$	0.9	3.6	12.0	32.3	
1.00 2.7 1	1.0	3.9	12.7	33.7	
	2.0	6.8	17.6	44.8	
X = 34.29	3.0	8.0	21.9	50.5	
	4.0	9.2	25.5	55.0	
	5.0	10.4	28.7	58.8	
	6.0	11.5	31.7	62.1	
VALOR DEDUCIDC 34.29	7.0	12.7	34.4	65.0	
	8.0	13.9	36.9	67.6	
	9.0	15.1	39.3	70.0	
	10.0	16.3	41.6	72.3	
	20.0	28.1	60.2	88.8	
	30.0	39.9	74.8	100.2	
	32.0	40.0	75.0	100.3	
	50.0	-	-	-	
	60.0	-	-	-	
	70.0	-	-	-	
	80.0	-	-	-	
	90.0	-	-	-	
	100.0	-	-	-	
DIAGRAMA DE INTERI	POLACIO)N			

Tabla N^{\circ}04: Parcheo de severidad media de la UM-01

CALCULO DEL VALOR	DEDUC	<u>IDO</u>			
N° TIPO DE DAÑO	NIVE	L DE SEVER	IDAD	MUESTRA	
11 PARCHEO		Media		01	
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 3 CUADRA	.: 1	DENSIDAD):	1.30	%
CALCULO DE VALOR DEDUCIDO ABA	ACO DE VA	LORES DE	DUCIDO P	ARA PAVI	MENTOS
	DENGE : P		OR DEDUC	то	
	DENSIDAD	Baja	Media	Alta	
	0.1		3.7	6.5	
1.30 X	0.2		4.5	9.2	
☐ 2.0 14.3 ☐	0.3		5.2	11.2	
	0.4		6.0	12.9	
	0.5	1.2	6.7	14.4	
$\left \frac{1.30 - 1.0}{1.00} \right = \frac{X - 10.1}{1.00}$	0.6	1.4	7.5	15.8	
2.0 - 1.0 14.30 - 10.1	0.7	1.6	8.2	17.1	
	0.8	1.9	9.0	18.3	
$\frac{0.30}{} = \frac{10.1}{} = \frac{1.26}{} + \frac{10.1}{}$	0.9	2.1	9.7	19.4	
1.00 4.2 1	1.0	2.3	10.1	19.4	
	2.0	4.4	14.3	26.0	
X = 11.36	3.0	6.6	17.4	30.8	
	4.0	8.0	20.1	34.8	
l	5.0	9.9	22.4	38.2	
	6.0	11.7	24.6	41.2	
VALOR DEDUCIDO 11.36	7.0	13.2	26.5	44.0	
	8.0	14.6	28.3	46.5	
	9.0	15.7	30.0	48.9	
	10.0	16.8	31.5	52.0	
	20.0	23.7	41.0	67.5	
	30.0	27.8	47.9	73.1	
	40.0	30.7	53.4	77.0	
	50.0	32.9	58.2	80.1	
	60.0				
	70.0				
	80.0				
	90.0				
	100.0				

Tabla N^{\circ}05: Parcheo de severidad media de la UM-01

CALCULO DEL VALOR DEDUCIDO												
N° TIPO DE DAÑO NIVEL DE SEVERIDAD MUESTRA												
	PARCHEO		Media		01							
UBICA	ACIÓN: CA. TUPAC AMARUN° DE ORDEN: 4 CUAL	DRA: 1	DENSIDAI	D:	0.65	%						
		ABACO DE VA	ALO RES DE	DUCIDO P	ARA PAVI	MENTO						
	VALOR DEDUCIDO											
		DENSIDAI)	1								
		0.4	Baja	Media	Alta							
Ш	0.6 7.5	0.1		3.7	6.5							
Ι,	0.65 X	0.2		4.5	9.2							
	0.7 8.2	0.3		5.2	11.2							
		0.4	1.2	6.0	12.9							
Г	0.65 - 0.6 X - 7.5	0.5	1.4	7.5								
-	$\begin{vmatrix} 0.05 & - & 0.6 \\ 0.7 & - & 0.6 \end{vmatrix} = \frac{24}{8.20} - \frac{7.5}{7.5}$	0.7	1.6	8.2	15.8 17.1							
L		0.8	1.9	9.0	18.3							
	0.05 7.5 0.035 + 0.75	0.9	2.1	9.7	19.4							
-	$\frac{0.00}{0.10} = \frac{7.5}{0.7} = \frac{0.000}{0.1}$	1.0	2.3	10.1	19.4							
	····	2.0	4.4	14.3	26.0							
	X = 7.85	3.0	6.6	17.4	30.8							
		4.0	8.0	20.1	34.8							
		5.0	9.9	22.4	38.2							
		6.0	11.7	24.6	41.2							
	VALOR DEDUCIDC 7.85	7.0	13.2	26.5	44.0							
		8.0	14.6	28.3	46.5							
		9.0	15.7	30.0	48.9							
		10.0	16.8	31.5	52.0							
		20.0	23.7	41.0	67.5							
		30.0	27.8	47.9	73.1							
		40.0	30.7	53.4	77.0							
		50.0	32.9	58.2	80.1							
		60.0										
		70.0										
		80.0										
		90.0										
		100.0										
	DIAGRAMA DE INTE	RPOLAC	ION									
	100											
	90			-								
	80			-								
۾ ا	70			Ш								
luci	7.85											
Ded	50				— Вај	o						
Valor Deducido					— Ме	dia						
ř	40				—— Alto	7						
	30											
	20											
	10											
		10.0		100.0								
	Densidad											

Tabla N°06: Parcheo de severidad media de la UM-01

CALCULO DEL VALO	OR I	DEDUC	DO			
N° TIPO DE DAÑO	NIVEL DE SEVERIDAD			MUESTRA		
11 PARCHEO			Media		01	
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 5 CUA	DRA:	1	DENSIDAI):	2.17	%
CALCULO DE VALOR DEDUCIDO	ABA	CO DE VA	LO RES DE	DUCIDO P	ARA PAVI	MENTOS
			VAL	OR DEDUC	сто]
		DENSIDAD	Ваја	Media	Alta	1
[2.0 14.3]]		0.1		3.7	6.5	
[0.2		4.5	9.2	1
3.0 17.4		0.3		5.2	11.2	
		0.4		6.0	12.9	
		0.5	1.2	6.7	14.4	
2.17 - 2.0 X - 14.3		0.6	1.4	7.5	15.8	
$\boxed{ 3.0 - 2.0 } = \boxed{ 17.40 - 14.3 }$		0.7	1.6	8.2	17.1	
		0.8	1.9	9.0	18.3	
0.17 _ 14.3 _ 0.53 + 14.3		0.9	2.1	9.7	19.4	
1.00 3.1 1		1.0	2.3	10.1	19.4	
		2.0	4.4	14.3	26.0	
X = 14.83		3.0	6.6	17.4	30.8	1
		4.0	8.0	20.1	34.8	
		5.0	9.9	22.4	38.2	
		6.0	11.7	24.6	41.2	1
VALOR DEDUCIDC 14.83		7.0	13.2	26.5	44.0	1
		8.0	14.6	28.3	46.5	
		9.0	15.7	30.0	48.9]
		10.0	16.8	31.5	52.0	
		20.0	23.7	41.0	67.5	
		30.0	27.8	47.9	73.1	
		40.0	30.7	53.4	77.0	
		50.0	32.9	58.2	80.1	
		60.0				
		70.0				
		80.0				
		90.0				
		100.0				

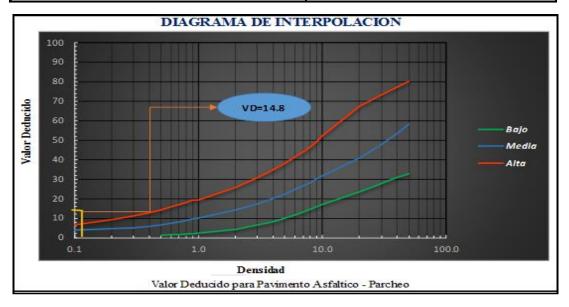
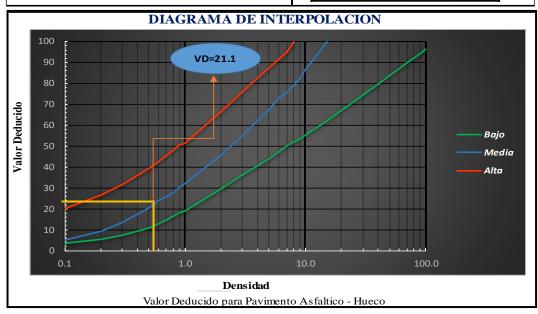



Tabla N°07: Huecos de severidad media de la UM-01

WPO DED A SO		, DE CEVE) ATTEND				
N° TIPO DE DAÑO NIVEL DE SEVERIDAD MUESTRA 13 HUECOS Media 01								
	- I							
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 6 CUAI		DENSIDAL		0.65	%			
CALCULO DE VALOR DEDUCIDO	ABACO DE VA	LO RES DE	DUCIDO P	ARA PAVII	MENTOS			
	DENS ID A D		OR DEDUC	сто				
	22.10.12.12	Baja	Media	Alta				
[0.6 23.9]]	0.1	3.5	5.2	19.9				
0.65 X	0.2	5.3	9.4	26.7				
□ 0.7 25.9 □	0.3	7.2	13.4	31.7				
	0.4	9.1	17.2	35.8				
	0.5	10.9	20.5	39.4				
$\left \frac{0.65 - 0.6}{0.65} \right = \frac{X - 23.9}{0.000}$	0.6	12.8	23.9	42.5				
0.7 - 0.6 25.90 - 23.9	0.7	14.6	25.9	45.4				
0.05	0.8	16.5	27.8	48.4				
$\frac{0.05}{0.10} = \frac{23.9}{2.0} = \frac{0.1 + 2.39}{0.1}$	0.9	18.3	30.0	50.5				
0.10 2.0 0.1	2.0	18.8	32.0 46.0	51.4 66.9				
X = 24.90	3.0	36.1	55.0	76.0				
A = 24.70	4.0	40.6	62.1	82.4				
	5.0	44.1	67.6	87.4				
	6.0	46.9	72.7	91.5				
VALOR DEDUCIDO: 24.90	7.0	50.0	75.5	95.0				
(1201220000 2100	8.0	52.0	79.1	100.0				
	9.0	53.3	82.0					
	10.0	55.0	86.5					
	15.0	62.0	100.0					
	30.0	74.3						
	40.0	79.5						
	50.0	83.6						
	60.0	87.0						
	70.0	89.8						
	80.0	92.2						
	90.0	94.4						
	100.0	96.3						
DIAGRAMA DE INTE	RPOLACI	ON						
100								
WD 240								
80								
9 70								
Aglor Deducido 60 50 40								
P 50				—— Bajo				
Valor				—— Меа				
	1/// ///			—— Alta				
30	9/1/1/1/1							
20								
10								
0								
	10.0		100.0					
Densidad								
Valor Deducido para Pavimento	Asfaltico - H	lueco						
•								

Tabla N°08: Huecos de severidad media de la UM-01

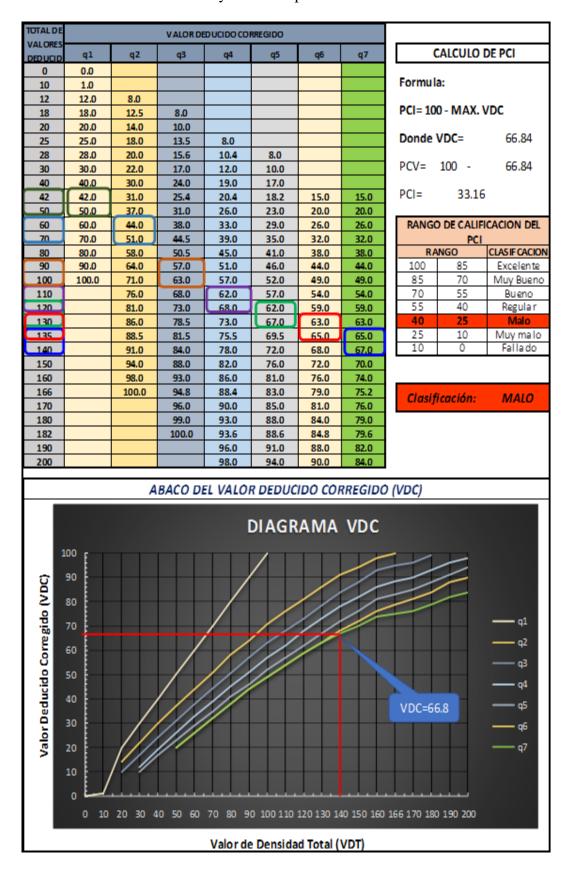

$\begin{bmatrix} 0.52 & \cdots & X \\ 0.6 & \cdots & 23.9 \end{bmatrix}$ $\begin{bmatrix} 0.52 & - & 0.5 \\ 0.6 & - & 0.5 \end{bmatrix} = \begin{bmatrix} X & - & 20.5 \\ 23.90 & - & 20.5 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \end{bmatrix} = \begin{bmatrix} 20.5 \\ 3.4 \end{bmatrix} = \begin{bmatrix} 0.068 \\ + \\ 2.05 \end{bmatrix}$ $\begin{bmatrix} 0.10 \\ 0.10 \end{bmatrix} = \begin{bmatrix} 20.5 \\ 3.4 \end{bmatrix} = \begin{bmatrix} 0.068 \\ 0.1 \end{bmatrix}$ $\begin{bmatrix} 0.10 \\ 0.10 \end{bmatrix} = \begin{bmatrix} 20.5 \\ 3.4 \end{bmatrix} = \begin{bmatrix} 0.068 \\ 0.1 \end{bmatrix}$ $\begin{bmatrix} 0.10 \\ 0.10 \end{bmatrix} = \begin{bmatrix} 0.068 \\ 3.4 \end{bmatrix} = \begin{bmatrix} 0.068 \\ 0.1 \end{bmatrix}$ $\begin{bmatrix} 0.10 \\ 0.10 \end{bmatrix} = \begin{bmatrix} 0.068 \\ 3.4 \end{bmatrix} = \begin{bmatrix} 0.068 \\ 0.1 \end{bmatrix}$ $\begin{bmatrix} 0.10 \\ 0.10 \end{bmatrix} = \begin{bmatrix} 0.068 \\ 3.4 \end{bmatrix} = \begin{bmatrix} 0.0$	N° TIPO DE DAÑO							NIVEL DE SEVERIDAD			MUESTRA			
CALCULO DEVALOR DEDUCIDO ABACO DE VALORES DEDUCIDO PARA PA VALOR DEDUCIDO $ \begin{bmatrix} 0.5 & \cdots & 20.5 \\ 0.52 & \cdots & X \\ 0.6 & \cdots & 23.9 \end{bmatrix} $ $ \begin{bmatrix} 0.52 & \cdot & 0.5 \\ 0.6 & \cdot & 0.5 \end{bmatrix} = \begin{bmatrix} X & - & 20.5 \\ 23.90 & - & 20.5 \end{bmatrix} $ $ 0.10 = \begin{bmatrix} 0.02 \\ 0.10 \\ X & = & 21.18 \end{bmatrix} $ $ \begin{bmatrix} 0.02 \\ 0.10 \\ X & = & 21.18 \end{bmatrix} $ $ \begin{bmatrix} 0.03 \\ 0.10 \\ 0.1$	13 HUECOS							Media			01			
$ \begin{bmatrix} 0.5 & \cdots & 20.5 \\ 0.52 & \cdots & X \\ 0.6 & \cdots & 23.9 \end{bmatrix} $	UBIC.	ACIÓN:	CA. TUPA	C AMARU	N° DE O	RDEN:	6	CUAD	RA:	1	DENSIDAI):	0.65	%
$\begin{bmatrix} 0.5 & \cdots & 20.5 \\ 0.52 & \cdots & X \\ 0.6 & \cdots & 23.9 \end{bmatrix}$ $\begin{bmatrix} 0.52 & - & 0.5 \\ 0.6 & - & 0.5 \end{bmatrix} = \begin{bmatrix} X & - & 20.5 \\ 23.90 & - & 20.5 \\ \hline 0.10 & 3.4 & 30.0 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline X & = & 20.5 \\ \hline 0.10 $			CALCULO D	E VALOR I	EDUCI	DO		A	BA	CO DE VA	LORES DE	DUCIDO P	ARA PAVI	MENTOS
$\begin{bmatrix} 0.5 & \cdots & 20.5 \\ 0.52 & \cdots & X \\ 0.6 & \cdots & 23.9 \end{bmatrix}$ $\begin{bmatrix} 0.52 & - & 0.5 \\ 0.6 & - & 0.5 \end{bmatrix} = \begin{bmatrix} X & - & 20.5 \\ 23.90 & - & 20.5 \\ \hline 0.10 & = & 20.5 \\ \hline 0.10 & = & 21.18 \end{bmatrix}$ $\begin{bmatrix} 0.02 \\ 0.10 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.4 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.6 \\ \hline 0.5 \\ \hline 0.7 \\ 0.7 \\ \hline 0.8 \\ \hline 0.8 \\ \hline 0.5 \\ \hline 0.8 \\ \hline 0.8 \\ \hline 0.5 \\ \hline 0.7 \\ \hline 0.8 \\ \hline 0.9 \\ \hline 0.10 \\ \hline 0.10 \\ \hline 0.10 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.5 \\ \hline 0.6 \\ \hline 0.8 \\ \hline 0.8 \\ \hline 0.10 \\ \hline 0.10 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.6 \\ \hline 0.10 \\ \hline 0.10 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.6 \\ \hline 0.10 \\ \hline 0.10 \\ \hline 0.10 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.10 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.4 \\ \hline 0.10 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.10 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.2 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.4 \\ \hline$									ſ		VAI	OR DEDUC	сто	1
$\begin{bmatrix} 0.5 & \cdots & 20.5 \\ 0.52 & \cdots & X \\ 0.6 & \cdots & 23.9 \end{bmatrix}$ $\begin{bmatrix} 0.52 & - & 0.5 \\ 0.6 & - & 0.5 \end{bmatrix} = \frac{X}{23.90} - \frac{20.5}{20.5}$ $\begin{bmatrix} 0.02 \\ 0.10 \end{bmatrix} = \frac{20.5}{3.4} = \frac{0.068}{0.1} + \frac{2.05}{0.1}$ $\begin{bmatrix} 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \end{bmatrix} = \frac{17.2}{35.8}$ $\begin{bmatrix} 0.5 \\ 0.6 \\ 12.8 \\ 23.9 \end{bmatrix} = \frac{20.5}{45.4}$ $\begin{bmatrix} 0.02 \\ 0.10 \end{bmatrix} = \frac{20.5}{3.4} = \frac{0.068}{0.1} + \frac{2.05}{0.1}$ $\begin{bmatrix} 0.1 \\ 0.2 \\ 0.3 \end{bmatrix} = \frac{20.5}{10.9} = \frac{20.5}{20.5} = \frac{20.5}{23.90} = \frac{20.5}{20.5}$ $\begin{bmatrix} 0.1 \\ 0.2 \\ 0.3 \\ 0.3 \end{bmatrix} = \frac{20.5}{10.9} = \frac{20.5}{20.5} = \frac{20.5}{20.5}$ $\begin{bmatrix} 0.5 \\ 10.9 \\ 20.5 \\ 3.0 \\ 30.0 \end{bmatrix} = \frac{20.5}{45.4}$ $\begin{bmatrix} 0.9 \\ 18.3 \\ 30.0 \\ 30.0 \end{bmatrix} = \frac{20.5}{45.4}$ $\begin{bmatrix} 0.9 \\ 18.3 \\ 30.0 \end{bmatrix} = \frac{20.5}{20.5} = \frac{20.5}{20.5}$ $\begin{bmatrix} 0.0 \\ 40.0 \\ 40.0 \\ 40.6 \\ 62.1 \\ 82.4 \\ 50.0 \\ 40.0 \end{bmatrix} = \frac{20.5}{20.5} = \frac{20.5}{20.5}$ $\begin{bmatrix} 0.1 \\ 3.5 \\ 5.0 \\ 42.5 \\ 5.0 \end{bmatrix} = \frac{20.5}{45.4}$ $\begin{bmatrix} 0.1 \\ 3.5 \\ 5.2 \\ 10.9 \\ 20.5 \\ 3.0 \\ 30.0 \end{bmatrix} = \frac{20.5}{30.8}$ $\begin{bmatrix} 0.5 \\ 10.9 \\ 20.5 \\ 30.0 \\ 30.0 \end{bmatrix} = \frac{20.5}{45.4}$ $\begin{bmatrix} 0.8 \\ 16.5 \\ 27.8 \\ 48.4 \\ 40.0 \\ 40.6 \\ 62.1 \\ 82.4 \\ 5.0 \\ 40.0 \\ 40.6 \\ 62.1 \\ 82.4 \\ 5.0 \\ 80.0 \\ 52.0 \\ 79.1 \\ 100.0 \\ 9.0 \\ 53.3 \\ 82.0 \\ 10.0 \\ 79.5 \\ 50.0 \\ 83.6 \\ 60.0 \\ 87.0 \end{bmatrix}$									ľ	DENSIDAD	Baja	Media	Alta	
$\begin{bmatrix} 0.52 & \cdots & X \\ 0.6 & \cdots & 23.9 \end{bmatrix} = \begin{bmatrix} X & - & 20.5 \\ 23.90 & - & 20.5 \\ \hline 0.10 & = & 20.5 \\ \hline 0.10 & = & 21.18 \end{bmatrix} = \begin{bmatrix} X & - & 20.5 \\ 23.90 & - & 20.5 \\ \hline 0.10 & = & $		0.5	20.5						ı	0.1	3.5	5.2	19.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	0.52	- 11						Ī	0.2	5.3	9.4	26.7	1
	L	0.6	23.9						ı	0.3	7.2	13.4	31.7	
$ \frac{0.52 - 0.5}{0.6 - 0.5} = \frac{X - 20.5}{23.90 - 20.5} $ $ \frac{0.02}{0.10} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1} $ $ \frac{X}{0.00} = \frac{20.5}{3.0} = \frac{20.5}{3.0} = \frac{20.5}{3.0} $ $ \frac{X}{0.00} = \frac{20.5}{3.4} = \frac{20.5}{3.0} = \frac{20.5}{3.0} $ $ \frac{X}{0.00} = \frac{20.5}{3.0} = \frac{20.5}{3.0} = \frac{20.5}{3.0} $ $ \frac{X}{0.00} = \frac{20.5}{3.0} = $									Ī	0.4	9.1	17.2	35.8	1
0.6 - 0.5 = 23.90 - 20.5 0.02 = 20.5										0.5	10.9	20.5	39.4	
0.02 = 20.5 = 0.068	<u> </u> [0.52	- 0.5	X	-	20.5				0.6	12.8	23.9	42.5	
$\frac{0.02}{0.10} = \frac{20.5}{3.4} = \frac{0.068 + 2.05}{0.1}$ $X = 21.18$ $VALOR DEDUCIDO: 21.18$ $2.0 = 29.7 + 46.0 + 66.9 + 66.9 + 66.0 + 66.0 + 66.9 + 66.0 + 66.9 + 66.0 + 66.9 + 66.0 + 66.9 + 66.0 + 66.9 + 66.0 + 66.0 + 66.9 + 66.0 + 66$		0.6	- 0.5	23.90	-	20.5				0.7	14.6	25.9	45.4	
0.10 3.4 0.1 1.0 18.8 32.0 51.4 2.0 29.7 46.0 66.9 3.0 36.1 55.0 76.0 4.0 40.6 62.1 82.4 5.0 44.1 67.6 87.4 6.0 46.9 72.7 91.5 7.0 50.0 75.5 95.0 8.0 52.0 79.1 100.6 9.0 53.3 82.0 10.0 55.0 86.5 15.0 62.0 100.0 30.0 74.3 40.0 79.5 50.0 83.6 60.0 87.0 10.0 87.0 10.0										0.8	16.5	27.8	48.4	
X = 21.18 2.0		0.02	20.5	0.068	+	2.05				0.9	18.3	30.0	50.5	
X = 21.18 3.0 36.1 55.0 76.0 4.0 40.6 62.1 82.4 5.0 44.1 67.6 87.4 6.0 46.9 72.7 91.5 7.0 50.0 75.5 95.0 8.0 52.0 79.1 100.0 9.0 53.3 82.0 10.0 55.0 86.5 15.0 62.0 100.0 30.0 74.3 40.0 79.5 50.0 83.6 60.0 87.0		0.10	3.4		0.1					1.0	18.8	32.0	51.4	
VALOR DEDUCIDO: 21.18 21.18 4.0										2.0	29.7	46.0	66.9	
VALOR DEDUCIDO: 21.18 21.18 5.0			X =	21.18						3.0	36.1	55.0	76.0	
VALOR DEDUCIDO: 21.18 6.0 46.9 72.7 91.5 7.0 50.0 75.5 95.0 8.0 52.0 79.1 100.0 9.0 53.3 82.0 10.0 55.0 86.5 15.0 62.0 100.0 30.0 74.3 40.0 79.5 50.0 83.6 60.0 87.0										4.0	40.6	62.1	82.4	
VALOR DEDUCIDO: 21.18 7.0 50.0 75.5 95.0 8.0 52.0 79.1 100.0 9.0 53.3 82.0 10.0 55.0 86.5 15.0 62.0 100.0 30.0 74.3 40.0 79.5 50.0 83.6 60.0 87.0										5.0	44.1	67.6	87.4	
8.0 52.0 79.1 100.0 9.0 53.3 82.0 10.0 55.0 86.5 15.0 62.0 100.0 30.0 74.3 40.0 79.5 50.0 83.6 60.0 87.0										6.0	46.9	72.7	91.5	
9.0 53.3 82.0 10.0 55.0 86.5 15.0 62.0 100.0 30.0 74.3 40.0 79.5 50.0 83.6 60.0 87.0		\mathbf{V}_{A}	ALOR DEDU	CIDO:	21.	18			ı	7.0	50.0	75.5	95.0	
10.0 55.0 86.5 15.0 62.0 100.0 30.0 74.3 40.0 79.5 50.0 83.6 60.0 87.0										8.0	52.0	79.1	100.0	
15.0 62.0 100.0 30.0 74.3 40.0 79.5 50.0 83.6 60.0 87.0									ı	9.0	53.3	82.0		
30.0 74.3 40.0 79.5 50.0 83.6 60.0 87.0										10.0	55.0	86.5		
40.0 79.5 50.0 83.6 60.0 87.0									ļ	15.0	62.0	100.0		
50.0 83.6 60.0 87.0									ļ	30.0				
60.0 87.0										40.0	79.5			
									ļ					
									ļ					
									ŀ	70.0	89.8			
80.0 92.2									ŀ					
90.0 94.4									ŀ					
100.0 96.3									ļ	100.0	96.3			

Tabla N°09: Calculo del valor deducido corregido de la UM-01

			CAL	CULO DE 1	VALOR	MAXIMO	DE FALLA	<u> </u>					
ZON	A DE ESTUDIO	. CA TUDA											
Forn			98)*(100-H	IVD)		FVAI UA	CUADRA: 01 MUESTRA: UM-01 EVALUACDOR: BACH. ROBERTO PRENTICE TECO						
Done		10. 2.1(3)	30, (200)		Г	•			o i neitine	1			
	Número máxin	no de valor	deducido			Reemplazan M= 1+		s: *[100 - 3	24 20]				
HVD	= Valor más A	lto del Valo	r Deducido	. VR.		IVI- 1 T	(9 / 90)	(100 - 3	54.23 j				
HV	HVD= 34.29						7.03						
		_				7.00							
			CALCULO	DE VALO	R DED	UCIDO COI	RREGIDO	(VDC)					
N	•		VALO	RES DEDUC	IDOS			VDT	q	VDC			
1	34.29	25.18	24.90	21.18	14.83	11.36	7.85	139.59	7	66.84			
2	34.29	25.18	24.90	21.18	14.83	11.36	2.00	133.74	6	64.50			
3	34.29	25.18	24.90	21.18	14.83	2.00	2.00	124.38	5	64.19			
4	34.29	25.18	24.90	21.18	2.00		2.00	111.55	4	62.93			
5	34.29	25.18	24.90	2.00	2.00		2.00	92.37	3	58.42			
6 7	34.29	25.18	2.00	2.00	2.00		2.00	69.47 46.29	2	50.63			
/	34.29	2.00	2.00	2.00 Máxin	2.00 no VDC:		2.00	40.23	1	46.29 66.84			
				HUAIII	.o v DC.					00.04			
			LCULO DE I	NTERPOLA	CION D	E VALOR DE							
q7	135					"	130						
	140						133.74 X						
	140	67					135	65					
	139.59 -	135] _ [`х -	65.0		(13	3.74 - 1	130	K - 63	3.0			
	140 -	135	67.0 -	65.0		L:	L 35 - 1	130) [65	6.0 - 63	3.0 J			
	4.59 = -	65.0)	325.0 +	9.18		()	3.74 6	3.0) 31	5.0 + 7.4	48			
	5 = -	2.0	5		= 66.8	¹⁴ -	$\left(\frac{3.74}{5} = \frac{63.0}{2.0}\right) = \frac{315.0 + 7.48}{5} = 64.50$						
q5	120	62				1 -1 -	•						
	124.38						111.55 X 120 68						
	130	67				1	20	58					
	(124.38 -	120) (X -	62.0		(11	(111.55 - 110) (X - 62.0)						
	130 -	120	- 67.0 -	62.0		1							
	((1	EE 6	20) 624	10 ± 01	20			
	4.38 = -	5.0 = -	620.0 + 10	21.90	64.1	9 -	. <u> </u>	5.0 = 	10	30 = 62.93			
q3	90						60						
	92.37						9.47						
	100	63					70	51					
	c02 27	00 -	. V	E7.05		ر 6	9.47 -	6 0) ()	(- 44	ا ۱.۵			
	92.37 -	90 =	63.0 -	57.0			70 -	$\frac{60}{60}$ = $\frac{51}{51}$.0 - 44	<u>i.o</u>]			
(100 - 50) (05.0 - 57.5)							. 47	40 > 40	00	,			
	$\frac{2.37}{10} = -$	57.0 =	570.0 + 10	14.22)	= 58.4	12	10 = -4	7.0	10	29 = 50.63			
q1 42 42													
46.29 X													
	50	50											
	(46.29 -	42) (х -	42.0 ๅ									
	<u>46.29 -</u> <u>50 -</u>	42 =	50.0 -	42.0									
	(4 20	42.0	226 O ·	24 22									
	$\frac{4.29}{8} = -$	8.0	330.U + 8	34.32	46.2	9							
	` -	J.J /											

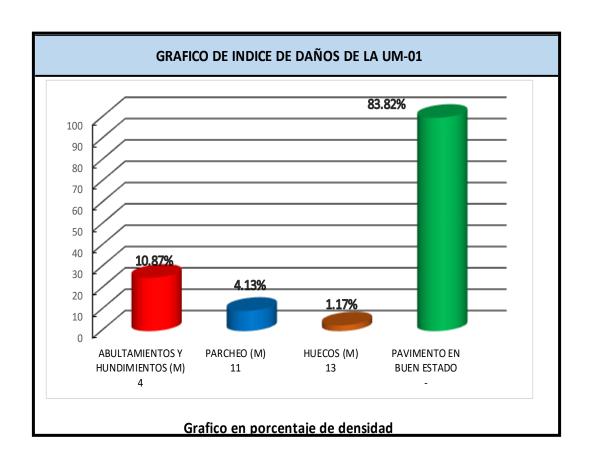

Tabla N° 10: Cálculo del PCI y de la interpolación del VDC de la UM-01

Tabla N^{\circ} 11: Área y densidad afectada de la UM-01

	CUADRO DE ÁREA AFECTADO DE LA UNIDAD DE MUESTRA -01										
N°	TIPO DEDAÑO	N/S	TOTAL AFECTADA m2	DENSIDAD %							
4	ABULTAMIENTOS Y HUNDIMIENTOS (M)	M	25.00	10.87%							
11	PARCHEO (M)	M	9.50	4.13%							
13	HUECOS (M)	М	2.70	1.17%							
-	PAVIMENTO EN BUEN ESTADO		192.75	83.82%							
		TOTAL	229.95	100.00%							

Grafico Nº 1: Indice de Daños encontrados en la UM-01

Interpretación de la Unidad de Muestra – UM-1 Cdra. -1:

La unidad de muestra UM-01 tiene 229.95 m², y pertenece a la cuadra 1 de la Ca. Túpac Amaru. Los daños encontrados en la unidad de muestra 01 son de nivel de severidad media de tipo: Abultamiento y Hundimiento con un valor deducido total de 59.47. Parcheo con un valor deducido total de 34.04 y Huecos con un valor deducido total de 46.08. Ver tabla N° 12.

La falla más influyente en el daño del pavimento es el abultamiento y hundimiento, el cual se presenta en una considerable área de la unidad de muestra estudiada y siguiendo el procedimiento se obtiene 7 valores deducidos corregidos: 66.84, 64.50, 64.19, 62.93, 58.42, 5.63 y 46.29, teniendo como máximo valor deducido corregido 66.84, y siguiendo el procedimiento del PCI, se obtiene como resultado un índice de 33.16 que se encuentra dentro del rango de 25 – 40 que corresponde a una clasificación de un pavimento MALO

Tabla N° 12: Densidad y Valores Deducidos Finales.

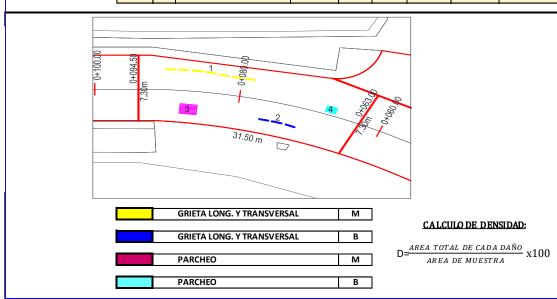
N°	PATOLOGIA	SEVERIDAD	DENSIDAD (%)	D VALOR DEDUCIDO		VDT	VDC
	Abultamiento y					139.59	66.84
4	hundimiento	М	3.91	25.18	59.47		
	Abultamiento y				33.47	133.74	64.50
4	hundimiento	М	6.96	34.29			
11	Parcheo	М	1.30	11.36		124.38	64.19
11	Parcheo	М	0.65	7.85	34.04	111.55	62.93
11	Parcheo	М	2.17	14.83		92.37	58.42
13	Huecos	М	0.65	24.9	46.08	69.47	50.63
13	Huecos	М	0.52	21.18	40.08	46.29	46.29

Fuente: Elaboración propia

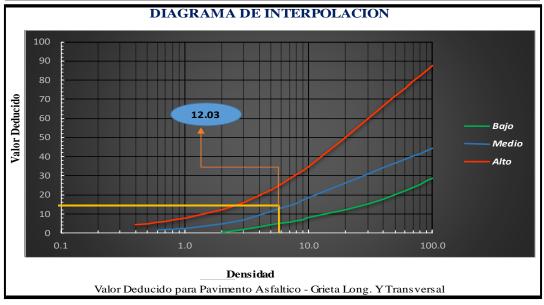
UNIDAD DE MUESTRA N°02 Progresiva 0+063.00 al 0+094.00

CDRA. 2 DE LA CALLE TUPAC AMARU
IQUITOS – MAYNAS – LORETO

Tabla N $^{\circ}$ 13: hoja de registro de daños UM-02


HOJA DE INSPECCIÓN DE CONDICION DEL PAVIMENTO FLEXIBLE - PCI UNIDAD DE MUESTREO									
JNIVERSIDAD: CATÓLICA LOS ÁNGELES DE CHIMBOTE FECHA DE EVALUACION: JULIO-2018									
EVALUADOR: BACH. ROBERTO PRENTICE TECO MUESTRA: UM-02									
PSJE./CALLE/JIRON/AV.: CALL	E. TUPAC AMARU		•	CUADRA: 02					
TIPO DE USO: VEHICULAR	DIMENCIONES DE MUESTRA	AN	CHO (m): 7.30	LONGITUD (m): 31.50					
AÑO DE CONSTRUCCION:	ARÉA DE MUESTRA (m2)	229.95							
DISTRITO: IQUITOS	DEPARTA	MENTO: LORETO							

	INDICE DE CONDICION DEL PAVIMENTO (PCI - PAVIMENT CONDITION INDEX)								
N°	TIPO DE DAÑO	N°	TIPO DE DAÑO						
1	Piel de Cocodrilo	11	Parcheo						
2	Exudación	12	Pulimento de Agregados						
3	Agrietamiento en Bloque	13	Huecos						
4	Abultamientos y Hundimiento	14	Cruce de Vía Férrea						
5	Corrugación	15	Ahuellamiento						
6	Depresión	16	Desplazamiento						
7	Grieta de Borde	17	Grieta Parabólica (slippage)						
8	Grieta de Reflexión de junta	18	Hinchamiento						
9	Desnivel de Carril / Berma	19	Desprendimiento de Agregado						
10	Grieta Long. Y Transversal								


NIVEL DE SEVERIDAD
SEVERIDAD ALTA
Α
SEVERIDAD MEDIA
М
SEVERIDAD BAJA
В

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL	DENSIDAD (%)	VALOR DEDUCIDO
1	10	Grieta Long. Y Transversal	М	12.30		12.30	5.35	12.03
2	10	Grieta Long. Y Transversal	В	5.00		5.00	2.17	0.42
3	11	Parcheo	M	2.40	1.60	3.84	1.67	12.91
4	11	Parcheo	В	1.50	1.00	1.50	0.65	1.50
						•		

Tabla N° 14: Grieta long. y transversal de severidad media de la UM-02

10 GRIETA LONG. Y TRANSVERSAL Media 02	N° TIPO DE DAÑO		NIVE	L DE SEVER	RIDAD	MUESTRA	
UBICACIÓN: CA. TUPAC AMARU Nº DEORDEN: 1 CUADRA: 2 DENSIDAD: 5.35 %							
Solution Calculo Devalor Deducido ABACO Devalores Deducido Para Paviment		DRA:	2);	5.35 %	
$\begin{bmatrix} \begin{bmatrix} 5.0 & \cdots & 11.5 \\ 5.35 & \cdots & X \\ 6.0 & \cdots & 13.0 \end{bmatrix} \\ \hline \begin{bmatrix} 5.35 & - & 5.0 \\ 6.0 & - & 5.0 \end{bmatrix} & = & \frac{X}{13.00} & - & 11.5 \\ \hline \frac{0.35}{1.00} & = & \frac{11.5}{1.5} & = & \frac{0.525}{1} & + & 11.5 \\ \hline X & = & 12.03 \end{bmatrix} \\ \hline \begin{bmatrix} VALOR DEDUCIDO: & 12.03 \end{bmatrix}$ $\begin{bmatrix} 11.5 & 0.525 & + & 11.5 \\ 0.7 & 0.9 & 0.6 \\ 0.8 & 0.1 & 0.6 \\ 0.7 & 0.7 & 0.7 \\ 0.9 & 0.6 \\ 0.8 & 0.1 & 0.6 \\ 0.7 & 0.7 & 0.7 \\ 0.9 & 0.1 & 0.2 \\ 0.8 & 0.1 & 0.9 \\ 0.9 & 0.1 & 0.9 \\$		1					
$\begin{bmatrix} \begin{bmatrix} 5.0 & \cdots & 11.5 \\ 5.35 & \cdots & X \\ 6.0 & \cdots & 13.0 \end{bmatrix} \\ \hline \begin{bmatrix} 5.35 & - & 5.0 \\ 6.0 & - & 5.0 \end{bmatrix} = \begin{bmatrix} X & - & 11.5 \\ 13.00 & - & 11.5 \\ \hline 1.00 & 11.5 \end{bmatrix} = \begin{bmatrix} 0.525 & + & 11.5 \\ 1.5 & 1 \end{bmatrix} \\ \hline \begin{bmatrix} X & = & 12.03 \end{bmatrix} \\ \hline \begin{bmatrix} 11.5 & = & 0.525 & + & 11.5 \\ 1.5 & 1 \end{bmatrix} \\ \hline \begin{bmatrix} 0.35 & = & 11.5 \\ 1.5 & = & 12.03 \end{bmatrix} = \begin{bmatrix} 11.5 & = & 0.525 & + & 11.5 \\ 1.00 & 1.0 & 2.4 & 7.8 \\ 2.0 & 0.1 & 4.6 & 12.3 \\ 3.0 & 2.0 & 6.9 & 16.1 \\ 4.0 & 3.3 & 9.2 & 19.5 \\ 5.0 & 4.3 & 11.5 & 22.6 \\ 6.0 & 5.1 & 13.0 & 25.5 \\ 7.0 & 5.8 & 14.3 & 28.2 \\ 8.0 & 6.4 & 15.6 & 30.8 \\ 9.0 & 7.0 & 17.1 & 32.5 \\ 10.0 & 8.0 & 18.3 & 34.3 \\ 20.0 & 12.2 & 26.1 & 50.3 \\ 30.0 & 15.1 & 30.6 & 89.7 \\ 40.0 & 17.7 & 33.9 & 66.3 \\ 50.0 & 19.9 & 36.4 & 71.5 \\ 60.0 & 22.0 & 38.4 & 75.7 \\ \hline \end{bmatrix}$							1
$\begin{bmatrix} 5.0 & \cdots & 11.5 \\ 5.35 & \cdots & X \\ 6.0 & \cdots & 13.0 \end{bmatrix}$ $\begin{bmatrix} 5.35 & -5.0 \\ 6.0 & -5.0 \end{bmatrix} = \frac{X}{13.00} - \frac{11.5}{11.5}$ $\frac{0.35}{1.00} = \frac{11.5}{1.5} = \frac{0.525}{1} + \frac{11.5}{1}$ $X = 12.03$ $\begin{bmatrix} 1.00 & 12.03 \end{bmatrix}$ $\begin{bmatrix} 1.00 & 1.00 & 12.03 & 12.03 \end{bmatrix}$ $\begin{bmatrix} 1.00 & 1.00 & 12.03$			DENSIDAD				
$\begin{bmatrix} 5.35 & \cdots & X \\ 6.0 & \cdots & 13.0 \end{bmatrix}$ $\begin{bmatrix} 5.35 & - & 5.0 \\ 6.0 & - & 5.0 \end{bmatrix} = \frac{X}{13.00} - \frac{11.5}{11.5}$ $\frac{0.35}{1.00} = \frac{11.5}{1.5} = \frac{0.525}{1.5} + \frac{11.5}{1}$ $X = 12.03$ $\begin{bmatrix} 11.5 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.0 \\ $	Et al. 1997			Ваја	Media	Alta	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \frac{5.35 - 5.0}{6.0 - 5.0} = \frac{X}{13.00} - \frac{11.5}{11.5} $ $ \frac{0.35}{1.00} = \frac{11.5}{1.5} = \frac{0.525 + 11.5}{1} $ $ X = 12.03 $ $ \frac{0.35}{1.00} = \frac{11.5}{1.5} = \frac{0.525 + 11.5}{1} $ $ \frac{0.99}{1.00} = \frac{2.1}{1.00} = \frac{0.00}{1.00} $ $ \frac{0.00}{1.00} = \frac{0.00}{1.00} = \frac{0.00}{1.00} $ $ \frac{0.00}{1.00} = \frac{0.00}{1.00} = \frac{0.00}{1.00} $ $ \frac{0.00}{0.00} = \frac{0.00}{1.00} $ $ \frac{0.00}{0.00} = \frac{0.00}{0.00} $ $\frac{0.00}{0.00} = \frac{0.00}{0.00} $ $\frac{0.00}{0.0$	6.0 13.0						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\frac{0.35}{1.00} = \frac{11.5}{1.5} = \frac{0.525}{1} + \frac{11.5}{1}$ $X = 12.03$ $X = 12.03$ $0.8 $					1.4		
$\frac{0.35}{1.00} = \frac{11.5}{1.5} = \frac{0.525}{1} + \frac{11.5}{1}$ $X = 12.03$ $X = 12.03$ $0.8 $	$\left \frac{5.35 - 5.0}{12.00} \right = \frac{X - 11.5}{12.00}$						
$\frac{0.35}{1.00} = \frac{11.5}{1.5} = \frac{0.525}{1} + \frac{11.5}{1}$ $X = 12.03$ $X = 12.03$ $1.0 = \frac{2.4}{1.0} + \frac{7.8}{2.0}$ $2.0 = 0.1 + \frac{4.6}{1.2.3}$ $3.0 = 2.0 + \frac{6.9}{16.1}$ $4.0 = 3.3 + \frac{9.2}{11.5} + \frac{9.2}{11.5}$ $5.0 = 4.3 + \frac{11.5}{11.5} + \frac{22.6}{2.0}$ $6.0 = 5.1 + \frac{13.0}{13.0} + \frac{25.5}{25.5}$ $7.0 = 5.8 + \frac{14.3}{14.3} + \frac{28.2}{28.2}$ $8.0 = 6.4 + \frac{15.6}{15.6} + \frac{30.8}{30.8}$ $9.0 = 7.0 + \frac{17.1}{11.1} + \frac{32.5}{32.5}$ $10.0 = 8.0 + \frac{18.3}{11.5} + \frac{34.3}{34.3}$ $20.0 = 12.2 + \frac{26.1}{11.5} + \frac{50.3}{11.5}$ $30.0 = \frac{15.1}{11.5} + \frac{30.6}{11.5} + \frac{59.7}{11.5}$ $40.0 = \frac{17.7}{17.7} + \frac{33.9}{33.9} + \frac{66.3}{50.0}$ $50.0 = \frac{19.9}{19.9} + \frac{36.4}{36.4} + \frac{71.5}{71.5}$ $60.0 = \frac{22.0}{38.4} + \frac{75.7}{75.7}$	6.0 - 5.0 13.00 - 11.5						
1.00 1.5 1 1.0 2.4 7.8 2.0 0.1 4.6 12.3 3.0 2.0 6.9 16.1 4.0 3.3 9.2 19.5 5.0 4.3 11.5 22.6 6.0 5.1 13.0 25.5 7.0 5.8 14.3 28.2 8.0 6.4 15.6 30.8 9.0 7.0 17.1 32.5 10.0 8.0 18.3 34.3 20.0 12.2 26.1 50.3 30.0 15.1 30.6 59.7 40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7							
X = 12.03 2.0 0.1 4.6 12.3 3.0 2.0 6.9 16.1 4.0 3.3 9.2 19.5 5.0 4.3 11.5 22.6 6.0 5.1 13.0 25.5 7.0 5.8 14.3 28.2 8.0 6.4 15.6 30.8 9.0 7.0 17.1 32.5 10.0 8.0 18.3 34.3 20.0 12.2 26.1 50.3 30.0 15.1 30.6 59.7 40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7	$\frac{0.35}{1.00} = \frac{11.5}{1.5} = \frac{0.525}{1.5} + \frac{11.5}{1.5}$						
X = 12.03 3.0	1.00 1.5 1			0.1			
VALOR DEDUCIDO: 12.03 10.0	V 12.02						
VALOR DEDUCIDO: 12.03 5.0	X = 12.03						
VALOR DEDUCIDO: 12.03 6.0 5.1 13.0 25.5 7.0 5.8 14.3 28.2 8.0 6.4 15.6 30.8 9.0 7.0 17.1 32.5 10.0 8.0 18.3 34.3 20.0 12.2 26.1 50.3 30.0 15.1 30.6 59.7 40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7							
VALOR DEDUCIDO: 12.03 7.0 5.8 14.3 28.2 8.0 6.4 15.6 30.8 9.0 7.0 17.1 32.5 10.0 8.0 18.3 34.3 20.0 12.2 26.1 50.3 30.0 15.1 30.6 59.7 40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7					- 11		
8.0 6.4 15.6 30.8 9.0 7.0 17.1 32.5 10.0 8.0 18.3 34.3 20.0 12.2 26.1 50.3 30.0 15.1 30.6 59.7 40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7	40.00						
9.0 7.0 17.1 32.5 10.0 8.0 18.3 34.3 20.0 12.2 26.1 50.3 30.0 15.1 30.6 59.7 40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7	VALOR DEDUCIDO: 12.03		7.0			28.2	
10.0 8.0 18.3 34.3 20.0 12.2 26.1 50.3 30.0 15.1 30.6 59.7 40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7							
20.0 12.2 26.1 50.3 30.0 15.1 30.6 59.7 40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7			9.0	7.0	17.1	32.5	
30.0 15.1 30.6 59.7 40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7			10.0		18.3	34.3	
40.0 17.7 33.9 66.3 50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7			20.0	12.2	26.1	50.3	
50.0 19.9 36.4 71.5 60.0 22.0 38.4 75.7							
60.0 22.0 38.4 75.7							
70.0 23.9 40.1 79.3						75.7	
80.0 25.6 41.6 82.3							
90.0 27.3 43.0 85.1							
100.0 28.9 44.2 87.5			100.0	28.9	44.2	87.5	

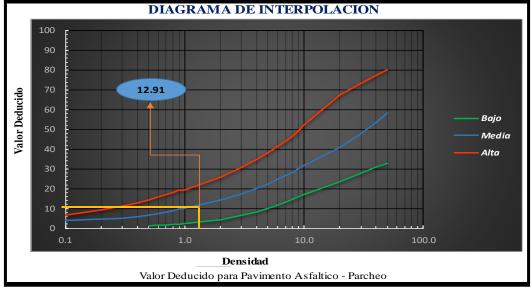


Tabla N^{\circ} 15: Grieta long. y transversal de severidad baja de la UM-02

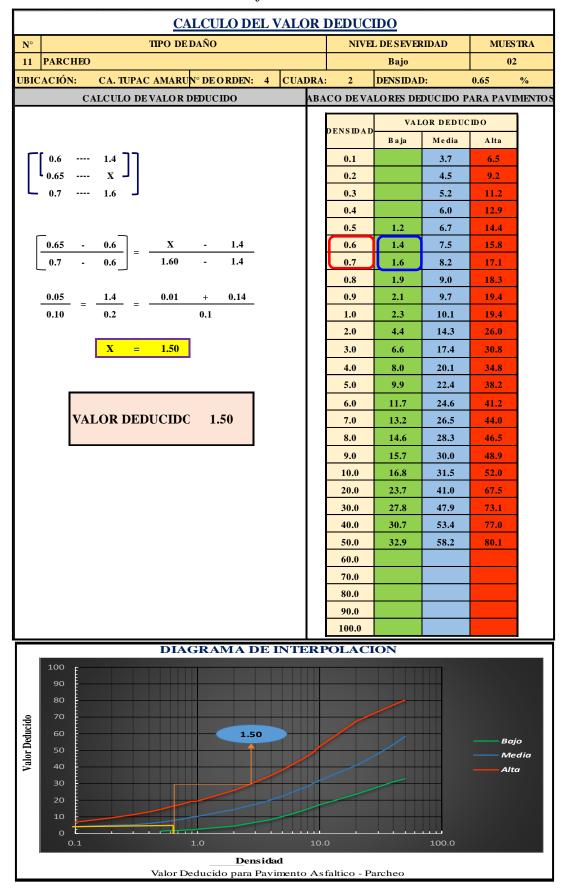

CALCULO DEL VALO	OR I	DEDUC	DO			
N° TIPO DE DAÑO		DESEVE	RIDAD	MUES	TRA	
10 GRIETA LONG. Y TRANSVERSAL			Baja		02	
	DRA:	: 2 DENSIDAD: 2.17				%
CALCULO DE VALOR DEDUCIDO	ABA	CO DE VA	LORES DE	DUCIDO P	ARA PAVI	
						1
		DENS ID A D		OR DEDUC Media		
[[20 0.1]]		0.1	Baja	Media	Alta	
$\left[\begin{array}{cccc} 2.0 & & 0.1 \\ 2.17 & & X \end{array} \right]$		0.1				
3.0 2.0		0.2				
210 _		0.4			4.3	
		0.5			4.9	
2.17 - 2.0 X - 0.1		0.6		1.4	5.6	1
3.0 - 2.0 = 2.00 - 0.1		0.7		1.7	6.2	
		0.8		1.9	6.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.9		2.1	7.3	
1.00 1.9 1		1.0		2.4	7.8	
		2.0	0.1	4.6	12.3	
X = 0.42		3.0	2.0	6.9	16.1	
		4.0	3.3	9.2	19.5	
		5.0	4.3	11.5	22.6	
		6.0	5.1	13.0	25.5	
VALOR DEDUCIDO: 0.42		7.0	5.8	14.3	28.2	
		8.0	6.4	15.6	30.8	
		9.0	7.0	17.1	32.5	
		10.0	8.0	18.3	34.3	
		30.0	12.2	26.1 30.6	50.3 59.7	
		40.0	17.7	33.9	66.3	
		50.0	19.9	36.4	71.5	
		60.0	22.0	38.4	75.7	
		70.0	23.9	40.1	79.3	
		80.0	25.6	41.6	82.3	
		90.0	27.3	43.0	85.1	
		100.0	28.9	44.2	87.5	
DIAGRAMA DE INT	ERI	POLAC	ION			
90	Ш					
80	Ш					
	Ш					
Valor Deducido O.42 O.42 O.42					8-	io
50 0.42	\mathbf{H}				—— Ва _л	dio
Ao 40					Alt	
30	1					
20						
10	#					
0.1 1.0	10.0	0		100.0		
Densidad Valor Deducido para Pavimento Asfaltic	. (Grieta Lon	g YTrans	versal		

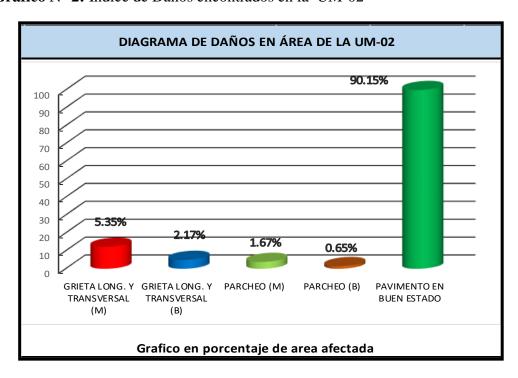
Tabla N° 16: Parcheo de severidad media de la UM-02

CALCULO DEL VAL	CALCULO DEL VALOR DEDUCIDO									
N° TIPO DE DAÑO		NIVE	L DE SEVER	IDAD	MUES	TRA				
11 PARCHEO		Media			02	2				
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 3 CUA	ADRA:	2	DENSIDAI):	1.67	%				
CALCULO DE VALOR DEDUCIDO	CO DE VA	LO RES DE	DUCIDO P	ARA PAVI	MENTOS					
			VAL	OR DEDUC	сто	1				
		DENSIDAD	Baja	Media	Alta					
[1.0 10.1]]		0.1		3.7	6.5					
1.67 X		0.2		4.5	9.2					
2.0 14.3		0.3		5.2	11.2					
		0.4		6.0	12.9					
		0.5	1.2	6.7	14.4					
1.67 - 1.0 X - 10.1		0.6	1.4	7.5	15.8					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.7	1.6	8.2	17.1					
		0.8	1.9	9.0	18.3					
0.67 10.1 2.814 + 10.1		0.9	2.1	9.7	19.4					
$\frac{1.00}{1.00} = \frac{4.2}{4.2} = \frac{1}{1}$		1.0	2.3	10.1	19.4					
		2.0	4.4	14.3	26.0					
X = 12.91		3.0	6.6	17.4	30.8					
		4.0	8.0	20.1	34.8					
		5.0	9.9	22.4	38.2	1				
		6.0	11.7	24.6	41.2					
VALOR DEDUCIDO: 12.91		7.0	13.2	26.5	44.0					
		8.0	14.6	28.3	46.5	1				
		9.0	15.7	30.0	48.9					
		10.0	16.8	31.5	52.0					
		20.0	23.7	41.0	67.5					
		30.0	27.8	47.9	73.1					
		40.0	30.7	53.4	77.0					
		50.0	32.9	58.2	80.1					
		60.0								
		70.0								
		80.0								
		90.0								
		100.0								

Tabla N° 17: Parcheo de severidad baja de la UM-02

Tabla N° 18: Cálculo del valor deducido corregido de la UM-02

	CALCULO DE VALOR MAXIMO DE FALLAS												
			CALC	OLO DE V	ALUK	VIAX							
		CA. TUPA				CUADRA: 01 MUESTRA: UM-01							
<u>Formula</u>	:	M=1+[(9/	98)*(100-F	IVD)		EVALUACDOR: BACH. ROBERTO PRENTICE TECO							
Donde.						Reemplazando tenemos:							
	M= Número máximo de valor deducido						1 + (9 / 98	3)*(100 -	12.91)				
HVD= V	alor más A	lto del Valo	r Deducido). VR.				_					
HVD=	HVD= 12.91						M= 9.00						
							1	_		_			
CALCULO DE VALOR DEDUCIDO CORREGIDO (VDC)													
N°			VALORE	S DEDUCIE	oos			VDT	q	VDC			
1	12.91	12.03	1.50	0.42				26.86	4	9.49			
2	12.91	12.03	1.50	0.42				26.86	3	14.80			
3	12.91	12.03	1.50	0.42				26.86	2	19.24			
4	12.91	2.00	1.50	0.42				16.83	1	16.83			
				Máximo	VDC:					19.24			
		CALC	CULO DE IN	ITERPOLA(CION DE	VAL	OR DEDUCIDO	CORREGIDO)	I.			
q4	25	8				q3 25 13.5							
20	6.86	X				26.86 X							
	28	10.4				28 15.6							
6.5		> 6		>		(2000 25) () () ()							
20	6.86 - 28	25 25 = (X -	8.0			26.86 - 2	25 = 1	X - 13 56 - 13	3.5 3.5			
	20 -	23) (10.4	0.07									
<u> </u>	.86	8.0 2.4	24.0 +	4.46	9 49	1.86 _ 13.5 _ 40.5 + 3.91 _ 14.80							
l	3	2.4 J ⁻	3		3.43	$\frac{1.86}{3} = \frac{13.5}{2.1} = \frac{40.5 + 3.91}{3} = 14.80$							
q2	25	18				q1 12 12							
	6.86					16.83 X							
	28	20				18 18							
~ .		> (>		(16 82 12) (V 12 0)							
20	5.86 - 28 -	25 25 =	X - 20.0 -	18.0									
<u> </u>	86 3	18.0 2.0 = —	54.0 +	3.72 =	19.24			2.0 5.0 = 72	2.0 + 28.9 6	98 = 16.83			


Tabla N° 19: Cálculo del PCI y de la interpolación del VDC de la $\,$ UM-02 $\,$

TOTAL DE	VALOR DEDUCIDO CORREGIDO											
VALORES	q1	q2	q3	q4	q5	q6	q7		CALCULO	DE PCI		
DEDUCID 0	0.0	9 -	43	4.	43	40	4,		CALCOLO	DETCI		
10	1.0							Formu	a:			
12	12.0	8.0										
18	18.0	12.5	8.0					PCI= 10	0 - MAX.	VDC		
20	20.0	14.0	10.0									
25	25.0	18.0	13.5	8.0				Donde	19.24			
28	28.0	20.0	15.6	10.4	8.0			PCV=	100 -	19.24		
30	30.0	22.0	17.0 24.0	12.0	10.0			PCV=	100 -	19.24		
40 42	40.0 42.0	30.0 31.0	25.4	19.0 20.4	17.0 18.2	15.0	15.0	PCI=	80.76			
50	50.0	37.0	31.0	26.0	23.0	20.0	20.0	r CI=	00.70	_		
60	60.0	44.0	38.0	33.0	29.0	26.0	26.0					
70	70.0	51.0	44.5	39.0	35.0	32.0	32.0	RANGO	DE CALIFIC	ACION DEL PCI		
80	80.0	58.0	50.5	45.0	41.0	38.0	38.0	R/	ANGO	CLASIFCACION		
90	90.0	64.0	57.0	51.0	46.0	44.0	44.0	100	85	Excelente		
100	100.0	71.0	63.0	57.0	52.0	49.0	49.0	85	70	Muy Bueno		
110		76.0	68.0	62.0	57.0	54.0	54.0	70	55	Bueno		
120		81.0	73.0	68.0	62.0	59.0	59.0	55	40	Regular		
130		86.0	78.5	73.0	67.0	63.0	63.0	40 25	25 10	Malo		
135		88.5	81.5 84.0	75.5 78.0	69.5	65.0	65.0 67.0	10	0	Muy malo Fallado		
140 150		91.0 94.0	88.0	82.0	72.0 76.0	68.0 72.0	70.0	10	0	Tanado		
160		98.0	93.0	86.0	81.0	76.0	74.0					
166		100.0	94.8	88.4	83.0	79.0	75.2					
170			96.0	90.0	85.0	81.0	76.0	Clasij	ficación:	MUY BUENC		
180			99.0	93.0	88.0	84.0	79.0					
182			100.0	93.6	88.6	84.8	79.6					
190				96.0	91.0	88.0	82.0					
200				98.0	94.0	90.0	84.0					
		ΔΕ	BACO DEI	VALOR	DEDLI	CIDO CO	DRREGID	O (VDC)		l.		
1	.00 r					MA \						
(COD) 90 80 70 60 70 90 90 90 90 90 90 90 90 90 90 90 90 90												
	0 10	20 30 40	50 60	70 80 90	100 110	120 130 1	140 150 160) 166 170 18	30 190 200			
				Valor de	Densid	ad Total	(VDT)					

Tabla N°20: Área y densidad afectada de la UM-02

	CUADRO DE ÁREA AFECTADO DE LA UNIDAD DE MUESTRA -02									
N°	TIPO DEDAÑO	N/S	TOTAL AFECTADA m2	ÁREA EN %						
10	GRIETA LONG. Y TRANSVERSAL (M)	М	12.30	5.35%						
10	GRIETA LONG. Y TRANSVERSAL (B)	В	5.00	2.17%						
11	PARCHEO (M)	M	3.84	1.67%						
11	PARCHEO (B)	В	1.50	0.65%						
-	PAVIMENTO EN BUEN ESTADO		207.31	90.15%						
		TOTAL	229.95	100.00%						

Grafico N° 2: Indice de Daños encontrados en la UM-02

Interpretación de la Unidad de Muestra – UM-2 Cdra. -2:

La unidad de muestra UM-02 tiene 229.95 m², y pertenece a la cuadra 2 de la Ca. Túpac Amaru. Los daños encontrados en la unidad de muestra 02 son de nivel de severidad media de tipo: Grieta longitudinal y transversal con un valor deducido de 12.03 Grieta longitudinal y transversal de severidad baja con un valor deducido de 0.42. Parcheo de severidad media con un valor deducido de 12.91 y Parcheo de severidad baja con un valor deducido de 1.5. Ver tabla N° 21.

La falla más influyente en el daño del pavimento es de Parche, el cual se presenta en una considerable área de la unidad de muestra estudiada y siguiendo el procedimiento se obtiene 4 valores deducidos corregidos: 9.49, 14.80, 19.24, 16.83, teniendo como máximo valor deducido corregido 19.24, y siguiendo el procedimiento del PCI, se obtiene como resultado un índice de 80.76 que se encuentra dentro del rango de 70 – 85 que corresponde a una clasificación de un pavimento MUY BUENO.

Tabla N° 21: Densidad y Valores Deducidos Finales.

N°	PATOLOGIA	SEVERIDAD	DENSIDAD (%)	VALOR DEDUCIDO	VDT	VDC
10	Grieta Long. Y Transversal	М	5.35	12.03	26.86	9.49
10	Grieta Long. Y Transversal	В	2.17	0.42	26.86	14.8
11	Parcheo	М	1.67	12.91	26.86	19.24
11	Parcheo	В	0.65	1.5	16.83	16.83

Fuente: Elaboración propia

UNIDAD DE MUESTRA N°03 Progresiva 0+126.00 al 0+1557.50

CDRA. 2 DE LA CALLE TUPAC AMARU
IQUITOS – MAYNAS – LORETO

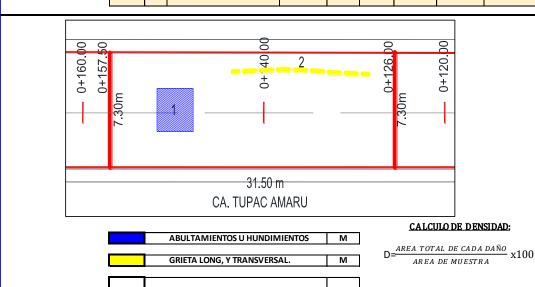
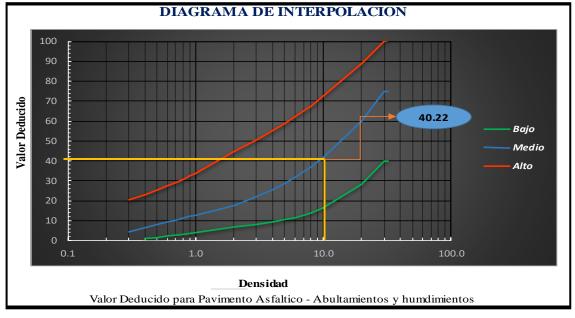
Tabla N° 22: hoja de registro de daños UM-03

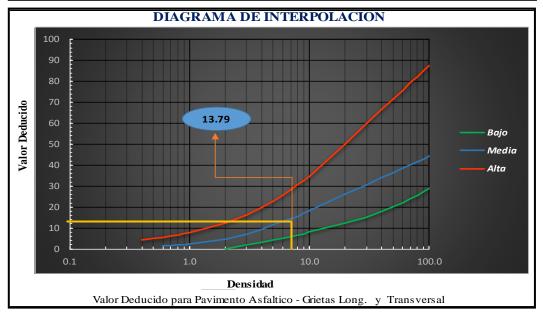
HOJA DE INSPECCIÓN DE CONDICION DEL PAVIMENTO FLEXIBLE - PCI **UNIDAD DE MUESTREO** UNIVERSIDAD: CATÓLOCA LOS ÁNGELES DE CHIMBOTE FECHA DE EVALUACION: JULIO-2018 EVALUADOR: BACH. ROBERTO PRENTICE TECO MUESTRA: UM-03 PSJE./CALLE/JIRON/AV.: CALLE. TUPAC AMARU CUADRA: TIPO DE USO: VEHICULAR DIMENCIONES DE MUESTRA ANCHO (m): LONGITUD (m): 31.50 AÑO DE CONSTRUCCION: ARÉA DE MUESTRA (m2) 229.95 DISTRITO: IQUITOS PROVINCIA: MAYNAS DEPARTAMENTO: LORETO

	INDICE DE CONDICION DEL PAVIMENTO (PCI - PAVIMENT CONDITION INDEX)							
N°	TIPO DE DAÑO	N°	TIPO DE DAÑO					
1	Piel de Cocodrilo	11	Parcheo					
2	Exudación	12	Pulimento de Agregados					
3	Agrietamiento en Bloque	13	Huecos					
4	Abultamientos y Hundimiento	14	Cruce de Vía Férrea					
5	Corrugación	15	Ahuellamiento					
6	Depresión	16	Desplazamiento					
7	Grieta de Borde	17	Grieta Parabólica (slippage)					
8	Grieta de Reflexión de junta	18	Hinchamiento					
9	Desnivel de Carril / Berma	19	Desprendimiento de Agregado					
10	Grieta Long. Y Transversal							

NIVEL	DE SEVERIDAD
SEV	ERIDAD ALTA
	Α
SEVE	RIDAD MEDIA
	М
SEV	ERIDAD BAJA
	В

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL	DENSIDAD (%)	VALOR DEDUCIDO
1	4	Abultamiento y hundimient	М	4.65	4.65	21.62	9.40	40.22
2	10	Grieta Long. Y Transversal	М	15.2		15.2	6.61	13.79


Tabla N° 23: Abultamientos y hundimientos de severidad media de la UM-03

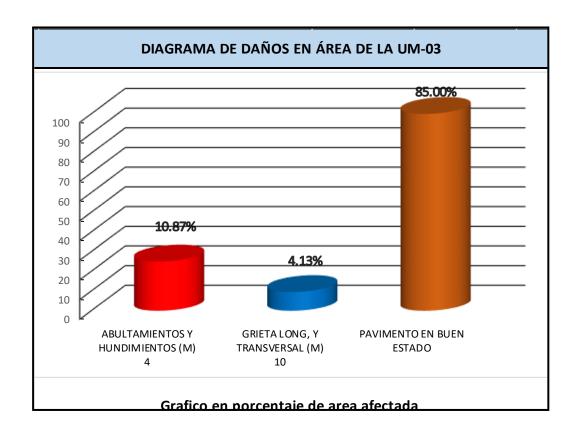
CALCULO DEL VALOR DEDUCIDO								
N° TIPO DE DAÑO	NIVE	L DE SEVE	RIDAD	MUES	TRA			
4 ABULTAMIENTOS Y HUNDIMIENTOS		Media 03						
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 1 CUAD	ORA: 2	DENSIDAI):	9.4	%			
CALCULO DE VALOR DEDUCIDO	ABACO DE VA	LORES DE	DUCIDO P	ARA PAVI	MENTO S			
			OR DEDUC	сто	Ī			
	DENSIDAD	Ваја	Media	Alta				
[9.0 39.3]]	0.1							
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.2							
10.0 41.6	0.3		4.4	20.5				
	0.4	0.9	6.4	23.1				
	0.5	1.6	7.9	25.3				
9.40 - 9.0 = X - 39.3	0.6	2.2	9.2	27.3				
10.0 - 9.0 41.60 - 39.3	0.7	2.7	10.2	29.1				
	0.8	3.2	11.2	30.8				
$\frac{0.40}{} = \frac{39.3}{} = \frac{0.92}{} + \frac{39.3}{}$	0.9	3.6	12.0	32.3				
1.00 2.3 1	1.0	3.9	12.7	33.7				
	2.0	6.8	17.6	44.8				
X = 40.22	3.0	8.0	21.9	50.5				
	4.0	9.2	25.5	55.0				
	5.0	10.4	28.7	58.8				
	6.0	11.5	31.7	62.1				
VALOR DEDUCIDO: 40.22	7.0	12.7	34.4	65.0				
	8.0	13.9	36.9	67.6	ļ			
	9.0	15.1	39.3	70.0				
	10.0	16.3	41.6	72.3				
	20.0	28.1	60.2	88.8				
	30.0	39.9	74.8	100.2				
	32.0	40.0	75.0	100.3				
	50.0							
	60.0							
	70.0							
	80.0							
	90.0							
	100.0							

 $\textbf{Tabla N}^{\circ}\textbf{24:} \ \text{Grietas Longitudinal y Transversal de severidad media UM-03}$

N° TIPO DE DAÑO	NIVE	L DE SEVE	RIDAD	MUESTRA		
10 GRIETA LONG. Y TRANSVERSAL		Media		03		
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 2 CUA	DRA:	2 DENSIDAD: 6.61			6.61	%
CALCULO DE VALOR DEDUCIDO	ABA	CO DE VA	LORES DE	DUCIDO P	ARA PAVI	MENTOS
	П		VAI	OR DEDUC	ево	1
		DENSIDAD	Baja	Media	Alta	1
[6.0 13.0]]		0.1	Duju	W C U I	11114	
6.61 X		0.2				
7.0 14.3		0.3				
		0.4			4.3	
		0.5			4.9	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.6		1.4	5.6	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.7		1.7	6.2	
		0.8		1.9	6.7	
$\frac{0.61}{} = \frac{13.0}{} = \frac{0.793}{} + \frac{13}{}$		0.9		2.1	7.3	
1.00 = 1.3 = 1		1.0		2.4	7.8	
		2.0	0.1	4.6	12.3	
X = 13.79		3.0	2.0	6.9	16.1	
		4.0	3.3	9.2	19.5	1
		5.0	4.3	11.5	22.6	
		6.0	5.1	13.0	25.5	1
VALOR DEDUCIDC 13.79		7.0	5.8	14.3	28.2	
		8.0	6.4	15.6	30.8	
		9.0	7.0	17.1	32.5	
		10.0	8.0	18.3	34.3	
		20.0	12.2	26.1	50.3	
		30.0	15.1	30.6	59.7	
		40.0	17.7	33.9	66.3	
		50.0	19.9	36.4	71.5	
		60.0	22.0	38.4	75.7	
		70.0	23.9	40.1	79.3	
		80.0	25.6	41.6	82.3	
		90.0	27.3	43.0	85.1	
		100.0	28.9	44.2	87.5	

Tabla N°25: Cálculo del valor deducido corregido de la UM-03

CALCULO DE VALOR MAXIMO DE FALLAS											
ZONA DI	E ESTUDIO:	: CA. TUPA	C AMARU				CUADI	RA: 02	MUESTRA	: UM-03	
Formula	:	M=1+[(9/	98)*(100-H	IVD)		EVAL	UACDOR: I	BACH. ROBE	RTO PRENTIC	E TECO	
Donde.					R	eemnla	zando tenei	nos.		_	
NA Niverage as Suites and content desired					l= 1	+[9 / E	98) * (100	40.22			
HVD= V	alor más A	lto del Vald	or Deducido	o. VR.			(- , -	, ()	,		
HVD= 40.22					٨	<mark>1= 6.49</mark>					
			CALCULO	DE VALC	OR DEDU	CIDO (CORREGID	O (VDC)			
N°			VALO	RES DEDUC	CIDOS			VDT	q	VDC	
1	34.29	25.18						59.47	2	43.63	
2	34.29	2.00						36.29	1	40.00	
				Máxir	no VDC:					43.63	
		CA	LCULO DE I	NTERPOL <i>A</i>	ACION DE	VALOR	DEDUCIDO	CORREGID	0		
q2	50	37				q1	30	· 40			
5	9.47	X					36.29 X				
	60	44					40	· 40			
(9	$ \frac{9.47}{10} = \frac{37.0}{7.0} = \frac{370.0 + 66.29}{10} = 43.63 $										


Tabla N°26: Cálculo del PCI y de la interpolación del VDC de la $\,$ UM-03

TOTAL DE			VALOR DE	DUCIDO COF	RREGIDO						
VALORES	q1	q2	q3	q4	q5	q6	q7	CALCULO D)F PCI		
DEDUCID 0	0.0	4-	90	4.	95	4.0	412	C/ (ECOLO E	, E 1 C1		
10	1.0							Formula:			
12	12.0	8.0									
18	18.0	12.5	8.0					PCI= 100 - MAX. VDC			
20	20.0	14.0	10.0								
25	25.0	18.0	13.5	8.0				Donde VDC=	43.63		
28	28.0	20.0	15.6	10.4	8.0			201/ 100	40.60		
30	30.0	22.0	17.0	12.0	10.0			PCV= 100 -	43.63		
40	40.0	30.0	24.0	19.0	17.0	45.0	45.0	DCI			
42	42.0	31.0	25.4	20.4	18.2	15.0	15.0	PCI= 56.37			
50 60	50.0 60.0	37.0 44.0	31.0 38.0	26.0 33.0	23.0 29.0	20.0	20.0	RANGO DE CALIFIC	CACION DEI		
70	70.0	51.0	44.5	39.0	35.0	32.0	32.0	PCI	CACION DLL		
80	80.0	58.0	50.5	45.0	41.0	38.0	38.0	RANGO	CLASIFCACIO		
90	90.0	64.0	57.0	51.0	46.0	44.0	44.0	100 85	Excelente		
100	100.0	71.0	63.0	57.0	52.0	49.0	49.0	85 70	Muy Bueno		
110		76.0	68.0	62.0	57.0	54.0	54.0	70 55	Bueno		
120		81.0	73.0	68.0	62.0	59.0	59.0	55 40	Regular		
130		86.0	78.5	73.0	67.0	63.0	63.0	40 25	Malo		
135		88.5	81.5	75.5	69.5	65.0	65.0	25 10	Muy malo		
140		91.0	84.0	78.0	72.0	68.0	67.0	10 0	Fallado		
150		94.0	88.0	82.0	76.0	72.0	70.0				
160 166		98.0 100.0	93.0 94.8	86.0 88.4	81.0 83.0	76.0 79.0	74.0 75.2				
170		100.0	96.0	90.0	85.0	81.0	76.0	Clasificación:	BUENO		
180			99.0	93.0	88.0	84.0	79.0				
182			100.0	93.6	88.6	84.8	79.6				
190				96.0	91.0	88.0	82.0				
200				98.0	94.0	90.0	84.0				
								. ()			
		A	BACO DE	1100	AGRAI) (VDC)			
Nalor Deducido (VDC=43.6) All Deducido (VDC=4											
	。 [/	20 30 4	0 50 60		0 100 110 s			166 170 180 190 200			

Tabla N°27: Área y densidad afectada de la UM-03

	CUADRO DE ÁREA AFECTADO DE LA UNIDAD DE MUESTRA -03									
N°	TIPO DEDAÑO	N/S	TOTAL AFECTADA m2	ÁREA EN %						
4	ABULTAMIENTOS Y HUNDIMIENTOS (M)	М	25.00	10.87%						
10	GRIETA LONG, Y TRANSVERSAL (M)	М	9.50	4.13%						
	PAVIMENTO EN BUEN ESTADO		195.45	85.00%						
		TOTAL	229.95	100.00%						

Grafico N° 3: Indice de Daños encontrados en la UM-03

Interpretación de la Unidad de Muestra – UM-3 Cdra. -2:

La unidad de muestra UM-03 tiene 229.95 m², y pertenece a la cuadra 2 de la Ca. Túpac Amaru. Los daños encontrados en la unidad de muestra 03 son de nivel de severidad media de tipo: Abultamiento y Hundimiento con un valor deducido de 40.2 y Grieta longitudinal y transversal de severidad media con un valor deducido de 13.79. Ver tabla N° 28.

La falla más influyente en el daño del pavimento es de abultamientos y hundimientos, el cual se presenta en una considerable área de la unidad de muestra estudiada y siguiendo el procedimiento se obtiene 2 valores deducidos corregidos: 43.63 y 40.00, teniendo como máximo valor deducido corregido 43.63, y siguiendo el procedimiento del PCI, se obtiene como resultado un índice de 56.37 que se encuentra dentro del rango de 55 – 70 que corresponde a una clasificación de un pavimento BUENO.

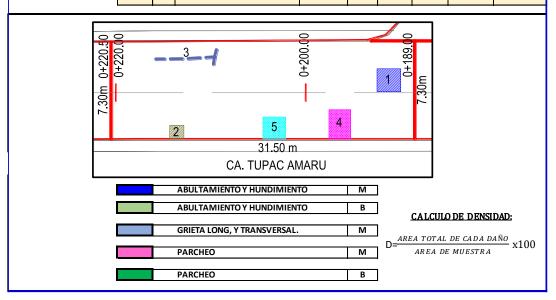
Tabla N° 28: Densidad y Valores Deducidos Finales.

N°	PATOLOGIA	SEV ERI DAD	DENSIDAD (%)	VALOR DEDUCIDO	VDT	VDC
4	Abultamiento y Hundimiento	М	9.40	40.22	59.47	43.63
10	Grieta Long. Y Transversal	В	6.61	13.79	36.29	40.00

UNIDAD DE MUESTRA N° 04 Progresiva 0+189.00 al 0+220.50

CDRA. 3 DE LA CALLE TUPAC AMARU IQUITOS – MAYNAS – LORETO

Tabla N° 29: hoja de registro de daños UM-04


HOJA DE INSPECCIÓN DE CONDICION DEL PAVIMENTO FLEXIBLE - PCI									
UNIDAD DE MUESTREO									
UNIVERSIDAD: CATÓLICA	A LOS ÁNGE	LES DE CHIMBOTE			FECHA DE	EVALUA	CION: JULIO-20:	18	
EVALUADOR: BACH. ROB	ERTO PRENT	ICE TECO			MUESTRA:		UM-04		
PSJE./CALLE/JIRON/AV.:	CALLE. TUP	AC AMARU					CUADRA: 03	3	
TIPO DE USO: VEHICI	JLAR	DIMENCIONES DE MUESTRA		ANC	HO (m):	7.30	LONGITUD (m):	31.50	
AÑO DE CONSTRUCCION:	AÑO DE CONSTRUCCION: ARÉA DE MUESTRA (m2) 229.95 .								
DISTRITO: IQUITOS PROVINCIA: MAYNAS DEPARTAMENTO: LORETO									
	TOS	, ,			DE	EPARTAI	MENTO: LORETO		

	INDICE DE CONDICION DEL PAVIMENTO (PCI - PAVIMENT CONDITION INDEX)								
N°	TIPO DE DAÑO	N°	TIPO DE DAÑO						
1	Piel de Cocodrilo	11	Parcheo						
2	Exudación	12	Pulimento de Agregados						
3	3 Agrietamiento en Bloque 13 Huecos								
4	Abultamientos y Hundimiento	14	Cruce de Vía Férrea						
5	Corrugación	15	Ahuellamiento						
6	Depresión	16	Desplazamiento						
7	Grieta de Borde	17	Grieta Parabólica (slippage)						
8	Grieta de Reflexión de junta	18	Hinchamiento						
9	Desnivel de Carril / Berma	19	Desprendimiento de Agregado						
10	Grieta Long. Y Transversal								

NIVEL DE SEVERIDAD
SEVERIDAD ALTA
Α
SEVERIDAD MEDIA
M
SEVERIDAD BAJA
В

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARG O	ANCHO	TOTAL	DENSIDAD (%)	VALOR DEDUCIDO
1	4	Abultamientos y Hundimientos	М	2.5	2.5	6.25	2.72	20.70
2	4	Abultamientos y Hundimientos	В	1.5	1.5	2.25	0.98	3.84
3	10	Grieta Long. Y Transversal	В	7.8		7.8	3.37	2.48
4	11	Parcheo	М	3.2	2.3	7.36	3.20	17.94
5	11	Parcheo	В	2.4	2.4	5.76	2.50	5.50
								•

 $\boldsymbol{Tabla~N^{\circ}~30:}$ Abultamientos y hundimientos de severidad media de la UM-04

CALCULO DEL VALOR DEDUCIDO								
N° TIPO DE DAÑO NIVEL DE SEVERIDAD MUESTRA								
4 ABULTAMIENTOS Y HUNDIMIENTOS	NIVE	Media	MUES 04					
	ABACO DEVA			2.72 ARA PAVI	% MENTO S			
		_			1			
	DENSIDAD		OR DEDUC					
[2.0 17.6]]	0.1	Baja	Media	Alta				
$\begin{bmatrix} 2.0 & & 17.6 \\ 2.72 & & X \end{bmatrix}$	0.1							
3.0 21.9	0.3		4.4	20.5				
	0.4	0.9	6.4	23.1				
	0.5	1.6	7.9	25.3				
$\begin{bmatrix} 2.72 & - & 2.0 \end{bmatrix} = \begin{bmatrix} X & - & 17.6 \end{bmatrix}$	0.6	2.2	9.2	27.3				
3.0 - 2.0 21.90 - 17.6	0.7	2.7	10.2	29.1				
	0.8	3.2	11.2	30.8				
$\frac{0.72}{1.00} = \frac{17.6}{1.0} = \frac{3.096}{1.00} + 17.6$	0.9	3.6	12.0	32.3				
1.00 4.3 1	1.0	3.9	12.7	33.7				
X = 20.70	3.0	6.8 8.0	17.6 21.9	50.5				
A = 20.70	4.0	9.2	25.5	55.0				
	5.0	10.4	28.7	58.8				
	6.0	11.5	31.7	62.1				
VALOR DEDUCIDC 20.70	7.0	12.7	34.4	65.0				
	8.0	13.9	36.9	67.6				
	9.0	15.1	39.3	70.0				
	10.0	16.3	41.6	72.3				
	20.0	28.1	60.2	88.8				
	30.0	39.9	74.8	100.2				
	32.0	40.0	75.0	100.3				
	50.0 60.0							
	70.0							
	80.0							
	90.0							
	100.0]			
DIAGRAMA DE INTE	PPOLACI	ON			•			
	KI OL/ICI	.011						
100 F								
90			Ш					
80			Ш					
			Ш					
20.70			Ш					
60 eqn			П	Вајс	,			
70 20.70 60 50 40				— Меа	lio			
40 40 E			-	Alto				
30								
20			Ш					
10			Ш					
	.0.0		100.0					
Valor Deducido para Pavimento Asfaltico - A	Abultamiento	s y humdi	imientos					

Tabla N° 31: Abultamientos y hundimientos de severidad baja de la UM-04

CALCULO DEL VALOR DEDUCIDO								
~			DE LE) (TIPO	777D 4			
N° TIPO DE DAÑO	NIV.	EL DE SEVE	RIDAD	MUES 04				
10 ABULTAMIENTOS Y HUNDIMIENTOS UBICACIÓN: CA. TUPAC AMARUN° DE ORDEN: 2 CUAI								
CALCULO DE VALOR DEDUCIDO		3 DENSIDAD: 0.98 CO DE VALORES DEDUCIDO PARA						
CALCULO DE VALOR DEDUCIDO	роспо г	AKA PAVI	MENIOS					
	DENSIDA		LOR DEDUC	то				
		Baja	Media	Alta				
1.0 3.9	0.1							
L 0.98 X	0.2			-0.5				
2.0 6.8	0.3	0.0	4.4	20.5				
	0.4	0.9	6.4	23.1				
0.98 - 1.0 X - 3.9	0.5	2.2	7.9 9.2	25.3 27.3				
$\frac{0.98 - 1.0}{2.0 - 1.0} = \frac{3.9}{6.80 - 3.9}$	0.7	2.7	10.2	29.1				
2.0 1.0	0.8	3.2	11.2	30.8				
-0.02 3.9 -0.058 + 3.9	0.9	3.6	12.0	32.3				
$\frac{-332}{1.00} = \frac{-33}{2.9} = \frac{-3366}{1}$	1.0	3.9	12.7	33.7				
	2.0	6.8	17.6	44.8				
X = 3.84	3.0	8.0	21.9	50.5				
	4.0	9.2	25.5	55.0				
	5.0	10.4	28.7	58.8				
	6.0	11.5	31.7	62.1				
VALOR DEDUCIDO 3.84	7.0	12.7	34.4	65.0				
	8.0	13.9	36.9	67.6				
	9.0	15.1	39.3	70.0				
	10.0	16.3	41.6	72.3				
	20.0	28.1	60.2	88.8				
	30.0	39.9	74.8	100.2				
	32.0 50.0	40.0	75.0	100.3				
	60.0							
	70.0							
	80.0							
	90.0							
	100.0							
DIAGRAMA DE INTE	RPOLAC	ION						
100			П					
90			Ш					
80			H					
용 70 F	// /		Н					
60 que			Ш					
70 Aglor Deducido 60 0.42 50 40 40			Ш.	—— Вајо				
40			Ш.	Med	io			
			Ш.	— Alto				
30			Ш					
20								
10			\mathbb{H}					
0			Ш					
0.1 1.0	10.0		100.0					
Densidad								
	Abultamiento	os y humdi	mientos					
Valor Deducido para Pavimento Asfaltico - Abultamientos y humdimientos								

Tabla N^{\circ} 32: Grieta long. y transversal de severidad media de la UM-04

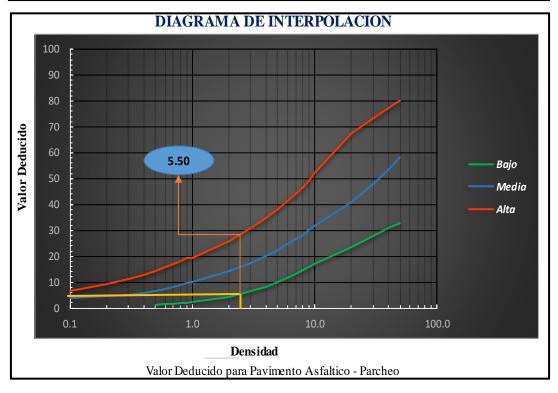

Tabla N 32: Offeta long. y transversar de se	veridad i	ncuia uc	ia Owi	-0-4						
CALCULO DEL VALO	CALCULO DEL VALOR DEDUCIDO									
N° TIPO DE DAÑO		EL DE SEVE	RIDAD	MUES	TRA					
10 GRIETA LONG. Y TRANSVERSAL		Media		04						
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 3 CUAD	PRA: 3	DENSIDA	D:	3.37	%					
CALCULO DE VALOR DEDUCIDO	CALCULO DE VALOR DEDUCIDO ABACO DE VALORES DEDUCIDO PARA PAVIMENTOS									
	DENSIDA	VAI	LOR DEDUC	то						
	DENGIDA	Baja	Media	Alta						
$\begin{bmatrix} 3.0 & \cdots & 2.0 \\ 3.37 & \cdots & X \end{bmatrix}$	0.1									
1.77	0.2									
4.0 3.3	0.3			4.3						
	0.5			4.9						
3.37 - 3.0 X - 2.0	0.6		1.4	5.6						
4.0 - 3.0 - 2.0	0.7		1.7	6.2						
	0.8		1.9	6.7						
$\frac{0.37}{1.00} = \frac{2.0}{1.3} = \frac{0.481 + 2}{1}$	1.0		2.1	7.3 7.8						
1.00 1.5	2.0	0.1	4.6	12.3						
X = 2.48	3.0	2.0	6.9	16.1						
	4.0	3.3	9.2	19.5						
	5.0	4.3	11.5	22.6						
	6.0	5.1	13.0	25.5						
VALOR DEDUCIDC 2.48	7.0	5.8	14.3	28.2						
	9.0	7.0	15.6 17.1	30.8						
	10.0	8.0	18.3	34.3						
	20.0	12.2	26.1	50.3						
	30.0	15.1	30.6	59.7						
	40.0	17.7	33.9	66.3						
	50.0	19.9	36.4	71.5						
	70.0	22.0	38.4 40.1	75.7 79.3						
	80.0	25.6	41.6	82.3						
	90.0	27.3	43.0	85.1						
	100.0	28.9	44.2	87.5						
DIAGRAMA DE INTE	RPOLAC	YON								
	KI OLI (1011								
100 F										
90										
90										
80										
op 70 2.48			Ш							
60										
				—— Ва	jo					
70 Peducido 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40				Me	edia					
40										
				—— Alt	a					
30										
20										
10										
01	10.0		100.0							
0.1 1.0	10.0		100.0							
Densidad										
	Cut. 4		1							
Valor Deducido para Pavimento Asfaltico - Grietas Long. v Transversal										

Tabla N° 33: Parcheo de severidad media de la UM-04

CALCULO DEL VALOR DEDUCIDO									
N° TIPO DE DAÑO									
11 PARCHEO		Media		04					
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 4 CUADRA: 3 DENSIDAD: 3.20 %									
CALCULO DE VALOR DEDUCIDO ABACO DE VALORES DEDUCIDO PARA PAVIMENTOS									
		VAI	LOR DEDUC	сто					
	DENSIDAD	Ваја	Media	Alta					
$\begin{bmatrix} 3.0 & \cdots & 17.4 \\ 3.20 & \cdots & X \end{bmatrix}$	0.1		3.7	6.5					
	0.2		4.5	9.2					
4.0 20.1	0.3		5.2	11.2					
	0.4	1.2	6.0	12.9					
$\begin{bmatrix} 3.20 & - & 3.0 \end{bmatrix} = \begin{bmatrix} X & - & 17.4 \end{bmatrix}$	0.6	1.4	7.5	15.8					
	0.7	1.6	8.2	17.1					
	0.8	1.9	9.0	18.3					
$\frac{0.20}{1.00} = \frac{17.4}{2.7} = \frac{0.54 + 17.4}{1}$	0.9	2.1	9.7	19.4					
1.00 - 2.7 - 1	1.0	2.3	10.1	19.4					
	2.0	4.4	14.3	26.0					
X = 17.94	3.0	6.6	17.4	30.8					
	4.0	8.0	20.1	34.8					
	5.0	9.9	22.4	38.2					
VALOR DEDUCIDC 17.94	7.0	13.2	24.6	41.2					
VALOR BLBCCIBC 17.54	8.0	14.6	28.3	46.5					
	9.0	15.7	30.0	48.9					
	10.0	16.8	31.5	52.0					
	20.0	23.7	41.0	67.5					
	30.0	27.8	47.9	73.1					
	40.0	30.7	53.4	77.0					
	60.0	32.9	58.2	80.1					
	70.0								
	80.0								
	90.0								
	100.0								
DIAGRAMA DE INTER	POLAC	ION							
100 r									
90									
80			Ш						
			Ш						
ල ⁷⁰ 17.94									
60			ш						
				—— Вај	o				
1 50 E				— Ме	dia				
Opion 70 17.94 60 50 40 40				—— Alt	,				
				AIL					
30									
20									
10					7777				
10									
0			1111		7/7				
0.1 1.0 10	0.0		100.0						
Densidad									
	efaltico D	archeo							
Valor Deducido para Pavimento Asfaltico - Parcheo									

Tabla N° 34: Parcheo de severidad baja de la UM-04

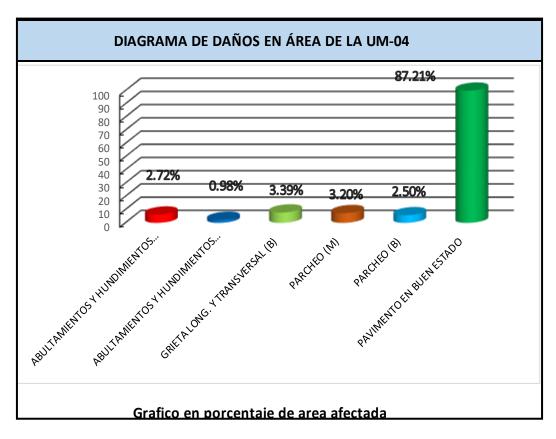
CALCULO DEL VALOR DEDUCIDO							
N° TIPO DE DAÑO	NIVEL DE SEVERIDAD			MUESTRA			
11 PARCHEO		Bajo		04			
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 5 CUA	DRA:	3	DENSIDAI):	2.50	%	
CALCULO DE VALOR DEDUCIDO	ABA	CO DE VA	LORES DE	DUCIDO P	ARA PAVI	MENTOS	
			VAL	OR DEDUC	ство		
		DENSIDAD	Ваја	Media	Alta		
[2.0 4.4]]		0.1		3.7	6.5		
2.50 X		0.2		4.5	9.2		
3.0 6.6		0.3		5.2	11.2		
		0.4		6.0	12.9		
		0.5	1.2	6.7	14.4		
2.50 - 2.0 X - 4.4		0.6	1.4	7.5	15.8		
3.0 - 2.0 - 6.60 - 4.4		0.7	1.6	8.2	17.1		
		0.8	1.9	9.0	18.3		
0.50 4.4 1.1 + 4.4		0.9	2.1	9.7	19.4		
$\frac{1.00}{1.00} = \frac{2.2}{1} = \frac{1}{1}$		1.0	2.3	10.1	19.4		
		2.0	4.4	14.3	26.0		
X = 5.50		3.0	6.6	17.4	30.8		
		4.0	8.0	20.1	34.8		
		5.0	9.9	22.4	38.2		
		6.0	11.7	24.6	41.2		
VALOR DEDUCIDO 5.50		7.0	13.2	26.5	44.0		
		8.0	14.6	28.3	46.5		
		9.0	15.7	30.0	48.9		
		10.0	16.8	31.5	52.0		
		20.0	23.7	41.0	67.5		
		30.0	27.8	47.9	73.1		
		40.0	30.7	53.4	77.0		
		50.0	32.9	58.2	80.1		
		60.0					
		70.0					
		80.0					
		90.0					
		100.0					

Tabla N°35: Cálculo del valor deducido corregido de la UM-04

	CALCULO DE VALOR MAXIMO DE FALLAS									
ZONA DE ESTUDIO: CA. TUPAC AMARU CUADRA: 03								03	MUESTRA:	UM-04
Formula	ı:	M=1+[(9/	98)*(100-F	IVD)		EVALUA	CDOR: BAC		O PRENTICE	
Donde. <i>M</i> = Número máximo de valor deducido							ando tenemo		20 70]	
M= Número máximo de valor deducido HVD= Valor más Alto del Valor Deducido. VR. M= 1 +[9 / 98]*[100 - 20.70]										
HVD=	HVD= 20.7									
		(CALCULO	DE VALOI	R DEDUC	CIDO CO	RREGIDO ('VDC)		
N°				ES DEDUCI				VDT	q	VDC
1	20.70	17.94	5.50	3.84	2.48			50.46	5	23.28
2	20.70	17.94	5.50	3.84	2.00			49.98	4	25.99
3	20.70	17.94	5.50	2.00	2.00			48.14	3	29.70
5	20.70 20.70	17.94 2.00	2.00 2.00	2.00 2.00	2.00			44.64 28.70	2	32.98 28.70
3	20.70	2.00	2.00	2.00	2.00			20.70	1	20.70
				Máxim	o VDC:					32.98
		CALC	CULO DE IN	ITERPΩI ΔΩ	CION DE V	/ΔI OR DI	EDUCIDO CO	DRREGIDO		
q5	50	23	COLO DE IIV	ITEM OLA	JON DE	r -	42 20			_
5	0.46	X				49	9.98 X			
	60	29				:	50 26	5		
(5)	0.46 -	50) (х -	23.0)		(49	9.98 - 42	2) (X	- 20.4	Ŋ
	0.46 - 60 -	50 =	29.0 -	23.0		ا	50 - 42	2 = 26.	- 20.4 0 - 20.4	Ų
<u> </u>	0.46 10 = -2	$\frac{23.0}{6.0} = \frac{2}{100}$	230.0 +	2.76 =	23.28	[7	.98 = <u>20</u>	. <u>4</u>	.2 + 44.69 8) = 25.99
I	42 2		10				12 31			
1 -	8.14	X				¬-	l.64 X			
	50	31				5	50 37	7		
(4	R.14 -	42) (x -	25.4		(44	1.64 - 42	2) (x	- 31.0	וֹ
	8.14 - 50 -	42 =	31.0 -	25.4			50 - 42	2 = 37.	- 31.0 0 - 31.0	<u>.</u>
(6	8 = 2	25.4 5.6 = 2	8	34.38 =	29.70	(2)	.64 8 = 31	0 = 248	8 + 15.84	= 32.98
q1	28	28								
	8.70									
(2	8.70 - 30 -	28 =	X -	28.0						
	0.70 2 = -2	28.0 2.0 = —	56.0 +	1.40 =	28.70					

Tabla N°36: Cálculo del PCI y de la interpolación del VDC de la UM-04

TOTAL DE			VALOR DE	DUCIDO COR	REGIDO					
VALORES	q1	q2	q3	q4	q5	q6	q7	(ALCULO	DE DCI
DEDUCID	_	42	43	47	45	40	ų,		ALCOLO	DETCI
0	0.0							Formula	٠.	
10 12	1.0	0.0						Torritai	.	
18	12.0 18.0	8.0 12.5	8.0					PCI= 100	O- MAX.	VDC
20	20.0	14.0	10.0					1 01- 100	, ivia.	VDC
25	25.0	18.0	13.5	8.0				Donde \	/DC=	32.98
28	28.0	20.0	15.6	10.4	8.0			Donac		32.30
30	30.0	22.0	17.0	12.0	10.0			PCV=	100 -	32.98
40	40.0	30.0	24.0	19.0	17.0					000
42	42.0	31.0	25.4	20.4	18.2	15.0	15.0	PCI=	67.02	
50	50.0	37.0	31.0	26.0	23.0	20.0	20.0	<u> </u>	07.02	
60	60.0	44.0	38.0	33.0	29.0	26.0	26.0	RANGO	DE CALIE	ICACION DEL
70	70.0	51.0	44.5	39.0	35.0	32.0	32.0	10.1100	PCI	10,10,0,1, 522
80	80.0	58.0	50.5	45.0	41.0	38.0	38.0	RA	NGO	CLASIFCACIO
90	90.0	64.0	57.0	51.0	46.0	44.0	44.0	100	85	Excelente
100	100.0	71.0	63.0	57.0	52.0	49.0	49.0	85	70	Muy Bueno
110	100.0	76.0	68.0	62.0	57.0	54.0	54.0	70	55	Bueno
120		81.0	73.0	68.0	62.0	59.0	59.0	55	40	Regular
130		86.0	78.5	73.0	67.0	63.0	63.0	40	25	Malo
135		88.5	81.5	75.5	69.5	65.0	65.0	25	10	Muy malo
140		91.0	84.0	78.0	72.0	68.0	67.0	10	0	Fallado
150		94.0	88.0	82.0	76.0	72.0	70.0			
160		98.0	93.0	86.0	81.0	76.0	74.0			
166		100.0	94.8	88.4	83.0	79.0	75.2			
170		100.0	96.0	90.0	85.0	81.0	76.0	Clasifi	cación:	BUENO
180			99.0	93.0	88.0	84.0	79.0			
182			100.0	93.6	88.6	84.8	79.6			
190			200.0	96.0	91.0	88.0	82.0			
200				98.0	94.0	90.0	84.0			
		AE	BACO DE	L VALOR	DEDUC	IDO CO	RREGIDO) (VDC)		
				חום	AGRA	ΜΔ \	/DC			
				יום	אטווא	IVIA V				
1	100		7/1/4/4							
$\overline{}$	90									
(VDC)										
≥	80	_		+/+						
용										—— q1
egic	70									
Örr	60									— q2
96	50			///						— q3
/alor Deducido Corregido	40									—— q4
Ded										—— q5
or [30	//	1111	VDC=3	2.9					—— q6
la la	20	1///								—— q7


0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200

Valor de Densidad Total (VDT)

Tabla N°37: Área y densidad afectada de la UM-04

	CUADRO DE ÁREA AFECTADO DE LA UNIDAD DE MUESTRA -04					
N°	TIPO DEDAÑO	N/S	TOTAL AFECTADA m2	ÁREA EN %		
4	ABULTAMIENTOS Y HUNDIMIENTOS (M)	М	6.25	2.72%		
4	ABULTAMIENTOS Y HUNDIMIENTOS (B)	В	2.25	0.98%		
10	GRIETA LONG. Y TRANSVERSAL (B)	В	7.80	3.39%		
11	PARCHEO (M)	M	7.36	3.20%		
11	PARCHEO (B)	В	5.76	2.50%		
-	PAVIMENTO EN BUEN ESTADO		200.53	87.21%		
		TOTAL	229.95	100.00%		

Grafico N° 4: Indice de Daños encontrados en la UM-04

Interpretación de la Unidad de Muestra – UM-4 Cdra. -3:

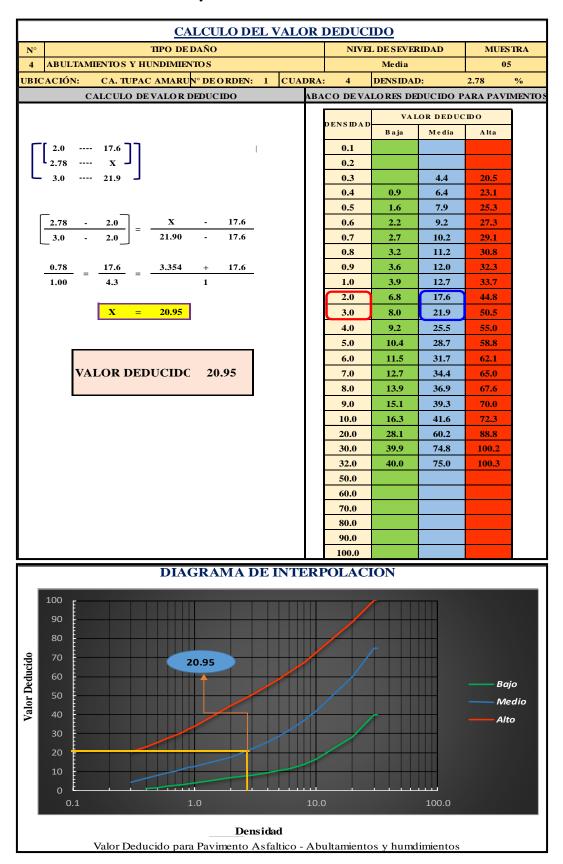
La unidad de muestra UM-04 tiene 229.95 m², y pertenece a la cuadra 3 de la Ca. Túpac Amaru. Los daños encontrados en la unidad de muestra 04 son de nivel de de tipo: Abultamiento y Hundimiento de severidad media con un valor deducido de 20.70, Abultamiento y Hundimiento de severidad baja con un valor deducido de 3.84, Grieta longitudinal y transversal de severidad baja con un valor deducido de 2.48, Parcheo de severidad media y baja con un valor deducido de 17.94 y 5.50. Ver tabla N° 38.

La falla más influyente en el daño del pavimento es de Parcheo, el cual se presenta en una considerable área de la unidad de muestra estudiada y siguiendo el procedimiento se obtiene 5 valores deducidos corregidos: 23.28, 25.99, 29.70, 32.98 y 28.70, teniendo como máximo valor deducido corregido 32.98, y siguiendo el procedimiento del PCI, se obtiene como resultado un índice de 67.02 que se encuentra dentro del rango de 55 – 70 que corresponde a una clasificación de un pavimento BUENO.

Tabla N° 38: Densidad y Valores Deducidos Finales.

N°	PATOLOGIA	SEVERIDAD	DENSIDAD (%)	VALOR DEDUCIDO	VDT	VDC
4	Abultamiento y Hundimiento	М	2.72	20.70	50.46	23.28
4	Abultamiento y Hundimiento	В	0.98	3.84	49.98	25.99
10	Grieta Long. Y Transversal	В	3.37	2.48	48.14	29.70
11	Parcheo	M	3.20	17.94	44.64	32.98
11	Parcheo	В	2.50	5.50	28.70	28.70

UNIDAD DE MUESTRA N° 05 Progresiva 0+252.00 al 0+283.50



CDRA. 4 DE LA CALLE TUPAC AMARU IQUITOS – MAYNAS – LORETO

Tabla N° 39: hoja de registro de daños UM-05

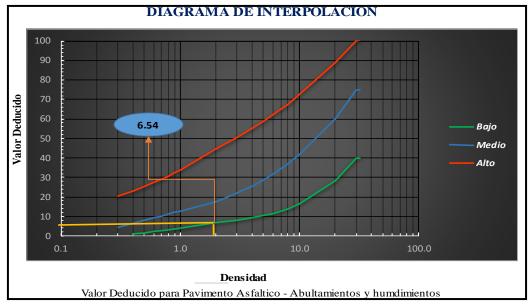


Tabla N° 40: Abultamientos y hundimientos de severidad media de la UM-05

Tabla N° 41: Abultamientos y hundimientos de severidad baja de la UM-05

CALCULO DEL VALO	OR I	DEDUC	<u>DO</u>			
N° TIPO DE DAÑO	V° TIPO DE DAÑO				MUESTRA	
10 ABULTAMIENTOS Y HUNDIMIENTOS			Baja		05	
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 2 CUA	DRA:	4	DENSIDAI):	1.91	%
CALCULO DE VALOR DEDUCIDO	ABA	ACO DE VA	LO RES DI	DUCIDO 1	PARA PAVI	MENTO
		DENSIDAD		OR DEDUC	сто	
		DENSIDAD	Baja	Media	Alta	
[1.0 3.9]		0.1				
1.91 X		0.2				
2.0 6.8		0.3		4.4	20.5	
		0.4	0.9	6.4	23.1	
		0.5	1.6	7.9	25.3	
1.91 - 1.0 _ X - 3.9		0.6	2.2	9.2	27.3	
2.0 - 1.0 6.80 - 3.9		0.7	2.7	10.2	29.1	
		0.8	3.2	11.2	30.8	
0.91 - 3.9 - 2.639 + 3.9		0.9	3.6	12.0	32.3	
1.00 2.9 1		1.0	3.9	12.7	33.7	
		2.0	6.8	17.6	44.8	
X = 6.54		3.0	8.0	21.9	50.5	
		4.0	9.2	25.5	55.0	
		5.0	10.4	28.7	58.8	
		6.0	11.5	31.7	62.1	
VALOR DEDUCIDO 6.54		7.0	12.7	34.4	65.0	
		8.0	13.9	36.9	67.6	
		9.0	15.1	39.3	70.0	
		10.0	16.3	41.6	72.3	
		20.0	28.1	60.2	88.8	
		30.0	39.9	74.8	100.2	
		32.0	40.0	75.0	100.3	
		50.0				
		60.0				
		70.0				
		80.0				
		90.0				
		100.0				

Tabla N° 42: Parcheo de severidad media de la UM-05

CALCULO DEL VALO	R DEDUC	DО			
N° TIPO DEDAÑO		L DE SEVE	RIDAD	MUES	TRA
11 PARCHEO		Media		05	
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 3 CUAI	DRA: 4	DENSIDAL	D:	3.41	%
CALCULO DE VALOR DEDUCIDO	ABACO DE VA	LORES DI	DUCIDO I	PARA PAVI	MENTO
		¥7.4.¥	OR REPUG	TTD O	
	DENSIDAD		OR DEDUC	1	
Et	0.1	Baja	Media	Alta	
3.0 17.4	0.1		3.7	6.5	
3.41 X	0.2		4.5	9.2	
4.0 20.1	0.3		5.2	11.2	
	0.4	1.0	6.0	12.9	
[] v	0.5	1.2	6.7	14.4	
$\left \frac{3.41 - 3.0}{2.010} \right = \frac{X - 17.4}{20.10}$	0.6	1.4	7.5	15.8	
4.0 - 3.0 20.10 - 17.4	0.7	1.6	8.2	17.1	
	0.8	1.9	9.0	18.3	
$\frac{0.41}{1.00} = \frac{17.4}{0.7} = \frac{1.107 + 17.4}{0.7}$	0.9	2.1	9.7	19.4	
1.00 2.7 1	1.0	2.3	10.1	19.4	
V 10.51	2.0	4.4	14.3	26.0	
X = 18.51	3.0	6.6	17.4	30.8	
	4.0	8.0	20.1	34.8	
	5.0	9.9	22.4	38.2	
VIA OD DEDVICEDO 40 54	6.0	11.7	24.6	41.2	
VALOR DEDUCIDO 18.51	7.0	13.2	26.5	44.0	
	8.0	14.6	28.3	46.5	
	9.0	15.7	30.0	48.9	
	10.0	16.8	31.5	52.0	
	20.0	23.7	41.0	67.5	
	30.0	27.8	47.9	73.1	
	40.0	30.7	53.4	77.0	
	50.0	32.9	58.2	80.1	
	60.0				
	70.0				
	80.0				
	90.0				
	100.0				
DIAGRAMA DE INTE	RPOLACI	ON			
¹⁰⁰ F					
90					
80					
<u>9</u> 70 18.51			Ш		
Alor Deducido				Do.	
P 50 50 50 50 50 50 50 50 50 50 50 50 50				—— Baj	
ole 10				—— Ме	
3 40 A0				—— Alto	7
30					
20					
10					
0	10.0		100-0		
0.1 1.0	10.0		100.0		
Densidad					
Valor Deducido para Pavimento	Asfaltico - Pa	archeo			

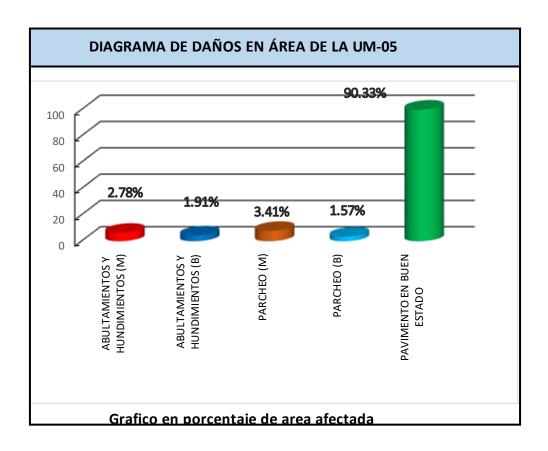
Tabla N^{\circ} 43: Parcheo de severidad baja de la UM-05

CALCULO DEL VALO	R DEDUC	DΟ	-		
N° TIPO DE DAÑO		L DE SEVE	RIDAD	MUES	TRA
11 PARCHEO		Bajo		05	;
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 4 CUAI	PRA: 4	DENSIDAI):	1.57	%
CALCULO DE VALOR DEDUCIDO	ABACO DEVA	LORES DE	DUCIDO P	ARA PAVI	MENTO
		VAI	OR DEDUC	то	1
	DENSIDAD	Ваја	Media	Alta	i
[2.0 2.3]]	0.1		3.7	6.5	
1.57 X	0.2		4.5	9.2	l
3.0 4.4	0.3		5.2	11.2	1
	0.4		6.0	12.9	
ו	0.5	1.2	6.7	14.4	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.6	1.4	7.5	15.8	
3.0 - 2.0 4.40 - 2.3	0.7	1.6	8.2	17.1	
	0.8	1.9	9.0	18.3	
$\frac{-0.43}{1.00} = \frac{2.3}{2.1} = \frac{-0.903 + 2.3}{1.00}$	0.9	2.1	9.7	19.4	
1.00 2.1 1	1.0	2.3	10.1	19.4	
X = 1.40	3.0	4.4	14.3 17.4	26.0	
A - 1.40	4.0	8.0	20.1	30.8	
	5.0	9.9	22.4	38.2	
	6.0	11.7	24.6	41.2	
VALOR DEDUCIDO 1.40	7.0	13.2	26.5	44.0	
	8.0	14.6	28.3	46.5	
	9.0	15.7	30.0	48.9	
	10.0	16.8	31.5	52.0	l
	20.0	23.7	41.0	67.5	
	30.0	27.8	47.9	73.1	1
	40.0	30.7	53.4	77.0	
	50.0	32.9	58.2	80.1	
	60.0				
	70.0				
	80.0				
	90.0				
	•				
DIAGRAMA DE INTE	RPOLACI	ION			
100 r			-		
00					
90					
80					
9 70					
cid.					
on p ₃ 60 1.40					
Q 50				—— Вај	
				— Ме	dia
40				—— Alt	а
30					
20					
10					

DensidadValor Deducido para Pavimento Asfaltico - Parcheo

Tabla N° 44: Cálculo del valor deducido corregido de la UM-05

			CALC	ULO DE V	ALOR N	1AXIM	O DE FALLA	<u>s</u>		
ZONA DE ESTUDIO: CA. TUPAC AMARU							CUADRA:	04	MUESTRA:	UM-05
Formula: M=1+[(9/98)*(100-HVD)						EVALU	ACDOR: BAC			
Donde.	-				Ī,	•				1
M = Núm	nero máxin	no de valor	deducido				zando tenem + (9 / 98		20 70]	
HVD= V	alor más A	lto del Valo	r Deducido	. VR.		vi– 1	+(3 / 30	, (100 -	20.70 j	
HVD= 20.7						٨	<i>∧</i> = 8.28			
		(ALCULO	DE VALOI	R DEDU	CIDO C	ORREGIDO	(VDC)		
N°			VALOR	ES DEDUCI	DOS			VDT	q	VDC
1	20.95	18.51	6.54	1.40				47.40	4	24.18
2	20.95	18.51	6.54	1.40				47.40	3	29.18
3	20.95	18.51	2.00	1.40				42.86	2	31.65
4	20.95	2.00	2.00	1.40				26.35	1	26.35
5										
				Máxim	o VDC:					31.65
		CALO	CULO DE IN	ITERPOLAC	CION DE V	/ALOR I	DEDUCIDO C	ORREGIDO		
q4 -	42 2					q3	42 25			_
4	7.40	X					47.40 Y	ζ.		
:	50	26					50 3	1		
						_		• >		
47	7.40 - 50 -	42 =	X - 26.0 -	20.4			47.40 - 4 50 - 4	$=\begin{bmatrix} \frac{x}{2} \\ 31 \end{bmatrix}$	- 25.4 .0 - 25.4	·J
(5	.40 = -2	$\left(\frac{20.4}{5.6}\right) = \frac{1}{2}$.63.2 +	30.24 =	24.18	(5.40 = 25 8 = 5	<u>.4</u>]= <u>203</u>	8 + 30.24	- = 29.18
	42				_	a1	25 2			
I •	2.86	X					26.35 X			
:	50	37					28 2	8		
(42	2.86 - 50 -	42 =	X - 37.0 -	31.0		(:	26.35 - 2 28 - 2	$\begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} X \\ 28 \end{bmatrix}$	- 25.0 .0 - 25.0	-)
[0	.86 8	$\frac{31.0}{6.0}$ = $\frac{2}{}$	48.0 +	5.16 =	31.65	($\frac{1.35}{3} = \frac{25}{3}$	<u>.0</u> = <u>75</u>	3 + 4.05	- = 26.35


Tabla N° 45: Cálculo del PCI y de la interpolación del VDC de la $\,$ UM-05

TOTAL DE			VALOR DE	DUCIDO COR	REGIDO					
VALORES	q1	q2	q3	q4	q5	q6	q7		CALCULO I	OF PCI
DEDUCID 0	0.0	4-	42	47	43	40	4,		, LEGEU I) L 1 C1
10	1.0							Formul	a·	
12	12.0	8.0						Torritar	u.	
18	18.0	12.5	8.0					PCI= 10	0 - MAX. '	VDC.
20	20.0	14.0	10.0					. 0. 20	•	
25	25.0	18.0	13.5	8.0				Donde	VDC=	31.65
28	28.0	20.0	15.6	10.4	8.0			20.1.0.0		02.00
30	30.0	22.0	17.0	12.0	10.0			PCV=	100 -	31.65
40	40.0	30.0	24.0	19.0	17.0					
42	42.0	31.0	25.4	20.4	18.2	15.0	15.0	PCI=	68.35	
50	50.0	37.0	31.0	26.0	23.0	20.0	20.0			•
60	60.0	44.0	38.0	33.0	29.0	26.0	26.0	RANGO	DE CALIFI	CACION DEL
70	70.0	51.0	44.5	39.0	35.0	32.0	32.0		PCI	
80	80.0	58.0	50.5	45.0	41.0	38.0	38.0	R.A	NGO	CLASIFCACION
90	90.0	64.0	57.0	51.0	46.0	44.0	44.0	100	85	Excelente
100	100.0	71.0	63.0	57.0	52.0	49.0	49.0	85	70	Muy Bueno
110		76.0	68.0	62.0	57.0	54.0	54.0	70	55	Bueno
120		81.0	73.0	68.0	62.0	59.0	59.0	55	40	Regular
130		86.0	78.5	73.0	67.0	63.0	63.0	40	25	Malo
135		88.5	81.5	75.5	69.5	65.0	65.0	25	10	Muy malo
140		91.0	84.0	78.0	72.0	68.0	67.0	10	0	Fallado
150		94.0	88.0	82.0	76.0	72.0	70.0			
160		98.0	93.0	86.0	81.0	76.0	74.0			
166		100.0	94.8	88.4	83.0	79.0	75.2	Clasif	icación:	BUENO
170	_		96.0	90.0	85.0	81.0	76.0	Clusij	icacion:	DUENU
180			99.0	93.0	88.0	84.0	79.0		· · · · · · · · · · · · · · · · · · ·	
182			100.0	93.6	88.6	84.8	79.6			
190				96.0	91.0	88.0	82.0			
200				98.0	94.0	90.0	84.0			
		Δ.	14CO DE	LVALOR	DEDUC	100 00) (VDC)		
		AE	BACO DE	LVALOR	DEDUC	טט טעו	KKEGIDU) (VDC)		
				DIA	AGRA	MA \	/DC			
1	^{LOO} F									
	00									
(DC)	90						///			
	80			\perp / \perp		//				
Valor Deducido Corregido (`						///				
gid	70			/ +	//				+	— q1
l š					///					—— q2
Ö	60									
0	50			///						—— q3
jğ	30			///						 q4
5	40									
e e			///							—— q5
5	30		///							—— q6
유	20	///		VDC=3	1.6					
8	20	1///								—— q7
	10	////								
	~ [/									
	0				ىلىل					
	0 10	20 30 4	0 50 60	70 80 90	100 110	120 130 1	40 150 160	166 170 18	0 190 200	
				Valor de	Densida	d Total	VDT)			
				WC						

Tabla N^{\circ} 46: Área y densidad afectada de la UM-05

	CUADRO DE ÁREA AFECTADO DE LA UNIDAD DE MUESTRA -05					
N°	TIPO DEDAÑO	N/S	TOTAL AFECTADA m2	ÁREA EN %		
4	ABULTAMIENTOS Y HUNDIMIENTOS (M)	М	6.40	2.78%		
4	ABULTAMIENTOS Y HUNDIMIENTOS (B)	В	4.40	1.91%		
11	PARCHEO (M)	М	7.84	3.41%		
11	PARCHEO (B)	В	3.60	1.57%		
-	PAVIMENTO EN BUEN ESTADO		207.71	90.33%		
	ı	TOTAL	229.95	100.00%		

Grafico N° 5: Indice de Daños encontrados en la UM-05

Interpretación de la Unidad de Muestra – UM-5 Cdra. -4:

La unidad de muestra UM-05 tiene 229.95 m², y pertenece a la cuadra 4 de la Ca. Túpac Amaru. Los daños encontrados en la unidad de muestra 05 son de tipo: Abultamiento y Hundimiento de severidad media con un valor deducido de 20.95, Abultamiento y Hundimiento de severidad baja con un valor deducido de 6.54, Parcheo de severidad media con un valor deducido de 18.51 y Parcheo de severidad baja con un valor deducido de 1.40. Ver tabla N° 47.

La falla más influyente en el daño del pavimento es de Abultamiento y Hundimiento, el cual se presenta en una considerable área de la unidad de muestra estudiada y siguiendo el procedimiento se obtiene 4 valores deducidos corregidos: 24.18, 29.18, 31.65 y 26.35, teniendo como máximo valor deducido corregido 31.65, y siguiendo el procedimiento del PCI, se obtiene como resultado un índice de 68.35 que se encuentra dentro del rango de 55 – 70 que corresponde a una clasificación de un pavimento BUENO.

Tabla N° 47: Densidad y Valores Deducidos Finales.

N°	PATOLOGIA	SEVERIDAD	DENSIDAD (%)	VALOR DEDUCIDO	VDT	VDC
4	Abultamiento y Hundimiento	М	2.78	20.95	47.40	24.18
4	Abultamiento y Hundimiento	В	1.91	6.54	47.40	29.18
11	Parcheo	М	3.41	18.51	42.86	31.65
11	Parcheo	В	1.57	1.40	26.35	26.35

UNIDAD DE MUESTRA N°06 Progresiva 0+315.00 al 0+346.50

CDRA. 4 DE LA CALLE TUPAC AMARU

IQUITOS – MAYNAS – LORETO

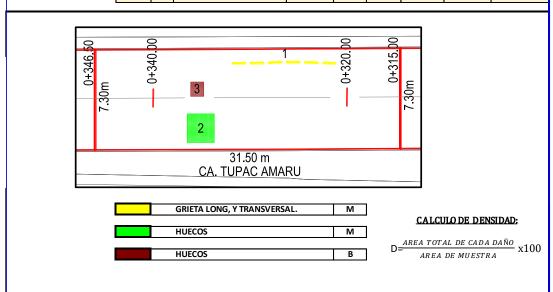
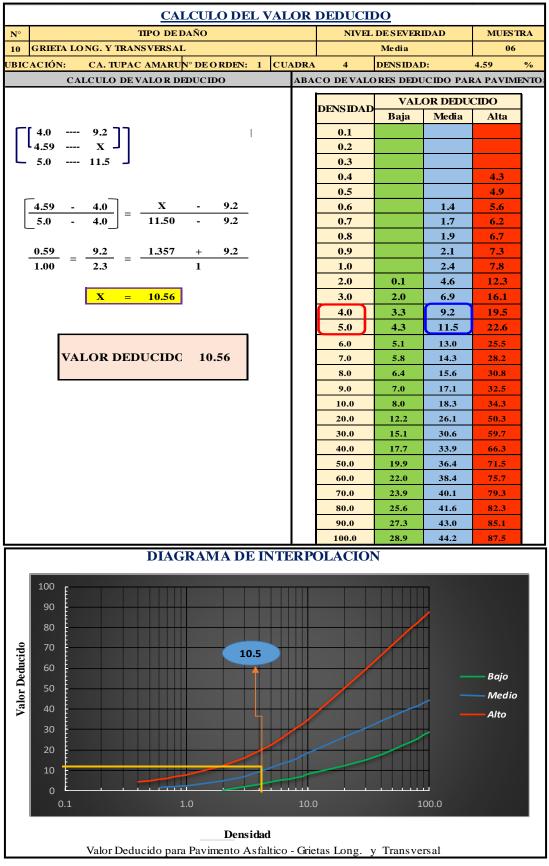
Tabla N° 48: hoja de registro de daños UM-06

HOJA DE INSPECCIÓN DE CONDICION DEL PAVIMENTO FLEXIBLE - PCI **UNIDAD DE MUESTREO** FECHA DE EVALUACION: JULIO-2018 UNIVERSIDAD: CATÓLOCA LOS ÁNGELES DE CHIMBOTE EVALUADOR: BACH. ROBERTO PRENTICE TECO MUESTRA: UM-06 CUADRA: PSJE./CALLE/JIRON/AV.: CALLE. TUPAC AMARU DIMENCIONES DE MUESTRA ANCHO (m): LONGITUD (m): 31.50 TIPO DE USO: VEHICULAR 7.30 AÑO DE CONSTRUCCION: ARÉA DE MUESTRA (m2) 229.95 DISTRITO: IQUITOS PROVINCIA: MAYNAS DEPARTAMENTO: LORETO

	INDICE DE CONDICION DEL PAVIMENTO (PCI - PAVIMENT CONDITION INDEX)						
N°	TIPO DE DAÑO	N°	TIPO DE DAÑO				
1	Piel de Cocodrilo	11	Parcheo				
2	Exudación	12	Pulimento de Agregados				
3	Agrietamiento en Bloque	13	Huecos				
4	Abultamientos y Hundimiento	14	Cruce de Vía Férrea				
5	Corrugación	15	Ahuellamiento				
6	Depresión	16	Desplazamiento				
7	Grieta de Borde	17	Grieta Parabólica (slippage)				
8	Grieta de Reflexión de junta	18	Hinchamiento				
9	Desnivel de Carril / Berma	19	Desprendimiento de Agregado				
10	Grieta Long. Y Transversal						

NIVEL DE SEVERIDAD
SEVERIDAD ALTA
Α
SEVERIDAD MEDIA
M
SEVERIDAD BAJA
В

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL	DENSIDAD (%)	VALOR DEDUCIDO
1	10	Grieta Long. Y Transversal	M	10.55		10.55	4.59	10.56
2	13	Huecos	М	3.0	2.8	8.4	3.65	59.62
3	13	Huecos	В	1.5	1.35	2.03	0.88	17.94

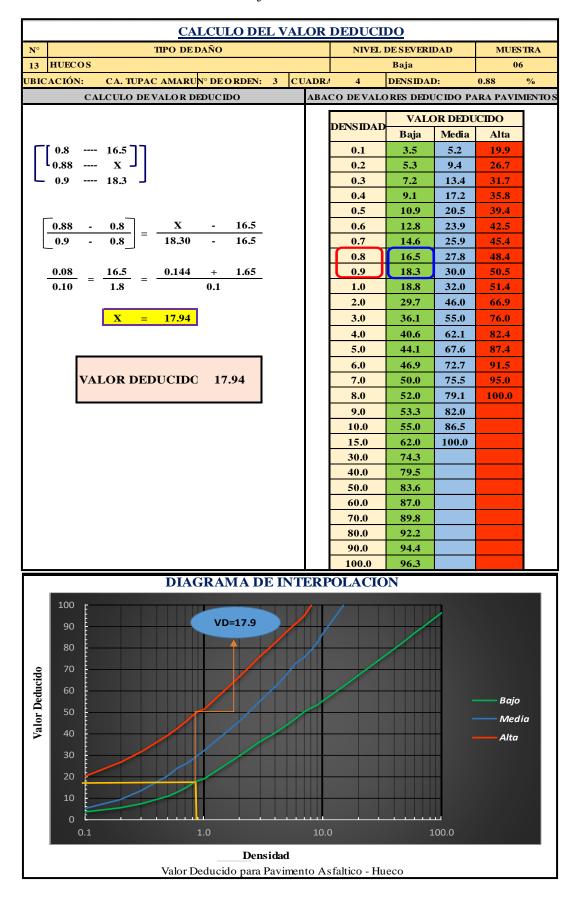

Tabla N° 49: Grietas Longitudinal y Transversal de severidad media UM-06

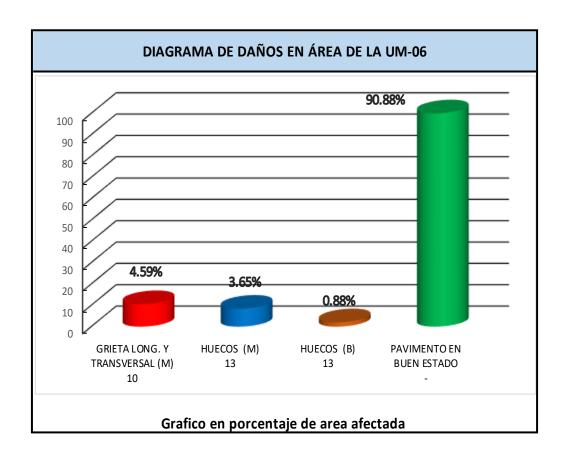
Tabla N° 50: Huecos de severidad media UM-06

CALCULO DEL VAL	OR	DEDUC	mo						
N° TIPO DE DAÑO			DESEVE	RIDAD	MUES	TRA			
13 HUECOS		Media			06				
	ADRA	4	DENSIDAI	<u> </u>	3.65	%			
		CO DE VAI							
CALCULO DE VALOR DEDUCIDO	ADA	CO DE VAI	O KES DE	осшо га	AKA FAVIN	IENIO			
		DENSIDAI	VALOR DEDU		CIDO				
			Baja	Media	Alta				
3.0 55.0		0.1	3.5	5.2	19.9				
[3.65 X]		0.2	5.3	9.4	26.7				
└ 4.0 62.1 J		0.3	7.2	13.4	31.7				
		0.4	9.1	17.2	35.8				
		0.5	10.9	20.5	39.4				
		0.6	12.8	23.9	42.5				
4.0 - 3.0 62.10 - 55.0		0.7	14.6	25.9	45.4				
0.65 550 4.615 55		0.8	16.5	27.8	48.4				
$\frac{0.65}{1.00} = \frac{55.0}{7.1} = \frac{4.615}{1} + \frac{55}{1}$		0.9	18.3	30.0	50.5				
1.00 /.1 1		1.0	18.8	32.0	51.4				
V 50.60		2.0	29.7	46.0	66.9				
X = 59.62		3.0	36.1	55.0	76.0				
		4.0	40.6	62.1	82.4				
		5.0	44.1	67.6	87.4				
VALOR DEDUCIDO 50.63		6.0	46.9	72.7	91.5				
VALOR DEDUCIDO 59.62		7.0	50.0	75.5	95.0				
		8.0	52.0	79.1	100.0				
		9.0	53.3	82.0					
		10.0	55.0	86.5					
		15.0	62.0	100.0					
		30.0 40.0	74.3 79.5						
		50.0	83.6						
		60.0	87.0						
		70.0	89.8						
		80.0	92.2						
		90.0	94.4						
		100.0	96.3						
DIAGRAMA DE INTE	DD								
DIAGRAMA DE INTE	KP	JLACIO	N			_			
100									
90 59.62	+/		/	1					
80									
			1111						
g 70	-			1					
60 E	Ш			Щ					
36				_	— Вајо				
50				_	— Media				
E A 40				H _	— Alta				
30		77 77 1							
20									
10									
0.1 1.0	10.0			100.0					
Densidad									
	0 1 64	faltice LI.	900						
Valor Deducido para Pavimento Asfaltico - Hueco									

Tabla N° 51: Huecos de severidad baja UM-06

Tabla N° 52: Cálculo del valor deducido corregido de la UM-06

	CALCULO DE VALOR MAXIMO DE FALLAS									
701/4 5	ZONA DE ESTUDIO: CA. TUPAC AMARU					CUADRA:	•	MUESTRA:	110.4.00	
			C AIVIARU 98)*(100-H	ומע	EVALUA		04 H ROBERT	O PRENTICE	UM-06	
Donde.		141-11[(3/	<i>30)</i> (100-11	<i>VD</i> ₁				OTKENTICE	1200	
	mero máxin	no de valor	deducido		Reemplazan M= 1 +	do tenemos: (9 / 98) ³		50 62)		
HVD= V	⁄alor más A	lto del Valo	or Deducido	. VR.	IVI- I T	(3 / 30)	(100	55.02 j		
HVD=	59.62]			M=	4.71				
		_				122 =				
			CALCULO	DE VALOR DEL	DUCIDO COI	RREGIDO (VDC)			
N°			VALOR	ES DEDUCIDOS			VDT	q	VDC	
1	59.62	17.94	10.56				88.12	3	55.78	
2	59.62	17.94	2.00				79.56	2	57.69	
3	59.62	2.00	2.00				63.62	1	63.62	
				Máximo VDO	<u> </u>				63.62	
q3	80		LCULO DE II	NTERPOLACION		70 5				
1 '	88.12				1-	9.56 3				
Ì	90					80 5	8			
			_	_	1-		• >		->	
[88.12 - 90 -	80 =	X - 57.0 -	50.5	[79]	9.56 - 7 80 - 7	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 58 \end{bmatrix}$	K - 51.0 3.0 - 51.0]]	
		- -								
<u> </u>	8.12 = -	50.5	505.0 +	<u>52.78</u> = 55.	78 9	$8 \qquad \left(\frac{9.56}{10} = \frac{51.0}{7.0} \right) = \frac{510.0 + 66.92}{10} = 57.69$				
	60		10			10 7.	.0 /	10		
q1	53.62									
	70									
		_	_							
	53.62 - 70 -	60 =	X -	60.0						
(3.62 10	<u>60.0</u> = -	600.0 + 10	36.20 = 63.0	52					


Tabla N° 53: Cálculo del PCI y de la interpolación del VDC de la UM-06

TOTAL DE			VALOR DE	DUCIDO COI	RREGIDO					
VALORES DEDUCID	q1	q2	q3	q4	q5	q6	q7		CALCULO I	DE PCI
0	0.0	•			4-	- 4-	,	<u> </u>		
10	1.0							Formula	a:	
12	12.0	8.0								
18	18.0	12.5	8.0					PCI= 10	0 - MAX. \	VDC
20	20.0	14.0	10.0							
25	25.0	18.0	13.5	8.0				Donde '	VDC=	63.62
28	28.0	20.0	15.6	10.4	8.0					
30	30.0	22.0	17.0	12.0	10.0			PCV=	100 -	63.62
40	40.0	30.0	24.0	19.0	17.0					_
42	42.0	31.0	25.4	20.4	18.2	15.0	15.0	PCI=	36.38	
50	50.0	37.0	31.0	26.0	23.0	20.0	20.0			_
60	60.0	44.0	38.0	33.0	29.0	26.0	26.0	RANGO	DE CALIFI	CACION DEL
70	70.0	51.0	44.5	39.0	35.0	32.0	32.0		PCI	
80	80.0	58.0	50.5	45.0	41.0	38.0	38.0		NGO	CLASIFCACION
90	90.0	64.0	57.0	51.0	46.0	44.0	44.0	100	85	Excelente
100	100.0	71.0	63.0	57.0	52.0	49.0	49.0	85	70	Muy Bueno
110		76.0	68.0	62.0	57.0	54.0	54.0	70	55	Bueno
120		81.0	73.0	68.0	62.0	59.0	59.0	55	40	Regular
130		86.0	78.5	73.0	67.0	63.0	63.0	40	25	Malo
135		88.5	81.5	75.5	69.5	65.0	65.0	25 10	10 0	Muy malo Fallado
140		91.0	84.0	78.0	72.0	68.0	67.0	10	U	rdiidUU
150		94.0	88.0	82.0	76.0	72.0	70.0			
160		98.0	93.0	86.0	81.0	76.0	74.0			
166 170		100.0	94.8 96.0	88.4 90.0	83.0 85.0	79.0 81.0	75.2 76.0	Clasif	icación:	MALO
180			99.0	93.0	88.0	84.0	79.0			
182			100.0	93.6	88.6	84.8	79.6			
190			100.0	96.0	91.0	88.0	82.0			
200				98.0	94.0	90.0	84.0			
		Α	BACO DE	L VALOI	R DEDUC	IDO COI	RREGIDO	(VDC)		
				DI	AGRAI	MA V	DC			
()	90									
Valor Deducido Corregido (VD	80			\perp						
0								+		~1
gic	70								-	— q1
a l	60									 q2
Ö	60									—— q3
0	50									
cig				///						 q4
j ĝ	40									—— q5
l e	30				VDC=63	.6				
2	30					T				 q6
/al	20	1///								 q7
		1////								
	10								77 777 771	
						1.1.				
		20 30 4	0 50 60	70 80 9	0 100 110	120 130 14	40 150 160	166 170 180	190 200	
				Valor de	Doneida	d Total /	VDT)			
Valor de Densidad Total (VDT)										

Tabla N^{\circ} 54: Área y densidad afectada de la UM-06

	CUADRO DE ÁREA AFECTADO DE LA UNIDAD DE MUESTRA -06										
N°	TIPO DEDAÑO	N/S	TOTAL AFECTADA m2	EN % REAL							
10	GRIETA LONG. Y TRANSVERSAL (M)	М	10.55	4.59%							
13	HUECOS (M)	М	8.40	3.65%							
13	HUECOS (B)	В	2.03	0.88%							
-	PAVIMENTO EN BUEN ESTADO		208.97	90.88%							
		TOTAL	229.95	100.00%							

Grafico Nº 6: Indice de Daños encontrados en la UM-06

Interpretación de la Unidad de Muestra – UM-6 Cdra. -4:

La unidad de muestra UM-06 tiene 229.95 m², y pertenece a la cuadra 4 de la Ca. Túpac Amaru. Los daños encontrados en la unidad de muestra 06 son de tipo: Grieta Longitudinal y Transversal de severidad media con un valor deducido de 10.56, Huecos de severidad media con un valor deducido de 59.62 y Huecos de severidad baja con un valor deducido de 17.94. Ver tabla N° 55.

La falla más influyente en el daño del pavimento es de Huecos, el cual se presenta en una considerable área de la unidad de muestra estudiada y siguiendo el procedimiento se obtiene 3 valores deducidos corregidos: 55.78, 57.69 y 63.62, teniendo como máximo valor deducido corregido 63.62, y siguiendo el procedimiento del PCI, se obtiene como resultado un índice de 36.38 que se encuentra dentro del rango de 25 – 40 que corresponde a una clasificación de un pavimento MALO.

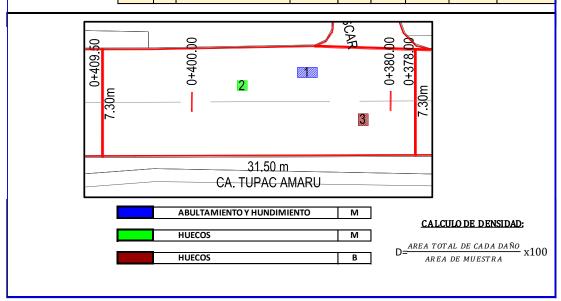
Tabla N° 55: Densidad y Valores Deducidos Finales.

N°	PATOLOGIA	SEVERIDAD	DENSIDAD (%)	VALOR DEDUCIDO	VDT	VDC
4	Grieta Long. Y Transversal	М	4.59	10.56	88.12	55.78
13	Huecos	M	3.65	59.62	79.56	57.69
13	Huecos	В	0.88	17.94	63.62	63.62

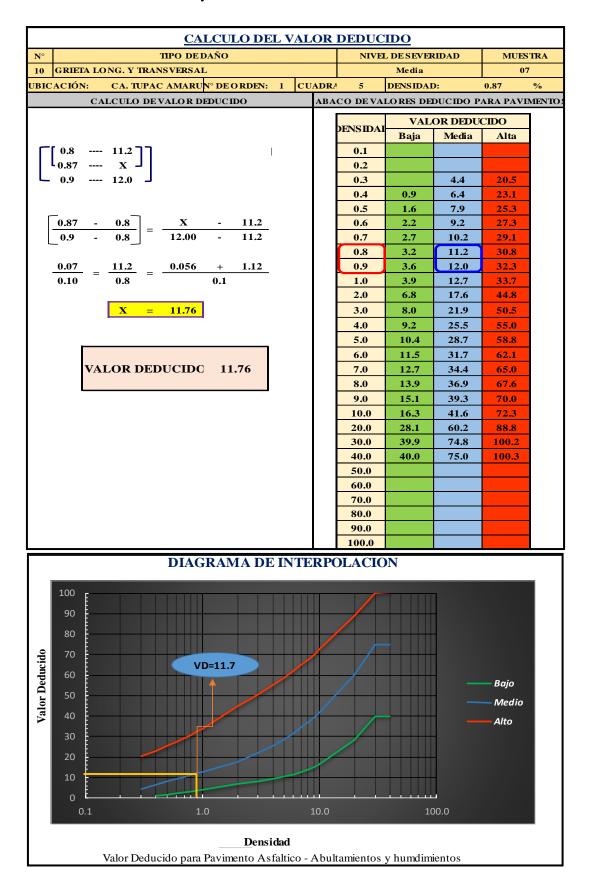
UNIDAD DE MUESTRA N° 07 Progresiva 0+378.00 al 0+409.50

CDRA. 5 DE LA CALLE TUPAC AMARU IQUITOS – MAYNAS – LORETO

Tabla N^{\circ} 56: hoja de registro de daños UM-07


HOJA DE INSPECCIÓN DE CONDICION DEL PAVIMENTO FLEXIBLE - PCI UNIDAD DE MUESTREO										
UNIVERSIDAD: CATÓLOCA LOS ÁNGELES DE CHIMBOTE FECHA DE EVALUACION: JULIO-2018										
EVALUADOR: BACH. ROBERTO PRENT	EVALUADOR: BACH. ROBERTO PRENTICE TECO MUESTRA: UM-07									
PSJE./CALLE/JIRON/AV.: CALLE. TUP	AC AMARU			CUADRA: 05						
TIPO DE USO: VEHICULAR	DIMENCIONES DE MUESTRA	A	NCHO (m): 7.30	LONGITUD (m): 31.50						
AÑO DE CONSTRUCCION:										
DISTRITO: IQUITOS	DEPARTA	MENTO: LORETO								

	INDICE DE CONDICION DEL PAVIMENTO (PCI - PAVIMENT CONDITION INDEX)							
N°	TIPO DE DAÑO	N°	TIPO DE DAÑO					
1	Piel de Cocodrilo	11	Parcheo					
2	Exudación	12	Pulimento de Agregados					
3	Agrietamiento en Bloque	13	Huecos					
4	Abultamientos y Hundimiento	14	Cruce de Vía Férrea					
5	Corrugación	15	Ahuellamiento					
6	Depresión	16	Desplazamiento					
7	Grieta de Borde	17	Grieta Parabólica (slippage)					
8	Grieta de Reflexión de junta	18	Hinchamiento					
9	Desnivel de Carril / Berma	19	Desprendimiento de Agregado					
10	Grieta Long. Y Transversal							



NIVEL DE SEVERIDAD
SEVERIDAD ALTA
Α
SEVERIDAD MEDIA
M
SEVERIDAD BAJA
В

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL	DENSIDAD (%)	VALOR DEDUCIDO
1	4	Abultamiento y hundimient	М	2.0	1.0	2	0.87	11.76
2	13	Huecos	М	1.0	1.0	1	0.43	18.19
3	13	Huecos	В	1.20	1.10	1.32	0.57	12.23

Tabla N° 57: Abultamiento y Hundimiento de severidad media UM-07

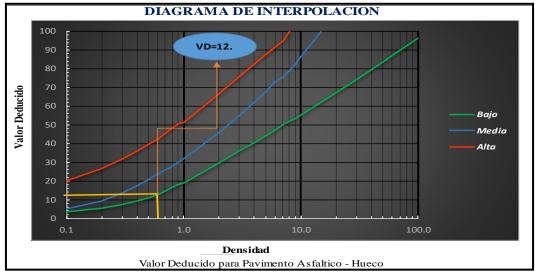
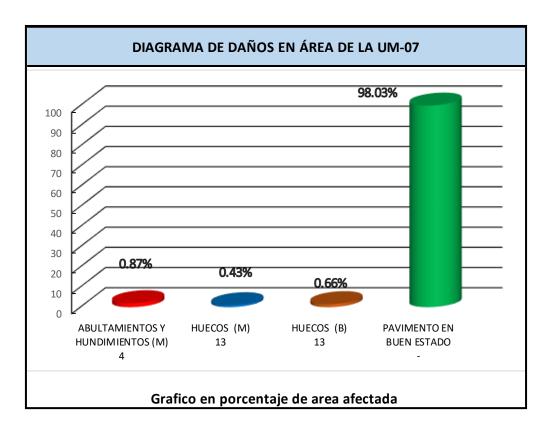


Tabla N° 58: Huecos de severidad media UM-07

CALCULO DEL VAI	LOR DEI	DUCI	DO			
N° TIPO DE DAÑO			DE SEVER	IDAD	MUES	TRA
13 HUECOS		Media			07	
	ADRA:	<u> </u>				
CALCULO DE VALOR DEDUCIDO	ABACO DI					
CALCOLO DE VALOR DESCRIP	пвисо в	E VIIEO				11105
	DENS	SIDAD-	VALOR DEDU			
			Baja	Media	Alta	
0.4 17.2	-	0.1	3.5	5.2	19.9	
0.5 20.5		0.2	5.3 7.2	9.4	26.7 31.7	
20.5).4	9.1	17.2		
).5	10.9	20.5	35.8 39.4	
0.43 - 0.4 X - 17.2).6	12.8	23.9	42.5	
	-	0.7	14.6	25.9	45.4	
).8	16.5	27.8	48.4	
0.03 17.2 0.099 + 1.72).9	18.3	30.0	50.5	
$\frac{1}{0.10} = \frac{1}{3.3} = \frac{1}{0.1}$		1.0	18.8	32.0	51.4	
	2	2.0	29.7	46.0	66.9	
X = 18.19	3	3.0	36.1	55.0	76.0	
	4	1.0	40.6	62.1	82.4	
	5	5.0	44.1	67.6	87.4	
	6	5.0	46.9	72.7	91.5	
VALOR DEDUCIDC 18.19	7	7.0	50.0	75.5	95.0	
	8	3.0	52.0	79.1	100.0	
	9	0.0	53.3	82.0		
		0.0	55.0	86.5		
	-	5.0	62.0	100.0		
		0.0	74.3			
		0.0	79.5 83.6			
		0.0	87.0			
		0.0	89.8			
		0.0	92.2			
		0.0	94.4			
	10	0.0	96.3			
DIAGRAMA DE INT	ΓERPOI	LACI	ON			
100 г						
90						
80	_/					
2 70						
cid						
60 VD=18.1					— Вај	o
T. 50		-	-		— Ме	dia
Valor Deducido VD=18.1 VD=18.1					Alto	
		7 / / /			Aitt	
30		4/1/	77 71 1			
20						
10						777
0						
0.1 1.0	10.0			100.0		1///
Densidad						
Valor Deducido para Pavimer	nto Asfalti	co - Pa	rcheo			

Tabla N° 59: Huecos de severidad baja UM-07

CALCULO DEL VAI	LOR	R DEDUC	ZIDO			
N° TIPO DE DAÑO	NIVEL DE SEVERIDAD			MUESTRA		
13 HUECOS			Baja		07	
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 3 CU	ADR	. 5	DENSIDAI	D:	0.57	%
CALCULO DE VALOR DEDUCIDO	ABA	ACO DE VAI	LORES DE	DUCIDO P.	ARA PAVI	MENTO
			VAL	OR DEDU	СТОО	
		DENSIDAE	Baja	Media	Alta	
[0.5 10.9]]		0.1	3.5	5.2	19.9	
[[0.57 X]		0.2	5.3	9.4	26.7	
0.6 12.8		0.3	7.2	13.4	31.7	
		0.4	9.1	17.2	35.8	
		0.5	10.9	20.5	39.4	
0.57 - 0.5 _ X - 10.9		0.6	12.8	23.9	42.5	
0.6 - 0.5 - 12.80 - 10.9		0.7	14.6	25.9	45.4	
		0.8	16.5	27.8	48.4	
$\frac{0.07}{0.07} = \frac{10.9}{0.133} = \frac{0.133}{0.133} + \frac{1.09}{0.133}$		0.9	18.3	30.0	50.5	
0.10 1.9 0.1		1.0	18.8	32.0	51.4	
		2.0	29.7	46.0	66.9	
X = 12.23		3.0	36.1	55.0	76.0	
		4.0	40.6	62.1	82.4	
		5.0	44.1	67.6	87.4	
		6.0	46.9	72.7	91.5	
VALOR DEDUCIDC 12.23		7.0	50.0	75.5	95.0	
		8.0	52.0	79.1	100.0	
		9.0	53.3	82.0		
		10.0	55.0	86.5		
		15.0	62.0	100.0		
		30.0	74.3			
		40.0	79.5			
		50.0	83.6			
		60.0	87.0			
		70.0	89.8			
		80.0	92.2			
		90.0	94.4			
		100.0	96.3			


Tabla N°60: Cálculo del PCI y de la interpolación del VDC de la $\,$ UM-07

VALORES 0	TOTAL DE			VALOR DE	DUCIDO COF	RREGIDO					
COL		n1	n2	n3	n4	a5	a6	α 7	C	١٢١١٥	DF PCI
10			4-	45	41	45	40	4,	<u> </u>	ALCOLO I	DE I CI
12									Formula	:	
20 20.0 14.0 10.0 10.0 25.5 25.0 18.0 13.5 8.0 25.5 25.0 18.0 13.5 8.0 25.5 25.0 18.0 13.5 8.0 25.5 25.0			8.0								
25	18	18.0	12.5	8.0					PCI= 100	- MAX.	VDC
28	20	20.0	14.0	10.0							
30	25	25.0	18.0		8.0				Donde V	DC=	25.46
40			_						D.C.V	100	25.46
42			_						PCV=	100 -	25.46
SO 50.0 37.0 31.0 26.0 23.0 20.0 20.0									DCI-	7/1 5/	7
RANGO DE CALIFICACION DEL PCI RANGO DEL PCI RANGO DEL PCI RANGO DEL PCI RANGO DEL PCI									PCI=	/4.54	1
70 70.0 51.0 44.5 39.0 35.0 32.0 32.0 80 80.0 58.0 50.5 45.0 41.0 38.0 38.0 38.0 100 85.0 50.5 45.0 41.0 38.0 38.0 100 85.0 Excelente 100 100.0 71.0 63.0 57.0 52.0 49.0 49.0 110 75.0 68.0 62.0 57.0 54.0 54.0 54.0 110 75.5 Bueno 70 55. Bueno 70 55. Adv. 70 55. Bueno 70 55. Adv. 70 5	-								DANCO	DECALIE	ICACIONI DEI
80 80.0 58.0 50.5 45.0 41.0 38.0 38.0 90 90.0 64.0 57.0 51.0 46.0 44.0 44.0 100 100.0 71.0 63.0 57.0 52.0 49.0 49.0 110 76.0 68.0 62.0 57.0 54.0 54.0 120 81.0 73.0 68.0 62.0 57.0 59.0 59.0 130 86.0 78.5 73.0 67.0 63.0 63.0 135 88.5 81.5 75.5 69.5 65.0 65.0 140 91.0 84.0 78.0 75.0 72.0 70.0 150 94.0 88.0 82.0 76.0 72.0 70.0 150 99.0 93.0 86.0 81.0 76.0 70.0 166 100.0 94.8 88.4 83.0 79.0 75.0 180 99.0 93.0 88.0 81.0 76.0 74.0 180 99.0 93.0 88.0 81.0 76.0 180 99.0 99.0 93.0 88.0 84.0 79.0 182 100.0 93.6 88.6 84.8 79.6 190 99.0 99.0 93.0 88.0 84.0 79.0 182 100.0 93.6 88.6 84.8 79.6 190 99.0 99.0 99.0 99.0 88.0 82.0 182 100.0 98.0 99.0 88.0 82.0 182 100.0 99.0 99.0 88.0 82.0 182 100.0 94.0 90.0 85.0 81.0 76.0 180 199 190 190 190 190 190 190 190 190 19									KANGO		ICACION DEL
90 90.0 64.0 57.0 51.0 46.0 44.0 44.0 100 85 Excelente 100 100.0 71.0 63.0 57.0 52.0 49.0 49.0 100 100.0 71.0 63.0 57.0 52.0 49.0 49.0 100 100.0 71.0 63.0 68.0 62.0 57.0 54.0 54.0 54.0 70 55 Bueno 120 81.0 73.0 68.0 62.0 57.0 63.0 63.0 63.0 130 86.0 78.5 73.0 67.0 63.0 63.0 63.0 130 86.0 78.5 71.0 54.0 72.0 68.0 67.0 130 91.0 84.0 78.0 72.0 68.0 67.0 150 994.0 88.0 82.0 76.0 72.0 70.0 150 994.0 88.0 82.0 76.0 72.0 70.0 150 994.0 88.0 82.0 76.0 72.0 70.0 150 994.0 88.0 82.0 76.0 72.0 70.0 166 100.0 94.8 88.4 83.0 79.0 75.2 170 96.0 90.0 85.0 81.0 76.0 110 0 Fallado **Clasificación: WUY BUEN** **DIAGRAMA VDC** **DI									RΔN		CLASIFCACION
100 100.0 71.0 63.0 57.0 52.0 49.0 49.0 10.0 10.0 76.0 68.0 62.0 57.0 54.0 54.0 54.0 10.0 75.0 55.0 10.0 10.0 10.0 10.0 10.0 10.0 1											
110											
120											
130											
140 91.0 84.0 78.0 72.0 68.0 67.0 150 94.0 88.0 82.0 76.0 72.0 70.0 160 98.0 93.0 88.0 82.0 76.0 74.0 166 100.0 94.8 88.4 83.0 79.0 75.2 170 96.0 90.0 85.0 81.0 76.0 180 99.0 93.0 88.6 84.0 79.0 180 99.0 93.0 88.6 84.0 79.0 180 99.0 93.0 88.6 84.8 79.6 190 96.0 91.0 88.6 84.8 79.6 190 98.0 94.0 90.0 84.0 ABACO DEL VALOR DEDUCIDO CORREGIDO (VDC) DIAGRAMA VDC DIAGRAMA VDC O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	130		86.0	78.5	73.0	67.0	63.0	63.0	40	25	Malo
150 94.0 88.0 82.0 76.0 72.0 70.0 160 98.0 93.0 86.0 81.0 76.0 74.0 166 100.0 94.8 88.4 83.0 79.0 75.2 170 96.0 99.0 93.0 88.0 84.0 79.0 180 99.0 93.0 88.6 88.6 84.8 79.6 182 100.0 93.6 88.6 84.8 79.6 190 98.0 94.0 99.0 93.0 88.0 82.0 200 DIAGRAMA VDC DIAGRAMA VDC DIAGRAMA VDC O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	135		88.5	81.5	75.5	69.5	65.0	65.0			
160 98.0 93.0 86.0 81.0 76.0 74.0 166 100.0 94.8 88.4 83.0 79.0 75.2 170 96.0 90.0 85.0 81.0 76.0 180 180 99.0 93.0 88.0 84.0 79.0 182 100.0 93.6 88.6 84.8 79.6 190 96.0 99.0 94.0 90.0 84.0 190 100 100 100 100 100 100 100 100 10	140		91.0	84.0	78.0	72.0	68.0	67.0	10	0	Fallado
166											
170 96.0 90.0 85.0 81.0 76.0 180 180 190.0 99.0 93.0 88.0 88.0 79.0 182 190 190 190 190 190 190 190 190 190 190											
180 99.0 93.0 88.0 84.0 79.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 1			100.0						Clasific	cación:	MUY BUENC
182 100.0 93.6 88.6 84.8 79.6 190 98.0 91.0 88.0 82.0 98.0 94.0 90.0 84.0 100 100 100 100 100 100 100 100 100 1									•		
ABACO DEL VALOR DEDUCIDO CORREGIDO (VDC) DIAGRAMA VDC 100 90 80 70 60 90 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200											
ABACO DEL VALOR DEDUCIDO CORREGIDO (VDC) DIAGRAMA VDC 100 90 80 70 60 40 90 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200				100.0							
ABACO DEL VALOR DEDUCIDO CORREGIDO (VDC) DIAGRAMA VDC											
DIAGRAMA VDC 100 90 80 70 60 30 90 VDC=25.46 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200									!		
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200			Α	BACO DI	EL VALO	R DEDUC	IDO COI	RREGIDO	(VDC)		
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	1	100 [DI	AGRAI	MA V	DC			
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	do (VDC)	80									—— a1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	igi.	70									
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200)rre	60									 q2
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	ပိ										— q3
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	용	50									
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	uci	40									——
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	edi	+0									 q5
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	Ŏ	30									— а6
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	힐										
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200	Na Na		1///	VDO	C=25.46						 q7
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 166 170 180 190 200											
Valor de Densidad Total (VDT)			20 30 4	0 50 60	70 80 90	0 100 110	120 130 14	10 150 160	166 170 180	190 200	
TAIDI AC BEIISIAUA IVIAI LABII	_				Valor de	Densida	d Total (VDT)			

Tabla N^{\circ}61: Área y densidad afectada de la UM-07

	CUADRO DE ÁREA AFECTADO DE LA UNIDAD DE MUESTRA -07							
N°	TIPO DEDAÑO	N/S	TOTAL AFECTADA m2	EN % REAL				
4	ABULTAMIENTOS Y HUNDIMIENTOS (M)	М	2.00	0.87%				
13	HUECOS (M)	М	1.00	0.43%				
13	HUECOS (B)	В	1.52	0.66%				
-	PAVIMENTO EN BUEN ESTADO		225.43	98.03%				
		TOTAL	229.95	100.00%				

Grafico N° 7: Indice de Daños encontrados en la UM-07

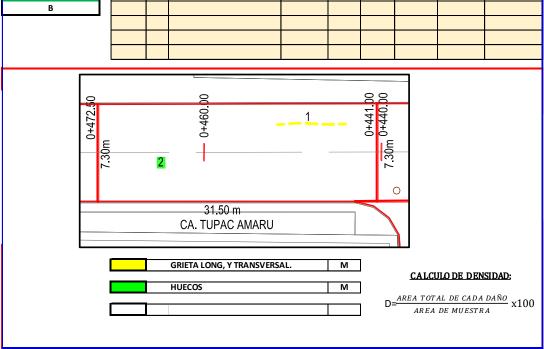
Interpretación de la Unidad de Muestra – UM-7 Cdra. -5:

La unidad de muestra UM-07 tiene 229.95 m², y pertenece a la cuadra 5 de la Ca. Túpac Amaru. Los daños encontrados en la unidad de muestra 07 son de tipo: Abultamiento y Hundimiento de severidad media con un valor deducido de 11.76, Huecos de severidad media y baja con un valor deducido de 18.19 y 12.23. Ver tabla N° 62.

La falla más influyente en el daño del pavimento es de Abultamiento y Hundimiento, el cual se presenta en una considerable área de la unidad de muestra estudiada y siguiendo el procedimiento se obtiene 3 valores deducidos corregidos: 25.46, 23.94 y 22.19, teniendo como máximo valor deducido corregido 25.46, y siguiendo el procedimiento del PCI, se obtiene como resultado un índice de 74.54 que se encuentra dentro del rango de 70 – 85 que corresponde a una clasificación de un pavimento MUY BUENO.

Tabla N° 62: Densidad y Valores Deducidos Finales.

N°	PATOLOGIA	SEVERIDAD	DENSIDAD (%)	VALOR DEDUCIDO	VDT	VDC
4	Abultamiento y Hundimiento	М	0.87	11.76	42.08	25.46
13	Huecos	M	0.43	18.19	32.42	23.94
13	Huecos	В	0.57	12.23	22.19	22.19


Fuente: Elaboración propia

UNIDAD DE MUESTRA N° 08 Progresiva 0+441.00 al 0+472.50

CDRA. 5 DE LA CALLE TUPAC AMARU
IQUITOS – MAYNAS – LORETO

Tabla N° 63: hoja de registro de daños UM-08 HOJA DE INSPECCIÓN DE CONDICION DEL PAVIMENTO FLEXIBLE - PCI **UNIDAD DE MUESTREO** UNIVERSIDAD: CATÓLOCA LOS ÁNGELES DE CHIMBOTE FECHA DE EVALUACION: JULIO-2018 EVALUADOR: BACH. ROBERTO PRENTICE TECO MUESTRA: **UM-08** PSJE./CALLE/JIRON/AV.: CALLE. TUPAC AMARU CUADRA: 05 VEHICULAR DIMENCIONES DE MUESTRA ANCHO (m): 7.30 LONGITUD (m): AÑO DE CONSTRUCCION: ARÉA DE MUESTRA (m2) 229.95 DISTRITO: IQUITOS PROVINCIA: MAYNAS DEPARTAMENTO: LORETO INDICE DE CONDICION DEL PAVIMENTO (PCI - PAVIMENT CONDITION INDEX) TIPO DE DAÑO TIPO DE DAÑO N° 11 Parcheo Piel de Cocodrilo Exudación 12 Pulimento de Agregados Agrietamiento en Bloque 13 Huecos Abultamientos y Hundimiento 14 Cruce de Vía Férrea Corrugación 15 Ahuellamiento 6 Depresión 16 Desplazamiento Grieta de Borde 17 Grieta Parabólica (slippage) 18 Grieta de Reflexión de junta Hinchamiento Desnivel de Carril / Berma Desprendimiento de Agregado 10 Grieta Long. Y Transversal VALOR SEVERIDA DENSIDAD **NIVEL DE SEVERIDAD** LARGO ANCHO ORDEN **PATOLOGIA** TOTAL DEDUCIDO 7.7 7.7 7.71 10 Grieta Long. Y Transversal М 3.35 Α 13 М 1.2 0.9 1.02 0.44 18.52 Huecos М В

 $\boldsymbol{Tabla~N^{\circ}~64:}$ Grietas Longitudinal y Transversal de severidad media UM-08

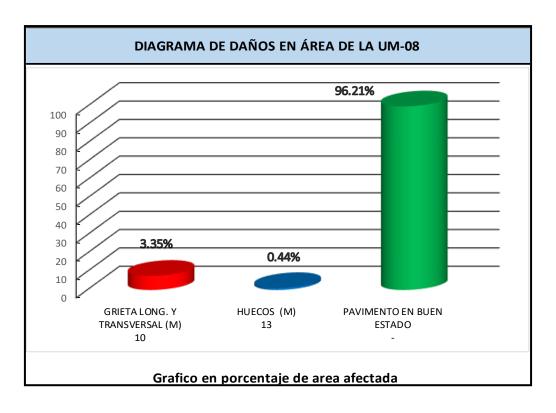
CALCULO DEL VAI	OR	DEDUCI	DO			
N° TIPO DE DAÑO		NIVEL DE SEVERIDAD MU			MUES	TRA
10 GRIETA LONG. Y TRANSVERSAL	Media			08		
UBICACIÓN: CA. TUPAC AMARUNº DE ORDEN: 1 CUA			DENSIDAI		3.35	%
CALCULO DE VALOR DEDUCIDO	ABA	ACO DE VAL	ORES DED	UCIDO PA	RA PAVIM	ENTOS
		DENSIDAD	VAL	OR DEDU	CIDO	
		DL (SID:ID	Baja	Media	Alta	
3.0 6.9		0.1				
[13.35 X] 4.0 9.2		0.2				
4.0 9.2 3		0.3			4.3	
		0.5			4.9	
3.35 - 3.0 X - 6.9		0.6		1.4	5.6	
$\boxed{4.0 - 3.0} = \boxed{9.20 - 6.9}$		0.7		1.7	6.2	
		0.8		1.9	6.7	
$\frac{0.35}{0.000} = \frac{6.9}{0.000} = \frac{0.805}{0.000} + \frac{6.9}{0.000}$		0.9		2.1	7.3	
1.00 2.3 1		1.0	0.1	2.4	7.8	
X = 7.71		3.0	2.0	6.9	12.3	
A - 7.71		4.0	3.3	9.2	19.5	
		5.0	4.3	11.5	22.6	
		6.0	5.1	13.0	25.5	
VALOR DEDUCIDO 7.71		7.0	5.8	14.3	28.2	
		8.0	6.4	15.6	30.8	
		9.0	7.0	17.1	32.5	
		10.0	8.0	18.3	34.3	
		20.0	12.2 15.1	26.1	50.3	
		30.0 40.0	17.7	30.6	59.7 66.3	
		50.0	19.9	36.4	71.5	
		60.0	22.0	38.4	75.7	
		70.0	23.9	40.1	79.3	
		80.0	25.6	41.6	82.3	
		90.0	27.3	43.0	85.1	
		100.0	28.9	44.2	87.5	
DIAGRAMA DE INT	TER	RPOLACI	ON			
100 r						
90	Ш					
80	н			/ 		
용 70	Ш					
VD=7.71				Ш		
60 A					—— Вајс	,
50	н				— Мес	dio
ND=7.71 VD=7.71 VD=7.71 VD=7.71 VD=7.71	Ш					
30				Ш	Alto	
30						
20						
10						
0.1 1.0	10	0.0		100.0		
Densidad						
Valor Deducido para Pavimento Asfaltic	o - (Grietas Long	g. y Tran	sversal		

Tabla N° 65: Huecos de severidad media UM-08

N° TIPO DE DAÑO		NIVEL	DE S EVER	RIDAD	MUES	TRA
13 HUECOS			Media		08	
UBICACIÓN: CA. TUPAC AMARINº DE ORDEN 2 CU	ADRA	5	DENSIDA	D:	0.44	%
CALCULO DE VALOR DEDUCIDO	ABA	CO DE VAL	O RES DED	UCIDO PA	RA PAVIM	ENTOS
			3741	OD DEDLA	CIDO	1
		DENSIDAD		OR DEDU Media	Alta	
[0.4 17.2]]		0.1	Baja 3.5	5.2	19.9	
$\left[\begin{array}{cccc} 0.4 & & 17.2 \\ 0.44 & & X \end{array}\right]$		0.2	5.3	9.4	26.7	
0.5 20.5		0.3	7.2	13.4	31.7	
		0.4	9.1	17.2	35.8	
		0.5	10.9	20.5	39.4	
0.44 - 0.4 X - 17.2		0.6	12.8	23.9	42.5	
		0.7	14.6	25.9	45.4	
		0.8	16.5	27.8	48.4	
$\frac{0.04}{0.10} = \frac{17.2}{2.2} = \frac{0.132 + 1.72}{0.1}$		0.9	18.3	30.0	50.5	
0.10 3.3 0.1		1.0	18.8	32.0	51.4	
		2.0	29.7	46.0	66.9	
X = 18.52		3.0	36.1	55.0	76.0	
		4.0	40.6	62.1	82.4	
		5.0	44.1	67.6	87.4	
VALOR DEDUCIDO 18.52		7.0	46.9 50.0	72.7 75.5	91.5 95.0	
VALOR DEDUCIDO 16.32		8.0	52.0	79.1	100.0	
		9.0	53.3	82.0	100.0	
		10.0	55.0	86.5		
		15.0	62.0	100.0		
		30.0	74.3			
		40.0	79.5			
		50.0	83.6			
		60.0	87.0			
		70.0	89.8			
		80.0	92.2			
		90.0	94.4			
		100.0	96.3			
DIAGRAMA DE IN	TER	RPOLAC	ION			
100				-		
90						
80	/					
2 70						
VD=18.5					—— Ва	io
Q 50						
ole 40						edia
40 A0		1/1/1/10			—— Alt	a
30						
20				Ш		
10						/////
0						
0.1 1.0	10	0.0		100.0		
Densidad						
Valor Deducido para Pavimen	nto A	sfaltico - F	Juecos			
ruioi Deddeido para i avine	1					

Tabla N° 66: Cálculo del valor deducido corregido de la UM-08

	<u>CALCULO DE VALOR MAXIMO DE FALLAS</u>									
ZONA D	ZONA DE ESTUDIO: CA. TUPAC AMARU						CUADRA:	05	MUESTRA:	UM-08
Formula	:	M=1+[(9/	98)*(100-H	IVD)		EVALUA	CDOR: BAC	H. ROBERT	O PRENTICE	TECO
Donde.					Re	emplazano	do tenemos	:		
M= Nún	nero máxin	no de valor	deducido					*[100 -	18.52	
HVD= V	alor más A	lto del Valo	r Deducido	o. VR.		•	,	•		
HVD=	18.52					M=	8.48			
			CALCULO	DE VALC	OR DEDUC	CIDO COR	REGIDO	(VDC)		
N°			VALO	RES DEDUC	IDOS			VDT	q	VDC
1	18.52	7.71						26.23	2	18.82
2	18.52	2.00						20.52	1	20.52
				Máxin	no VDC:					20.52
		CAL	CIII O DE I	NITERROLA	CION DE	/ALOD DE	DITCIDO CO	DDECIDO		
q2	25		LCULO DE I	NTERPOLA	ACION DE V	_	20 2			
-"	6.23					20.52 ····· X				
28 20						25 25				
$\begin{pmatrix} 26.23 & - & 25 \\ 28 & - & 25 \end{pmatrix} = \begin{pmatrix} X & - & 18.0 \\ 20.0 & - & 18.0 \end{pmatrix}$					$ \frac{20.52 - 20}{25 - 20} = \frac{X - 20.0}{25.0 - 20.0} $				<u>(0.</u>	
L 28 - 25 J L 20.0 - 18.0 J						25 - 2	20 / (25	5.0 - 20	.0 ⁾	
<u> </u>	1.23 = _	18.0 2.0 =	54.0 +	2.46	= 18.82	<u> 0</u>	.52 = 2	0.0 = 10	0.0 + 2.6	60 = 20.52
١	3	2.0 J	3		-5.52] (5 5	i.o)	5	


Tabla N° 67: Cálculo del PCI y de la interpolación del VDC de la UM-08

TOTAL DE			VALOR DE	DUCIDO COI	RREGIDO			1	
VALORES	n1	~2	~2	~1	a.E	a.c.	~7	CALCULO	DE DCI
DEDUCID	q1	q2	q3	q4	q5	q6	q7	CALCULO	DEPCI
10	0.0 1.0							Formula:	
12	12.0	8.0						i oiiiididi	
18	18.0	12.5	8.0					PCI= 100 - MAX.	VDC
20	20.0	14.0	10.0						
25	25.0	18.0	13.5	8.0				Donde VDC=	20.52
28	28.0	20.0	15.6	10.4	8.0				
30	30.0	22.0	17.0	12.0	10.0			PCV= 100 -	20.52
40	40.0	30.0	24.0	19.0	17.0				_
42	42.0	31.0	25.4	20.4	18.2	15.0	15.0	PCI= 79.48	3
50	50.0	37.0	31.0	26.0	23.0	20.0	20.0		
60	60.0	44.0	38.0	33.0	29.0	26.0	26.0	RANGO DE CALIF	ICACION DEL
70	70.0	51.0	44.5	39.0	35.0	32.0	32.0	PCI	
80	80.0	58.0	50.5	45.0	41.0	38.0	38.0	RANGO	CLASIFCACION
90	90.0	64.0	57.0	51.0	46.0	44.0	44.0	100 85	Excelente
100	100.0	71.0	63.0	57.0	52.0	49.0	49.0	85 70	Muy Bueno
110		76.0	68.0	62.0	57.0	54.0	54.0	70 55 55 40	Bueno
120 130		81.0 86.0	73.0 78.5	68.0 73.0	62.0 67.0	59.0	59.0 63.0	40 40 25	Regular Malo
130		86.0 88.5	78.5 81.5	75.5	69.5	63.0 65.0	65.0	25 10	Muy malo
140		91.0	84.0	78.0	72.0	68.0	67.0	10 0	Fallado
150		94.0	88.0	82.0	76.0	72.0	70.0		1
160		98.0	93.0	86.0	81.0	76.0	74.0		
166		100.0	94.8	88.4	83.0	79.0	75.2		
170			96.0	90.0	85.0	81.0	76.0	Clasificación:	MUY BUENO
180			99.0	93.0	88.0	84.0	79.0		
182			100.0	93.6	88.6	84.8	79.6		
190				96.0	91.0	88.0	82.0		
200				98.0	94.0	90.0	84.0		
		Λ.	PACO D	EL VALO	P DEDITO	IDO CO	DDECIDA	ח (עמכו	
	100 90 80 70 60 50 40 30 20		VD	DI/	AGRAI	MA V	DC		— q1 — q2 — q3 — q4 — q5 — q6 — q7
	0 10	20 30 4	0 50 60					0 166 170 180 190 200	
				Valor de	<u> Densida</u>	d Total (VDT)		

Tabla N^{\circ} 68: Área y densidad afectada de la UM-08

	CUADRO DE ÁREA AFECTADO DE LA UNIDAD DE MUESTRA -08							
N°	TIPO DEDAÑO	N/S	TOTAL AFECTADA m2	EN % REAL				
10	GRIETA LONG. Y TRANSVERSAL (M)	М	7.70	3.35%				
13	HUECOS (M)	М	1.02	0.44%				
-	PAVIMENTO EN BUEN ESTADO		221.23	96.21%				
		TOTAL	229.95	100.00%				

Grafico N° 8: Indice de Daños encontrados en la UM-08

Interpretación de la Unidad de Muestra – UM-8 Cdra. -5:

La unidad de muestra UM-08 tiene 229.95 m², y pertenece a la cuadra 5 de la Ca. Túpac Amaru. Los daños encontrados en la unidad de muestra 08 son de tipo: Grieta Longitudinal y Transversal de severidad media con un valor deducido de 7.71, Huecos de severidad media con un valor deducido de 18.52. Ver tabla N° 69.

La falla más influyente en el daño del pavimento es de Abultamiento y Hundimiento, el cual se presenta en una considerable área de la unidad de muestra estudiada y siguiendo el procedimiento se obtiene 3 valores deducidos corregidos: 25.46, 23.94 y 22.19, teniendo como máximo valor deducido corregido 25.46, y siguiendo el procedimiento del PCI, se obtiene como resultado un índice de 74.54 que se encuentra dentro del rango de 70 – 85 que corresponde a una clasificación de un pavimento MUY BUENO.

Tabla N° 69: Densidad y Valores Deducidos Finales.

N°	PATOLOGIA	SEVERIDAD	DENSIDAD (%)	VALOR DEDUCIDO	VDT	VDC
4	Abultamiento y Hundimiento	M	3.35	7.71	26.23	18.82
13	Huecos	В	0.44	18.52	20.52	20.52

Fuente: Elaboración propia

UNIDAD DE MUESTRA N°09 Progresiva 0+504.00 al 0+535.50

CDRA. 5 DE LA CALLE TUPAC AMARU
IQUITOS – MAYNAS – LORETO

Tabla N° 70: hoja de registro de daños UM-09

HOJA DE INSPECCIÓN DE CONDICION DEL PAVIMENTO FLEXIBLE - PCI **UNIDAD DE MUESTREO** FECHA DE EVALUACION: JULIO-2018 UNIVERSIDAD: CATÓLOCA LOS ÁNGELES DE CHIMBOTE EVALUADOR: BACH. ROBERTO PRENTICE TECO MUESTRA: UM-09 PSJE./CALLE/JIRON/AV.: CALLE. TUPAC AMARU CUADRA: LONGITUD (m): **31.50** TIPO DE USO: VEHICULAR DIMENCIONES DE MUESTRA ANCHO (m): 7.30 AÑO DE CONSTRUCCION: ARÉA DE MUESTRA (m2) 229.95 DEPARTAMENTO: LORETO DISTRITO: IQUITOS PROVINCIA: MAYNAS

	INDICE DE CONDICION DEL PAVIMENTO (PCI - PAVIMENT CONDITION INDEX)							
N°	TIPO DE DAÑO	N°	TIPO DE DAÑO					
1	Piel de Cocodrilo	11	Parcheo					
2	Exudación	12	Pulimento de Agregados					
3	Agrietamiento en Bloque	13	Huecos					
4	Abultamientos y Hundimiento	14	Cruce de Vía Férrea					
5	Corrugación	15	Ahuellamiento					
6	Depresión	16	Desplazamiento					
7	Grieta de Borde	17	Grieta Parabólica (slippage)					
8	Grieta de Reflexión de junta	18	Hinchamiento					
9	Desnivel de Carril / Berma	19	Desprendimiento de Agregado					
10	Grieta Long. Y Transversal							

NIVEL DE SEVERIDAD
SEVERIDAD ALTA
Α
SEVERIDAD MEDIA
М
SEVERIDAD BAJA
В

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL	DENSIDAD (%)	VALOR DEDUCIDO
1	4	Abultamientos y Hundimier	М	3.2	0.8	2.56	1.11	13.24
2	11	Parcheo	М	3.0	1.8	5.4	2.35	15.39
3	13	Huecos	М	1.3	1.2	1.56	0.68	25.50

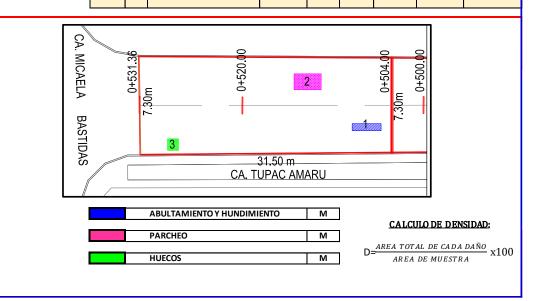
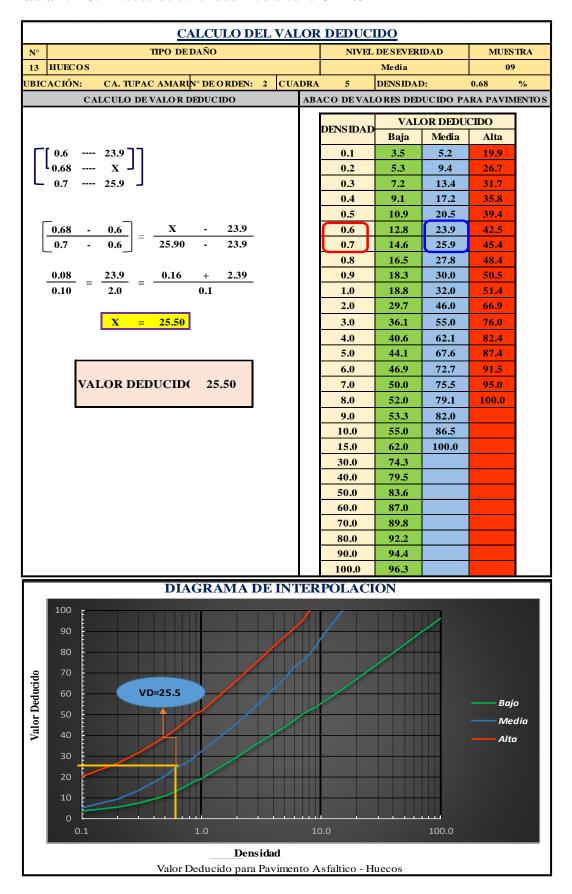


Tabla N° 71: Abultamientos y hundimientos de severidad media de la UM-09

CALCULO DEL VALO	OR DEDUC	<u>DO</u>									
N° TIPO DE DAÑO	NIVEL	DE SEVERI	DAD	MUES	TRA						
4 ABULTAMIENTOS Y HUNDIMIENTOS		Media		09							
UBICACIÓN: CA. TUPAC AMARU Nº DE ORDEN 1 CUAD		DENSIDAI		1.11	%						
CALCULO DE VALOR DEDUCIDO	ABACO DE VAL	O RES DED	UCIDO PA	RA PAVIM	ENTOS						
	DENSIDAD	VAL	OR DEDU	CIDO							
		Baja	Media	Alta							
$ \left[\begin{bmatrix} 1.0 & & 12.7 \\ 1.11 & & X \end{bmatrix} \right] $	0.1										
2.0 17.6	0.2		4.4	20.5							
2.0 17.0 2	0.4	0.9	6.4	23.1							
	0.5	1.6	7.9	25.3							
1.11 - 1.0 X - 12.7	0.6	2.2	9.2	27.3							
$ \begin{bmatrix} \frac{1.11}{2.0} - \frac{1.0}{1.0} \\ \hline \end{bmatrix} = \frac{X}{17.60} - \frac{12.7}{12.7} $	0.7	2.7	10.2	29.1							
	0.8	3.2	11.2	30.8							
$\frac{0.11}{1.00} = \frac{12.7}{4.9} = \frac{0.539 + 13}{1}$	0.9	3.6	12.0	32.3							
1.00 4.9 1	1.0	3.9	12.7	33.7							
X = 13.24 2.0 6.8 17.6 44.8 3.0 8.0 21.9 50.5											
A = 13,24	4.0	9.2	21.9								
	5.0	10.4	28.7	55.0 58.8							
	6.0	11.5	31.7	62.1							
VALOR DEDUCIDC 13.24	7.0	12.7	34.4	65.0							
	8.0	13.9	36.9	67.6							
	9.0	15.1	39.3	70.0							
	10.0	16.3	41.6	72.3							
	20.0	28.1	60.2	88.8							
	30.0	39.9	74.8	100.2							
	40.0	40.0	75.0	100.3							
	50.0 60.0										
	70.0										
	80.0										
	90.0										
	100.0										
DIAGRAMA DE INT	ERPOLAC	ION									
100 F			Ш								
90			Ш								
80			Ш								
원 70	// /	/ 									
VD=13.24											
) A like the second of the sec				—— Вај	io						
1 50 E				Me	dio						
— Medio											
30											
20											
10											
0			1111								
0.1 1.0	10.0		100.0								
Daniel 3, 3											
Densidad	A 114	1	1::								
Valor Deducido para Pavimento Asfaltico	- Abultamiento	os y humo	ıımıentos								


Tabla N° 72: Parcheo de severidad media de la UM-09

		CALCULO DEL VAL	OF	R DEDUCI	DO			
N°		TIPO DE DAÑO		NIVEL	DE SEVER	IDAD	MUES	TRA
_	PARCHI				Media		09	
	ACIÓN:		DR A	5	DENSIDAI	D.	2.35	%
OBICA			1	ACO DEVAI				
	'	CALCULO DE VALOR DEDUCIDO	Ab	ACO DE VAI	OKES DEL	осшо г	AKA FAVI	VIENTOS
				DENSIDAD	VAL	OR DEDU	CIDO	
				DEAGIDAD	Baja	Media	Alta	
	2.0 -	14.3 77		0.1		3.7	6.5	
ווו	2.35 -	14.3 X		0.2		4.5	9.2	
L	3.0 -	17.4		0.3		5.2	11.2	
				0.4		6.0	12.9	
				0.5	1.2	6.7	14.4	
Γ	2.35	- 2.0 X - 14.3		0.6	1.4	7.5	15.8	
	3.0	$ \frac{-2.0}{-2.0} = \frac{X}{17.40} - \frac{14.3}{14.3} $		0.7	1.6	8.2	17.1	
	_	_		0.8	1.9	9.0	18.3	
	0.35	$=\frac{14.3}{2.1}=\frac{1.085}{1.085}$		0.9	2.1	9.7	19.4	
l -	1.00	= 3.1 = 1		1.0	2.3	10.1	19.4	
				2.0	4.4	14.3	26.0	1
		X = 15.39		3.0	6.6	17.4	30.8	1
				4.0	8.0	20.1	34.8	
				5.0	9.9	22.4	38.2	
				6.0	11.7	24.6	41.2	
	\mathbf{v}	ALOR DEDUCIDO 15.39		7.0	13.2	26.5	44.0	
				8.0	14.6	28.3	46.5	
				9.0	15.7	30.0	48.9	
				10.0	16.8	31.5	52.0	
				15.0	23.7	41.0	67.5	
				30.0	27.8	47.9	73.1	
				40.0	30.7	53.4	77.0	
				50.0	32.9	58.2	80.1	
				60.0	0.20		5512	
				70.0				
				80.0				
				90.0				
				100.0				
		DIAGRAMA DE INT	ואם וע		ON			
		DIAGRAMA DE IN I		RPULAC	ION			
	100		-					
	90							
	30		П					
	80		-					
l _	70							
ido	70							
dic	60	VD=15.39		/				
De							—— Ва	jo
Valor Deducido	50		1				— ме	edia
Va]	40		1				—— Alt	a
	30							
	30							
	20							7.74
	-							
	10							7777
	0		П					
	0.	1.0		10.0		100.0		

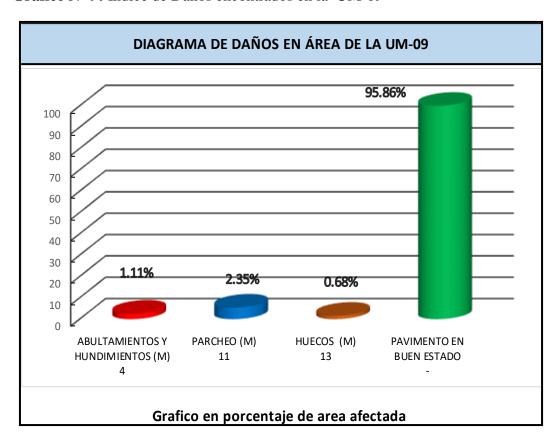
Valor Deducido para Pavimento Asfaltico - Parcheo

Densidad

Tabla N° 73: Huecos de severidad media de la UM-09

Tabla N° 74: Cálculo del valor deducido corregido de la UM-09

			CALC	JLO DE VAL	.OR M	AXIMO DE FA					
ZONA	DE ESTUDIO:						DRA: 05		IUESTRA:	UM-09	
<u>Formul</u>	a:	M=1+[(9/	98)*(100-HV	D)		EVALUACDOR	R: BACH. RO	BERTO I	PRENTICE	TECO	
Donde					Red	emplazando ter	nemos:				
	mero máxin				M=	1 + (9 /	⁷ 98) * (100	- 18.	52)		
HVD=	Valor más A	lto del Vald	or Deducido.	VR.							
HVD=	18.52					M= 8.4	<mark>48</mark>				
	CALCULO DE VALOR DEDUCIDO CORREGIDO (VDC)										
N°			VALORE	S DEDUCIDO	S		VD	Т	q	VDC	
1	25.50	15.39	13.25				54.2		3	29.24	
2	25.50	15.39	2.00				42.8	39	2	31.67	
3	25.50	2.00	2.00				29.	50	1	29.50	
				Máximo V	/DC·					31.67	
]		IVIUXIIIIO V	DC.					31.07	
			LCULO DE IN	TERPOLACIO	N DE V	ALOR DEDUCI		IDO			
q3	50					٦-	31				
	54.14						X				
	60	31				50 -	37				
١	54.14 -	50)	x -	28.0		(42.89	- 42	<u> </u>	- 31.	<u>o)</u>	
	60 -	50	X -	28.0		50	- 42	37.0	- 31.	ر و	
_	4.14	200)	300.0 +	12 42		(0.80	31 0)	2/18 0) + 52	4	
	10 = -	3.0	10	<u>12.42</u> = 2	29.24	8	= -31.0	240.0	8	4 = 31.67	
q1	28					-	-				
Ι΄	29.50	X									
	30	30									
	20.50	20.	C v	20.0)							
{	29.50 - 30 -	28 =	30.0 -	28.0							
(1.50 2	28.0	56.0 + 2	3.00 =	29.50						


Tabla N° 75: Cálculo del PCI y de la interpolación del VDC de la UM-09

TOTAL DE			VALOR DE	DUCIDO COF	RREGIDO						
VALORES DEDUCID	q1	q2	q3	q4	q5	q6	q7		ALCULO I	DE PCI	
0	0.0	•			- 1	- 1	•				
10	1.0							Formula	a:		
12	12.0	8.0									
18	18.0	12.5	8.0					PCI= 10	0 - MAX. \	VDC	
20	20.0	14.0	10.0								
25	25.0	18.0	13.5	8.0				Donde \	VDC=	31.67	
28	28.0	20.0	15.6	10.4	8.0						
30	30.0	22.0	17.0	12.0	10.0			PCV=	100 -	31.67	
40	40.0	30.0	24.0	19.0	17.0					_	
42	42.0	31.0	25.4	20.4	18.2	15.0	15.0	PCI=	68.33		
50	50.0	37.0	31.0	26.0	23.0	20.0	20.0				
60	60.0	44.0	38.0	33.0	29.0	26.0	26.0	RANGO	DE CALIF	ICACION DEL	
70	70.0	51.0	44.5	39.0	35.0	32.0	32.0		PCI		
80	80.0	58.0	50.5	45.0	41.0	38.0	38.0	RA	NGO	CLASIFCACION	
90	90.0	64.0	57.0	51.0	46.0	44.0	44.0	100	85	Excelente	
100	100.0	71.0	63.0	57.0	52.0	49.0	49.0	85	70	Muy Bueno	
110		76.0	68.0	62.0	57.0	54.0	54.0	70	55	Bueno	
120		81.0	73.0	68.0	62.0	59.0	59.0	55	40	Regular	
130		86.0	78.5	73.0	67.0	63.0	63.0	40	25	Malo	
135		88.5	81.5	75.5	69.5	65.0	65.0	25	10	Muy malo	
140		91.0	84.0	78.0	72.0	68.0	67.0	10	0	Fallado	
150		94.0	88.0	82.0	76.0	72.0	70.0				
160		98.0	93.0	86.0	81.0	76.0	74.0				
166		100.0	94.8	88.4	83.0	79.0	75.2	Clasifi	icación:	BUENO	
170			96.0	90.0	85.0	81.0	76.0	Clusiji	cacion.	DOLINO	
180			99.0	93.0	88.0	84.0	79.0				
182			100.0	93.6	88.6	84.8	79.6				
190				96.0	91.0	88.0	82.0				
200				98.0	94.0	90.0	84.0				
		Δ	BACO DI	I VALOI	R DEDLIC	וחח רחו	RREGIDO	(VDC)			
(VDC)	DIAGRAMA VDC 100 90 80 70 60 50 40 30 20 VDC=31.67										
Val	20 10 0 10	20 30 4	0 50 60	70 80 9	DC=31.67 0 100 110 e Densida			166 170 180) 190 200	— q7	

Tabla N°76: Área y densidad afectada de la UM-09

	CUADRO DE ÁREA AFECTADO DE	LA UNII	DAD DE MUESTRA -09	
N°	TIPO DEDAÑO	N/S	TOTAL AFECTADA m2	EN % REAL
4	ABULTAMIENTOS Y HUNDIMIENTOS (M)	М	2.56	1.11%
11	PARCHEO (M)	М	5.40	2.35%
13	HUECOS (M)	М	1.56	0.68%
-	PAVIMENTO EN BUEN ESTADO		220.43	95.86%
		TOTAL	229.95	100.00%

Grafico N° 9: Indice de Daños encontrados en la UM-09

Interpretación de la Unidad de Muestra – UM-9 Cdra. -5:

La unidad de muestra UM-09 tiene 229.95 m², y pertenece a la cuadra 5 de la Ca. Túpac Amaru. Los daños encontrados en la unidad de muestra 09 son de tipo: Abultamientos y Hundimientos de severidad media con un valor deducido de 13.24, Parcheo de severidad media con un valor deducido de 15.39 y Huecos de severidad media con un valor deducido de 25.25. Ver tabla N° 77.

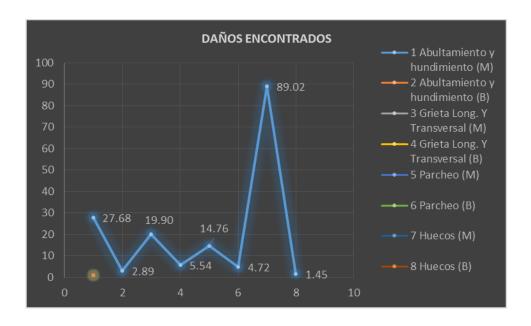
La falla más influyente en el daño del pavimento es de Parcheo, el cual se presenta en una considerable área de la unidad de muestra estudiada y siguiendo el procedimiento se obtiene 3 valores deducidos corregidos: 29.24, 31.67 y 29.50, teniendo como máximo valor deducido corregido 31.67, y siguiendo el procedimiento del PCI, se obtiene como resultado un índice de 68.33 que se encuentra dentro del rango de 55 – 70 que corresponde a una clasificación de un pavimento BUENO.

Tabla N° 77: Densidad y Valores Deducidos Finales.

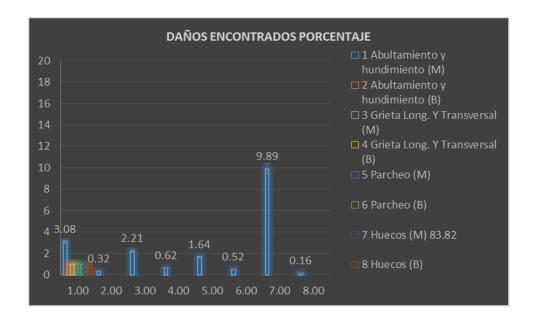
N°	PATOLOGIA	SEVERIDAD	DENSIDAD (%)	VALOR DEDUCIDO	VDT	VDC
4	Abultamiento y Hundimiento	М	1.11	13.24	54.14	29.24
11	Parcheo	M	2.35	15.39	42.89	31.67
13	Huecos	M	0.68	25.50	29.50	29.50

Fuente: Elaboración propia

5.2 Resumen de resultados.


En el presente trabajo de investigación se logró evaluar 9 unidades de muestras del pavimento flexible existente de la Calle Túpac Amaru del Distrito de Iquitos Provincia de Maynas – Loreto.

Cuadro Nº 05: Patologías encontradas en unidades de muestras


N°		SEVERIDAD			UNI	DAD DE MU	JESTRA Y	DENSID	AD				EN
IN	TIPO DE DAÑO	SEVERIDAD	UM-1	UM-2	UM-3	UM-4	UM-5	UM-6	UM-7	UM-8	UM-9	TOTAL	%
	Abultamiento y												
1	hundimiento	M	10.80		9.40	2.72	2.78		0.87		1.11	27.68	3.08
	Abultamiento y												
2	hundimiento	В				0.98	1.91					2.89	0.32
	Grieta Long. Y												
3	Transversal	M		5.35	6.61			4.59		3.35		19.90	2.21
	Grieta Long. Y												
4	Transversal	В		2.17		3.37						5.54	0.62
5	Parcheo	M	4.13	1.67		3.20	3.41				2.35	14.76	1.64
6	Parcheo	В		0.65		2.50	1.57					4.72	0.52
7	Huecos	М	83.82					3.65	0.43	0.44	0.68	89.02	9.89
8	Huecos	В						0.88	0.57			1.45	0.16

Fuente propia

Grafico Nº 10: Densidad de Patologías encontradas en unidades de muestras

Grafico Nº 11: Patologías encontradas en porcentaje de las unidades de muestras

En el grafico N° 11 se interpreta y se observa los tipos de patologías que se encontraron en la a través de 9 unidades de muestras de la Calle Túpac Amaru dando como resultado los siguientes cifras, con 3.08 % abultamientos y hundimientos de severidad media, con 0.32 % abultamientos y hundimientos de severidad baja, con 2.21 grietas longitudinales y transversales de severidad media, con 0.62 grietas longitudinales y transversales de severidad baja, los parcheos con 1.64% de severidad media, con 0.52 parcheos con 0.52 % de severidad baja, los huecos de severidad media con 9.89 y huecos de severidad baja con un 0.16% de daño.

Cuadro N° 06: Resumen del PCI de las UM de la Calle Túpac Amaru.

	RESUI	MEN FINAL D	E PCI		
Unidad de Muestra	Clasificación	PCI de Unidad de Muestra	PCI FINAL	Clasificación Final	
UM-01	MALO	33.16			
UM-02	MUY BUENO	80.76			
UM-03	BUENO	56.37			
UM-04	BUENO	67.02			
UM-05	BUENO	68.35	62.71	BUENO	
UM-06	MALO	36.38			
UM-07	MUY BUENO	74.54			
UM-08	MUY BUENO	79.48			
UM-09	BUENO	68.33			

Fuente: Elaboración propia

Descripción e Interpretación:

Mediante los cálculos del método del PCI, se determinó el índice de condición del pavimento flexible de las 09 unidades de muestras teniendo como resultado final de 62.71 de PCI, el cual nos permite clasificar como un pavimento de clasificación BUENO.

Grafico N° 12: Resultado final del PCI

Descripción e Interpretación:

Mediante los cálculos del método del PCI, se determinó el índice de condición del pavimento flexible de las 09 unidades de muestras teniendo como resultado final de 62.71 de PCI, el cual nos permite clasificar como un pavimento de clasificación BUENO.

VI. CONCLUSIONES:

De la evaluación visual del pavimento se encontraron los daños de abultamientos y hundimientos, grietas longitudinales y transversales, parcheo y huecos de severidad media y alta las cuales afecta al deterioro del pavimento existente, teniendo como la patología "HUECOS" con mayor densidad y la más frecuente "PARCHEO" en casi todas las unidades de muestras:

- ➤ Patología de abultamiento y hundimiento de severidad media con 3.08 %, abultamiento y hundimiento de severidad baja con 0.32%, grietas longitudinales y transversales de severidad media y baja con 2.21% y 0.62%, parcheo de severidad media y baja con 1.64% y 0.52% y huecos de severidad media y baja con un 9-89% y 0.16%.
- La patología predominante del área estudiada es la patología de huecos de severidad media con una densidad de 89.02 y un porcentaje de 9.89% de área afectada.
- ➤ Tiene una clasificación según resultados obtenidos de **BUENO**, con un de PCI de **62.71**

VII. RECOMENDACIONES:

- Se recomienda para las patologías encontradas las siguientes acciones:
 - ✓ Para los Hundimientos de severidad media, se recomienda el parcheo parcial en todas las unidades de muestras materia de la investigación.
 - ✓ Para las grietas longitudinales y transversales de severidad media, se recomienda el sellado de juntas en todas las unidades de muestras materia de la investigación.
 - ✓ Para los parcheos de severidad media, se recomienda la Sustitución del parche en todas las unidades de muestras materia de la investigación
 - ✓ Huecos, severidad media, parcheo total en todas las UM.
- Se recomienda que en los trabajos de refacción y mantenimiento de las áreas afectadas este ha cargo o monitoreado por un ingeniero especialista, respetando las recomendaciones del método del PCI.

Referencias bibliográficas:

- (1) Duque C, Tibaquira J. Estudio de la patología presente en el pavimento rígido del segmento de vía de la carretera 14 entre calles 15 y 20 en el municipio de granada departamento del meta. repository [seriada en línea] 2010 [citado 2014 junio 10], disponible e Andres2010.pdf
- (2) Prunell S. Estudio de Patologías en Pavimentos Flexibles. [Tesis para la obtención del título de Ingeniero Civil]. La Plata, Argentina; 2011. [citado Junio 10] disponible en:

http://lemac.frlp.utn.edu.ar/wp-content/uploads/2014/05/LEMaC

(3) Espinoza T. Determinación y evaluación del nivel de incidencia de las patologías del concreto en los pavimentos rígidos de la provincia de Huancabamba, departamento de Piura, 2010. Scribd [seriada en línea] 2010[citado 2014 junio 10], disponible en:

http://es.scribd.com/doc/103596390/Patologia-pavimentos

(4) Ipanaque P. Determinación y evaluación de las patologías de las veredas del distrito de Vice, Sechura-Piura, 2010. Scribd [seriada en línea] 2010 [citado 2014 junio 10], disponible en:

http://es.scribd.com/doc/128275699/Contreras-Tesis

- (5) Miranda R. Deterioros en pavimentos rígidos y flexibles. Cybertesis [seriada en línea] 2010 [citado 2014junio 10], disponible en:
 http://cybertesis.uach.cl/tesis/bmfcim672d.pdf
- (6) Panta M. Determinación y evaluación de las patologías del concreto en las plataformas deportivas de los distritos de Tamarindo, provincia de Paitae Ignacio Escudero Portillo provincia de Sullana del departamento de Piura,

- 2011. Scribd [seriada en línea] 2011 [citado 2014junio10], disponible en. http://es.scribd.com/doc/149878672
- (7) Ramirez D, Godoy O. Patología de pavimentos rígidos de la ciudad de asunción. Scribd [seriada en línea]2011 [citado 2014junio10], disponible en. http://es.scribd.com/doc/77309437/01pa-vi01
- (8) Ruiz C. Análisis de los factores que producen el deterioro de los pavimentos rígidos. Ecuador: Escuela Politécnica del ejército; 2011.
- (9) SalazarA.Guíaparaeldiseñoyconstruccióndepavimentosrígidos.1ªEdic, México: Instituto Mexicano del Cemento y del Concreto; 1998.
- (10) Mohamed Y. Pavement Management for airports, roads and parking lots.

 Chapman & hall. New York: Usa; 1994.
- (11) Vásquez L. Pavement Condition Index (PCI) para pavimentos asfalticos y de concreto en carreteras. Camineros [seriada en línea] 2002 [citado 2014 junio 10]disponible en. http://www.camineros.com/docs/cam036.pdf
- (12) Bebeto S. Definición de veredas. Scribd [seriada en línea]2013 [citado 2014 junio10], disponible en. http://es.scribd.com/doc/162122121/vereda
- (13) Michespitu. Tipos de pavimentos. Scribd [seriada en línea] 2013 [citado 2014 junio10], disponible en:
 http://es.scribd.com/doc/126490705/tipos-de-pavimentos-pdf
- (14) Saenz M. Criterios diseño pavimento rígido. Scribd [seriada en línea] 2012 [citado 2014 junio10], dispo nible en http://es.scribd.com/doc/78707671/CRITERIOS-DISENO-PAVIMENTO-RIGIDO

- (15) Centeno O. Pavimentos Rígidos. Blog spot. [seriada en línea]2010 [citado Mayo18] disponible en.
 http://oswaldodavidpavimentosrigidos.blogspot.com/
- (16) Hidalgo J. Análisis superficial y mantenimiento del hormigón hidráulico dela carretera chonecanuto calceta Junín pueblo nuevo pimpiguasí, tramo "pueblo nuevo pimpiguasí. Repositorio [seriado en línea]2011 [citado 2014 Mayo14], disponible en:
 ttp://repositorio.utm.edu.ec/bitstream/123456789/11276/1/CEPGDIE 20110
 0076.pdf
- (17) León, G. Determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional de la superficie de las veredas del AA.HH. Alto Perú Distrito de Chimbote, Provincia del Santa, departamento de Ancash, julio 2013. [Tesis para la obtención del título de Ingeniero Civil]. Chimbote; 2013. disponible

http://erp.uladech.edu.pe/bibliotecavirtual/?ejemplar=00000045202

ANEXOS 01

ÍNDICE DE CONDICIÓN DEL PAVIMENTO PCI-01. CARRETERAS CON SUPERFICIE ASFÁLTICA

EXP	LORACIÓN			NIDAD DE MUESTREO	ESQUEMA		
ZONA		ABSCISA INICIAL		UNIDAD DE MUESTREO	LOGOLINA		
] [
CÓDIGO VÍA] [ABSCISA FINAL	l I	ÁREA MUESTREO (m²)			
INSPECCION	ADA POR			FECHA			
No.		Daño	No.	Daño			
1	Piel de coco	odrilo.	11	Parcheo.			
2	Exudación.		12	Pulimento de agregados.			
3	Agrietamier	nto en bloque.	13	Huecos.			
4	Abultamient	tos y hundimientos.	14	Cruce de vía férrea.			
5	Corrugación	n.	15	Ahuellamiento.			
6	Depresión.		16	Desplazamiento.			
7	Grieta de bo	orde.	17	Grieta parabólica (slippage)			
8	Grieta de re	flexión de junta.	18	Hinchamiento.			
9	Desnivel ca	rril / berma.	19	Desprendimiento de agregados.			
10	Grietas long	y transversal.					
Daño	Severidad		Cantida	ades parciales	Total	Densidad (%)	Valor deducido

Fuente: Manual PCI

Tabla N°78: Rango de clasificación del PCI

RA	RANGO DE CALIFICACION DEL PCI								
RANGO CLASIFCACION									
100	85	Excelente							
85	70	Muy Bueno							
70	55	Bueno							
55	40	Regular							
40	25	Malo							
25	25 10 Muy malo								
10	10 0 Fallado								

ANEXOS 02

Panel Fotográfico:

Foto N° 1: Vista de la patología 13 (Huecos) en la UM1 de la Calle Túpac Amaru

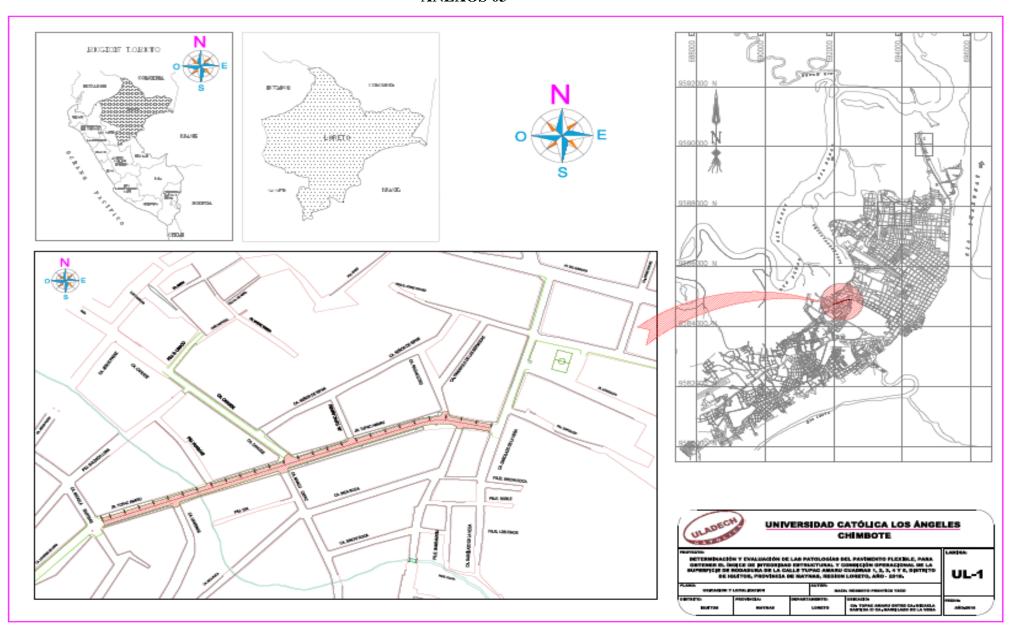
Foto N° 2: Vista panorámica de la patología 13 (Huecos) en la UM1 de la Calle Túpac Amaru

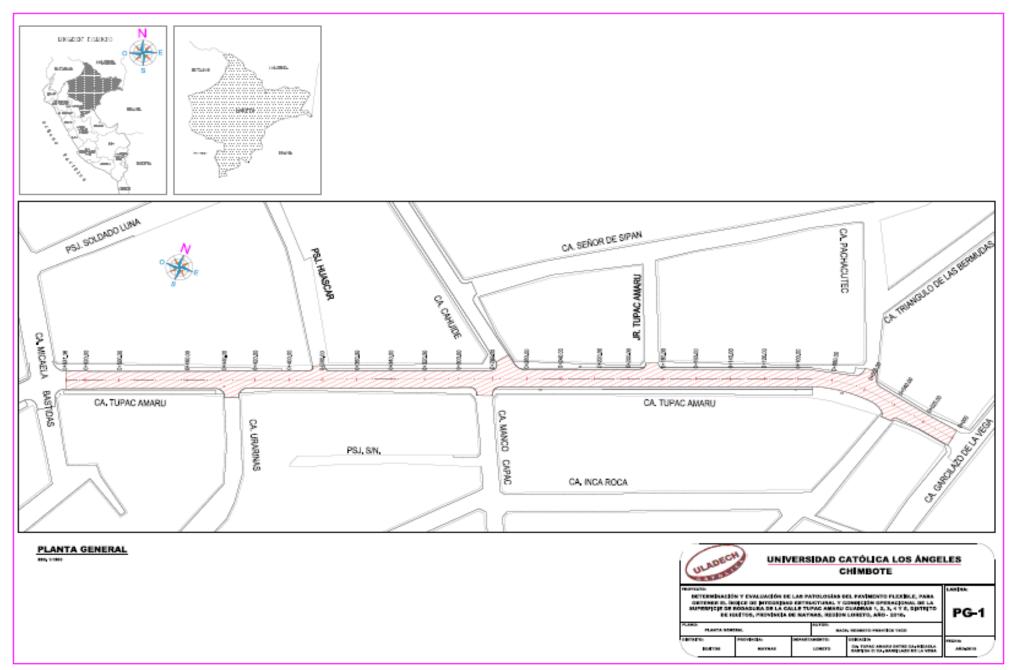
Foto \mathbb{N}° 3: Vista panorámica de la patología 10 (grieta long.) en la UM2 de la Calle Túpac Amaru

Foto N^{\circ} 4: Vista de la patología 10 (grieta long. y transv.) en la UM2 de la Calle Túpac Amaru

Foto \mathbf{N}° 5: Vista de la patología 11 (Parcheo) en la UM4 de la Calle Túpac Amaru

Foto N° 6: Vista de la patología 11 (Parcheo) en la UM4 de la Calle Túpac Amaru




Foto N $^{\circ}$ 7: Vista de la patología 4 (hundimiento) en la UM9 de la Calle Túpac Amaru.

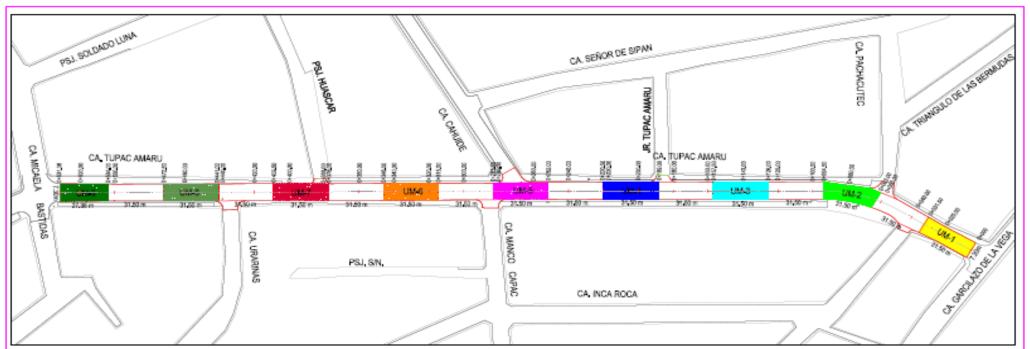


Foto N° 7: Vista de la patología 4 (hundimiento) en la UM9 de la Calle Túpac Amaru.

ANEXOS 03

PLANTA DE UNIDADES DE MUESTRAS

PRINCIPALIS DAVOS ENCONTRADOS

A MELLINGENTOR (BURNEY PROVIDED BACK)

consequente con proportion configurations havin action from the same proportion of processing. The offerencies in the complementation, possessing flower on countries of processing processing processing for the complementation of the complementation of

Legendories a sondantes de laga de sonorio de samero Michael con un

International is convenientable in Lease in sometime or animomorphic in convenientable in animomorphic in the convenientable in the lease of the lease of the lease.
 Elementary convenientable in the contraction of the convenientable in the convenientable in the lease of Mindfe (Agencia record demonstration funding).

mile em desileacembe hada sieja, pepartie y singles, de la species of partners.

Le décense y deplumente que ocure sons pardes ême de partente, suamos pardes o logas depresons en el acos, se lama-votalección (declarates) analiga.

New to do severtised

- Los abatemientes o handimientos crigimo une castad de fatiento de
- bijo evented. Las ebsteniorias o hardinlantas priginas una calded de televito de
- Las abdismienta a handimientas originan una calded de labello de severibeliales.

de mitio en cias l'endes (5 matris l'endes). Si aparecer en un patris, properciosis d'Alic del rémite e estin espaciacie si marrece l'Alic, el cafe se llars companire, Si el abstracions source un contribución con une grate, des mission or mission.

; Sin se hose radio di Badichale se litte, Parches prolambro parche di Badichalo diresatici ser his. Parches perfunto spensia. Sebrecarpala.

N. GIRCIAS LONGTADINALES Y TRANSVERSALES (NO NON DE REFLEIRÓN DE LOSAS DE concestro de camento d'ornanco. Destatin: Las gisto Inglatindos sor pedebo el sis del polimete o a la discolir di

transmission can place a positioning or a property of the prop

Ninderdo Sevetidal

Editivo cre in ber applicate conflatores

Solitar de la decimina conflatores

Solitar de la decimina de conflatores

Ondo de la decimina de conflatores

Ondo de la conflator estate por conflato seledadora del materia Benetió

Ondo allano de conflator estate por conflato seledadora del materia Benetió

Citate uno de las equientes condiciones.
 Citate de refere después artis 10ú may 15ú may.
 Citate de refere después artis 10ú may 15ú may.
 Citate de refere después para autor trada 10ú may, notacios gratus aluminos propuésas.
 Citate en filos de coloquiar activos, colosado despúésas aluminos populars.

Contra use de la equation conditione.
 Configuraçõe de la contra de présentador popular de severitad media e els,
 Configuraçõe de contra PAT en descrito.
 Configuraçõe de contra PAT en descrito.
 Con primer de contra de cont

mento las prime logistriche y transcende se mine en des landre il neiro lambel, la logistri sentinti di carlo primi della regionata depuis de la Mantilació. Il le gris se il terri la col-cia di consentar e la legio en sia e lambel, mai escrito de la primi con un del la senatora dilenda della regiona per separato. Si souna dellamiente e fundimiente en la giola, esta

No se hope redu, federio de pliaba de emito mayor que 10 mm.

ili Balado de gratas. Al Dilato de glados, Paralmo parcial.

и, гългонда у мосмет дие оставля формация,

Constitution of course per an experiment processing processing processing the profession in these dependents for any facilities constitution can removed reason parts reported of personal colorests, the profession consistency or deleter to importe up-ter false an exception (positionals), and are profession and allow acquerate less an emporter to their colore is accordingly for personality, fire for proved as accounting agreement organish units.

temporal terrents,

If therefore eather have conduct outray as estimates, as obtained to finate on other come or as eventually a search of many or and terrents are of the problem of the conduction of the conduc

Medida Las condes as relater on plan conductos lo regions conductos d Les products se entitée on par resolution je meline conditions de la mest actions. Le se entrope, si un est la partie finne tense on mest actions de services, a compartie de la partie finne tense on differents revoluted, unique de la Carl of partie la mest faire de severable, les quintes de la Carl of partie de la constitución recipientes accuminations la legis de setals per deputs, desprendiciente y explorationnel or emplate destin ou reputin-ment de mestal de la partie exercise provinciante ou que partie on service de mestal de la partie de la compartiente de partie de service de mestal de la partie de la part

Opdoweda noswiće

L/Ners herotele. M/Ners herotele, distinsión del perde. Il: Sustinsión del perde.

TO, MINIOTAL DISTRICT AND ADMINISTRATION OF A SERVICE ADMINISTRATION OF A menus proportio potassa de la superiori di positivami, la destinguación di positivami programa destida a mentala estima su appetino, parte estoda su la seria al suderamia, o compar es las disentado su concelho se presidant des, con tracariori las lescesa mar cidan esternida a la considerá de la concelho de seriados de considerá de la concelho de seriados de la considerado de la consecución de la considerado de consecución de la considerado, disente las lesamos ser positivados por pil de mendela de deservadad debas registrares somo tracoso, no como contenidado.

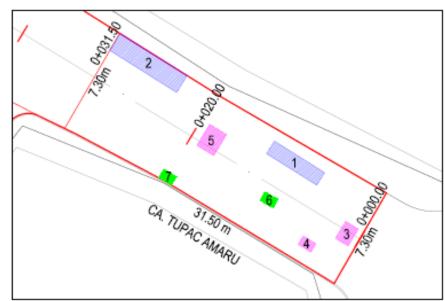
como matembro de

rinder de servicial per les hannes de clan delpe de servicial per les hannes de clientes meson que FEI non malés bandan els profuncios e si d'obsertes de los mismos, de acustes non d'Ouelle GV. El d'allactes de la banca en rayor que TEI mes, odes maléses el desse ser pies cualitatios ().

ments
continuing shiftle area is part (M) of part
today defined alchaecepticalists. (II is
particulated as ment in land que 20% one, for
the continue as continue particular today
(II).

profundade de major que 26.7 sem la seventad se prostriare como esta

	LEYENDA									
N^{α}	COLOR	DESCRIPCION	ANCHO	LARGO						
ĠΊ	- "	UNIDAD DE MUESTRA EL	7.30 m	31,50 m						
02		UNIDAD DE MUESTRA ES	7,00 m	31,60 m						
03		UNIDAD DE MUESTRA 65	7,00 m	91,50 m						
94		UNIDAD DE MURSTRA (M	7.30 m	31.50 m						
05	* 1	UNIDAD DE MUESTRA ES	7,00 m	31,60 m						
CIE		UNIDAD DE MUESTRA 66	7,00 m	91,50 m						
œ		UNIDAD DE MUESTRA EF	7,30 m	31,50 m						
08		UNIDAD DE MUESTRA 65	7,700 m	91,60 m						
CSP		UNIDAD DE MUESTRA 69	7,30 m	31,50 m						

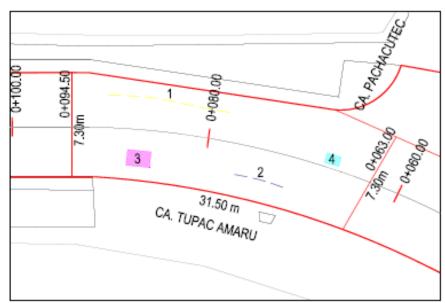

UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE

DETERMÍNACIÓN Y EVALUACIÓN DE LAS PATOLOSÍAS DEL PANÍMENTO FLEXÍBLE, PARA GETERRE IL ROJCE DE PYTOGRADE GETERCTURAL Y CORDIÇÕE GPERACIONAL DE LA SUPERPICIE DE RODADURA DE LA CALLE TUPAC AMARU CUADRAS 1, 2, 3, 4 Y 2, 5 PTTQT! DE HULTUS, PROVINCIA DE NAYMAS, REDION LORETO, AÑO - 2016,

PLANTA DE LINGUADES DE MUSICIA. made, recommenderation value ON TURNS ARREST SETTE ON RECALLS BUTTON BUTTERS COMETE

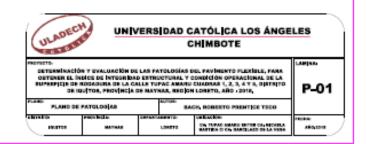
ARROSE

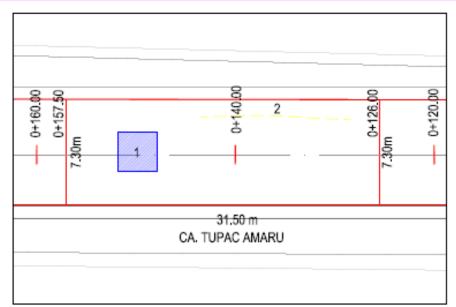
UM-1



UM-01 (Progresiva 0+000 al 0+031.50)

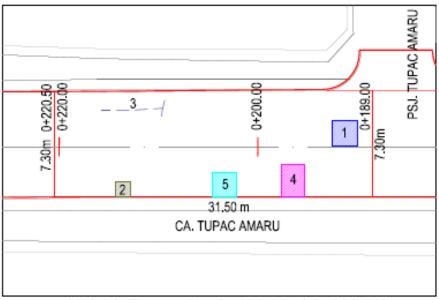
ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL	DENSIDAD (%)	
1	4	Abultamiento y hundimient	М	6.00	1.50	9.00	3.91	
2	4	Abultamiento y hundimient	М	8.00	2.00	16.00	6.96	
3	11	Parcheo	М	2.00	1.50	3.00	1.30	
4	11	Parcheo	М	1.50	1.00	1.50	0.65	
5	11	Parcheo	М	2.50	2.00	5.00	2.17	
6	13	Huecos	М	1.00	1.50	1.50	0.65	
7	13	Huecos	M	1.50	0.80	1.20	0.52	


LEYENDA


EE I ENDA						
Abultamiento y hundimiento de severidad med						
	Parcheo de severidad media					
	Parcheo de severidad baja					
	Hueco de severidad media					
	Grieta long, y transv, de severidad media					
	Grieta long, y transv, de severidad baja					

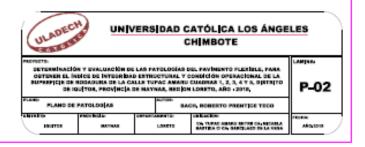
UM-02 (Progresiva 0+063.00 al 0+094.50) Esc. 1/250

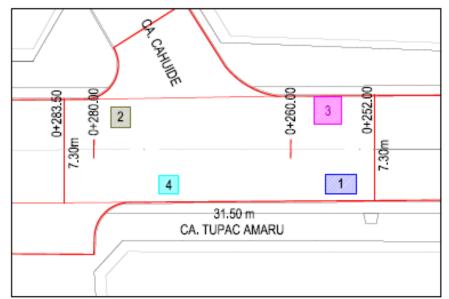
ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL	DENSIDAD (%)
1	10	Grieta Long. Y Transversal	М	12.30		12.30	5.35
2	10	Grieta Long. Y Transversal	В	5.00		5.00	2.17
3	11	Parcheo	M	2.40	1.60	3.84	1.67
4	11	Parcheo	В	1.50	1.00	1.50	0.65



UM-03 (Progresiva 0+126.00 al 0+157.50)

ORDEN	N*	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL
1	4	Abultamiento y hundimient	М	4.65	4.65	21.62
2	10	Grieta Long. Y Transversal	М	15.2		15.2


LEYENDA


	Abultamiento y hundimiento de severidad media						
	Abultamiento y hundimiento de severidad baja						
000000000000000000000000000000000000000	Parcheo de severidad media						
	Parcheo de severidad baja						
	Grieta long, y transv, de severidad baja						

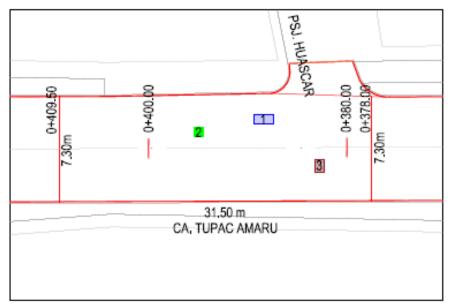
UM-04 (Progresiva 0+189.00 al 0+220.50) Esc. 1/250

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARG O	ANCHO	TOTAL
1	4	Abultamientos y Hundimiento:	М	2.5	2.5	6.25
2	4	Abultamientos y Hundimiento:	В	1.5	1.5	2.25
3	10	Grieta Long. Y Transversal	В	7.8		7.8
4	11	Parcheo	м	3.2	2.3	7.36
5	11	Parcheo	В	2.4	2.4	5.76

UM-05 (Progresiva 0+252.00 al 0+283.50)

ORDEN	N*	PATOLOGIA	SEVERIDA D	LARG O	ANCH O	TOTAL
1	4	Abultamientos y Hundimientos	М	3.2	2.0	6.4
2	4	Abultamientos y Hundimientos	В	2.2	2.0	4.4
3	11	Parcheo	М	2.8	2.8	7.84
4	11	Parcheo	В	1.8	2.0	3.6

LEYENDA

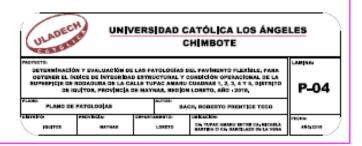

Abultamiento y hundimiento de severidad media							
Abultamiento y hundimiento de severidad baja							
Parcheo de severidad media							
Parcheo de severidad baja							
Hueco de severidad media							
Hueco de severidad baja							
 Grieta long, y transv, de severidad media							

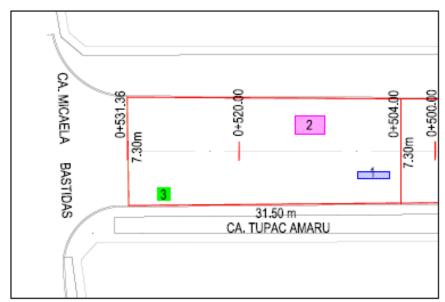
UM-06 (Progresiva 0+315.00 al 0+346.50)

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL
1	10	Grieta Long. Y Transversal	М	10.55		10.55
2	13	Huecos	М	3.0	2.8	8.4
3	13	Huecos	В	1.5	1.35	2.03

UM-07 (Progresiva 0+378.00 al 0+409.50)

ORDEN	N°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL
1	4	Abultamiento y hundimiento	М	2.0	1.0	2
2	13	Huecos	М	1.0	1.0	1
3	13	Huecos	В	1.20	1.10	1.32


LEYENDA


Abultamiento y hundimiento de severidad media
Hueco de severidad media
Hueco de severidad baja
 Grieta long, y transv, de severidad media

UM-08 (Progresiva 0+440.00 al 0+472.50)

ORDEN	N*	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL
1	10	Grieta Long. Y Transversal	М	7.7		7.7
2	13	Huecos	М	1.2	0.9	1.02

UM-09 (Progresiva 0+504.00 al 0+531.36)

ORDEN	Ν°	PATOLOGIA	SEVERIDA D	LARGO	ANCHO	TOTAL
1	4	Abultamientos y Hundimientos	М	3.2	0.8	2.56
2	11	Parcheo	М	3.0	1.8	5.4
3	13	Huecos	М	1.3	1.2	1.56

LEYENDA

Abultamiento y hundimiento de severidad media	
Parcheo de severidad media	
Hueco de severidad media	

PRINCENES DANOS ENCONTRADOS 4-AND, NOCIONAD (CONTRADOS)

recorpore.
Las sid-positivismos em propulho desploardarios frants artis (profincian en la superillo del profincia. De diferendas de las displacaciones, poss estas filmos ano sucente por profincian francisco, son estambienos, por esta parte, puede ser ouverbos por veñas filmosa, que indiques.

Lourisation o contrata de lassa de conseito de conseito Philippel con con mismospola de acusada del los.
 Lourisatio po completado possemento de lassa del milió.
 La fermatira, y describo del setarda en se gras en contrinación con las caques de latinado algunas reconsideración familia;

los handinforms per deplacamente hada atalja, papartes y atroptes, de la

Las didentiones y despendintes que rouve actes grandes inses del perinoris, season persis o Japa signalines en el mirro, se Bener 'Industrial' (industriale mellig).

- Les disflueixes e handmission origines une suffici de histolic de lapromettal. Las solumentes o fundiciones originas una caldial de trimito de
- swettet nede. Les stributes a hundraleites origines una saltiel de trinaite de

ples Breaks (il metro Breaks), Si spencer en er proportione of the oil blanks preside equations a more on this is, where we have companies, this deflurations occurs or contribution on use gives, two bands to require.

ordinas de reparatibo

- i: No se hace sado. El Residado er Ho, Paralhou prolando especial. El Residado plemado per No, Paralhou prolando e parala. Sebesarryana.

- 11. Persona e accentrarea de assertación describidos. Sembolios Seguntos o en describación de sed se side enclación de estenda suco para recent de parteción existente, Un perde se considera en deben de la parteción de districción. atjustets recurrenced to the one branch origin) is protected. For bigment or requests durin reported sets
- Nindows Secretari,
 C. Discrete est en bora constitute som y en establicht. La collecte discharmostille som drings servicite rege, R. Il contre est entretament descreta e il soften od sociale se office som a servicite colt.
 R. Il contre est servicite contre o il soften onti-porti servicite somo di servicite. Personale contre collectione publicatione di de control. Persona producettimate di solita coltre del servicite. Persona producettimate.

Medition. Describes as referred piles receivable de metitos traditable de lesse delicità. Elle metitogo, di un solla periode libre describe della consideration secondo di una della meditable secondo di una della meditable di periode libre di la regionale di una della di 223 di ripudabi lanci il fari di un segonita del 223 di ripudabi lanci il fari di un segonitable della considerationa. Negli di una di un fine di una di una di una di una di una segonitable approximente. Negli di una di uni periode di una segonitable della periode una periode di una di una

C No so base motion.

If No arches motion, Bustiness companies.

If Confusion department.

- IL ONITRO CONTECTIONES Y TRANSPIRATES (NO SON OS INSTITUTOS OS LONAS OS concreto de camero visto, mos, beolocis de prese legisdade nos pentido el se tal perimete o e la directo de
- controls any control temperature of the second of the seco

- Morbo de Carendad.

 1. Eministrana della signistra condicione:

 1. Eministra della signistra condicione:

 1. Eministra della signistra della condicione:

 1. Eministra della signistra della condicione:

 1. Eministra della c

- British van de lan signistria scoricores.
 Couplair prince dipos res, colorate la principa deprincia populara de severitari media e dip.
 Contra de la Course de del La maria de seguir.
 Lan principa de la principa de la principa con porse pagadas del partecerá de deleter de hariane entida exercisario ficializario.

Mattis
in grino projektisho y kramando na mina na pan Janjan (h-mina Janjan, ia Janjan)
senektis ta sata gaint situs apparase tasaan sa na derificante, ia la gain na bened mino
al de meneral de la baga in sana ta la lapida, mini menira da la gain na na deni menerala
situata dele nagrama per separat, il come adulmente e inclimente en la gain, esta
mino minoria.

Colombia de Managarillo

- i. No se teor nati. Debato degliciando antis naporque 3,5 mm. El Selado deglicia: El Selado deglicia:

CA-CATCAN
Consistent for hance our dynamics of a specime of partners, procedure in the specime of partners, our time of major for the specime out time of major with the specime specime to be sent of the specime specimes and specime specimes and specime out to the total specimens of the specime specime specime out to the total specimens of the specime specime specime out to the specime specime specime out to the specime specime specime out to the specime specime out to the specime s

Notes de separation Une strolge de reservation para les hauses de détends entre sur TEX me salle basedanne à profundad y el détendo de les niemes, de sessentes el Cardio CA. de la niemes, de la désignat de la base se sempre que TEX me, dels resilies el dess en plus sustinate ju matrix.

nation controlling details enter I per (DA) of per laborate delinates seprepario, title particular or more organizario, title particular or more organizario 200 ora, las particular or contributi con dispersabilità mole, il la contributio della contributione della co

3 to profundaci se major que 35/2 mm la sesercitari se constiture como edia.

