

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CENTRO POBLADO ALTO MAYO, PAMPA HERMOSA-2020

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR
PEÑALOZA TAPIA, DAVID SALOMON
ORCID: 0000-0002-2892-9490

ASESOR
CAMARGO CAYSAHUANA, ANDRES
ORCID: 0000-0003-3509-4919

SATIPO – PERÚ 2020

1. Título de la Tesis

Diseño del sistema de abastecimiento de agua potable en el Centro Poblado Alto Mayo, Pampa Hermosa - 2020

2. Equipo de trabajo

AUTOR

Peñaloza Tapia, David Salomón

ORCID: 0000-0002-2892-9490

Universidad católica los ángeles de Chimbote, Estudiante pregrado, Satipo, Perú

ASESOR

Camargo Caysahuana, Andres

ORCID: 0000-0003-3509-4919

Universidad Católica Los Ángeles de Chimbote, Facultad de ingeniería, Escuela Profesional de Ingeniería Civil, Satipo, Perú

JURADOS

Vílchez Casas, Geovany

ORCID: 0000-0002-6617-5239

Zuñiga Almonacid, Erika Genoveva

ORCID: 0000-0003-3548-9638

Ortiz Llanto, Dennys

ORCID: 0000-0002-1117-532X

3. Firma del jurado y asesor

Mgtr. Ortiz Llanto, Dennys	Ms.Zuñiga Almonacid, Erika Genoveva	
Miembro	Miembro	
Mgtr. Vílch	nez Casas, Geovany	
P	residente	
M.Sc. Camarg	o Caysahuana, Andres	
	Asesor	

4. Hoja de agradecimiento y/o dedicatoria

4.1. Agradecimiento

Agradezco a la Universidad Católica los Ángeles de Chimbote Centro Académico Satipo, Por abrirme sus puertas para poder hacer realidad el tener una carrera profesional.

A Dios nuestro padre todo poderoso por brindarme salud, prosperidad y fuerzas para concluir mis estudios superiores.

A mis padres Augusto Peñaloza y María Tapia, mis hermanas e hijos esposa que siempre estuvieron presente para el cumplimiento de mis metas y logos de mi vida profesional.

4.2. Dedicatoria

A mis hijos David Augusto y María Sofía que me dieron las fuerzas y el entusiasmo para seguir adelante para la culminación de mis estudios superiores en los momentos más difíciles y decisivos vida mi en estudiantil.

A mi esposa Sofía quien está a mi lado brindándome todo su apoyo frente a las dificultades que atravesamos juntos en nuestra vida cotidiana.

5. Resumen y Abstract

5.1. Resumen

Este estudio corresponde al diseño del sistema de abastecimiento de agua potable

en el Centro Poblado Alto Mayo, Pampa Hermosa – 2020. El planteamiento del

problema fue ¿cuál es el diseño del sistema de abastecimiento de agua potable en

el Centro Poblado de Alto Mayo? Distrito de Pampa Hermosa, Provincia de

Satipo, Departamento de Junín 2020. El objetivo general de este proyecto es:

Plantear un diseño para mejorar el sistema de abastecimiento de agua potable para

el centro poblado de alto mayo año 2020. La metodología de investigación

utilizada fue de tipo aplicada con enfoque cuantitativo de nivel exploratorio-

descriptivo de corte transversal. Los resultados muestran que el ancho de pantalla

de la captación: Qmax: gasto máximo de la fuente (l/s), Cd: coeficiente de

descarga (valores entre 0.6 a 0.8), G: aceleración de la gravedad (9.81 m/s2).). Es

recomendable realizar los trabajos con una sección interior mínima de 0,60 x 0,60

x 0,70m, será de concreto armado f'c = 210 kg/cm2. Se está proyectando la

construcción del reservorio, ubicado en la progresiva 0+440 de la Línea de

Conducción, sobre terreno conglomerado en la cota 1565.00 msnm de 5.00 m3 de

capacidad. Se diseñará con el Caudal Máximo Horario, con un diámetro de

admisible de 1" y 3/4" para los ramales. La presión mínima no debe ser menor de

5 m.c.a y la presión estática no sobrepasar los 60m.c.a. Finalmente, se concluye

que la presente investigación constituye un gran aporte para la población del

Centro Poblado de alto Mayo – pampa Hermosa.

Palabras clave: Agua potable, Diseñar, población.

VII

5.2. Abstract

This study corresponds to the design of the drinking water supply system in the

Alto Mayo Poblado Center, Pampa Hermosa - 2020. The problem statement was

what is the design of the drinking water supply system in the Alto Mayo Poblado

Center? District of Pampa Hermosa, Province of Satipo, Department of Junín

2020. The general objective of this project is: To propose a design to improve the

drinking water supply system for the town center of Alto Mayo in 2020. The

research methodology used was type applied with a quantitative approach at an

exploratory-descriptive cross-sectional level. The results show that the catchment

screen width: Qmax: maximum flow rate of the source (1 / s), Cd: discharge

coefficient (values between 0.6 to 0.8), G: acceleration of gravity (9.81 m/s2).).

It is advisable to carry out the work with a minimum interior section of 0.60 x 0.60

x 0.70m, it will be made of reinforced concrete f'c = 210 kg / cm2. The

construction of the reservoir is being planned, located in the progressive 0 + 440

of the Conduction Line, on conglomerate land at 1565.00 meters above sea level

with 5.00 m3 capacity. It will be designed with the Maximum Hourly Flow, with

an admissible diameter of 1 "and 3/4" for the branches. The minimum pressure

must not be less than 5 m.c.a. and the static pressure should not exceed 60m.c.a.

Finally, it is concluded that this research constitutes a great contribution to the

population of the Alto Mayo - Pampa Hermosa Population Center.

Keywords: Drinking water, Design, population.

VIII

6. Contenido

				Pag.
1.	Títı	ulo de l	la Tesis	ii
2.	Equ	uipo de	e trabajo	iii
3.	Fir	ma del	jurado y asesor	iv
4.	Hoj	ja de aş	gradecimiento y/o dedicatoria	v
	4.1.	Agrad	lecimiento	v
	4.2.	Dedice	atoria	vi
5.	Res	sumen y	y Abstract	vii
	5.1.	Resum	ıen	vii
	5.2.	Abstra	act	viii
6.	Coı	ntenido	O	ix
7.	Índ	lice de l	Figuras, Tablas y Anexos	xii
	7.1.	Índice	e de Figuras	xii
	7.2.	Índice	e de tablas	xiii
	7.3.	Índice	e de anexos	xiv
I.	Int	roducci	ión	1
II.	. Rev	visión I	Literaria	3
	2.1	Antece	edentes	3
		2.1.1	Antecedentes Internacionales	3
		2.1.2	Antecedentes Nacionales	7
		2.1.3	Antecedentes Locales	11
	2.2	Bases	Teóricas	15
		2.2.1	Sistema de abastecimiento de agua	15
		2.2.1.1	1 Cámara de Captación	17

	2.2.1.2	Línea de Conducción	•••••	. 25
		2.2.1.3	Reservorio	o 2 9
	2.2.1.4	Línea de Aducción		. 37
	2.2.1.5	Red de Distribución		. 40
III. Hi	pótesis		••••••	. 43
IV. Me	etodolo	gía	••••••	. 44
4.1	Tipo d	le investigación		. 44
4.2	Nivel	de la investigación de la tesis		. 44
4.3	Diseño	o de investigación		. 44
4.4	El uni	verso y muestra		. 45
4.5	Defini	ción y Operacionalización de variables e indicadores		. 46
4.6	Técnic	eas e Instrumentos de recolección de datos		. 48
		4.6.1	Técnica	48
	4.6.2	Instrumento		. 48
4.7	Plan d	e análisis		. 48
4.8	Matriz	de consistencia		. 50
4.9	Princip	pios éticos		. 52
1.1.1.	Ética	en la recolección de datos	•••••	. 52
1.1.2.	Ética	al principio de la evaluación	•••••	. 52
1.1.3.	Ética	con los resultados	•••••	. 52
v.	Res	sultados		. 53
	5.1.1	Sistema de abastecimiento de agua potable		. 53
	5.1.2	Cámara de captación		. 54
	5.1.3	Línea de conducción		. 55

	5.1.5	Línea de aducción	56
	5.1.6	Red de distribución	57
5.2	Anális	sis de Resultados	57
	5.2.1	Sistema de abastecimiento de agua potable	57
	5.2.2	Cámara de Captación	58
	5.2.3	Línea de conducción	58
		5.2.	4 Reservorio 58
	5.2.5	Línea de Aducción	59
	5.2.6	Red de distribución	59
VI. Co	nclusio	ones	60
Refere	encias l	Bibliográficas	63
Anevo	ı c		67

7. Índice de Figuras, Tablas y Anexos

7.1. Índice de Figuras

Figura 1: Grafico del Sistema de agua potable por gravedad sin tratamiento	15
Figura 2: Captación.	16
Figura 3. Datos de diseño estructural	19
Figura 4. Ancho de Pantalla	22
Figura 5. Cálculo de cámara húmeda	23
Figura 10: Medicas de canastilla	23
Figura 10: Línea gradiente hidráulica de línea de conducción	26
Figura 10: Válvula de Purga	28
Figura 10: Reservorio	30
Figura 10: Válvula de control	43
Figura 12: Resultados del Algoritmo de Selección	53

7.2. Índice de tablas

Tabla 1: Dotación de agua	17
Tabla 2: Criterios de Estandarización de Componentes Hidráulicos	17
Tabla 3. Límites máximos permisibles (LMP) referenciales de los parámetros de	
agua potable	25
Tabla 4: Clase de tubería y presión de trabajo	26
Tabla 6. Cuadro de definición y operacionalización de las variables	. 46
Tabla 7. Matriz de Consistencia	50
Tabla 8: Diseño Hidráulico – Captación	. 54
Tabla 9: Diseño Estructural – Captación	. 54
Tabla 10: Resultados de línea de conducción	55
Tabla 11: Resultados del Diseño Hidráulico - Reservorio	55
Tabla 12: Diseño Estructural - Reservorio	56
Tabla 13: Resultados de línea de aducción	. 56
Table 13. Pasultados de línes de aducción	57

7.3. Índice de anexos

Anexo 1. Carta de Autorización del proyecto de investigación	67
Anexo 2. Solicitud de autorización de proyecto de investigación	68
Anexo 3. Protocolo de consentimiento informado	69
Anexo 4. Encuestas	70
Anexo 5: Diseño de Población Futura	74
Anexo 6: Resultados del estudio de Suelos	75
Anexo 7: Resultados del análisis de agua	85
Anexo 8: Fotos de evidencia	86
Anexo 9: Aforo de la fuente	99
Anexo 10: Diseño de la tasa de crecimiento	100
Anexo 11: Dotación	101
Anexo 12: Diseño de volumen de Reservorio	102
Anexo 13: Diseño Hidráulico – Captación	103
Anexo 14: Diseño Hidráulico – Línea de conducción	106
Anexo 15: Diseño Hidráulico – Línea de Aducción	107
Anexo 16: Diseño Hidráulico – Línea de Aducción	111
Anexo 17: Diseño Hidráulico – Red de distribución	112
Anexo 18: Diseño Hidráulico – Red de distribución	113

I. Introducción

La población de Pampa Hermosa alcanzaba los 7.508 hab, la población joven de 15 a 29 años de edad, es la que más predomina; seguido de la población infantil y adolescente (5 a 14 años de edad) y la población adulta (30 a 59 años de edad). En menores porcentajes están las poblaciones entre 0 a 4 años, y la población de 60 años a más. Existe a su vez una mayor proporción de habitantes en la zona rural, ya que alcanza el 93,21 % de la población, asimismo la población masculina es del 54,52 % lo que muestra un desbalance para con las mujeres muy marcado zonas ubicadas entre los 1000 a 4000 msnm. Las precipitaciones varían entre 638.2 y 750 mm; las mayores precipitaciones se dan en los meses de enero a marzo. No cuenta con En general el área de estudio; presenta un clima sub-húmedo y frío el cual corresponde a estaciones meteorológicas en el lugar, y las más cercana está ubicada en el distrito de Satipo. Desde el punto de vista de su aprovechamiento para las actividades agropecuarias, el clima presenta un grado favorable, con limitaciones de tipo hídrico y térmico. El crecimiento poblacional hace que los habitantes necesiten de los servicios básicos y uno de ellos es El centro poblado Alto Mayo que se ubica en la Provincia de Satipo del Distrito de Pampa Hermosa, se pudo constatar que las familias habitan en viviendas rústicas (de madera en su gran mayoría) que se encuentran dispersas al ser una zona rural, con poco apoyo de las autoridades para el desarrollo de la población presentan problemas de salud de tipo gastrointestinales, siendo el agua el elemento vital y esencial para la existencia del ser vivo. Por lo mencionado resalta la necesidad de utilizar el recurso hídrico. Que básicamente se requieren en las zonas rurales como también las urbanas. En esta tesis el planteamiento del problema ¿cuál es el diseño del sistema de abastecimiento de agua potable en el Centro Poblado de Alto Mayo? Distrito de Pampa Hermosa,

Provincia de Satipo, Departamento de Junín 2020. El objetivo general de este proyecto es: Plantear un diseño para mejorar el sistema de abastecimiento de agua potable para el centro poblado de alto mayo año 2020 y los objetivos específicos fueron: Diseñar la captación del sistema de abastecimiento de agua potable en el centro poblado de Alto Mayo. Determinar las dimensiones de la línea de conducción del sistema de abastecimiento de agua potable en el centro poblado de Alto Mayo. Diseñar el reservorio del sistema de abastecimiento de agua potable en el centro poblado Alto Mayo 2020. Determinar las dimensiones de las redes de distribución del sistema de agua potable del centro poblado Alto Mayo 2020. La investigación se justifica con beneficiar de forma general a todos los pobladores del centro poblado Alto Mayo del distrito de Pampa Hermosa, con la instalación de la red de agua potable. En conclusión, el diseño hidráulico aportara a que los pobladores del centro poblado Alto Mayo tengan la distribución de agua potable de calidad y cantidad óptima para su consumo. La metodología utilizada en la investigación es de nivel Descriptivo, ya que describe la realidad sin ningún tipo de alteración y busca toda la información in situ, es de tipo Cualitativo, porque se realizó análisis en base a la naturaleza de la investigación, es no experimental, porque no se hizo utilización de laboratorio para hacer el estudio del problema Universo y Muestra, El universo es el sistema de abastecimiento de la provincia de Satipo. Muestra, el sistema de abastecimiento de agua potable del centro poblado Alto Mayo, distrito de Pampa Hermosa 2020. Para realizar la identificación de familias que fueron beneficiadas con el proyecto de sistema de abastecimiento de agua potable del centro poblado Alto Mayo, se realizó una verificación de vivienda escribiéndolo en una relación de usuarios, y la topografía en todo el terreno para poder determinar la línea de distribución y pendiente.

II. Revisión Literaria

2.1 Antecedentes

2.1.1 Antecedentes Internacionales

En Ecuador, Contero (1) el 2016, en su tesis de investigación, titulada "Diseño de Captación y Conducción de agua de Riego para doce comunidades de la Parroquia Pungala", la investigación fue realizada en la Pontificia Universidad Católica del Ecuador. Cuyo objetivo de investigación fue: Diseñar un sistema de riego, mediante estructura de captación y conducción con el fin de dotar de agua a doce comunidades de la parroquia rural Pungala del cantón Riobamba, Provincia de Chimborazo; que optimice el uso del agua, principalmente en los periodos de ausencia de lluvias, aplicando los principios fundamentales del diseño hidráulico, considerando abastecer a 632 hectáreas de cultivos, incrementar la productividad agrícola y los ingresos económicos para fomentar el desarrollo del sector. La metodología de la presente investigación se ha, marco teórico, descripción del proyecto, diseño de estructuras, identificación y definición de impactos ambientales y presupuestos, análisis de precios unitarios. Donde la **conclusión** fue, el presente trabajo alcanzó su objetivo propuesto, que consistía en diseñar un sistema de riego para dotar de agua a doce comunidades de la parroquia rural Pungala del cantón Riobamba, Provincia de Chimborazo. Los usuarios de estas comunidades están en capacidad de solicitar a las instituciones pertinentes fondos para la construcción del proyecto.

En Guatemala, Eduardo (2) el 2016, en la tesis titulada: "Diseño del tanque de abastecimiento y red de distribución de agua potable para la zona 2 de Zaragoza y diseño del tanque de abastecimiento y red de distribución de agua potable para el Caserío Rincón Chiquito, Zaragoza, Chimaltenango", para conferírsele el título de ingeniería civil, sustento en la Universidad de San Carlos de Guatemala. El **objetivo** de la investigación fue, realizar el diseño de un tanque de abastecimiento y una red de distribución de agua potable en zonas y caseríos. La metodología aplicada en la investigación está compuesta por el diagnóstico de las características socioeconómicas y el diseño para el tanque de abastecimiento como también la red de distribución del a comunidad beneficiaria. Donde la conclusión fue, Para el diseño de ambos proyectos se desarrolló una investigación con el fin de diagnosticar las necesidades inmediatas, donde se recabo información de las mismas tanto en el área del caserío Rincón Chiquito y la 2 del municipio de zaragoza para establecer los proyectos que mejoraran su calidad de vida.

En Guatemala, Adrián (3) el 2015, en la tesis titulada: "Diseño del sistema de abastecimiento de agua potable por gravedad para la aldea el soyate, san antonio la paz, el progreso", para conferírsele el título de ingeniería civil, sustento en la Universidad de San Carlos de Guatemala. El objetivo de la investigación fue, realizar el diseño del sistema de agua potable para las comunidades beneficiarias. La metodología para la investigación está integrada por el diseño del sistema, captación y el cálculo hidráulico todo para el beneficio de la

población. Donde la **conclusión** fue, si se considera su ejecución se podrá mejorar el saneamiento de la comunidad como también la higiene de los pobladores. La fuente cuenta con un caudal de 0.82 litros, el cual ubre la demanda de la aldea por un periodo de 21 años. Se considera para la red de distribución ramales abierto por la población dispersa que se encuentra. La población beneficiara tiene un total de 159 personas, se consideró un periodo de diseño de 21 años, el cual aproximadamente beneficiara a 212 personas a futuro.

En **Ecuador**, Cueva (4) el 2012, en su tesis de investigación, titulada "cálculo y diseño del sistema de alcantarillado y agua potable para la lotización finca municipal, en el cantón el chaco, provincia de napo", la investigación fue realizada en la Escuela Politécnica el Ejercito. Cuyo objetivo de investigación es: "Realizar el cálculo y diseño de la red de alcantarillado y agua potable del cantón EL Chaco para la lotización FINCA MUNICIPAL MARCIAL OÑA de esta forma aportaremos al desarrollo de esta pequeña ciudad". La metodología esta compuesta por las bases de diseño, cálculos y diseño, tratamiento de aguas residuales, impacto ambiental, presupuesto y cronogramas y análisis económico financiero. Donde la **conclusión** fue: El proyecto de tesis desarrollado es un proyecto de utilidad para la comunidad, de la aplicación de los resultados de la misma se verán beneficiadas en el lapso de 1 año alrededor de 160 familias de escasos recursos, y en 25 años de mantenerse la tendencia de crecimiento actual este número casi se habrá duplicado hasta llegar a un total de 310 familias ósea que en las condiciones de vivienda existentes estamos hablado de 1550

personas que contarán con servicio de agua potable y alcantarillado, por esta razón concluimos que esta tesis es una herramienta importante de vinculación de la Escuela Politécnica del Ejército por medio de la carrera de ingeniería civil con la comunidad.

En Ecuador, cueva (5) el 2018, en su tesis de investigación, titulada "Gestión comunitaria de los servicios de agua potable y saneamiento en la parroquia Eloy Alfaro del cantón Chone, provincia de Manabí", la investigación fue realizada en la Pontificia Universidad Católica del Ecuador. Cuyo **objetivo** de investigación es: Explorar las posibilidades de gestión comunitaria de agua potable y saneamiento en la parroquia Eloy Alfaro, del cantón Chone, provincia de Manabí. La metodología está compuesta por la selección de métodos para el estudio de campo, diseño y preparación del estudio de campo, ejecución del estudio de campo, sistematización, tabulación y análisis de resultados, la conclusión fue: "Son varias las alternativas que se intentaron ejecutar en la parroquia Eloy Alfaro con respecto a la dotación del sistema de distribución de agua potable y saneamiento, sin embargo, la falta de recursos y el abandono del sistema central ha ocasionado que la problemática y los escases del servicio continúe por años, incrementando la falta de atención, enfermedades y la migración de sus habitantes a las zonas urbanas en busca de mejores condiciones de habitabilidad.

2.1.2 Antecedentes Nacionales

En **Lima**, Alhelí (6) el 2018, en su tesis de investigación, titulada "Diseño de abastecimiento de agua y alcantarillado mediante sistema condominial para mejoramiento de calidad de vida, Asociación Las Vegas Carabayllo, Lima, 2018", la investigación fue realizada en la Universidad Cesar Vallejo. Cuyo objetivo de investigación es: "Determinar cómo el diseño de abastecimiento de agua y alcantarillado mediante el sistema condominial mejorara la calidad de vida de la asociación "Las Vegas" Carabayllo - Lima". La metodología de la investigación es de tipo cualitativo, no experimental y aplicativo, quienes se encargan de describir situaciones y eventos. Donde la conclusión fue: Se concluye determinado que mediante los estudios de población y demanda en la Asociación las Vegas, la población inicial de 1632 habitantes que fue diseñada en un periodo óptimo de 20 años dependerá de una tasa una tasa de crecimiento que depende directamente de las condiciones demográficas de la zona al no tener una fuente censal que registre la variabilidad de la misma; a su vez el diseño condominio dependerá de la demanda de la población actual y futura capaz de satisfacer adecuadamente los servicios de agua y desagüe y mejorando así la calidad de vida de la población a largo plazo. Se ha determinado que para el Sistema de Agua Potable en la Asociación las Vegas se necesitara de un sistema de bombeo eficiente abastecido cada 8 horas por medio de una línea de conducción y un reservorio de 136m3 operativo que servirá como volumen de abastecimiento principal de nuestra red a lo largo de su periodo de vida (20 años) con una Línea de

Aducción que fue diseñada en base al caudal máximo horario de 11.38 lt/seg,y que está constituida por un conjunto de tuberías de 1.5" y accesorios conduciendo un caudal inicial de 6.32 m3 que se distribuirá por cada tramo de tubería para obtener la menor perdida de carga a través de ellas.

En Ancash, Marcelo et all (7) el 2020, en su tesis de investigación, titulada "Diseño del sistema de agua potable y alcantarillado en el sector Nuevo San Carlos, distrito Laredo, provincia Trujillo – La Libertad", la investigación fue realizada en la Universidad Cesar Vallejo. Cuyo objetivo de investigación es: diseño del sistema de abastecimiento de agua potable y alcantarillado en el Caserío Anta, Moro – Ancash 2017. La metodología es no experimental descriptiva. Donde la **conclusión** fue: Se concluye para la Línea de Conducción, se obtuvo un total 330.45 m de tubería rígida PVC CLASE 7.5 con diámetro de 3/4" para toda la línea. Se definió un reservorio cuadro de 7 m3 para el Caserío Anta. Para la línea de Aducción y Distribución se obtuvo un total 2114.9 m de tubería rígida PVC CLASE 7.5 con diámetro de 1" para toda la línea. Se diseñará 5 cámaras rompe presión de 0.60 por 0.60 m y 1m de altura. Se realizó el diseño de abastecimiento de agua potable para 204 habitantes donde la demanda para este proyecto es 100 lt/hab/día, con aportes en época de estiaje es de 0.84 lt/seg. Por consiguiente, el Caudal máximo diario es 0.37 lt/seg caudal necesario para el diseño de la captación, Línea de conducción y Reservorio. El consumo máximo horario es de 0.57 lt/seg.

En **Chimbote**, Alexey (8) el 2018, en su tesis de investigación, titulada "Diseño del sistema de agua potable del sector nueva santa rosa, Distrito - Provincia de Bagua, Amazonas - 2018", la investigación fue realizada en la Universidad Cesar Vallejo. Cuyo objetivo de investigación es: Elaborar la propuesta de diseño del sistema de agua potable y alcantarillado para el AA. HH los constructores distrito nuevo chimbote-2017. La metodología es un diseño no experimental, de tipo descriptiva. Donde la conclusión fue: "Los diámetros de la tubería en el diseño Sistema de Abastecimiento de agua potable para el Asentamiento Humano Los Constructores son diámetros comerciales de 90mm,110mm,160mm,200mm tomándose en cuenta el diámetro mínimo de 70mm como parámetro que establece la Norma OS.050." (9). "Las presiones en el diseño del sistema de abastecimiento de agua potable para el Asentamiento Humano los Constructores se ha optado por lo establecido del Reglamento Nacional de Edificaciones en la Norma OS-050 sobre las presiones tienen que estar entre el rango de 10 a 50 m.c.a obteniendo como presión mínima 15.16mca y presión máxima 39.55 mca las cuales cumplen con la normativa."

En **Piura**, Erick (9) el 2018, en su tesis de investigación, titulada "Diseño del sistema de agua potable y eliminación de excretas en el sector Chiqueros, distrito Suyo, provincia Ayabaca, región Piura", la investigación fue realizada en la universidad nacional de Piura. Cuyo **objetivo** de la investigación es: Realizar el cálculo y diseño del sistema

de agua potable y eliminación de excretas, del caserío Chiqueros en el distrito de Suyo, provincia de Ayabaca, región Piura, tomando como parámetros los establecidos en la normatividad de nuestro país y contribuir con ello al desarrollo de la localidad rural. La metodología propuesta permite diseñar sistemas de distribución que cuenten con una fuente segura y sustentable, además minimizar los costos de operación y mantenimiento durante la vida útil del proyecto y ser técnicamente viable. Donde la conclusión fue: El diseño realizado del sistema de agua potable y eliminación de excretas cumple con los parámetros y normas vigentes presentes y consideradas en nuestro país, para la elaboración de proyectos de saneamiento en el ámbito rural. El desarrollo y ejecución de este proyecto mejorará en gran manera las condiciones de vida de los pobladores de la localidad de chiqueros, garantizando con ello un gran impulso hacia el desarrollo.

En San Martin, Jorge (10) el 2018, en su tesis de investigación, titulada "Diseño del sistema de agua potable de las comunidades de Nuevas Flores, Dos de Mayo, San Ignacio y San Andrés, distrito de San Pablo, provincia de Bellavista, región San Martín", la investigación fue realizada en la Universidad Nacional de San Martin. Cuyo objetivo de la investigación es: Realizar el diseño del sistema de Agua Potable de las Comunidades de Dos de Mayo, Nuevas Flores, San Ignacio y San Andrés el distrito del San Pablo de acuerdo Norma técnica de diseño para sistemas de saneamiento en el ámbito rural, del año 2018. La metodología es no experimental, con un nivel explicativo. Donde la conclusión fue: Para la línea de conducción de la localidad de San

Andrés se utilizó una tubería de 1.5" tiene una longitud de 87.57 m de y para las tres localidades se utilizó de 2.5" y 3" el cual tiene una longitud de 2190.88 m, en ambos casos se utilizó tubería de clase 7.5 con lo cual se asegura la vida útil del sistema de agua potable. Para la línea de aducción y la red distribución se utilizaron tubería PVC clase 7.5, la longitud total en sistema de San Andrés es 1529.72 m y para las tres localidades 7334.26 m; en ambos sistemas cumple con las presiones lo cual está comprendido en la norma de opciones tecnológicas para sistemas de abastecimiento de agua para consumo humano del Misterio de vivienda, construcción y saneamiento; con ello se asegura la salida del agua a los domicilios de la población beneficiada.

2.1.3 Antecedentes Locales

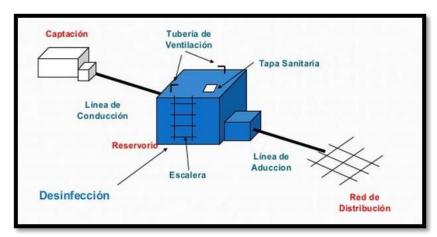
En Campiña Zona Alta, Jorge (13) el 2019, en su tesis de investigación, titulada "Diseño del sistema de abastecimiento de agua potable en el centro poblado la campiña zona alta, 2019", la investigación fue realizada en la Universidad Católica Los Ángeles de Chimbote. Cuyo objetivo de la investigación es: Diseñar el sistema de abastecimiento de agua potable en el Centro Poblado de La Campiña, Zona Alta. La metodología del trabajo será de tipo aplicada y enfoque cuantitativo, de nivel exploratorio y descriptivo, de diseño no experimental de corte transversal. Donde la conclusión fue: el diseño que se realizó para realizar la tesis se tuvo unos estudios de topografía en todo el terreno del proyecto que nos permite ver las cotas y pendientes del mismo, así mismo se realizó estudio de suelos para

analizar los diferentes estratos del terreno del proyecto de la tesis, en la cual se determinó que no se encontró nivel freático a 2.00m de profundidad. Se realizó el estudio Límites Máximos Permisibles Calidad Físico Químico – Bacteriológico.

En Samañaro, Clever (12) el 2019, en su tesis de investigación, titulada "Diseño del sistema de abastecimiento de agua potable del centro poblado de samañaro - 2019". La investigación fue realizada en la Universidad Católica Los Ángeles de Chimbote. Cuyo objetivo de la investigación es: Diseñar el sistema de abastecimiento de agua potable del centro poblado de Samañaro. La metodología de investigación utilizada fue de tipo aplicada con enfoque cuantitativo de nivel exploratorio-descriptivo de corte transversal. Donde la **conclusión** fue: Se calculó los parámetros del diseño de los elementos hidráulicos se consideró una población actual de 120 habitantes, proyectados a 20 años con una tasa de crecimiento de 2.38%, con una población futura de 181 habitantes el cual ha sido calculado con un promedio de 5 métodos probabilísticos, llegando a obtener demanda de agua un Qp de 0.29 l/s,QMD de 0.38 l/s,QMH de 0.58 l/s una captación de tipo ladera con un caudal de diseño de 0.38 l/s, derivando a una línea de conducción de 541.61m con tubería PVC de 1 " C-10.con una velocidad de 0.6 m/s, Un reservorio de 10 m3 con 02 líneas de aducción con un caudal de diseño de 0.58 l/s con una velocidad de 0.85 l/s con una longitud 1,273.46 ml y la red de distribución se utilizó el sistema ramificado o abierto para llegar a las 43 viviendas ya q estas están dispersas.

En Alto Tsomontonari, Nelson (15) el 2019, en su tesis de investigación, titulada "Propuesta de diseño del sistema de agua potable en la CC.NN. Alto Tsomontonari, distrito de Rio Negro, 2019". La investigación fue realizada en la Universidad Católica Los Ángeles de Chimbote. Cuyo **objetivo** de la investigación es: Proponer el Diseño adecuado del sistema de abastecimiento de agua potable para la CC.NN Alto Tsomontonari, Rio Negro, Satipo, Junín, 2019. La **metodología** empleada en la investigación fue de tipo aplicada, de nivel descriptivo y exploratorio, no experimental y de corte transversal. Donde la conclusión fue: Se diseñó de todo el sistema de abastecimiento en la comunidad nativa alto tsomontonari de acuerdo a las normas establecidas según la RM Nº 192-2018 y el libro de Roger Agüero Pittman. Se diseñó los elementos estructurales del reservorio con aceros de 3/8 @ 0.15 m para la pared vertical, 3/8 @ 0.15 m para la pared horizontal, 3/8 @ 0.15 m para la losa de cubierta y 3/8 @ 0.15 m para la losa de fondo.

En **Pumpunya**, Alexis (14) el 2019, en su tesis de investigación, titulada "Propuesta de diseño del sistema de agua potable en el anexo de Pumpunya - 2019". La investigación fue realizada en la Universidad Católica Los Ángeles de Chimbote. Cuyo **objetivo** de la investigación es: Diseñar el sistema de agua potable en el Anexo de Pumpumya. La **metodología** de investigación utilizada fue de tipo aplicada con un diseño no experimental y de corte transversal. Donde la **conclusión** fue: Se diseñó los elementos hidráulicos del sistema de abastecimiento de agua potable del anexo de Pumpunya, como se detalla a continuación:


Captación con un diámetro de tubería de 2 pulg., Línea de conducción; que parte desde la captación hasta el reservorio con una longitud de 157 m y con un diámetro de tubería de 1" pulgada Clase 7 PVC. Línea de aducción con diámetro de tubería 1 pulgada clase 7 PVC; Red de distribución; con una longitud de 2763.30 ml y con diámetro de tubería de 34" pulg.

En **Teruriari**, Ruelyan (11) el 2019, en su tesis de investigación, titulada "*Propuesta de diseño del sistema de agua potable en el centro poblado teruriari, 2019*". La investigación fue realizada en la Universidad Católica Los Ángeles de Chimbote. Cuyo **objetivo** de la investigación es: proponer el diseño adecuado del sistema de agua potable del centro poblado Teruriari. La **metodología** empleada en la investigación es de tipo aplicada, es de nivel exploratorio y descriptivo, es no experimental, descriptivo simple. Donde la **conclusión** fue: Se diseñó los elementos hidráulicos del sistema de abastecimiento de la captación de 2 pulg. La línea de conducción con una longitud de 634.15m con un diámetro de tubería 1", la línea de aducción con 450m con un diámetro de tubería 1" pulg. La red de repartición con una long. de 29.48ml con un diámetro de tubería ¾ la otra red de distribución con una longitud de 638.82 ml con un diámetro de tubería de tubería de 11/2 pulg.

2.2 Bases Teóricas

2.2.1 Sistema de abastecimiento de agua

Es el conjunto de elementos hidráulicos y estructurales impulsadas por procesos, desde la captación, conducción, reservorio, aducción, distribución, hasta el suministro del agua (conexión domiciliaria) (16).

Figura 1: Grafico del Sistema de agua potable por gravedad sin tratamiento **Fuente:** Extraído del PNSR (16).

Diseño

El proyecto es el producto final de los medios, y su propósito es encontrar una respuesta adecuada a una posible incertidumbre, pero debe tener en cuenta la posibilidad de efectividad y al mismo tiempo estar lleno de movimiento para la creación. Para poder ejecutar proyectos destacados, se debe utilizar una variedad de procesos y métodos para que puedas expresar las metas que deseas lograr en forma de diagramas, gráficos, planos o bocetos para lograr el propósito de aumentar la productividad, y resumir de esta manera los más competentes (16).

Figura 2: Captación.

Fuente: Extraído del PNSR (16)

Abastecimiento

Consiste sustituir las faltas de carencias de los pobladores de ciertos productos básicos o artículos comerciales de manera oportuna dentro de un período de tiempo apropiado (16).

❖ Tipo de Fuente

En cuanto su presentación en la naturaleza, pueden ser fuentes superficiales (ríos, lagos) o subterráneas (acuíferos). Por lo general deben ser permanentes y suficientes, cuando no son suficientes se busca la combinación de otras fuentes de abastecimiento para suplir la demanda o es necesario su regulación. Para esta tesis utilizamos la fuente de tipo subterránea (manantiales de ladera) (16).

Dotación

Cantidad de agua que serán consumidas por las familias en l/hab./día de acuerdo con la estructura elegida para la eliminación sanitaria de la secreción, que es la siguiente que se puede estimar en la tabla N.º 1.

Tabla 1: Dotación de agua

Región	Dotación (l/hab./día)	
Costo	90	
Sierra	80	
Selva	100	

Fuente: RM-192-2018 Vivienda. (17)

a) Variaciones de consumo

Se emplearán las fórmulas siguientes para hallar el caudal promedio (Qp), caudal máximo diario (Qmd), caudal máximo horario (Qmh) (17).

Consumo promedio (Qp)

$$Qp = \frac{Dotacion\ x\ Pobacion\ Futura}{86400}$$

Consumo máximo diario (Qmd)

Qmd = 1.3 x caudal promedio

Consumo máximo horario (Qmh)

Qmh = 2 x caudal promedio

Criterio de Estandarización de componentes Hidráulicos

Tabla 2: Criterios de Estandarización de Componentes Hidráulicos

ITEM	COMPONENTE HIDRÁULICO	CRITERIO PRINCIPAL	CRITERIOS SECUNDARIOS	DESCRIPCIÓN
1	Barraje Fijo sin canal de derivación			Para un caudal
2	Barraje Fijo con canal de derivación	Qmd (1/s) =		máximo diario Qmd menor o
3	Balsa Flotante	(menor a 0.50)	Dablasi (n. Eissal sa	igual a 0.50 l/s, se diseña con 0.50
4	Caisson	o (> 0.50 -	Población Final y	
5	Manantial de Ladera	1.00) o (> 1.00 - 1.50)	dotación	l/s, para un Qmd mayor 1.00 l/s, se
6	Manantial de Fondo			diseña con 1.00 l/s y así
7	Galerías Filtrantes		-	sucesivamente

Fuente: RM-192-2018 Vivienda (17).

2.2.1.1 Cámara de Captación

Cuando la fuente de aguas es un manantial de ladera y concentrado, la captación constara de tres partes: la primera,

corresponde a la protección del afloramiento; la segunda, a una cámara húmeda que sirve para regular el gasto a utilizarse; y tercera, a una cámara seca sirve para proteger la válvula de control (18).

Aforo de la fuente

Para el aforo de la fuente existen varios métodos para su medición, el aforo define la cantidad de agua que pasa por el entorno ya sea agua subterránea, ríos, etc, un método conocido para el aforo de agua subterráneas o ojos de aguas que se encuentran en laderas, se denomina "método volumétrico", el cual consta medir el tiempo de llenado del volumen conocido, el cual es un recipiente o balde (18).

Métodos de Aforo

Por ser manantial de ladera, se utilizó el método volumétrico. Método volumétrico: Se usa para flujos muy pequeños y se requiere un contenedor para recoger agua. El caudal se resuelve dividiendo el volumen de agua que se recogió en el recipiente con el tiempo que lleva recoger ese volumen.

$$Q = \frac{volumen}{Tiempo}$$

Diseño Estructural

El comportamiento del agua también es impórtate en el diseño, se debe de considerar el estudio de suelos (17).

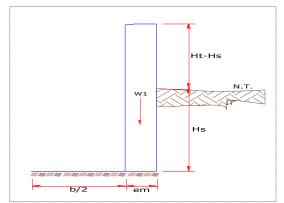


Figura 3. Datos de diseño estructural.

Fuente: según MVCS (17).

Para el cálculo sobre el empuje del suelo hacia el muro se considera la siguiente ecuación (17).

$$C_{ah} = \frac{1 - \sin \emptyset}{1 + \sin \emptyset}$$

Para el cálculo del momento de vuelco (Mo)(17).

$$P = \frac{C_{ah} * \gamma_S * (H_S + e_b)^2}{2}$$

Momento de vuelco (Mo) y Momento de Estabilización y Peso (17).

$$Y = (\frac{Hs}{3})$$

$$M_o = P * Y$$

Para el momento de estabilización (Mr) y el peso W(17).

$$M_r = W.X$$

$$W_1 = em. Ht. \gamma c$$

$$X1 = (\frac{b}{2} + \frac{em}{2})$$

$$Mr1 = W1.X1$$

Para verificar si el momento resultante pasa por el tercio central se aplica la siguiente fórmula (17).

$$a = \frac{M_r + M_0}{W}$$

Chequeo por volteo, para la verificación por volteo (17).

$$C_{dv} = \frac{M_r}{M_0}$$

Chequeo por deslizamiento, Para la verificación del por deslizamiento se debe de aplicar la siguiente ecuación (17).

$$D_{dd} = \frac{F}{P}$$

$$F = u . W$$

Chequeo para la máxima carga unitaria, el mayor valor que resulte de los P1 debe ser menor o igual a la capacidad de carga del terreno (17).

$$L = \frac{b}{2} + em$$

$$P_1 = (4L - 6a) \frac{W}{L^2}$$

$$P_1 = (6a - 2L) \frac{W}{L^2}$$

$$P \le \sigma_t$$

Diseño Hidráulico

Para poder hacer el dimensionamiento de la captación se tiene que saber el caudal máximo de la fuente de agua que aflora a la superficie, de esa manera se podrá saber el diámetro de los ojales de ingreso a la cámara que se encuentra húmeda. Podemos trazar la distancia entre la cámara y el afloramiento, el espacio de la pantalla, el área de orificio (ojal) y la altura de la cámara húmeda se sugiere o recomienda que la velocidad de entrada de agua sea <= 0.6 m/s (17).

Determinación del ancho de la pantalla de la captación (17).

$$A = \frac{Q_{max}}{V_2 \times Cd}$$

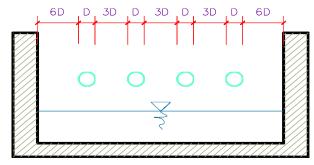
El cálculo velocidad de paso (17).

$$V_{2t} = Cd \ x \sqrt{2gH}$$

Se debe de considerar también la siguiente expresión (17).

$$D_C = \sqrt{\frac{4A}{\pi}}$$

Para la determinación de los orificios en la pantalla tenemos la siguiente ecuación (17).


$$N^{\circ}$$
 orif. = $\frac{Area\ del\ diametro\ calculado}{Area\ del\ diametro\ asumido} + 1$

$$N^{\circ}$$
 orif. = $\left(\frac{D_c}{D_a}\right)^2 + 1$

Calcular el ancho de pantalla, mediante la siguiente ecuación (17).

$$b = 2(6D) + N^{\circ} \ orif. \ x \ D + 3D \ (N^{\circ} \ orif. -1)$$

Donde, b es el ancho de pantalla el cual se va a calcular por medio de la ecuación (17).

Figura 4. Ancho de Pantalla **Fuente:** según MVCS (17).

Cálculo de la distancia entre el punto de afloramiento la cámara de húmeda (17).

$$Hf = H - h_0$$

Determinación de la distancia entre el aforamiento de la captación (17).

$$L = \frac{Hf}{0.30}$$

Cálculo de la altura de la cámara húmeda de la captación (17).

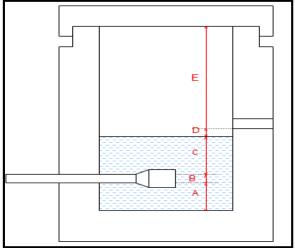


Figura 5. Cálculo de cámara húmeda. Fuente: según MVCS (17).

$$Ht = A + B + H + D + E$$

Para el cálculo de C que es la altura de agua se debes de aplicar la siguiente expresión (17).

$$C = 1.56 \frac{V^2}{2g} = 1.56 \frac{Qmd^2}{2gA^2}$$

Para el cálculo del diámetro de la canastilla se debe de calcular (17).

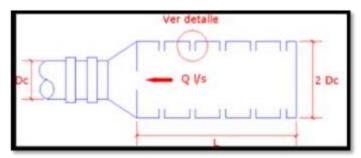


Figura 6: Medicas de canastilla Fuente: RM-192-2018 Vivienda.(17)

$$D_{canastilla} = 2 \times Da$$

El cálculo de longitud de canastilla, se recomienda que la longitud de la canastilla sea mayor a 3Da y menor que 6Da (17).

$$L = 3 pulgadas x 1.0$$

$$L = 6 pulgadas x 1.0$$

Se recomienda para el ancho de la ranura una medida de 5mm y para el largo de la ranura una medida de 7mm (17).

$$Ar\left(m2\right) = \frac{AR \times LR}{1000000}$$

El cálculo del área total debemos de considerar la siguiente ecuación (17).

$$A_{Total} = 2A_*$$

$$A_g = 0.5 \times D_g \times L$$

$$A_{Total} < A_g$$

El cálculo de números de ranuras se debe de considerar la siguiente ecuación (17).

$$N^{\circ}$$
 ranuras = $\frac{Area\ total\ de\ ranura}{Area\ de\ ranura}$

La tubería de rebose y limpia tienen el mismo diámetro y se calculan mediante la siguiente ecuación (17).

$$Dr = \frac{0.71 \ x \ Qmax^{0.38}}{hf^{0.21}}$$

Calidad de Agua

Es aquella que cuando es consumida no represente peligro hacia la salud, entonces no debe contener sustancias

o microorganismos que puedan causar enfermedades. Se considera agua potable cuando este cumple con ciertos parámetros en su composición (19).

Tabla 3. Límites máximos permisibles (LMP) referenciales de los parámetros de agua potable.

PARAMETRO	LMP	Referencia
Coliformes totales, UFC/100 mL	0 (msencia)	(1)
Coliformes termotolerantes, UFC/100 mL	0 (msencia)	(1)
Bacterias heterotróficas, UFC mil.	500	(1)
pH	6.5 - 8.5	(1)
Turbiedad, UNT	5	(1)
Conductividad, 25°C uS/cm	1500	(3)
Color, UCV - Pt-Co	20	(2)
Cloruros, mg/L	250	(2)
Sulfatos, mg/L	250	(2)
Dureza, mg/L	500	(3)
Nitratos, rag NO ₃ /L (*)	50	(1)
Hierro, mg/L	0,3	0.3 (Fe + Min = 0.5) (2)
Manganeso, mg/L	0,2	0.2 (Fe + Mm = 0.5) (2)
Aluminio, mg/L	0.2	(1)
Cobre, mg/L	3	(2)
Plomo, mg/L (*)	0.1	(2)
Cadmio, mg/L (*)	0,003	(1)
Arsenico, mg/L (*)	0.1	(2)
Mercurio.mg/L (*)	0,001	(1)
Cromo, mg/L (*)	0.05	(1)
Flúor, mg/L	2	(2)
Selemo, mg/L	0.05	(2)

Fuente: Organización mundial de la Salud y la SUNASS (19).

Estudio de Mecánica de Suelos

El estudio de mecánica de suelos determina la capacidad del suelo al cual apoyaremos la estructura definida, el estudio se realiza primeramente con una exploración de campo, depuesta la obtención de la muestra, la cual después pasara al laboratorio donde se realizarán los estudios de granulometría, capacidad portante, corte directo, etc. (18)

2.2.1.2 Línea de Conducción

La línea de conducción es un conjunto de tuberías las cuales conectan y unen a la captación y el reservorio, está compuesta por todas las estructuras civiles y electromecánicas, y

su finalidad es llevar el agua de la cuenca a un punto, Para el diseño de la estructura se debe de utilizar el Qmd, el caudal máximo diario (18).

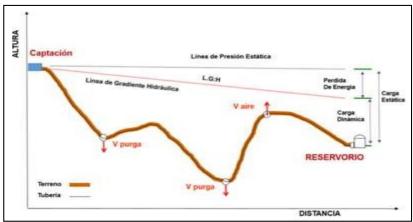


Figura 7: Línea gradiente hidráulica de línea de conducción

Fuente: RM-192-2018 Vivienda.(17)

Clase de Tuberías

Las clases de tuberías están definidas por las máximas presiones que ocurran en la línea presentada por la línea de carga estática. Para la selección se debe considerara una tubería que resista la presión más elevada que pueda producirse (18).

Tabla 4: Clase de tubería y presión de trabajo

Clase	Presión máxima de prueba (m.)	Presión máxima de trabajo (m.)
5	50	35
7.5	75	50
10	105	70
15	150	100

Fuente: Según Roger (18).

Diámetro de Tuberías

El dímetro mínimo de tubería a utilizar ser a de 1", para determinar el diámetro adecuado se debe de cumplir una

velocidad mínima de 0.60 m/s y una máxima de 3.0 m/s, el tramo (17).

Velocidades

Dentro de las velocidades admisibles tenemos que la velocidad mínima no debe de ser menor a 0.60 m/s. la velocidad máxima admisible debe ser de 3 m/s, llegando como máximo a 5 m/s determinando la justificación para el mismo (17).

Presión

La presión estática máxima de la tubería no debe de ser mayor al 75% de la presión de trabajo, cuidando las presiones de servicio de los accesorios y válvulas que se han instalado en su trayecto (17).

Levantamiento Topográfico

El levantamiento topográfico define la superficie en planta y perfil del terreno, la información recolectada por medio de equipos topográficos se utilizará para el diseño hidráulico del proyecto, tales como definir la longitud de tubería de la línea de conducción y aducción como también las respectivas cotas de cada infraestructura como la captación, reservorio, etc. (17)

❖ Válvula de aire

La válvula de aire se coloca en tramos de tubería más altos, diseñado para descargar o admitir automáticamente grandes volúmenes de aire, necesarias para garantizar su adecuada explotación y seguridad. (17)

♦ Válvula de Purga

La válvula de purga ayuda con los sedimentos acumulados en los puntos más bajos, por el cual se debe de ubicar las válvulas de purga en los puntos más bajos, para la respectiva limpieza de los sedimentos. (17)

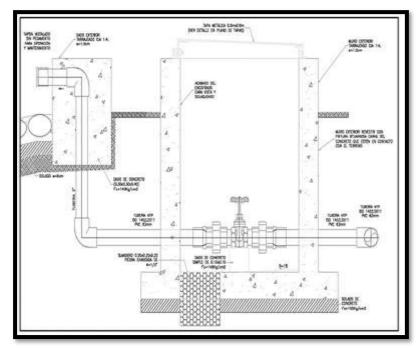


Figura 8: Válvula de Purga

Fuente: RM-192-2018 Vivienda.(17)

Diseño Hidráulico

Cálculo de diámetro de la tubería

28

Hazen-Williams se va a considerar a las tuberías superiores a 2" o 50 mm (17).

$$H_f = 10.674 * \left[\frac{Q^{1.852}}{(C^{-1.852} * \mathcal{D}^{86})} \right] * L$$

Fair – Whipple se va a considerar para las tuberías igual o menor a 2" o 50 mm (17).

$$H_f = 676.745 * \left[\frac{Q_{4.753}^{1.751}}{(D)} \right] * L$$

Cálculo de la línea de gradiente hidráulica (ecuación de Bernoulli)

$$Z + \frac{P_1}{y} + \frac{1}{2}Z + \frac{P_2}{2xg} + \frac{P_2}{y} + \frac{2}{2}V_+^2 Hf$$

Donde:

Z: "cota altimétrica respecto a un nivel de referencia en m"

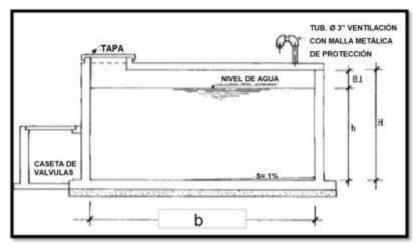
Pγ/: Altura de carga de presión, en m"

P: Presión

γ: Peso específico del fluido.

V: Velocidad del fluido en m/s

Hf: Pérdida de carga, incluyendo tanto las pérdidas lineales (o longitudinales) como las locales.


2.2.1.3 Reservorio

El reservorio se debe diseñar para que funcione exclusivamente como reservorio de cabecera. El reservorio se debe ubicar lo más próximo a la población, en la medida de lo posible, y se debe ubicar en una cota topográfica que garantice la presión mínima en el punto más desfavorable del sistema, se debe

de considerar un cerco perimétrico para impedir ingreso de personal no autorizado (17).

Diseño estructural

Las clases de tuberías están definidas por las máximas presiones que ocurran en la línea presentada por la línea de carga estática. Para la selección se debe considerara una tubería que resista la presión más elevada que pueda producirse (18).

Figura 9: Reservorio **Fuente:** RM-192-2018 Vivienda.(17)

Para el diseño estructural del reservorio de sección rectangular se debe de considerar lo siguientes (20).

$$P = y_a * h$$

Para el cálculo del empuje de agua (20).

$$v = \frac{y_a * h^2 * b}{2}$$

Donde (y_a) es peso específico del agua, (h) es altura del agua y (b) es el ancho de pared (20).

El cálculo se realiza tomando en cuenta que el reservorio se encuentra lleno y sujeto a la presión de agua (20).

$$M(kg) = K * y_a * h^3$$

Mediante el método elástico sin agrietamiento, tomando en consideración su ubicación vertical u horizontal (20).

$$ft (kg - cm) = [0.85\sqrt{f'c}]$$

$$e(cm) = \begin{bmatrix} -6 * M \\ ft * b \end{bmatrix}$$

Donde el (M) es el máximo absoluto en (kg-cm), (ft) es el esfuerzo por flexión (kg/cm2) y (b) es 100cm.

Losa de cubierta:

Para la losa de cubierta se va a considerar que será una losa armada en dos sentidos y que se apoyará en sus cuatro lados, para el cálculo del espesor (e) de la losa se aplicará (20).

$$e = \frac{perimetro}{180} \ge 9 \ cm$$

Teniendo los momentos calculados, ahora se calcula el espesor útil (d) mediante el método elástico (20).

$$d(cm) = \left[\frac{M}{R*b}\right]^{1/2}$$

Donde (M) es el momento flexionante (M = MA = MB), (b) se va a considerar 100cm.

$$R = \frac{1}{2} * fs * j * k$$

$$k = \frac{1}{(1 + \frac{fs}{nfc})}$$

$$k = \frac{1}{(1 + \frac{fs}{nfc})}$$

$$n = \frac{Es}{Ec} = \frac{(2.1 * 10^6)}{W^{1.5} * 4200 * (f'c)^{1/2}}$$

$$J = 1 - \frac{k}{3}$$

Donde (fs) es fatiga de trabajo en kg/cm2 y (fc) es resistencia a la compresión en kg/cm2.

$$e = d + 2.5$$

Teniendo en consideración que cumpla con la siguiente expresión (20).

$$d \ge e - 2.5$$

Losa de fondo:

Se va asumir el espesor de la losa de fondo, y el valor de (P) será, el peso propio del agua en Kg/m2 y el peso propio del concreto en Kg/m2 (20).

Para el cálculo del momento de empotramiento enlos extremos se aplicará (20).

$$M(kg - m) = -\frac{WL^2}{192}$$

Para el cálculo del momento en el centro se aplicará (20).

$$M(kg - m) = -\frac{WL^3}{384}$$

Para el chequeo del espesor, se propondrá un espesor (20).

$$e = \frac{P}{180} \ge 9 \ cm$$

Se compara el resultado con el espesor que se calcula mediante el método elástico sin agrietamiento considerando el máximo momento (20).

$$e(cm) = \left[\frac{6M}{ft * b}\right]^{1/2}$$

$$ft = 0.85 (f'c)^{1/2}$$

Se debe de cumplir la siguiente expresión.

$$d \ge e - recubrimiento$$

Diseño Hidráulico

Para el diseño de se utilizará el Caudal Promedio (Qm), para el dimensionamiento del reservorio (16).

$$Qm = \frac{Dotacion \ x \ poblacion \ final}{1000}$$

Para el cálculo del Volumen de Regulación (Vr) que se debe de considera el 25% (16).

$$Vr = \frac{25}{100} * Qm$$

El volumen contra Incendio se deber de tener en consideración que la población se debe de encontrar superior a los 2000 habitante, si supera se asume 50 m3 (16).

Para el cálculo del volumen de reserva se considera el (33%) para lo cual se aplicará la siguiente ecuación (16).

$$\frac{33}{100} * (Vr + Volumen contra incendio)$$

Para el cálculo del volumen de reserva se tendrá consideración el tiempo y se aplicará la siguiente ecuación (16).

$$\frac{2}{24} * Qm$$

Para el cálculo final del volumen de reserva se debe de tener en consideración el valor máximo entre el cálculo del volumen de reserva al 33% y el cálculo del volumen de reserva de tiempo, se debe de aplicar la siguiente ecuación (16).

$$VA = VR + VI + VRE$$

El cálculo del diámetro de la canastilla (D_{ca}) aplicará la siguiente ecuación (17).

$$D_{ca} = 2 * D$$

Se recomienda que la longitud de la canastilla sea mayor a 3B y menor 6B (17).

$$L = 5 * B * \frac{2.54}{100}$$

Donde B es el diámetro de tubería de salida que va hacia la línea de aducción en Pulgadas (plg) (17).

Se recomienda para el ancho de la ranura una medida de 5mm y para el largo de la ranura una medida de 7mm, el cálculo del área total de la ranura (17).

$$A_{rr}(m2) = A_r * L_r$$

$$Atr(m2) = (2\pi * D * \frac{2.54_2}{100})^{4}$$

El valor del Área total no debe ser mayor al 50% del área lateral de la canastilla (17).

$$A_g(m2) = \frac{1}{2} * L * D_{ca}$$

Para el cálculo de número de ranuras de la canastilla (17).

$$N_r(und) = \frac{A_{tr}}{A_{rr}}$$

Para el cálculo del perímetro de la canastilla (17).

$$p(m) = \pi D_{ca}$$

Cálculo del número de Ranuras en Paralelo (N_p) para la canastilla (17).

$$N_p(und) = p * \frac{L_r}{4}$$

Cálculo del número de Ranuras en a lo largo (N_l) para la canastilla (17).

$$N_l(und) = \frac{N_r}{N_p}$$

• Tubería de Rebose

El diámetro se calculará mediante la ecuación de Hazen y Williams, se recomienda una pendiente de S=1.5% (17).

$$D_r(plg) = 0.71x \frac{Q^{0.38}}{S^{0.21}}$$

La tubería de Limpieza, el tiempo de evacuación (*Tev*) del reservorio no será mayor de 2 horas (17).

La de ventilación se recomienda de Fierro Galvanizado (F°G°) mínimo de 2 pulg. (17).

Sistema de desinfección:

"Este sistema permite garantizar que la calidad del agua se mantenga durante otro período y se proteja durante la transmisión a través de las tuberías hasta que se entregue a la población a través de las conexiones domésticas. Su instalación debe estar tan cerca de la tubería de entrada de agua al contenedor y colocada donde la iluminación natural no afecte la solución de cloro en el contenedor. Se recomienda que el cloro residual activo sea de al menos 0.3 mg / 1 y un máximo de 0.8 mg / 1 en condiciones normales de suministro, por encima del cual este último puede ser detectado con olor y sabor, haciéndolo rechazado por el usuario consumidor. Para su

construcción, se deben usar diferentes materiales y sistemas que controlen la caída por segundo o el equivalente en ml/s". (17)

- Desinfección por goteo.
- Cálculo de Hipoclorito de cálcio.

peso del cloro = Q * d

Donde:

P: "peso de cloro (gr/h)"

Q: "caudal de agua a clorar (m3/h)"

d: "dosificación adoptada (gr/m3)".

- Cálculo del peso en base al cloro.

Peso del producto = P * 100/r

Donde:

Pc: "peso producto comercial (gr/h)"

r: "porcentaje del cloro activo (%)".

Estudio de Mecánica de Suelos

El estudio de mecánica de suelos determina la capacidad del suelo al cual apoyaremos la estructura definida, el estudio se realiza primeramente con una exploración de campo, depuesta la obtención de la muestra, la cual después pasara al laboratorio donde se realizarán los estudios de granulometría, capacidad portante, corte directo, etc. (18)

2.2.1.4 Línea de Aducción

Esta línea es el conjunto de tuberías que sirven para dirigir el agua del reservorio hasta la red de distribución, haciéndose más

común cada día debido a la distancia de los tanques ya la necesidad de tener zonas de distribución con presiones adecuadas.

Caudal de diseño

El caudal de diseño para línea de aducción es el caudal máximo diario Qmd. (17)

Carga estática y dinámica

La carga estática máxima aceptable será de 50 m y la carga dinámica mínima será de 1 m. (17)

Diámetro de Tuberías

El dímetro mínimo de tubería a utilizar ser a de 1", para determinar el diámetro adecuado se debe de cumplir una velocidad mínima de 0.60 m/s y una máxima de 3.0 m/s, por tramo (17).

Velocidades

Dentro de las velocidades admisibles tenemos que la velocidad mínima no debe de ser menor a 0.60 m/s. la velocidad máxima admisible debe ser de 3 m/s, llegando como máximo a 5 m/s determinando la justificación para el mismo (17).

Presión

La presión estática máxima de la tubería no debe de ser mayor al 75% de la presión de trabajo, cuidando así las presiones de servicio de los accesorios y válvulas que se han instalado en su trayecto. (17)

Válvula de aire

La válvula de aire se coloca en tramos de tubería más altos, diseñado para descargar o admitir automáticamente grandes volúmenes de aire, necesarias para garantizar su adecuada explotación y seguridad. (17)

❖ Válvula de Purga

La válvula de purga ayuda con los sedimentos acumulados en los puntos más bajos, por el cual se debe de ubicar las válvulas de purga en los puntos más bajos, para la respectiva limpieza de los sedimentos. (17)

Pase Aéreo

El pase aéreo consiste en un sistema estructural en base a anclajes de concreto y cables de acero que permiten colgar una tubería de polietileno que conduce agua potable, dicha tubería de diámetro variable necesita de esta estructura para continuar con el trazo sobre un valle u zona geográfica que por su forma no permite seguir instalando la tubería de forma enterrada. (17)

Diseño Hidráulico

Cálculo de diámetro de la tubería

Hazen-Williams se va a considerar a las tuberías superiores a 2" o 50 mm (17).

$$H_f = 10.674 * \left[\frac{Q^{1.852}}{(C^{-1.852} * \cancel{D}^{86})} \right] * L$$

Fair – Whipple se va a considerar para las tuberías igual o menor a 2" o 50 mm (17).

$$H_f = 676.745 * \left[\frac{Q^{1.751}_{4.753}}{(D)} \right] * L$$

Cálculo de la línea de gradiente hidráulica (ecuación de Bernoulli)

$$Z + \frac{P_1}{y} + \frac{1}{2}Z + \frac{P_2}{2xg} + \frac{P_2}{y} + \frac{2}{2}V_+^2 Hf$$

Donde:

Z: "cota altimétrica respecto a un nivel de referencia en m"

Pγ/: Altura de carga de presión, en m"

P: Presión

γ: Peso específico del fluido.

V: Velocidad del fluido en m/s

Hf: Pérdida de carga, incluyendo tanto las pérdidas lineales (o longitudinales) como las locales.

2.2.1.5 Red de Distribución

Este sistema de tubos es responsable de proporcionar agua a los usuarios en casa, donde el servicio debe ser constante las 24 horas del día, en cantidad suficiente y con la calidad requerida, para todos y cada de los tipos de zonas socioeconómicas. Este

sistema incluye válvulas, tuberías, toma doméstica, medidores y, si es necesario, equipo de bombeo de distribución.

Redes malladas

Son aquellas redes constituidas por tuberías interconectadas formando circuitos cerrados o mallas. Cada tubería que reúna dos nudos debe tener la posibilidad de ser seccionada y desaguada independientemente, de forma que se pueda proceder a realizar una reparación en ella sin afectar al resto de la malla. Para ello se debe disponer a la salida de los dos nudos válvulas de corte (17).

Redes ramificadas

Constituida por tuberías que tienen la forma ramificada a partir de una línea principal; aplicable a sistemas de menos de 30 conexiones domiciliarias En redes ramificadas se debe determinar el caudal por ramal a partir del método de probabilidad, que se basa en el número de puntos de suministro y en el coeficiente de simultaneidad (17).

Caudal de diseño

El caudal de diseño para línea de aducción es el caudal máximo diario Qmd. (17)

Diámetro de Tuberías

El dímetro mínimo de tubería a utilizar ser a de 3/4", para determinar el diámetro adecuado se debe de cumplir una

velocidad mínima de 0.60 m/s, en ningún caso debe ser menor a 0.30 m/s, y una máxima de 3.0 m/s, por tramo (17).

Velocidades

Dentro de las velocidades admisibles tenemos que la velocidad mínima no debe de ser menor a 0.60 m/s. la velocidad máxima admisible debe ser de 3 m/s, llegando como máximo a 5 m/s determinando la justificación para el mismo (17).

Presión

La presión estática máxima de la tubería no debe de ser mayor al 75% de la presión de trabajo, cuidando así las presiones de servicio de los accesorios y válvulas que se han instalado en su trayecto. (17)

Válvula de aire

La válvula de aire se coloca en tramos de tubería más altos, diseñado para descargar o admitir automáticamente grandes volúmenes de aire, necesarias para garantizar su adecuada explotación y seguridad. (17)

Válvula de Purga

La válvula de purga ayuda con los sedimentos acumulados en los puntos más bajos, por el cual se debe de ubicar las válvulas de purga en los puntos más bajos, para la respectiva limpieza de los sedimentos. (17)

❖ Válvula de control

Las cámaras donde se instalarán las válvulas de control deben permitir una cómoda construcción, pero además la correcta operación y mantenimiento del sistema de agua, además de regular el caudal en diferentes sectores de la red de distribución. (17)

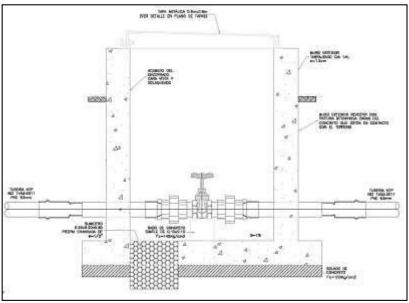


Figura 10: Válvula de control

Fuente: RM-192-2018 Vivienda.(17)

III. Hipótesis

Según Hernández R. (21) En su libro de metodología de la investigación define qué; el nivel de investigación es de tipo exploratorio y descriptivo por lo cual no es necesario el planteamiento de la hipótesis. Sólo se formulan hipótesis cuando se pronostica un hecho o dato.

IV. Metodología

4.1 Tipo de investigación

Según Hernández (21), "Los estudios cualitativos pueden desarrollar preguntas e hipótesis antes, durante o después de la recolección y el análisis de los datos. El enfoque cualitativo utiliza la recolección de datos para afinar las preguntas de investigación o revelar nuevas interrogantes en el proceso de interpretación." La investigación es de tipo aplicada.

4.2 Nivel de la investigación de la tesis

De acuerdo a la presente investigación, el nivel Descriptivo. Según Hernández, "La meta del investigador consiste en describir fenómenos, situaciones, contextos y sucesos; esto es, detallar cómo son y se manifiestan. Con los estudios descriptivos se busca especificar las propiedades, las características y los perfiles de personas, grupos, comunidades, procesos, objetos o cualquier otro fenómeno que se someta a un análisis. Es decir, únicamente pretenden medir o recoger información de manera independiente o conjunta sobre los conceptos o las variables a las que se refieren, esto es, su objetivo no es indicar cómo se relacionan éstas. por lo tanto, es de tipo descriptiva. (21)

4.3 Diseño de investigación

"El diseño se realizó de acuerdo al tipo y nivel de investigación, mediante el cual se está realizando el trabajo de investigación. Por lo tanto, el diseño de investigación es de tipo no experimental ya que las variables no pueden ser manipuladas intencionalmente." (21)

4.4 El universo y muestra.

La población es un Conjunto de todos los casos que concuerdan con determinadas especificaciones. La muestra es subgrupo del universo o población del cual se recolectan los datos y debe ser representativo está conformado por el sistema de agua potable del centro poblado de alto mayo. (21)

4.5 Definición y Operacionalización de variables e indicadores

Tabla 5. Cuadro de definición y operacionalización de las variables

Variable	Definición conceptual	Dimensiones	Definición Operacional	Indicadores	Instrumento
		Captación	"La captación depende del tipo de fuente y de calidad y cantidad de agua el diseño de cada estructura de concreto armado o ciclópeo o de otro material construida con el fin de reunir las aguas utilizadas para el abastecimiento de la población". (18)	Aforo de fuente Diseño estructural Diseño hidráulico Calidad de agua Estudio de mecánica de suelo	Ficha técnica
Sistema de Agua Potable	"Los componentes del Sistema de abastecimiento de Agua potable son: Cámara de Captación, Línea de Conducción, Reservorio de	Línea de conducción	"Las estructuras y elementos que conectan las captaciones con los reservorios" (18)	Clase de Tubería Diámetro Velocidad Presión Levantamiento topográfico Válvula de aire Válvula de purga Diseño hidráulico	Ficha técnica
Almacenamiento, línea - de aducción y red de Distribución." (18)	Reservorio	"Estructura que permite el almacenamiento del agua potable, para garantizar el abastecimiento a la red de distribución y mantener una adecuada presión de servicio". (18)	Diseño estructural Diseño hidráulico Estudio de mecánica de suelo	Ficha técnica	
		Línea de aducción	"Estructuras y elementos que conectan el reservorio con la red de distribución". (18)	Caudal de diseño Carga estática y dinámica Diámetro de tubería Velocidad Presión	Ficha técnica

Red de distribución	"Conjunto de tuberías de diferentes diámetros, válvulas, grifos. El cual existen 2 tipos de sistema de distribución según la forma de los circuitos". (18)	Levantamiento topográfico Válvula de aire Válvula de purga Pase aéreo Diseño hidráulico Caudal de diseño Diámetro de tubería Velocidad Presión Válvula de aire Válvula de purga Válvula de control	Ficha técnica
------------------------	--	--	---------------

Fuente: Elaboración propia (2020)

4.6 Técnicas e Instrumentos de recolección de datos

4.6.1 Técnica

Por medio de la observación directa fue posible la evaluación del comportamiento de la fuente existente durante las pruebas realizadas. La observación directa consiste en el uso sistemático de nuestros sentidos, orientados a la captación de la realidad que queremos estudiar.

Observación indirecta

La observación indirecta fue posible al observar el comportamiento de la fuente existente; esto permitió recolectar el mayor número de datos de las mediciones y pruebas realizadas para esta investigación.

Entrevistas indirectas

A través de las entrevistas se logró obtener información general; estas se realizaron a profesionales con conocimientos del tema, asesores, técnicos, laboratoristas, ingenieros y otros profesionales para la recopilación y obtención de datos referente a la temática de investigación.

4.6.2 Instrumento

Se utilizará los instrumentos para la recolección de información, la ficha Técnica de Campo

4.7 Plan de análisis

En el plan de análisis se dará los siguientes pasos para hacer una buena recolección de datos que se obtendrán en el campo. Con toda la información que

se recabará en el campo tengo que llevar a gabinete y se utilizará los siguientes programas como es Excel, AutoCAD, Word.

4.8 Matriz de consistencia

Tabla 6. Matriz de Consistencia

TITULO: DISEÑO DEL SISTEMA I	DE ABASTECIMIENTO DE AGUA PO	TABLE EN EL CENTRO POBLADO AL	TO MAYO PAMPA	HERMOSA 2020
PROBLEMA	OBJETIVOS	MARCO TEÓRICO	VARIABLES	METODOLOGÍA
Problema General ¿Cuál es el diseño del sistema de agua potable en el Centro Poblado Alto Mayo del distrito de Pampa Hermosa de la Provincia de Satipo, Departamento de Junín 2020? Específicos ¿Cuál es el diseño de la captación del sistema de abastecimiento de agua potable del centro poblado Alto Mayo? ¿Cuáles son las dimensiones de la línea de conducción del sistema de abastecimiento de agua potable del del Centro Poblado Alto mayo? ¿Cuál es el diseño el reservorio del sistema de abastecimiento de agua potable del centro poblado Alto Mayo? ¿Cuáles son las dimensiones de la red de distribución del sistema de abastecimiento de agua potable del en el centro poblado Alto mayo?	OBJETIVOS Generales Diseñar el sistema de abastecimiento de agua potable del centro poblado Alto Mayo, Pampa Hermosa - 2020 Específicos Diseñar la captación del sistema de abastecimiento de agua potable del centro poblado Alto Mayo Determinar las dimensiones de la línea de conducción del sistema de abastecimiento de agua potable del Centro Poblado Alto mayo Diseñar el reservorio del sistema de abastecimiento de agua potable del centro poblado alto mayo Determinar las dimensiones de la red de distribución del sistema de abastecimiento de agua potable del en el centro poblado Alto mayo.	Antecedentes Contero C. (5), realizó el "Diseño de Captación y Conducción de agua de Riego para doce comunidades de la Parroquia Pungala" Define en que el objetivo general de esta investigación es "Diseñar un sistema de riego, mediante estructura de captación y conducción con el fin de dotar de agua a doce comunidades de la parroquia rural Pungala del cantón Riobamba, Provincia de Chimborazo; que optimice el uso del agua, principalmente en los periodos de ausencia de lluvias, aplicando los principios fundamentales del diseño hidráulico, considerando abastecer a 632 hectáreas de cultivos, incrementar la productividad agrícola y los ingresos económicos para fomentar el desarrollo del sector, El autor responsable llega a las siguientes conclusiones: El presente trabajo alcanzó su objetivo propuesto, que consistía en diseñar un sistema de riego para dotar de agua a doce comunidades de la parroquia rural Pungala del cantón Riobamba, Provincia de Chimborazo. Los usuarios de estas comunidades están en capacidad de solicitar a las instituciones pertinentes fondos para la construcción del proyecto. Se proyectó un desarenador adjunto a la toma	Variable de estudio Sistema de abastecimiento de agua potable Dimensiones Captación Línea de conducción Reservorio Línea de aducción Red de distribución	METODOLOGIA Tipo: Aplicada Nivel: Descriptivo Métodos: Científico Diseño: No Experimental Población y muestra Sistema de abastecimiento de agua potable en el anexo de Chalhuamayo Técnicas e instrumentos Técnicas: observación, encuesta y entrevista, Instrumentos: cuestionario de entrevista, fichas, planos, Software y otros. Técnica de procesamiento de datos: Estadística descriptivas
		para disminuir la cantidad de sedimentos en el		

agua que se conducirá mediante la tubería. Este
sedimentador tiene un canal de longitud de 1 m
y de sección 1,0 m x 1,10 con una pendiente de
7%.
Bases teóricas
Sistema de abastecimiento de Agua
Potable
Las partes que integran a un sistema de agua
potable son la captación, línea de conducción,
Reservorio de agua, línea de aducción, red de
distribución y obras
Complementarias, tiene como finalidad
primordial, la de entregar a los habitantes de una
localidad, agua en cantidad y calidad adecuada
 para satisfacer sus necesidades
·

4.9 Principios éticos

1.1.1. Ética en la recolección de datos

Al momento de hacer la toma de datos ser responsables y cuidadosos, así todos los análisis serán veraces y los resultados se darán conforme a lo estudiado.

1.1.2. Ética al principio de la evaluación

Tenemos que ser minuciosos al momento de utilizar los materiales para la evaluación visual, pedir la autorización respectiva para la ejecución del proyecto de investigación

1.1.3. Ética con los resultados.

Todos los resultados de las evaluaciones, como son las muestras tomadas cuentan la veracidad de acuerdo a las áreas obtenidas. Está basada a la realidad.

V. Resultados

5.1.1 Sistema de abastecimiento de agua potable

Para identificar el sistema de abastecimiento de agua potable, se utilizó el algoritmo que dispone la resolución ministerial 192-2018.

Para el diseño se utilizará la tasa distrital de PAMPA HERMOSA el cual es 2.72% para los métodos de cálculo de la población futura y de la tasa de crecimiento poblacional se utilizó el método aritmético, el padrón de habitantes del 2020 indica total de 115 habitantes y para el diseño a 20 años será de 153 habitantes. Por medio del algoritmo que se podrá visualizar en la (figura 12), el cual está compuesta por un sistema de gravedad, línea de conducción, Reservorio, desinfección, línea aducción y por ultima la red de distribución.

Figura 11: Resultados del Algoritmo de Selección.

Fuente: Según MVCS (17)

5.1.2 Cámara de captación

Se planteado una captación tipo ladera, por la salida de la fuente que es de quebrada, para el diseño de la captación se determinó 20 años de vida Se aforo un caudal en la fuente de 0.79 lts/s. Determinando el caudal diario, para el adecuado diseño, se podrán apreciar en la (tabla 8) y el diseño estructural se encuentra en (la tabla 9).

Tabla 7: Diseño Hidráulico – Captación

Descripción	Resultado	Unidad			
Gasto Máximo de la Fuente:	0.79	1/s			
Gasto Máximo Diario:	0.23	1/s			
Determinación de ancho de la p	Determinación de ancho de la pantalla				
Diámetro Tub. Ingreso (orificios):	2	Pulg.			
Número de orificios:	2	orificios			
Ancho de la pantalla:	0.90	m			
Distancia entre el punto de afloramiento y	la cámara hú	meda			
Distancia entre el punto de afloramiento y la cámara húmeda	1.30	m			
Altura de la cámara húmeda					
Ht	1.00	m			
Tubería de salida	0.75	Pulg.			
Dimensionamiento de la cana	stilla:				
Diámetro de la Canastilla	1.50	pulg			
Longitud de la Canastilla	10.0	cm			
Número de ranuras:	115.00	ranuras			
Cálculo de Rebose y Limpia:					
Tubería de Rebose	2	Pulg.			
Tubería de Limpieza	2	Pulg.			
Fuente: Elaboración Propia.					

Tabla 8: Diseño Estructural – Captación

Descripción	Resultado	Unidad		
Concreto para captación de ladera	F'c = 210	kg/cm2		
Concreto para cimiento de cerco	F'c = 175	kg/cm2		
perimétrico	r c = 173	kg/cm2		
Solado de captación	F'c = 100	kg/cm2		
Acero General	Fy = 4200	kg/cm2		
Cámara	Húmeda			
Acero horizontal en muros	Ø1/2" @0.20 m en			
Acero norizontar en muros	ambas caras	-		
Acero vertical en muros tipo m4	Ø1/2" @0.20 m en	_		
	ambas caras			
Cámara Seca				

	Ø2/01/ 0.0.20	·
Acero horizontal en muros	Ø3/8" @0.20 m en	_
Tiero nonzonar en mares	ambas caras Ø3/8" @0.20 m en	
Acero vertical en muros tipo m4	Ø3/8" @0.20 m en	_
recto vertical en maios apo ma	ambas caras	
	Ø3/8" @0.20m en	
Diseño de losa de fondo	ambas caras	-
T . T	anibas caras	
Fuente: Elaboración Propia.		

5.1.3 Línea de conducción.

Para la línea de conducción se trabajó con el caudal máximo diario, determinando un diámetro de tubería 1", con una distancia total de 439.51 ml, con un material seleccionado de PVC, C-10.

Tabla 9: Resultados de línea de conducción

Estructuras	Diámetro (mm)	Caudal (L/s)	Cota (msnm)	Perdida de carga (Hf)	Velocidad (m/s)
Captación	-	-	1601.78	0.00	0.00
Reservorio 5 m3	29.40 = 1"	0.23	1565.65	36.13	0.45
TC 4 TC1 1 12	ъ.				

Fuente: Elaboración Propia.

5.1.4 Reservorio

El reservorio tubo un volumen de 5 m3 por el total de la población futura que se encuentra en la comunidad, se trabajó con los criterios de la resolución ministerio 192-2018, para el volumen total se consideró la sumatoria del volumen de regulación, el volumen de diseño, el reservorio tiene una cota 1565.65 m.s.n.m.

Tabla 10: Resultados del Diseño Hidráulico - Reservorio

Descripción	Resultado			
Dimensionamiento				
Ancho interno	1.80 m			
Largo interno	1.55 m			
Altura total de agua	1.85 m			
Borde Libre	0.30 m			
Dimensionamiento de Canastilla				
Diámetro de ingreso	1 pulg.			
Diámetro salida	1 pulg.			
Diámetro de rebose	2 pulg.			

Diametro de limpia	2 pulg.			
Estructuras				
Perímetro de planta (interior)	6.70 m			
Espesor de muro	20 cm			
Espesor de losa de fondo	20 cm			
Altura de zapato	25 cm			
Altura total de cimentación	45 cm			
Espesor de losa de techo	15 cm			
Alero de cimentacion	15 cm			
Fuente: Elaboración Propia.				

Tabla 11: Diseño Estructural - Reservorio

Descripción	Resultado					
Concreto Armado	F'c = 210 kg/cm2					
Concreto para cimiento de cerco perimétrico	F'c = 175 kg/cm2					
Solado del reservorio	$F'c = 100 \text{ kg/cm}^2$					
	r c – 100 kg/cm2					
Acero en Estructura						
Acero de Refuerzo en Pantalla Vertical.	Ø 3/8 @ 0.175m					
Acero de Refuerzo en Pantalla Horizontal	Ø 3/8 @ 0.175m					
Acero en Losa de Techo (inferior)	Ø 3/8 @ 0.20m					
Acero en Losa de Techo (superior)	Ø 3/8 @ 0.20m					
Acero en Losa de Piso (superior)	2Ø 3/8 @ 0.20m					
Acero en Losa de Piso (inferior)	Ø 3/8 @ 0.20m					
Acero en zapata (inferior)	Ø 5/8 @ 0.20m					
Fuente: Elaboración Propia.						

5.1.5 Línea de aducción

Para la línea de conducción se trabajó con el caudal máximo diario, determinando un diámetro de tubería 1", con una distancia total de 1004.00 ml, con un material seleccionado de PVC, C-10.

Tabla 12: Resultados de línea de aducción

Diámetro (mm)	Caudal (L/s)	Cota (msnm)	Perdida ue carga (Hf)	Velocidad (m/s)
-	-	1565.00	0.00	0.00
29.4=1"	0.35	1515.00	50.00	0.698
	(mm)	(mm) (L/s)	(mm) (L/s) (msnm) 1565.00	(mm) (L/s) (msnm) ue carga (Hf) - - 1565.00 0.00

Fuente: Elaboración Propia.

5.1.6 Red de distribución

La línea de distribución tiene un total de 548.86 metros de tubería, está proyectado con una tubería de 1" de clase 10, teniendo 1 válvulas de purga.

Para las conexiones domiciliarias tendrá una tubera de diámetro de ½".

Tabla 13: Resultados de línea de aducción

1 гашо	Diámetro (mm)	Caudal (L/s)	Cota (msnm)	Perdida ue carga (Hf)	Velocidad (m/s)
Válvula de control	=	=	1515.00	0.00	0.00
Válvula de purga	29.4=1"	0.35	1465.00	14.835	0.698

Fuente: Elaboración Propia.

5.2 Análisis de Resultados

El análisis de resultados busca comprar los resultados del diseño realizado, con los antecedentes anterior mencionados.

5.2.1 Sistema de abastecimiento de agua potable

Según Clever (12) en su diseño del sistema de abastecimiento de agua potable incluyendo todos sus componente se apoyó de la resolución ministerial 192-2018, el cual menciona que las estructuras comprendidas por la captación, línea de conducción, reservorio, línea de adicción y red de distribución tiene un periodo de diseño de 20 años. La investigación llega a tener una semejanza en parámetros de diseño porque de igual manera la presente investigación se apoyó de la resolución ministerial 192-2018, para lograr el diseño optimo y adecuado del sistema de abastecimiento de agua potable.

5.2.2 Cámara de Captación

Según Nelson (15), en su investigación determino una captación de ladera por el tipo de afloramiento del agua que venía de una ladera, de igual manera para la presente investigación primero se identificó el tipo de afloramiento del agua, y se determinó que era del subsuelo, y que venía de una ladera, para lo cual se ha planteado una captación de ladera.

5.2.3 Línea de conducción

Según Jorge (13), en su tesis el diseño de su línea de conducción tuvo como resultado una tubería de 1" de clase 7.5, para lo cual trabajo con un caudal máximo diario de 0.20 l/s, de manera similar para la presente investigación se realiza el diseño según la R.M. 192-2018 se obtuvo una tubería de 1" de clase 10, para lograr el diseño se trabajó con un caudal máximo diario de 0.23 l/s.

5.2.4 Reservorio

Según Jorge (10), en su investigación ha diseñado 2 reservorios para las dos comunidades beneficiarias, el diseño hidráulico del reservorio ha determinado un volumen útil de 20.00 m3 de tipo circular con un radio de 2.10 m por 1.40m de altura para el centro poblado de San Andrés, y para el centro poblado de San Ignacio se obtuvo un reservorio de 65.00 m3 de tipo circular con un radio de 3.00 m y 2.30 m de alto. En la presente investigación se ha diseñado un reservorio de base cuadrada el cual tiene un volumen de 5m3, para su diseño se ha apoyado a libro de Agüero Pittman, que difiere de la otra investigación.

5.2.5 Línea de Aducción

Según Erick (9), en su investigación ha determinado para el diseño de la línea de aducción utilizar para la perdida de carga la fórmula de Hazen Williams, teniendo un caudal de máximo horario de 0.57 lts/s, el cual se utilizado para su respectivo diseño. La investigación guarda una similitud ya que para la presente investigación se ha calculado la perdida de carga con la fórmula de Hazen Williams, y se ha trabajado el diseño con un caudal máximo horario de 0.35 lts/s.

5.2.6 Red de distribución

Según Marcelo et all (7), en su diseño de red de distribución ha utilizado el software de Watercad, determinando diámetros de 55.2 mm a 15.8 mm de tubería para la red de distribución, para la presente investigación se ha utilizado el software Excel y utilizado el método por tramos, para ellos se lograron respetar las velocidad como también las presiones en el nodo final de la red de distribución.

VI. Conclusiones

- Se ha logrado diseñar el sistema de abastecimiento de agua potable para la comunidad de Alto mayo, ayudando con un aporte a nivel diseño para futuras investigaciones.
- 2. Se ha diseñado la captación del sistema de abastecimiento de agua potable en el centro poblado de Alto Mayo. Donde el ancho de pantalla de la captación: Qmax: gasto máximo de la fuente (l/s), Cd: coeficiente de descarga (valores entre 0.6 a 0.8), G: aceleración de la gravedad (9.81 m/s2).), H: carga sobre el centro del orificio (valor entre 0.4m a 0.5m) y A: Área requerida para descarga. El rebose y de limpia considerar pendiente. Min. de 1 a 1,5%., Qmax: gasto máximo de la fuente (l/s), Hf: perdida de carga unitaria en (m/m) (valor recomendado: 0.015 m/m), Dr: diámetro de la tubería de rebose (pulg).
- 3. Se ha determinado las dimensiones de la línea de conducción del sistema de abastecimiento de agua potable en el centro poblado de Alto Mayo. El trazado se ajustará al menor recorrido, siempre y cuando esto no conlleve excavaciones excesivas u otros aspectos. Se evitarán los tramos de difícil acceso, así como las zonas vulnerables. En los tramos que discurran por terrenos accidentados, se suavizará la pendiente del trazado ascendente pudiendo ser más fuerte. Es recomendable realizar los trabajos con una sección interior mínima de 0,60 x 0,60 x 0,70m, será de concreto armado f°c = 210 kg/cm2, de modo que facilite los trabajos con mucha comodidad, como para permitir el alojamiento de los elementos.
- Se ha diseñado el reservorio del sistema de abastecimiento de agua potable en el centro poblado Alto Mayo 2020. La selección de la localización del

reservorio se basó en el principio de gravedad, es necesario ubicar el reservorio cotas (10 metros) por encima de la primera vivienda y así garantizar la presión en la red de distribución. Se está proyectando la construcción del reservorio, ubicado en la progresiva 0+440 de la Línea de Conducción, sobre terreno conglomerado en la cota 1565.00 msnm de 5.00 m3 de capacidad Este Reservorio proyectado será de concreto armado construido con malla de fierro, de forma rectangular con su respectiva caseta de válvulas proyectando el equipamiento hidráulico; Los accesorios con el que contará son los siguientes: tubería de entrada, tubería de salida, tubería de rebose y limpia con sus respectivas válvulas, todas las tuberías agrupadas en una caseta de válvula.

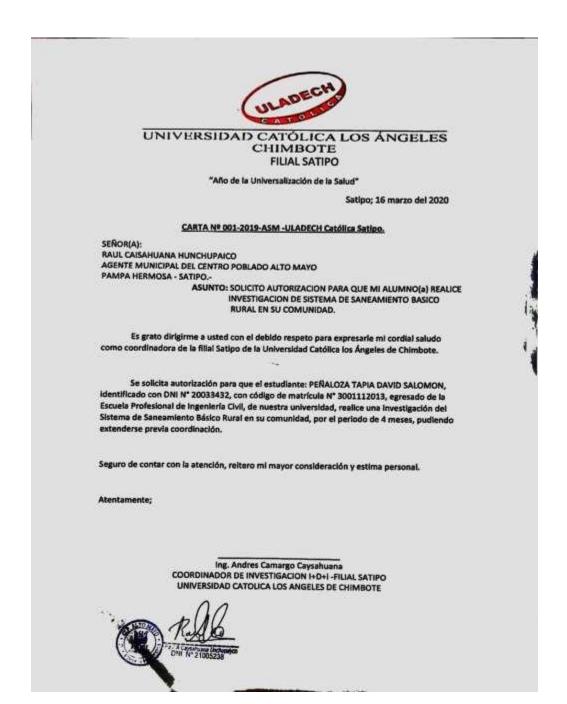
- 5. Se logró calcular la línea de aducción, el cual tendrá un diámetro de 1" según los cálculos determinados, el diseño se realizó por tramos dividiendo en caudal para cada tramo, logrando tener una tubería de PVC de clase 10, en total tendrá 1004.00 ml de tubería.
- 6. Se ha determinado las dimensiones de las redes de distribución del sistema de agua potable del centro poblado Alto Mayo 2020. Para la instalación de este tipo de red de distribución participan diferentes medidas de tuberías, llaves de paso, adaptadores, tee, codos, yee y demás accesorios de calidad pesada donde su utilización se da inicio es al final de la línea de aducción y que se extenderá por todos los lugares de los domicilios de los pobladores. "Debe cumplir los siguientes parámetros:" . Se diseñará con el Caudal Máximo Horario, con un diámetro de admisible de 1" y 3/4" para los ramales La presión mínima no debe ser menor de 5 m.c.a y la presión estática no sobrepasar los 60 m.c.a. Caudal mínimo en el diseño de ramales de 0.10 l/s..

Recomendaciones

- Se recomienda para el diseño del sistema de agua potable, realizar ciertas, recolección de información y procesar los datos en forma detallada, para un mejor entendimiento de los componentes a diseñar, a su vez siguiendo las recomendaciones establecidos en el reglamento nacional de edificaciones (RNE), específicamente en las normas OS 010, OS 050, RM 192-2018 y otras informaciones referidas al tema.
- 2. Sugerir para el diseño de la captación realizar un estudio de calidad de agua en la fuente de captación enviando la muestra al laboratorio de estudio de agua considerando normas vigentes, también realizar estudio de suelo para el cálculo estructural de la infraestructura.
- 3. Pedir para el diseño de la línea de conducción considerar los parámetros del RNE del mismo modo saber los valores máximos y mínimos de velocidades y presiones, además de la ubicación de cada accesorio para garantizar un óptimo funcionamiento de la infraestructura
- Para el diseño de reservorio es recomendable tener en cuenta aspectos como: capacidad de almacenaje, ubicación del terreno como para evaluación de tipo estructural se recomienda la norma ACI 350-06.
- 5. Se recomienda para el diseño de la línea de aducción utilizar una tubería de mayor clase para poder soportar la presión en la parte más baja a cambio de la CRP-7 que se ha proyectado.
- Se recomienda realizar el modelamiento hidráulico de la red de distribución en algún software especializado como Watercad o Epanet.

Referencias Bibliográficas

- CONTERO MAYACELA CJ. Diseño de Captación y Conducción de agua de Riego para doce comunidades de la Parroquia Pungala. Pontificia Universidad Católica del Ecuador. 2016. p. 179.
- 2. Eduardo Eusebio ZT. Diseño del tanque de abastecimiento y red de distribución de agua potable para la zona 2 de Zaragoza y diseño del tanque de abastecimiento y red de distribución de agua potable para el Caserío Rincón Chiquito, Zaragoza, Chimaltenango. [Internet]. Universidad de San Carlos de Guatemala. 2016 [citado 28 de octubre de 2020]. p. 152. Disponible en: http://www.repositorio.usac.edu.gt/5882/
- 3. Espinoza Abreu AE. Diseño del sistema de abastecimiento de agua potable por gravedad para La Aldea El Soyate, San Antonio La Paz, El Progreso [Internet]. Universidad de San Carlos de Guatemala. 2015. p. 183. Disponible en: http://www.repositorio.usac.edu.gt/3050/1/Adrián Esteban Espinoza Abreu.pdf
- 4. Celi Suárez, Byron Alcívar; Pesantez Izquierdo FE. Cálculo y diseño del sistema de alcantarillado y agua potable para la lotización Finca Municipal, en el cantón El Chaco, provincia de Napo [Internet]. 2012. p. 199. Disponible en: http://repositorio.espe.edu.ec/xmlui/bitstream/handle/21000/5606/T-ESPE-033683.pdf?sequence=1&isAllowed=y
- Cueva Mogrovejo FE. Gestión comunitaria de los servicios de agua potable y saneamiento en la parroquia Eloy Alfaro del cantón Chone, provincia de Manabí. Pontificia Universidad Católica del Ecuador. 2018. p. 151.
- 6. Mendoza Vara A. Diseño de abastecimiento de agua y alcantarillado mediante


- sistema condominial para mejoramiento de calidad de vida, Asociación Las Vegas Carabayllo, Lima, 2018. Universidad César Vallejo. 2018. p. 265.
- 7. Shirly Bibi CA. Diseño del sistema de abastecimiento de agua potable y alcantarillado del Caserío Anta, Moro Ancash 2017 [Internet]. Universidad César Vallejo. 2017. p. 2018. Disponible en: http://repositorio.ucv.edu.pe/handle/20.500.12692/12193
- 8. Flores Robles VM. Propuesta De Diseño Del Sistema De Agua Potable Y Alcantarillado Del Asentamiento Humano Los Constructores Distrito Nuevo Chimbote-2017. Universidad César Vallejo. 2017.
- 9. Carhuapoma Lizano EJ. Diseño del sistema de agua potable y eliminación de excretas en el sector Chiqueros, distrito Suyo, provincia Ayabaca, región Piura [Internet]. NIVERSIDAD NACIONAL DE PIURA. 2018. Disponible en: http://repositorio.unp.edu.pe/handle/UNP/1244
- 10. Gonzáles García JM. Diseño del sistema de agua potable de las comunidades de Nuevas Flores, Dos de Mayo, San Ignacio y San Andrés, distrito de San Pablo, provincia de Bellavista, región San Martín [Internet]. Universidad Nacional de San Martin. 2019. p. 120. Disponible en: http://repositorio.unsm.edu.pe/handle/11458/3348
- Huaringa Carhuavilca R. Propuesta de diseño del sistema de agua potable en el Centro poblado Teruriari ,2019 [Internet]. Universidad Católica Los Ángeles de Chimbote. 2019. p. 99. Disponible en: http://repositorio.uladech.edu.pe/handle/123456789/15061
- 12. MEZA PALACIOS CH. Diseño del sistema de abastecimiento de agua potable

- del Centro poblado de Samañaro 2019 [Internet]. Universidad Católica Los Ángeles de Chimbote. 2019. p. 150. Disponible en: http://repositorio.uladech.edu.pe/handle/123456789/14793
- 13. Moran Atao RA. Diseño del sistema de abastecimiento de agua potable en el Centro poblado la Campiña zona alta, 2019 [Internet]. Universidad Católica Los Ángeles de Chimbote. 2019. p. 139. Disponible en: http://repositorio.uladech.edu.pe/handle/123456789/14792
- 14. Velasquez Rosas GA. Propuesta de diseño del sistema de agua potable en el anexo de Pumpunya 2019. [Internet]. Universidad Católica Los Ángeles de Chimbote. 2020. p. 124. Disponible en: http://repositorio.uladech.edu.pe/handle/123456789/16081
- 15. Poma Barja EN. Propuesta de diseño del sistema de agua potable en la CC.NN. Alto Tsomontonari, distrito de Rio Negro, 2019 [Internet]. Universidad Católica Los Ángeles de Chimbote. 2019. p. 112. Disponible en: http://repositorio.uladech.edu.pe/handle/123456789/15084
- 16. Programa Nacional de Saneamiento Rural. Guía de opciones técnicas para abastecimiento de agua potable y saneamiento para centros poblados del ámbito rural. Programa Nacional de Saneamiento Rural. 2012. p. 68.
- Ministerio de Vivienda conctrucción y Saneamiento. Norma Técnica de diseño:
 Opciones Tecnologicas para sistemas de Saneamiento en el Ambito Rural. 2018
 p. 189.
- 18. Aguero R. Agua Potable para poblaciones Rurales. Lima; 1997. 32 p.

- 19. SUNASS. Los límites máximo permisibles (LMP) referenciales para agua potable [Internet]. SUNASS. 2000. p. 2. Disponible en: http://www.sunass.gob.pe/doc/normas legales/legisla web(cambio)/normas/EPS/oficio 677.doc
- Agüero R. Guía Para El Diseño Y Construcción De Reservorios Apoyados.
 2004;35.
- 21. SAMPIERI H. METODOLOGIA DE LA INVESTIGACION. MC GRAW HILL. 2014. p. 634.
- 22. Cienfuegos Ramirez A. Diseño del sistema de agua potable del sector nueva santa rosa, Distrito Provincia de Bagua, Amazonas 2018 [Internet]. Universidad César Vallejo. 2018. Disponible en: http://repositorio.ucv.edu.pe/handle/20.500.12692/31503

Anexos

Anexo 1. Carta de Autorización del proyecto de investigación

Anexo 2. Solicitud de autorización de proyecto de investigación

M SECOND OF FEMALES IN MESA DE PARTES RECIBIDO 1 0 MAR 2020 "AÑO DE LA UNIVERSALIZACION DE LA SA SOLICITO: AUTORIZACIÓN PARA REALIZAR TRABAJO DE INVESTIGACIÓN. SEÑOR: ALCALDE DE LA MUNICIPALIDAD DISTRITAL DE PAMPA HERMOSA. Yo, Peñaloza Tapia David Salomon, Alumno del taller de investigación en Ingeniería civil, de la Universidad Católica los Ángeles de Chimbote, Identificado con DNI 20033432 con código de matrícula, Nº 3001112013, domiciliado en el Jr. Augusto B. Leguía 1162 de la Provincia de Satipo ante Ud. respetuosamente me presento y digo. Que, en el mencionado taller de investigación, en mi calidad de bachiller en ingeniería civil, estoy realizando la investigación denominada. Proyecto del sistema de abastecimiento de agua potable en el centro poblado Altomayo. Para así poder obtener el título profesional de ingeniero civil. POR LO EXPUESTO. Ruego a Ud. acceder mi Solicitud. Por ser de justicia que espero alcanzar Satipo, 10 de marzo 2020 TAPIA-DAVID SALOMON DNI 20033432

Anexo 3. Protocolo de consentimiento informado

PROTOCOLO DE CONSENTIMIENTO INFORMADO PARA ENCUESTAS (Ingenieria y Tecnología)

La finalidad de este protocolo en Ingenieria y tecnologia es informarle sobre el proyecto de investigación y solicitarle su consentimiento. De aceptar, el investigador y usted se quedarán con una copia.

La presente investigación se titula. Sistema de abastecimiento de agua potable del centro poblado Alto mayo del distrito de Pampa Hermosa de la provincia de Satipo 2020 y es dirigido por David Salomon Peñaloza Tapia, investigador de la Universidad Católica Los Ángeles de Chimbote.

El propósito de la investigación es: Diseñar el sistema de abastecimiento de agua potable en el Centro poblado Alto Mayo del distrito de Pampa Hermosa de la provincia de Sátipo 2020

Para ello, se le invita a participar en una encuesta que le tomarà 30 minutos de su tiempo. Su participación en la investigación es completamente voluntaria y anónima. Usted puede decidir interrumpirla en cualquier momento, sin que ello le genere ningún perjuicio. Si tuyiera alguna inquietad y/o duda sobre la investigación, puede formularla cuando crea conveniente.

Al concluir la investigación, usted serà informado de los resultados a través de David Peñaloza Tapia. Si desea, también podrá escribir al correo depenaloza los totmaticom para recibir mayor información. Asimismo, para consultas sobre aspectos éticos, puede comunicarse con el Comité de Ética de la Investigación de la universidad Católica los Ángeles de Chimbote.

Si está de acuerdo con los puntos anteriores, complete sus datos a continuación:

Nombre: From Cay Sohmona V nonopeaco

Fecha: 31 - 08 - 2020

Correo electrónico:

Firma del participante: Rand fo

Firma del investigador (o encargado de recoger información):

COMITÉ INSTITUCIONAL DE ÉTICA EN INVESTIGACIÓN - ULADECH CATÓLICA

Anexo 4. Encuestas

	FIC	HA TECNICA DE RECOL	ECCION DE DATOS		(MARKET)
Proyecto	: PROPUESTA DE DIS	SEÑO HIDRAULICO DEL S	SISTEMA DE AGUA POTABLE	EN EL CENTRO	CALEBRANO DIOGRAZZONI PA
			POBLADO ALTO MAYO 202	0	connect
Alumno	: Peñaloza Tapia David				
Localidad	:Centro Poblado Alto Mayo	W	Provincia	: Satipo	
Distrito	: Pampa Hermosa		Departamento	. Junin	
Objetivo	: Recolección de datos	para el diseño hidraulico del ce	ntro Poblado Alto Mayo 2020	N= 1,4	
EST	TADO O CONDICION	B UE	REG ULA	M	NO
		N	VIA.	A L	TIE NE
		0		0	× 1.10
PU	INTAJE A CALIFICAR	64.8	1	20	18
A. ESTADO	DEL SISTEMA DE AGUA P	OTABLE	-11	Resultado:	
4.1 Cantidad				Evaluación	
	NO SECURITION OF				
a) Volumen C	Ofertado				
b) Volumen E	Demanda	a mayor que b	a igual que b	a menor que b	<u>a</u> igual que cero
A.2 Cobertura	*		53	Evaluación	
i) Volumen D	Densanda				
b) N° de perso	onas atendidas	a mayor que b	<u>a</u> igual que b	a menor que b	a igual que cero
4.3 Continuis	dad			Evaluación	
ı) Permanenc	ria del agua en la fisente	Perman ente	Baja pero no se seca	Se seca totalmente en algunos meses	Seca Totalmente
	7 4 8 7	+	11 11 11		

) Colocación o no del cloro en el agua	no		<u> </u>	No
) Nivel de cloro residual en agua	no			No tiene
220	*		77	cloro
) Como es el agua que consume	Agua Clara	Agua turbia	Con Elementos extraños	No hay agua
I) Análisis bacteriológico en agua	Si se realizo		Similar Market	No se realizo
e) Institución que supervisa la calidad le agua		Municipalid ad	otro	Nadie
4.5 Estado de la Infraestructura (athintate	Cithilite 11		Evalua cia n	
ı) Captación		P		
Cerco perimetrico	no tiène	144		No tiene
Estado de la estructura	·	Regular	*************	No tiene
Válvulas	Bueno	Regular	Malo	No tiene
Capa sanitaria	Buene	Regular	Malo	No tiene
Accesorios	Bueno	Regular	Malo	No tiene
In Content County House	9	The Tipes S		

Cerco perimétrico	si tiene en buen estado	<u>si</u> tiene en mal estado		No tiene
Estado de la estructura	Bueno	Regular	Malo	No tiene
Caja de valvulas	Bueno	Regular	Malo	No tiene
Canastilla	Bueno	Regular	Malo	No tiene
Tuberia de limpia y rebose	Bueno	Regular	Malo	No tiene
Tubo de ventilación	Eueno	Regular	Malo	No tiene
c) Cámara rompe presión CRP T6				
Tapa sanitaria	Bueno	Regular	Malo	No tiene
Estructura	Bueno	Regular	Malo	No tiene
Canastilla	Bueno	Regular	Malo	No tiene
Tuberia de limpia y rebose	Bueno	Regular	Malo	No tiene
Dado de protección	Bueno	Regular	Malo	No tiene
d) Línea de conducción	8		0	
Como está la tubería	Cubierta totalmente	Cubierta Parcial	Malograda	Colapsad
Si lo tuviera. Estado de los pases aéreos	Bueno	Regular	Malo	Colapsad
e)Planta de Catamiento pre filtro	9	that likes 5	4	

Cerco perimétrico	Si en buen estado	Regular	Si en mal estado	No tiene
Estado de la estructura	Bueno	Regular	Malo	No tiene
cobertura de pre filtro	Bueno	Regular	Malo	No tiene
Lecho de soporte y medio filtrante	Bueno	Regular	Malo	No tiene
válvula compuerta de acceso	Bueno	Regular	Malo	No tiene
válvula compuerta de purga	Bueno	Regular	Malo	No tiene
compuertas metálicas tipo tarjeta	Bueno	Regular	Malo	No tiene
escalera metálico de operación	Bueno	Regular	Malo	No tiene
vertedero metálico	Bueno	Regular	Malo	No tiene
f) Planta de tratamiento filtro lento				
Cerco perimétrico	No tiene	Regular	Si en mal estado	No tiene
Estado de la estructura	Bueno	Regular	Malo	Colapsado
cobertura de filtro lento	Bueno	Regular	Malo	Colapsado
lecho de soporte y medio filtrante de filtro lento	Bueno	Regular	Malo	Colapsado
válvula compuerta de acceso	Bueno	Regular	Malo	Colapsado
válvula compuerta de purga	Bueno	Desular S	Malo	golapsado
Segundo Juan Lingun Hermandez INGENIERO CIVIL REG. CIP 68131	Ø	Manuel Gálvez Salas OF 81216 DIGENERO CIVIL	(A) IIIG	CHRISTIAN IN ZENTENO HERRERA CIP. N° 82246

Anexo 5: Diseño de Población Futura

PROYECTO							
(1027-1038-05%)	DISEÑO DEL SISTER	MA DE ABASTEC	CIMIENTO DE AGUA PO	TABLE EN EL ANEXO E	DE CHALHUA	MAYO, 2020	
ASESOR:	CAMAR	GO CAYSAHUAI	NA ANDRES				
ESTUDIANTE:	BALBE	N VILLAVERDE.	NESSI YU				
DEPARTAMENTO:	Junin		DISTRITO:	Llaytia			
PROVINCIA:	Batipo		CENTRO POBLADO:	Chalhuamayo			
	REGION JUNIN		1	PROVIN	CIA DE SATI	PO	1
Año	Población	Tasa de Crecimiento		Año	Población	Tasa de Crecimiento	
2007	1,225,474	0.17%]	2007 2017	193,872 203,985	0.52%	
DIS	TRITO DE LLAYULA		1	CHA	LHUAMAYO		
Año	Población	Tasa de Crecimiento	1	Año	Población	Tasa de Crecimiento	
2007	5,143 6,544	2.72%	1	2007 2017	279 285	-0.00%	1
				FUE	NTE TINE!		4.
2017	- 2020	1	2020	2040	16		
	Poblacion Actual		287	Poblacion Actual			
011.0	Tasa de Crecimiento		2.72	Tasa de Crecimiento			
	Periodo de diseño		20	Periodo de diseño			
267 Pf = Pp * (1+ r*V100	Poblacion Futura	J	#43 Pf = Pp * (1+ (*9100)	Poblacion Futura			
			TASAS DE CRECIM	IIENTO			
Uhic	ación	1	Descripción	Censos		Tanan a	MÉTODO
7500	0000000		200000000000	2007	2017		UTILIZADO
CHALHUAMAYO TAS		IA NEGATIVA	279	265	-0.50%	METODO ARITMÉTICO	

Anexo 6: Resultados del estudio de Suelos

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y DAVIMENTOS

CENTAURO INGENIEROS

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

Informe de ensayo con valor oficial Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE SUELOS CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS **LABORATORIO DE SUELOS** INFORME

1. EXPEDIENTS NO 2. PETICIONARIO

: 1308-2020-AS

3. ATENCIÓN

: BACH. DAVID SALOMÓN PEÑALOZA TAPIA

: UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE

4. PROYECTO

: DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLÉ EN EL CENTRO POBLADO ALTO MAYO PAMPA HÉRMOSA 2020

5. UBICACIÓN

: CENTRO POBLADO ALTÓ MAYO DISTRITO PAMPA HERMOSA, PROVINCIA SATIPO, REGIÓN JUNÍN : 15 DE SETIEMBRE DEL 2020

6. FECHA DE RECEPCIÓN 7. FECHA DE EMISIÓN

: 24 DE SETIEMBRE DEL 2020

SAYO:

меторо:

NTP 339.127 1998 (REVISADA EL 2019) SUELOS. Método de ensayo para determinar el contenido de humedad de un s

CÓDIGO ORDEN DE TRABAJO	SONDEO	MUESTRA / PROF. DE MUESTRA	UBICACIÓN	PROFUNDIDAD DE LA CALICATA (m)	TIPÓ DE MUESTRA	CONDICIÓN DE MUESTRA	ме́торо	% DE HUMEDAD	MÉTODO DE SECADO
P-092-2020	CALICATA	C1-E2 (1,40 M)	COORDENADAS: E=522367.672 N=8746115.315, ALTITUD: 1565 MSNM	1.4	SUELO	MUESTRA ALTERADA	± 1%	8	110 °C ± 5

"LOS RESULTADOS SE REPORTAN AL ± 1% , "LA MUESTRA ENSAYADA CUMPLE CON LA MASA MÍNIMA RECOMENDADA. "LA MUESTRA ENSAYADA NO CONTIENE MAS DE UN MATERIAL. "EN LA MUESTRA ENSAYADA NO SE EXCLUYO NINGÚN MATERIAL.

Fecha de ensavo

Fecha de ensayo : Aud-UP-13 Temperature Ambiente : 19,7 °C Humedad relativa : 25 % Área donde se realizó les ensalyos : Suelos I y Pavimentos OBSERVACION ; Muestreo e identificación realizados por el Peticionario.

* Los datos proporcionados por el Peticionario son los siguientes: peticionario, atención, nombre del proyecto, ubicación. EL PRESENTE DOCUMENTO NO DEBERA REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA

EL PAZIATIE DOS MENTO NO DEBENA REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL DEBORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD.
LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS PROPÓRCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y

HC-AS-001 VERSIÓN: 01 REV.01 FECHA: 2020/02/28

Fin de página

ms distants can seen seement s.a.c.

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook: centauro ingenieros
Av. Mariscal Cestilia № 3950 - El Tambo – Huancayo - Junín (Frente a la 1ra Puerta de la U,N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 –
964966015
Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

INACAL DA - Pera

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

150

9001: 201

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE SUELOS CONCRETO Y PAVIMIENTOS CENTAURO INGENIEROS

LABORATORIO DE SUELOS

1. EXPEDIENTE Nº 2. PETICIONARIO

: 1309-2020-AS

: BACH, DAVID SALOMÓN PEÑALOZA TAPIA

3. ATENCIÓN

: UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE

4. PROYECTO

: DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CENTRO POBLADO ALTO MAYO PAMPA HERMOSA 2020 : CENTRO POBLADO ALTO MAYO DISTRITO PAMPA HERMOSA, PROVINCIA SATIPO, REGIÓN JUNÍN

5. UBICACIÓN

6. FECHA DE RECEPCIÓN

: 15 DE SETIEMBRE DEL 2020

7. FECHA DE ENISIÓN

: 24 DE SETIEMBRE DEL 2020

Código orden de Trabajo : P-092-2820	Sondeo	: CI-E2 (Muestra extraida de 1,40 m)	Profundidad (m) : 1,40
Tipo de material : Suelo	Condicions	es de muestra: Muestra Alterada	Ubicación : Coordenades: E=522367.672 N=8746115.315, Altitud:
	***************************************	a we most on most of processes	1565 mspm
ENSAYOR	MÉTODO:		
Antifels Gestulomitries per taminado	MTP 379 138 1669 6	modes de arrest sense de abaselo de accesso acon al collècio	

MÉTODO DE ENGAVO

NTF 339,129 1999 Steviseds el 2039) SSIELOS, Métado de ensero com determiene al límite timpos, s

NTF 359.234 1999 (redisada el 2019) Aribada para la clipificación de puelos con propiotos de ingenierio (Sistemu unificada de clasificación de suelos, 5003) AMALISIS GRANIR OMÉTRICA POR TAMIZADO ASERTURA (num) % QUE PASA 75.000 50.000 70.67 11/2 37,500 54,47

25.000 45.39 19,000 41.47 3/8 35.10 4,750 21.58 M*10 27.61 2.000 N°20 0.850 23.77 0.425 20.87 0.250 N°240 34.62

CLASIFICACIÓN GRANULOMÉTRICA				
FINO	AREMA	GRAVA		
13.70%	17.88%	68,42%		
100.00%				

***	DIAGRAMA C	E PLUIDEZ	
9.0			
9.0 8.0 7.0			
6.0 5.0			
3.0			
2.0			
4.0 3.0 2.0 1.0 0.0			
1	M IMEDATO:	Atter	1

MUCHPUNIO
SECA
79.13
TENCIA
N.P.
N.P.
N.P.
REPARACIÓN

	CLASIFICACIÓN (S.U.C.S)
GMI	GRAVA LIMOSA CON AREMA

19,2 C°

19.70

ción realizados por el Peticionario.

*Los datos prepordensidos por el ciliante son los siguientes: Posicionario, Atendên, Nombra del propecto, Ublicación.

EL PRESENTE DOCUMENTO MO DEBERÁ REPRODUCCIONS EN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EM SU TOTALIDAD.

LOS REPARTADOS DE LOS ENSAYOS NO DEBEN SIR UTILIZADOS COMO UNA CERTIFICACIÓN DE CONOCINIDAD CON NORMAS DE PRODUCTOS O CONO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LA ENTIDAD CONOCINIDAD CON NORMAS DE PRODUCTOS O CONOCINIDADOS DE SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RISULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS PROPORCIONADAS POR EL CUENTE AL LASONATORIO DE MECÁNICA DE SUELOS, CONCRETO Y

Email: grupocentauroingenieros@gmail.com Web: http:/centauroingenieros.com/ Facebook: centauro ingenieros
Av. Mariscal Castilla Nº 3950 - El Tambo -- Huancayo - Junín (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 -- 964966015

Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y DAVIMENTOS

CENTAURO INGENIEROS

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

WA 2 DE 2

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE SUELOS CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS

LABORATORIO DE SUELOS

1. EXPEDIENTE Nº

: 1309-2020-AS

2. PETICIONARIO 3. ATENCIÓN

: BACH, DAVID SALOMÓN PEÑALOZA TAPIA : UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE

4. PROYECTO

INACAL

DA - Porů

: DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CENTRO POBLADO ALTO MAYO PAMPA HERMOSA 2020

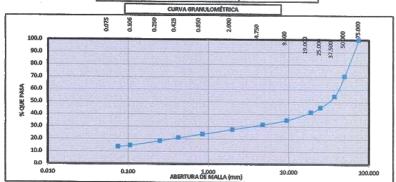
5. UBICACIÓN 6. FECHA DE RECEPCIÓN

: CENTRO POBLADO ALTO MAYO DISTRITO PAMPA HERMOSA, PROVINCIA SATIPO, REGIÓN JUNÍN : 15 DE SETIEMBRE DEL 2020

7. FECHA DE EMISIÓN

Tipo de material : Suelo

: 32 DE SETTEMBRE DEL 2020 2020 Soeden : CL-EZ (Muestra extraida de 3,40 m) Profundidad (m) : 3,40 Condiciones de muestra: Muestra Alterada


Ublcación : Coordenadas: E=522367.672 N=8746115.315, Aftitud: 1565 m

MÉTODO

NEP 389.128 1999 (revisada el 2019) SUELOS. Método de enseyo para el análisis grando

NTP 339.129 1999 (revisada el 2019) SUELOS. Método de enstro para determinar el limita líquido, límite plástico, a índice de pl NTP 338.184 1999 (revisada el 2019) Método para la clasificación de suelos con propósitos de Ingeniería (Sistema unalicado de Casificación de suelos, SUCS)

% GRAVA AG % 3,97 % ARENA AM % AF % 7.17 % FINOS 13.70 año Máximo de la Grava (ram) a del suelo grueso Angular staje retenido en la 3 puis (%) te de Uniformidad

FINO 13,70% 68.42%

Fecha de ensayo : 2020-09-13

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVID QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEM SER UTULZAÇOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDIDO QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS RIFUESTRAS PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÁRICA DE SUBLOS, CONCRETO Y

HC-AS-088 REV.05 FECHA: 2020/02/11

Pin de página.

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook: centauro ingenieros Av. Mariscal Castilla N° 3950 - El Tambo - Huancayo - Junin (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 - 964966015

Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

LABOURA FORTO DE MECANICA DE SUELOS, (
SERVICIOS DE SAPA MECÂNICA DE SUELOS
- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASPALTO
- ENSAYOS EN ROCAS
- ENSAYOS EURÓCOS EN SUELOS Y AGUA
- ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GECFÍSICOS
- PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
- ESTUDIOS GECTÉCNICOS
- CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTÓ
- EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU
- EXTRACTION Y TRASLADO DE MUESTRAS INSITU-

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

ENSAYO DE CORTE DIRECTO

NTP. 339,171

DATOS

INFORME N°	: 1310-2020-AS
PETICIONARIO	: BACH. DAVID SALOMÓN PEÑALOZA TAPIA
ATENCION	: UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE
PROYECTO	: DISENO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CENTRO POBLADO ALTO MAYO PAMPA HERMOSA 2020
UBICACIÓN	 CENTRO POBLADO ALTO MAYO DISTRITO PAMPA HERMOSA, PROVINCIA SATIPO, REGIÓN JUNÍN
FECHA DE RECEPCIÓN	: 15 DE SETIEMBRE DEL 2020
FECHA DE EMISIÓN	: 24 DE SETTEMBRE DEL 2020
CODIGO DE ORDEN DE TRABAJO	: P-092-2020
ESTADO	: ALTERADO
CALICATA	: CALICATA M-1
MUESTRA	: MUESTRA EXTRAIDA DE 1.40 M
PROFUNDIDAD DE LA CALICATA	: 1,40 M
NIVEL DE NAPA FREATICA	: NO PRESENTA

HC-AS-005 VERSIÓN.01 REV.00 FECHA: 2020/02/06

NOTA:

Fecha de ensayo

: 2020-09-22

Temperatura Ambienta Humedad relativa

: 26,5 °C : 29 %

Área donde se realizó el ensayo

"Suelos I y pavimentos

"Los datos proporcionados por el Peticionario son los siguientes: peticionario, atención, nombre del proyecto, ubicación, calicata, muestra, profundidad de la calicata.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD.

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook: centauro ingenieros
Av. Mariscal Castilla № 3950 - El Tambo – Huancayo - Junin (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 —
964966015
Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

- ERRIVICIOS DE MECARICA DE SUELOS, (
 SERVICIOS DE SELOS

 ENSAYOS EN AGECGADOS PARA CONCRETO Y ASPALTO
 ENSAYOS EN ROCAS
 ENSAYOS EN ROCAS
 ENSAYOS GUÍNICOS EN SUELOS Y AGUA
 ENSAYOS GUÍNICOS EN SUELOS Y AGUA
 ENSAYOS GUÍNICOS EN SUELOS Y AGUA

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 RERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALÍDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

ENSAYO DE CORTE DIRECTO

MTP. 339.171

: 1310-2020-AS : BACH, DAVID BALOMÓN PEÑALOZA YAPIA : BACH, DAVID BALOMÓN PEÑALOZA YAPIA : UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIRROTE : DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTRADE EN EL CRITTED POBLADO ALTO MAYO PAMPA MERMOSA, 2021

: CERTRO POBLADO ALTO MAYO DISTRITO PAMPA HERMOSA, PR : 15 DE SETIEMBRE DEL 2020 : 24 DE SETIEMBRE DEL 2020

ESTADO CALICATA MUESTRA : ALTERADO

: CALICATA M-1 ! MUESTRA EXTRAIDA DE 1.48 M

rovincia satipo, región Junín PROF. DE LA CALICATA : 1,40 14

ES	PECIMEN	01	ESP	ECIMEN O			ESPECE	MEN 03
Alturas	20.00	mm	Alturas	28.00	mm	Altura:	20.00	num
Diámetro	25.57	rinen.	Diámetro	28.57	men	Diámetro	25.57	mm
Carga:	40.00	kg	Cargas	26.00	kg	Carga:	10.00	kg
D. seca:	1.34	gr/cm3	D, secar	1.34	gr/cm3	D, secar	1.34	gr/cm3
Humadads	8,54	%	Humedadı	8.54	96	Humedadı	8.54	%
Est. Normal:	7.79	log/cm2	Est. Normal:	3.89	log/crm2.	Esf. Normal:	1.95	kg/cm2
Est. Corte:	4.72	log/cm2.	Esf. Cortes	2,48	kg/cm2.	Est. Cortes	5.16	kg/cm2
Velocidadz	0.50	men/enin	Velocidad:	8.50	men/mha	Velocidad:	0.50	rem/min

Desp. Lateral (mm)	Esfuerzo de Corte (Kg/cm2)	Esfuerzo Normalizado (7/0)	Desp. Lateral (mm)	Esfuerzo de Corte (Kg/cm2)	Esfuerzo Normaliz ado (T/0)	Desp. Lateral (mm)	Esfuerzo de Corte (Kg/cm2)	Esfuerzo Normalizado (Y/e)
0.00	0.00000	6.00000	0.00	0.00000	0.00000	0.00	9.90908	0.00000
0.50	2.41377	0.30988	0.50	1.20863	0.31038	0.50	8.60368	0.31000
1.00	3,00431	0.38569	1.00	1.76773	0.45388	1.00	0.87729	0.45050
1.50	3.39573	0.43594	1.50	1.97609	0.50738	1.50	0.98342	0.50500
2.80	3.75258	0.48175	2,00	2.11825	0.54388	2.00	1.05986	0.54425
2.50	4.03154	0.51756	2.50	2.24727	0.57700	2.50	1.09394	0.56175
3.00	4,25014	0.54563	3,00	2,34658	0.60250	3.00	1.12363	0.57700
3.50	4.47847	0.57494	3.50	2.41279	0.61950	3.50	1.14165	0.58625
4.90	4,59969	0.59050	4,00	2,44152	0.62688	4,00	1.15333	0.59225
4.50	4.67807	0.60056	4.50	2,47462	0.63538	4.50	1.16209	0.59675
5.80	4.71555	0.60538	5.00	2.47560	0.63563	5.00	1.13337	0,58200
5.50	4,69560	0.60281	5.50	2,46245	0.63225	5.50	1.09880	0.56425
6.00	4.65616	0.89775	6.00	2.44346	0.62736	6.00	1.88469	0.55700
6.50	4.52910	0.58144	6.50	2.41279	0.61950	6.50	1.96911	0.54980
7,00	4.47360	0.57421	7,00	2,48396	0.61700	7.00	1.03503	0.53150
7.50	4.34848	0.55825	7.50	2,34561	0.60225	7.50	0.99462	0.51075
8.80	4.23894	0.54419	8.00	2,29692	0.58975	8.00	0.96590	0.49600
8.50	4.14206	0.53175	8.50	2,26382	0.58125	8.50	8.92403	0.47450
9.00	4.03154	0.51756	9.00	2.21124	0.56775	9.09	0.90504	0.46475
9.50	3,96241	0.50869	9.50	2.21124	0.56775	9,50	0.89336	0.45875
10.00	3.90156	0.59088	10,00	2.21124	0.56775	10.00	0.89141	0.45775
10.50	3,84995	0.49425	10.50	2.21124	0.56775	10.50	0.88654	0.45525
11.08	3.78569	0.48680	11.00	2.21124	0.56773	11.00	0.87437	0.44900
11.50	3,68540	0.47313	11.50	2.21124	0.56775	11.50	0.96950	0.44650

"Les dates proporcionades par el Peticionario son los signientes: petinionario, atencido, nombre del pi calicata.

NC-6-895 VERSIÓN.01 RBV.00 FECHA: 2020/EZ/Id6

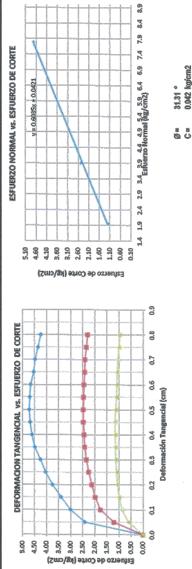
Mg. Ing. Japan Yeshica Andia Ariac

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook: centauro ingenieros
Av. Mariscal Castilla Nº 3950 - El Tambo – Huancayo - Junín (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 -964966015
Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

- SERVICIOS DE SIELOS ENERGÓNICA DE SIELOS ENERGÓNICA DE SIELOS PARA CORCERTO Y ASFALTO ENERGÓNICA DE SIELOS PARA CORCERTO Y ASFALTO ENERGÓNICA DE SIELOS PARA CORCERTO Y ASFALTO ENERGÓNICA DE CALABADOS PARA CORCERTO Y ASFALTO CONTINGA LO CALABADOS PARA CORCERTO Y ASFALTO ENERGÓNICA DE CALABADO DE MISSIPAS INSTITUTACIONA PROPERTO DE MISSIPAS INSTITUTACION

04 05 84 07 64 69 10 11 12 12 mensión Tragencial (cm) : ACREMINO : CALICATA M-1 : HRESTRA ENTINDEN DE LAD N 645 GUS 310 1.3 1.2 B.3 Dolon B1 62 6.1 6.2 6.3 b.4 6.5 0.6 6.7 Defenses/de Tangandid (cm) 01 69 F0 0.1 9.2 0.3 6.4 0.5 0.6 0.7 1 15 OE SETTEMBAR DEL 2020 1 24 OE SETTEMBAR DEL INDA * bes-densamenthenderen diffeten Hovekeel viizeelekk intikke produc 9 9 9 9 9 9 9 9 9 9

Email; grupocentauroingenieros@gmail.com Web: http:/centauroingenieros.com/ Facebook: centauro ingenieros
Av. Mariscal Castilla № 3950 - El Tambo – Huancayo - Junín (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 – 964966015
Para verificar la autonúcidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com


- BESTUDIOS Y BIRANCOS GEOFISICOS
- BERGORADOS PARA CONCRETO Y ASFALTO
- BENANCOS BIRANCOS BURANOS PARA CONCRETO Y ASFALTO
- BENANCOS BIRANCOS BIRANCOS BURANANTINAS
- BENANCOS BIRANCOS BIRANCOS BIRANCOS BURANOS CONCRETO Y ASFALTO
- BIRANCOS BIRA

NTP, 339,273

ENSAYO DE CORTE DIRECTO

INFORME M"	:13(0-0000-4)8		
PETICIONARIO	: BACH DAMD SALOMON PERALOZA TAPLA		
ATENCION	: LAWERSIDAD CATÓLICA LOS ÁVABLES DE CHAMBOTE	ESTADO	: ALTERADO
PROTECTO	: DISBÃO DEL BISTEMA DE ABASTECHMENTO DE AGIAN POTABLE EN EL CIDATRO POBLAÇIO ALTO MAYO PAMPA HERMOSA 2020	CALICATA	: CALICATA M-1
UBICACIÓN	CENTRO POBLADO ALTO MAYO DISTRITO PAMPA HERMIOSA, PROVINCIA SATIPO, RECICÍM JUNIN	MUESTRA	: MAESTRA EXTRAIDA DE 1.40 M
FECHA DE RECEPCIÓN	: 15 DE SETIEMBRE DEL 2000		
FECHA DE EMISIÓN	: 24 OE SETIBARRECIEL 2020	PROF. DE LA CALICATA	1,4014
	The state of the s		

s peticionanto, atención, nombre del proyecto, ublicación, calicata, neuestra, profundidad de la calicata. * Los datos proporcionades por el Petidonario sen los alguientess HC-AS-005 VERSIÓN.01 REV.80 FECHA: 2029/02/06

Emait: grupocentauroingenieros@gmail.com Web: http:/centauroingenieros.com/ Facebook: centauro ingenieros
Av. Mariscal Castilla Nº 3950 - El Tambo – Huancayo - Junin (Frante a la fra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cel. 992878860 - 964483588 – 964966015
Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS LABURATORIO DE MECANICA DE SUELOS, (SERVICIOS DE SERVICIOS ES - ENSAYOS PARA MECÂNICA DE SUELOS - ENSAYOS EN AGREGADOS PARA COMCRETO Y ASFALTO - ENSAYOS EN POCAS - ENSAYOS EÚMICOS EN SUELOS Y AGUA - ENSAYOS SPT, DPL, DPHS

ENSAYO DE CORTE DIRECTO ASTM NTP. 339.171

DENSIDAD HUMEDA	INICIAL
MASA INICIAL	59.64
VOLUMEN INICIAL	41.08
DIAMETRO	5.11
ALTURA	2
DENSIDAD INICIAL	1.451

CONTENIDO DE HUMEDAD INICIAL				
T4664	83.04			
T4MS	78.95			
T	31.08			
AGUA	4.09			
M9 .	47.87			
C.H %	8.54			

1	
MASA,	64.71
VOLUMEN FINAL	35.75
DEAMETRO	5.11
ALTURA	1.74
ENSIDAD FINAL	1.810

п	
MASA	64.9
VOLUMEN FINAL	35.95
DIAMETRO	5.21
ALTURA	1.75
DENSIDAD FINAL	1.805

DENSIDAD FINAL

ш	H BELDE
MASA	64.97
VOLUMEN FINAL	38.16
DIAMETRO	5.11
ALTURA	1.76
DENSIDAD FINAL	1.797

1	3.55 6.00
T+NH	87.53
T-H4S	79.48
T T	27.84
AGUA	8.05
MS	51.64
CH %	15.6

n			
T+101	87.87		
THMS	79.12		
т	27.36		
AGUA	8.75		
MS	51.76		
C.H %	16.9		

CONTENIDO DE HUMEDAD FINAL

m	
T+864	86.62
T+MS	79.21
T	25.15
AGUA	9.41
MS	54.06
CH %	17.4

0.042 kg/cm2

ASSEA OF CALLSON
ASSEA OF CALLSON
Int. Taret Yeshoa Andia Arias

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook: centauro ingenieros
Av. Mariscal Castilla Nº 3950 - El Tambo – Huancayo - Junin (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 —
964966015
Para verificar la autenticidad del informe puede consunicarse a: grupocentauroingenieros@gmail.com

^{*} Los datos proporcionados por el Paticionario son los elgu HC-AS-005 VERSIÓN.B1 REV.00 FECHA: 2020/02/06 estra, profundidad de la calicata.

- ERIVICIOS DE MECANICA DE SUELOS, E ENIGATOS PARA MECÂNICA DE SUELOS ENIGATOS EN AGREGADOS PARA CONCRETO Y ASFALTO ENIGATOS EN ROCAS ENIGATOS CÚMICOS EN SUELOS Y AGUA ENIGATOS SYT, DYL, DYNS

ISO

ENSAYO DE CORTE DIRECTO NTP. 339.171

ESTADO : ALTERADO

CALICATA : CALICATA M-1 MUESTRA : MUESTRA EXTRAIDA DE 1.40 M

PROF. DE LA CALICATA : 1,40 M

Especimen N°		Ī	m	ш
Lado de la caja (cm)		5.11	5.11	5.11
Densidad Húmeda Inicial (gr/cm3)		1.451	1.451	1.451
Densidad Seca Inicial (gr/cm3)		1.337	1.337	1.337
Contenido Humedad Inicial (%)		8.54	8.54	8.54
Densidad Húmeda Final (gr/cm3)		1.810	1.805	1.797
Densidad Seca Final (gr/cm3)		1.566	1.544	1.530
Contenido Humedad Final (%)		15.59	16.90	17.41
Esfuerzo Normai (kg/cm²)		7.79	3.89	1.95
Esfuerzo de Corte Maximo (kg/cm²)		4.716	2.476	1.162
Angulo de Friccion Interna (°)	:	31.31		
Cohesión (kg/cm²)	:	0.042		

Muestras remitidas por el Peticionario.

HC-AS-005 VERSIÓN.01 REV.00 FECHA: 2020/02/06

Mg. Ing. Janet Yessica Andia Arias

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook: centauro ingenieros
Av. Mariscal Castilla № 3950 - El Tambo – Huancayo - Junín (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 —
964966015

Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

^{*} Los datos proporcionados por el Peticionario son los siguientes: peticionario, atención, nombre del proyecto, ubicación, calicata, muestra, profundidad de la calicata.

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS LARDUKA LVIRU DE MEDURANCA DE SUELOS SERVICIOS DE: ENSAYOS PARA MECÁNICA DE SUELOS ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO ENSAYOS EN ROCAS ENSAYOS SUBINCOS EN SUELOS Y AGUA ENSAYOS SYT, DPL, DPHS

ESTUDIOS Y ENSAYOS GECFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GECTÉCNICOS
 CONTROL DE CAULDA EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSTITU

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS

EXPEDIENTE Nº

: 1314-2020-AS

PETICIONARIO

: BACH. DAVID SALOMÓN PEÑALOZA TAPIA

ATENCIÓN

: UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE

: DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CENTRO

POBLADO ALTO MAYO PAMPA HERMOSA 2020

UBICACIÓN

: CENTRO POBLADO ALTO MAYO DISTRITO PAMPA HERMOSA, PROVINCIA SATIPO,

REGIÓN JUNÍN

FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: 15 DE SETIEMBRE DEL 2020

: 24 DE SETIEMBRE DEL 2020

NTP 339,137

SUELOS. METODOS DE ENSAYO ESTÁNDAR PARA LA DETERMINACIÓN DEL ÍNDICE DE DENSIDAD Y PESO UNITARIO MÁXIMOS DE SUELOS UTILIZANDO

CÓDIGO DE ORDEN DE TRABAJO:

P-092-2020

CALICATA: C1-E2, COORDENADAS: E=522367.672 N=8746115.315, ALTITUD: 1565 MSNM

Material que pasa la maila Nº 4

DENSIDAD MAXIMA	65	4.45
densidad minima (gr/cm3)	1	1.45

DENSIDAD MINIMA	4.00
Densidad mínima (gr/cm3)	 1.30

HC-AS-021 REV.05 FECHA: 2019/10/30

NOTA:

Fecha de ensayo Temperatura Ambiente : 2020-09-21

Humedad relativa

: 14,3 °C

Área donde se realizó los ensayos : Suelos II y Concreto

OBSERVACION : Muestra remitidas por el Peticionario.

* El presente documento no debera reproducirse sin autorización escrita del Laboratorio, salvo que la reproducción sea en su

TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON MORMAS DE PRODUCTOS O COMO
CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS
MUESTRAS PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

WITH THE CHIMAS CHIMAS WEIGHTS SAC

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook: centauro ingenieros Av. Mariscal Castilla Nº 3950 - El Tambo - Huancayo - Junín (Frente a la 14.N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 - 964966015

Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

Anexo 7: Resultados del análisis de agua

UNIVERSIDAD NACIONAL DEL CENTRO DEL PERÚ Vicerrectorado de Investigación Laboratorio de Investigación de Aguas

"Año de la universalización de la salud"

REPORTE DE ANÁLISIS DE AGUAS

NOMBRE DEL PROYECTO	Nº DE REPORTE:	075 /2020	DATOS DEL SOLICITANTE	
PRETECTO	No de Republica	475 / 2020		
DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA		DAVID SALOMON PEÑALOZA TAPIA		
		FECHA DE MUESTREO	13/10/2020	
POTABLE EN EL CENTRO POBLADO ALTÓ MAYO, PAMPA HERMOSA-2020 FUENTE DIO DE AGUA MANANTIAL			FECHA DE ANALISIS	14/10/2020
LOCALIDAD	The second of th	THE RESIDENCE OF THE PARTY OF T	PUNTO DE MUESTREO	
DIST/PROV/DEP.		ENTRO POBLADO ALTO MAYO ESTE MPA HERMOSA/SATIPO/JUNIN NORTE		522013 43 876341.605
PARAMETROS	PISICOQUIMICO/MICROBIOLOGICO		ALTURA[msnm]	1600
MURSTREADO POR	DAVID SALOMON PEÑALOZA TAPIA			

RESULTADOS

PARAMETROS FISICOQUIMICOS	UNIDAD	RESULTADO
DUREZA TOTAL	CaCOs trop/L)	25
ALCALINIDAD	CaCO ₁ (mg/L)	27.5
CLORUROS	Cr (mg/l.)	6.26
CONDUCTIVIDAD	µS/ow.	45
SOLIDOS DISUELTO TOTALES	[Jent]	23
SOLIDOS SUSPENDIDOS	(mg/L)	51
SOLIDOS TOTALES	(mg/L)	74
pH	pH (mg/L)	5.66 1.57
OXIGENO DISUELTO		
TURBIDEZ	NTU	0.24
PARAMETROS MICROBIOLOGICOS	UNIDAD	RESULTADO
COLIFORMES TOTALES	NMIY199ect.	461.1
E. coli	NMIV199ast	5.2

OBSERVACIONES:

e e Aschivo Laboritorio de Investigate doi de Aguin Av. Mariscal Cascillo Nº 3909-4089 Pubellino "C" - Tercor piso CIUIDAD UNIVERSITARIA

Tas mustics force projectionals per el intressdoja)

"Voltela de ensays- microbiológica: Método famient/IBEAN Quant-Tray/2000 Tablo, mirror más prohable (VSP/para Colibernes Intales, fermedoletanies y E.coli

"Boromentos de relevanta Scorbard Methods for examination of water and mastewater 23rd Edition -2007/8003-2:1990 (Sto
"Parlamentos to ucreditados

Anexo 8: Fotos de evidencia

Foto 1: Camino hacia el centro poblado Alto mayo

Foto 2: Vista de trayecto hacia el centro poblado

Foto 3: Escuela estatal del CC.PP alto mayo

Foto 4: Casa de uno de los pobladores del CC.PP alto mayo

Foto 5: Levantamiento topográfico en la línea de aducción

Foto 6: Coordinaciones para continuar con los trazos

Foto 7: Vista de la fuente de agua del CC. PP alto mayo

Foto 8: Realizando el aforo de la captación

Foto 9: Realizando la lectura del cronometro para el aforo

Foto 10: Transporte de la muestra de agua en caja de tecnopor con hielo

Foto 8: Se aprecia el estaqueado que inicia en a la proyección de la estructura de la captación con la progresiva 0+000

Foto 11: Extracción de la muestra de agua

Foto 12: Proceso de recolección de muestra de agua

Foto 13: Transporte de la muestra de agua en caja de tecnopor con hielo

Foto 14: Materiales esterilizados utilizados en la recolección de muestra de agua

Foto 15: Transporte de la muestra de agua en caja de tecnopor con hielo

Foto 16: Se aprecia el estaqueado en la línea de conducción de la progresiva 0+100

Foto 8: Se visualiza el estaqueado en línea de conducción

Foto 17: Reservorio artesanal de agua del CC.PP alto mayo

Foto 18: Haciendo la medición de la profundidad de la calicata

Foto 19: Excavación de Calicata en el lugar donde se realizará el reservorio

Foto 20: Proceso de excavación de la calicata

Foto 21: Se visualiza la fuente de agua de donde se va a captar para la comunidad

Foto 22: Limpieza de trayecto de la línea de conducción

Foto 23: Trazo del área de excavación para la calicata

Foto 24: Levantamiento topográfico en la red de distribución

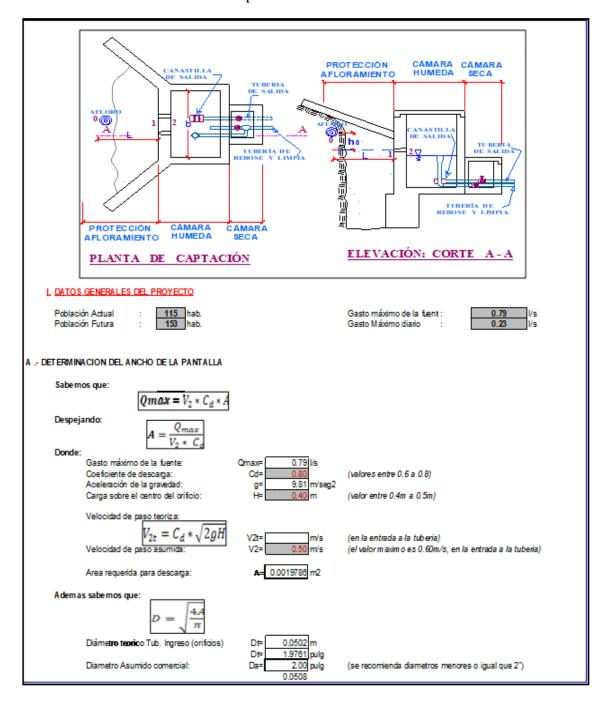
Anexo 9: Aforo de la fuente

DDOMESTO.	periope e	CTT ALL D		ALL TO DE LOS	I BOTTIBLE EN	C CCMMANA	OLEDO LITORIEMO
PROYECTO:	PAMPA HERM			MIENTO DE AGU	IA PUTABLE EN	EL CENTRO PO	BIADO ALTO MAYO
1. DATOS GEN	IERALES						
LOCALIDAD	: ALTO MAYO		FECHA	: 09/10/2020		OPERADORES	i:
DISTRITO	: PAMPA HERI	MOSA	HORA	: 10:00 a.m.		Jefe del JASS	(Poblador)
PROVINCIA	: SATIPO		CLIMA	: Cielo con Nu	bosidad	David S. Peña	loza Tapia (Tecnico)
DPTO.	: JUNIN						
2. DESCRIPCIO	N DE LA FUENT	E					
TIPO	: Manantial M	edia Lade	па	UBICACIÓN	Coord. UTM:	8746339.545 N	ı
NOMBRE	: "ALTO MAYO)"		FUENTE:		522010.639 E	
TEMPORADA	: Epoca de vei	ano			Altitud:	1601_78 msnm	
AFORO	: Metodo volu	metrico					
3. CALCULOS I	 DE AFORO - (Se _t	gún Agüe	ro Pittman I	Roger)		<u>Γ</u>	
a) Método Vo	lumétrico segú	n la fórmu	ıla:				
		Q	= V/ t				
Donde:							XII
Q = Caudal en V	<u>'s</u>						
V = Volumen del	recipiente en Its.						
t = Tiempo prom	edio seg.						
N° Prueba	Volumen	Tiemp	o Llenado	Caudal	Secc. Circular	D=0.19 m.	
	(Litros)	(:	Seg.)	(l/s)		H=0.175 m.	
1*	4.00	5	.060	0.79			Λ
2*	4.00	5	.070	0.79			>
3*	4.00		.040	0.79			
4*	4.00		.050	0.79			Di .
5*	4.00		.050	0.79			
CAUDAL PROF	MEDIO DE LA AC	CTUAL CAI	PTACION	0.79			Ψ
4. RESULTADO)S:	Caudal to	tal promed	io en It/seg:	0.79		
		De acuer	do al aforo	realizado, estos	1.15 lt/seg cub	re la demanda	de la
		CC PP AI	to Mayo /20) Viviendas).			

Anexo 10: Diseño de la tasa de crecimiento

PC	OBLACION DE DIS	EÑ O						
1 C/	ALCULO DE TASA	DE CRECIMIENT	0					
Do	on de:							
Po	=Poblacion Actu	ral						
Pf	≒ Poblacion Fina	1						
t=	Tiempo							
r=	Tasa de crecimies	nto anual (%)						
\top	AÑO	Pa (Hab.)	t (años)	P(Pf-Pa)	Pa ⁴ t	r (P/Pa ⁴ t)	r*t	
	1999	18001						
			14	6348	252014	0.025	0.353	
	2007	24349						
			10	1040	243490	0.004	0.043	
	2017	25389						
TC	TAL		24				0.40	
Ha	alando:						Nota: Utilizar	emos la tasa
		Total	rxt				de crecimien	to an ual de l
		r =		r=	1.65	%	distrito de Pa	m pa Hermosa
		Total	al t					nsos INEI 1993,
							2007 y 2017).	

Z CALCADEL FOR	LACION ACTUAL	Y DENSEDAD	POBLACIONAL				
		$P\alpha = 1$	V°viv.∗ Dp				
Donde:							
N* VIv Densided P				-			
Dp- Densidad Pobla	NGONO						
DESCRIPCION	N* DE INSTITUCIONE S	N* VIVIENDAS	POBLACIONAL PROMEDIO (Hab./Vlv.)	POBLACION ACTUAL		Nota: Según padr tiene 115 habitan	tes en el
ANEXO DE ALTO	0	20	5.75	115		Anexo de Alto Ma	зуо
TOTAL	0	20	5.75	115		Dato:	
						Padron=	115 hab
O PARAMETROS DE	DISEÑOS						
L1 PERIODO DE DISE	ÑO						
	,	ESTRUCTURA			PERIODO DE DISEÑO		
Fuente de abaste	dmiento				20años		
Obra de captación	п				20años		
Pozos					20años		
Planta de tratami	ento de agua pa	ra consumo h	iumano (PTAP)		20años		
Reservorio	L				20años		
Líneas de conduo	t	mpulsión y di	istribución		20años		
Estación de bomb Equipos de bomb					20años 10años		
		rootro bidefe	i ilico, compostera	u para zopa ipu			
Unidad Básica de				r paratora inc	Saños		
	L	L					
Se asumira el per	iodo de diseno :	segun KM-192	2 un penodo de:	-	20	Años	
L2 CALCULO DE POB	LACION FUTURA						
		$P_d = P_i *$	$\left(1+\frac{r*t}{100}\right)$				
Donde:			. 1007				
PI-Poblacion Incla	i (hahitantes)						
Pal-Poblacion futi		abitantes)					
r-Tasa de crecim	-						
t-Periodo de dise							
	Pî=	115	hab				
	r(%)=	1.65					
	.,j- t=	ALTONO DE CONTROL DE C	años				
	Pd=	153	Habitantes				

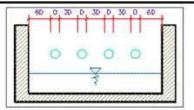

Anexo 11: Dotación

DOTACION 4.1 DOTACION BEABASTECIMIENTO DE AGUA DOTACIÓN SEGÚN TIPO DE OPCION TECNOLÓGICA (l/hab.d) REGION SIN ARRASTRE HIDRÁULICO (COMPOSTERA Y HOYO) SECO VENTILADO) SECVA TO 100 Dichas dotaciones consideran consumo proveniente de ducha y lavadero multiuso. Encaso de omitir cual quier de este elementos , se deberá justificar la dotación a utilizar. En el caso de piletas públicas la dotación recomendada será: 30 l/hab./d Para instituciones educativas se empleará una dotación de: 20 //alum*d 25 //alum*d 25 //alum*d 25 //alum*d 26 //alum*d 27 //alum*d 28 utilizará sistema de UBS con arrastre Hidráulico Donace. Se utilizará sistema de UBS con arrastre Hidráulico Donace. Op= Canada promedio diarra anual en l/s Donacion en el habad Pd - Poblacion de diseño en habitantes (hab) Dotacion 131 Habitantes Dator 86403 seg Qp 0.18 Vseg 5.1 CONSUMO MAXIMO DIARIO Donace. K1 13 Qmd 0.23 Vseg 5.2 CONSUMO MAXIMO HORARIO DESCRIPCION CONSUMO PROMEDIO (Qp CONSUMO MAXIMO DIARIO) CC-PP ALTO MAYO 0.18 0.23 Vseg CONSUMO RAZIMO DIARIO CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Cmh) HORARIO (Cmh) CONSUMO RAZIMO COUNTIE CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Cmh) Caudal Requerido Caudal Requerido Caudal Requerido Caudal Requerido	
A.1 DOTACION DE ABASTECIMIENTO DE AGUA DOTACIÓN SEGÚN TIPO DE OPCION TECNOLÓGICA (I/hab.d) REGION SIM ARRASTRE HIDRÁULICO (COMPOSTERA Y HOYO SECO VENTILADO) COSTA 60 90 Serva 50 80 Serva 100 Dichas dotaciones consideran consumo proveniente de duchay lavadero multiuso. En caso de omitir cual qui er de estre elementos, se deberá justificar la dotación a utilizar. En el caso de piletas públicas la dotación a utilizar. En el caso de piletas públicas la dotación recomendada será: 30 l/hab./d Para instituciones educativas se empleará una dotación de: 20 l/alum*d 20 l/alum	
REGION SIN ARRASTRE HIDRÁULICO (COMPOSTERA Y HOYO) SECO VENTILADO) COSTA GO SIERTA G	
REGION SIN ARRASTRE HIDRÁULICO (COMPOSTERA Y HOYO) SECO VENTILADO) Costa 60 90 Sierra 50 80 Selva 70 100 Dichas dotaciones considera nonsumo proveniente de ducha ylavadero multiuso. Encaso de omitir cualquier de este elementos, se deberá justificar la dotación a utilizar. En el caso de piletas públicas la dotación recomendada será: 30 J/hab./d Para instituciones educativas se empleará una dotación de: 20 J/alum*d primaria Se utilizará sistema de UBS con arrastre Hidraúlico 300 J/hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 300 J/hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 300 J/hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 300 J/hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 300 J/hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 300 J/hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 300 J/hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 300 J/hab./d J/hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 300 J/hab./d J/h	
CON PREASTREM INDIVIDUAL (CON PREASTREM INDIVIDUAL CON PREASTREM INDIVIDUAL CON PROMEDIO (CON PREASTREM INDIVIDUAL CONSUMO MAXIMO DIARIO CONSUMO PROMEDIO (Qmd) Costa 60 90 100 100 100 100 100 100 100 100 100	
Sierra 50 80 Selva 70 100 Dichas dotaciones consideran consumproveniente de ducha y lavadero multiuso. Encaso de omitir cualquier de estre elementos , se deberá justificar la dotación a utilizar. En el caso de piletas públicas la dotación recomendada será: 30 l/hab./d Para instituciones educativas se empleará una dotación de: 20 l/alum*d secundaria Se utilizará sistema de UBS con arrastre Hidraúlico 100 l/hab./d S.00 VARIACION DE CONSUMOS 5.1 CONSUMO PROMEDIO Q = Dotacion 100 l/hab./d Poblacion 151 Habitantes Dotacion 152 Habitantes Datos 86400 seg QP 0.18 l/seg S.2 CONSUMO MAXIMO DIARIO Q = 1, 3 · Q = 1 Qomd= 0.23 l/seg Donde: K1 1 1 3 Qmd= 0.23 l/seg Donde: K2 2 2 4 Qmh= 0.33 l/seg DOMESCRIPCION CONSUMO PROMEDIO (Qm) DESCRIPCION CONSUMO PROMEDIO (Qm) CC. PP. ALTO MAXIMO PROMEDIO (Qm) CC. PP. ALTO MAXIMO PROMEDIO (Qm) O. 18 0. 23 0. 23 0. 35	
Dichas dotaciones consideran consumo proveniente de ducha y lavadero multiuso. En caso de omitir cualquier de este elementos , se deberá justificar la dotación a utilizar. En el caso de piletas públicas la dotación recomendada será: 30 l/hab./d Para instituciones educativas se empleará una dotación de: 20 l/alum*d primaria secundaria Se utilizará sistema de UBS con arrastre Hidraúlico 100 l/hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 100 l/hab./d Donde: Qp = Caudal promedio diario amual en l/s Qmd-Caudal maximo diario en l/hab d Pd = Poblacion en l/hab d Pd = Poblacion de diseño en habitantes (hab) Dotacion= Dotacion= Dotacion= Dotacion= Dotacion= SedOQ Seg Qp = 0.18 l/seg 5.2 CONSUMO MAXIMO HORARIO Qmd= 0.23 l/seg Donde: K1 1.3 Qmd= 0.23 l/seg Donde: K2 2.4 Qmh 0.35 l/seg DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (CONSUMO MAXIMO DIARIO (Qmd) CC. PP. ALTO MAYO O 18 0.23 0.35	
Dichas dotaciones consideran consumo proveniente de ducha y lavadero multiuso. En caso de omitir cualquier de estre elementos , se deberá justificar la dotación a utilizar. En el caso de piletas públicas la dotación recomendada será: En el caso de piletas públicas la dotación recomendada será: 20 /alum*d primaria secundaria Se utilizará sistema de UBS con arrastre Hidraúlico 100 /hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 100 /hab./d Se utilizará sistema de UBS con arrastre Hidraúlico 100 /hab./d Donde: Op= Consumo PROMEDIO Op= Donde: Op= Consumo diario en us Opa-Cotacion en ti habi d Pd=Poblacion de dissen en habitantes (hab) Dotacion 151 Abitantes Dato 86000 Seg Op= 0.18 //seg S.: CONSUMO MAXIMO DIARIO Omde: K1 1.3 Qmd 0.23 /seg S.: CONSUMO MAXIMO HORARIO Donde: K2 2.0 Qmh 0.35 Ops 0.18 0.23 CONSUMO MAXIMO MAXIMO PROMEDIO (Qmd) CONSUMO MAXIMO HORARIO CONSUMO MAXIMO HORARIO DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO CONSUMO MAXIMO HORARIO Onale: CC.PP. ALTO 0.18 0.23 O.35 O.36 O.37 O.38 O.38 O.39 O.31 O.31 O.32 O.35 O.35 O.35 O.35 O.35 O.36 O.37 O.38 O.39 O	
elementos , se deberá justificar la dotación recomendada será: En el caso de piletas públicas la dotación recomendada será: En el caso de piletas públicas la dotación recomendada será: Para instituciones educativas se empleará una dotación de: 20 Valum*d 22 J/alum*d 25 J/alum*d 25 J/alum*d 26 J/alum*d 27 J/alum*d 28 J/alum*d 28 J/alum*d 29 J/alum*d 20 J/hab./d 20 J/hab./d 20 VARIACION DE CONSUMOS 2	
Para instituciones educativas se empleará una dotación de: 20 /alum*d 25 /alum*d 26 /alum*d	os
Se utilizará sistema de UBS con arrastre Hidraúlico 100 VARIACION DE CONSUMOS	
Se utilizará sistema de UBS con arrastre Hidraúlico 100 VARIACION DE CONSUMOS	-
Se utilizará sistema de UBS con arrastre Hidraúlico 100 $I/hab./d$ 1.00 VARIACION DE CONSUMOS 5.1 CONSUMO PROMEDIO $Q_p = \frac{D \ni t + I^*_{rA}}{6!6400}$ Donde: $Qp = Caudal promedio diario anual en I/s$ $Qmd-Caudal maximo diario en I/s$ $Qrd-Poblacion en I/hab./d$ $Poblacion en 1/hab./d$ $Poblacion en 1/hab./d$ $Poblacion en 1/hab./d$ $Poblacion en 1/hab./d$ $Qrd-10.18 $	-
3.00 VARIACION DE CONSUMOS 5.1 CONSUMO PROMEDIO Donde: Qp = Caudal promedio diario anual en I/s Qmab-Caudal maximo diario en I/s Dotacion en I/ hab. d Pd = Poblacion de diseño en habitantes (hab) Dotacion 100 I/hab./d Poblacion 151 Habitantes Dato 86400 seg Qp = 0.18 Vseg 5.2 CONSUMO MAXIMO DIARIO Qmab 0.23 Vseg Donde: K1 1 1.3 Qmd 0.23 Vseg Donde: K2 2.0 Qmh 0.35 Vseg Donde: K2 2.0 Qmh 0.35 Vseg DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) CC.PP. ALTO MAYO 0.18 0.23 0.35	
5.1 CONSUMO PROMEDIO Qp = Detailed promedio diario amual en I/s Qmd-Caudal promedio diario amual en I/s Qmd-Caudal moximo diario en I/s Dotacion en I/hab.d Pd = Poblacion de diseño en habitantes (hab) Dotacion= 100, I/hab./d Habitantes Seg Qp= 0.18 I/seg 5.2 CONSUMO MAXIMO DIARIO Qmd= 0.23 I/seg Donde: K1= 1.3 Qmd= 0.23 I/seg Donde: K2= 2.0 Qmh= 0.35 I/seg Donde: K2= 2.0 Qmh= 0.35 I/seg DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO CC.P.P. ALTO MAYO 0.18 0.23 0.35	
5.1 CONSUMO PROMEDIO Qp = Dotte: Qp = Caudal promedio diario amual en l/s Qmd=Caudal mostimo diario en l/s Qmd=Caudal mostimo diario en l/s Dote-Dotacion en l/hab. d Pd = Poblacion de diseño en habitantes (hab) Dotacion=100 l/hab./d Habitantes Dato=86400 seg Qp=0.18 l/seg 5.2 CONSUMO MAXIMO DIARIO Donde: K1=1.3 Qmd=0.23 l/seg Donde: K2=2.0 Qmh=0.35 l/seg Donde: C2=2.0 Qmh=0.35 l/seg Donde: C3=2.0 Qmh=0.35 l/seg Donde: C4=2.0 Qmh=0.35 l/seg Donde: C5=CONSUMO MAXIMO DIARIO Donde: C6=CNSUMO MAXIMO DIARIO Donde: C7=CNSUMO MAXIMO DIARIO Donde: C8=2.0 Qmh=0.35 l/seg Donde: C9=2.0 Qmh=0.35 l/seg Donde: C1=CNSUMO MAXIMO DIARIO CONSUMO MAXIMO DIARIO CONSUMO MAXIMO HORARIO (Qmh) CONSUMO MAXIMO HORAR	
Donde: Qp = Caudal promedio diario anual en I/s Qmd=Caudal miximo diario en I/s Dot-Dotacion en I/hab.d Pd = Poblacion de diseño en habitantes (hab) Dotacion= 153 Habitantes Dato= 86400 Seg Qp= 0.18 I/seg 5.2 CONSUMO MAXIMO DIARIO Consumo MAXIMO HORARIO Qmd= 0.23 I/seg Donde: K1= 1.3 Qmd= 0.23 I/seg Donde: K2= 2.0 Qmh= 0.35 I/seg Donde: CONSUMO MAXIMO DIARIO CONSUMO MAXIMO DIARIO Donde: CONSUMO MAXIMO HORARIO CONSUMO MAXIMO HORARIO Donde: CONSUMO MAXIMO HORARIO CONSUMO MAXIMO DIARIO Donde: CONSUMO MAXIMO DIARIO DONGE: CONSUMO MAXIMO DIARIO CONSUMO MAXIMO DIARIO DONGE: CONSUMO MAXIMO DIARIO DONGE: OURBON DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (CONSUMO MAXIMO HORARIO (Qmh) HORARIO (Qmh) CC.PP. ALTO MAYO OURBON DE CAUDA DIARIO OURBON	
Qp=Caudal promedio diario anual en l/s Qmd-Caudal moximo diario en l/s Dota-Dotacion en l/hab d Pd=Poblacion de diseño en habitantes (hab) Dotacion= 100 Poblacion= 153 Dato= 86400 Qp= 0.18 I/seg Qp= 0.18 I/seg 5.2 CONSUMO MAXIMO DIARIO Donde: K1= 1.3 Qmd= 0.23 I/seg Donde: K2= 2.0 Qmh= 0.35 I/seg Donde: CONSUMO MAXIMO HORARIO Donde: CONSUMO MAXIMO DIARIO Comba 1/seg Donde: CONSUMO MAXIMO HORARIO Donde: CONSUMO MAXIMO HORARIO CONSUMO MAXIMO DIARIO Donde: CONSUMO MAXIMO HORARIO Donde: CONSUMO MAXIMO DIARIO Donde: CONSUMO MAXIMO DIARIO DONGE: CONSUMO MAXIMO DIARIO DONGE: CONSUMO MAXIMO DIARIO DONGE: OO RESUMEN DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (CONSUMO MAXIMO HORARIO (Qmh) HORARIO (Qmh) CC.PP. ALTO MAYO O.35	
Qmd-Caudal móximo diario en l/s Dot-Dotacion en (l/hab.d) Pd = Poblacion de diseño en habitantes (hab) Dotacion 100 I/hab./d Poblacion 153 Habitantes Dato 86400 seg Qp 0.18 I/seg 5.2 CONSUMO MAXIMO DIARIO Donde: K1 1.3 Qmd 0.23 I/seg Donde: K2 2.0 Qmh 0.35 I/seg Donde: CONSUMO MAXIMO HORARIO Donde: CONSUMO MAXIMO HORARIO Consumo MAXIMO HORARIO Donde: CONSUMO MAXIMO HORARIO CONSUMO MAXIMO DIARIO Onde: CONSUMO MAXIMO HORARIO Onde: CONSUMO MAXIMO DIARIO Onde: CONSUMO MAXIMO DIARIO Onde: CONSUMO MAXIMO DIARIO Onde: CONSUMO MAXIMO DIARIO Onde: Onde: CONSUMO MAXIMO DIARIO Onde: O	
Dotacion en l/hab.d Pd = Poblacion de diseño en habitantes (hab) Dotacion= Poblacion 154 Habitantes Dato= 86400 Seg Qp= 0.18 //seg 5.2 CONSUMO MAXIMO DIARIO Donde: K1= 1.3 Qmd= 0.23 //seg Donde: K2= 2.0 Qmh= 0.35 //seg Donde: K2= 2.0 Qmh= 0.35 //seg DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO CC.P.P. ALTO MAYO 0.18 0.23 0.35	
Dotacion= 100 I/hab./d Poblacion= 151 Habitantes Habitantes Habitantes Habitantes Dato= 86400 Seg Qp= 0.18 I/seg I/se	
Dotacion	
Poblacion 153 Habitantes Dato 86400 seg Qp- 0.18 I/seg 5.2 CONSUMO MAXIMO DIARIO Donde: K1 1.3 Qmd- 0.23 I/seg 5.5 CONSUMO MAXIMO HORARIO Donde: K2 2.0 Qmh- 0.35 I/seg Donde: CONSUMO RESUMEN DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CC.PP. ALTO MAYO 0.18 0.23 0.35	
Date	
Qp	
5.2 CONSUMO MAXIMO DIARIO Q _{mil} = 1.3 · Q _p Donde: K1 = 1.3 Qmd = 0.23 /seg 5.2 CONSUMO MAXIMO HORARIO Donde: K2 = 2.0 Qmh = 0.35 /seg Donde: K2 = 2.0 Qmh = 0.35 /seg Donde: CONSUMO MAXIMO DIARIO CONSUMO DIARIO CONSUMO MAXIMO DIARIO CONSUMO	
5.2 CONSUMO MAXIMO DIARIO Q _{mil} = 1.3 · Q _p Donde: K1 = 1.3 Qmd = 0.23 /seg 5.2 CONSUMO MAXIMO HORARIO Donde: K2 = 2.0 Qmh = 0.35 /seg Donde: K2 = 2.0 Qmh = 0.35 /seg Donde: CONSUMO MAXIMO DIARIO CONSUMO DIARIO CONSUMO MAXIMO DIARIO CONSUMO	
Donde: K1= 1.3 Q _{pml} 1.3	
Donde: K1= 1.3 Qmd= 0.23 I/seg 5.5 CONSUMO MAXIMO HORARIO Donde: K2= 2.0 Qmh= 0.35 I/seg .00 RESUMEN DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) HORARIO (Qmh) CC.PP. ALTO MAYO 0.18 0.23 0.35	
CONSUMO MAXIMO HORARIO	
Qmd= 0.23 I/seg 5.5 CONSUMO MAXIMO HORARIO Qmh= 2 0 + Qp Donde: K2= 2.C Qmh= 0.35 I/seg 6.00 RESUMEN DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) HORARIO (Qmh) CC.PP. ALTO MAYO 0.18 0.23 0.35	-
5.5 CONSUMO MAXIMO HORARIO Qmh = 2 0 + Qp	-
5.5 CONSUMO MAXIMO HORARIO Qmh - 2 0 + Qp	
Donde: K2= 2.0 Qmh= 0.35 I/seg .00 RESUMEN DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) HORARIO (Qmh) CC.PP. ALTO MAYO 0.18 0.23 0.35	
Donde: K2= 2.0 Qmh= 0.35 I/seg .00 RESUMEN DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) HORARIO (Qmh) CC.PP. ALTO MAYO 0.18 0.23 0.35	
Donde: K2= 2.0 Qmh= 0.35 I/seg .00 RESUMEN DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) HORARIO (Qmh) CC.PP. ALTO MAYO 0.18 0.23 0.35	
Qmh= 0.35 I/seg .00 RESUMEN DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) HORARIO (Qmh) CC.PP. ALTO MAYO 0.18 0.23 0.35	_
Qmh= 0.35 I/seg .00 RESUMEN DE CAUDALES REQUERIDOS DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) HORARIO (Qmh) CC.PP. ALTO MAYO 0.18 0.23 0.35	
DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) CONSUMO MAXIMO HORARIO (Qmh) CC.PP. ALTO MAYO 0.18 0.23 0.35	
DESCRIPCION CONSUMO PROMEDIO (Qp) CONSUMO MAXIMO DIARIO (Qmd) CONSUMO MAXIMO HORARIO (Qmh) CC.P.P. ALTO MAYO 0.18 0.23 0.35	
DESCRIPCION CONSUMO PROMEDIO (Qp) (Qmd) HORARIO (Qmh)	
CC.PP. ALTO MAYO 0.18 0.23 0.35	
Caudal Requerido Caudal Aforado	
0.23 lt/seg. 0.79 lt/seg.	

Anexo 12: Diseño de volumen de Reservorio

W	CATCATO DE AOTAR	MEN DE RESERVOI	RMO			
	El volumen del reso caso sea discontinu		-	omedio anual siempre	que el abastecimiento se	ea continuo. En
		Vre	e = 25% x Qp x	86400/1000		
	Caudal Promedio D	iario Anual	0.18 l/seg			
	Volumen de regula	don	25.00 %			
	Volumen de Reser	vorio	3.82 m3			
	V	d.Reserv.	5.00 m3	(Assunido sej	şim Tabla (11.)	
			Tabla 01: Volun	nen a Usar (RM N° 192-2	.018)	
		RANGO		Vaim (REAL)	SE UTILIZA:	
		1 – Reservor		≤ 5 m³	5 m ³	
		2 – Reservor		m ³ hasta ≤ 10 m ³	10 m ³	
		3 – Reservor		m ³ hasta ≤ 15 m ³	15 m ³	
		4 – Reservor	rio > 15	m³ hasta ≤ 20 m³	20 m ³	
	_	5 – Reservor		m ³ hasta ≤ 40 m ³	40 m ³	
	_	1 – Cisterno		≤ 5 m ³	5 m ³	
	-	2 – Cistema 3 – Cistema		m³ hasta ≤ 10 m³	10 m ³	
	L	3 – Cisterni	3 > 10	m³ hasta ≤ 20 m³	20 m*	

Anexo 13: Diseño Hidráulico - Captación


Determinamos el número de orificios en la pantalla:

$$N_{ORIF} = rac{Area\ del\ Diametro\ Teorico}{Area\ del\ Diametro\ asumido} + 1$$

$$N_{ORIF} = \left(\frac{Dt}{Da}\right)^2 + 1$$

Numero de Orificios:

Norif= 2,00 oficios

Conocido el número de orificios y el diámetro de la tubería de entrada se calcula el ancho de la pantalla (b), mediante la siguiente ecuación:

$$b = 2 \times (6D) + Norif \times D + 3D \times (Norif - 1)$$

Ancho de la pantalla:

b= 0,86 m

(pero con 1.30m tambien trabajable)

B. - CALCULO DE LA DISTANCIA ENTRE EL PUNTO DE AFLORAMIENTO Y LA CAMARA HUMEDA

Sabemos que:

$$H_f = H + h_o$$

Donde:

Carga sobre el centro del orificio:

Ademas:

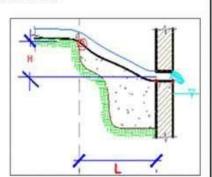
$$h_o = 1.56 \frac{{v_2}^2}{2g}$$

Pérdida de carga en el orificio:

ho= 0,019878 m

Hallamos:

Pérdida de carga afforamiento - captac


Hf= 0.42 m

Determinamos la distancia entre el afloramiento y la captación:

$$L = \frac{H_f}{0.30}$$

Distancia afloramiento - captación: Se asumira la distancia:

C .- ALTURA DE LA CAMARA HUMEDA

Determinamos la altura de la camara húmeda mediante la siguiente ecucaion:

A: altura mínima para permitir la sedimentación de arenas, se considera una altura mínima de 10 cm

10,00 cm A=

B: se considera la mitad del diámetro de la canastilla de salida

criterio 0.75 pulg

D: desnivel mínimo entre el nivel de ingreso del agua de afloramiento y el nivel de agua de la cámara húmeda (mínimo de 5 cm).

D= 10,00 cm

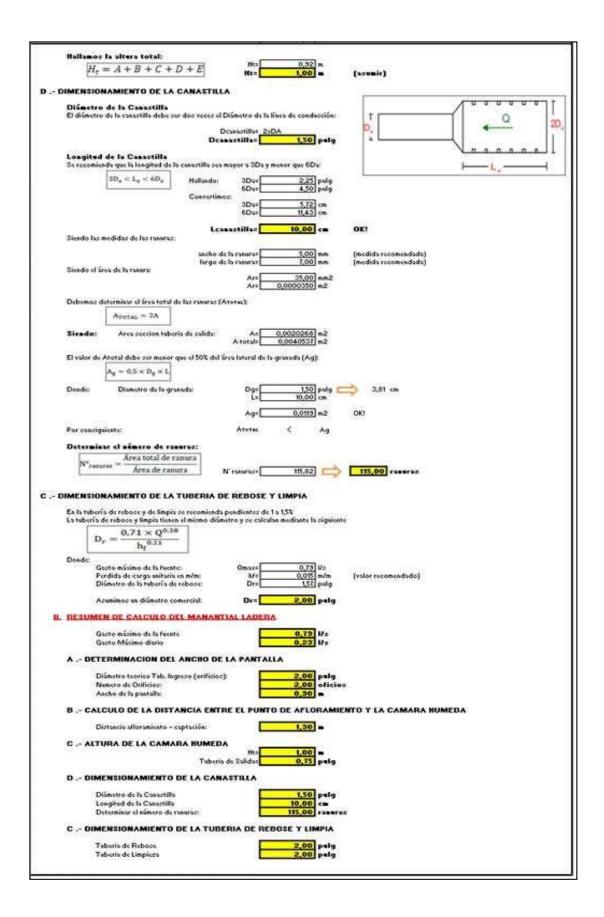
E: borde libre (se recomienda mínimo 30 cm).

C: altura de agua para que el gasto de salida de la captación pueda fixar por la tubería de conducción (se recomienda una altura mínima de 30 cm).

$$C = 1.56 \frac{v^2}{2g} = 1.56 \frac{Q_{md}^2}{2g \times A^2}$$

Q= m3/seg A= m2

Caudal máximo diario: Área de la Tubería de salida:



Altura calculada:

0,0011 m 30,00 cm

Resumen de Datos:

10,00 cm 1,91 cm 30,00 cm 10,00 cm C= D: 40,00 cm

Anexo 14: Diseño Hidráulico – Línea de conducción

,00 CRITERIOS DE DISEÑOS PARA SAP							
Coef. de Hanzen-Willia	ms:				Гub. de diamet	ros comercial	es
MATERIAL	С			Diametro		D(cm)	
F°F° - F°G°	100			0,75	3/4"	0,75	1,905
Concreto	110			1	1"	1	2,54
Acero	120			1,5	1 1/2"	1,5	3,81
Asbesto cemento	140			2	2"	2	5,08
P.V.C	140			3	3"	2,5	6,35
				4	4"	3	7,62
Velocidades admisible	s			5	5"	4	10,16
DESCRIPCION	V			6	6"	6	15,24
Velocidad minima (m/seg.)	0,60						
Velocidad maxima (m/seg.)	3,00						
Velocidad Justificada (m/seg.)	5,00						
3,00 CALCULO DE LA TUBERIA DE CONI	DUCION						
Donde:				1000	- Carrent		
Gasto Máximo diario	Qmd=	0,23	1/s	The			
Longitud Tramos	L=	439,51	- '	T do	Name and Address of the Park	A	
Cota de Inicio (captacion)	Ci=	1601,78	-		P-dro	Tellura de Apri	1
Cota de Descarga (reservorio)	Dc=	1565,65	msnm	distinguish.		Pilhalini	1
Carga Disponible (CD=Ci-Cd)	CD=	36,13	m		A STATE OF THE PARTY OF THE PAR	A	
3,1 Perdidas:				(January)			
Carga disponible				altitut.		1	T THE
L.	Hf=	82,206	m/km	55465		and the same of th	
3,2 Hallando el diametro tuberia:							
$D = \frac{0.71 * Q_{mat}^{-0.31}}{hf^{0.21}}$	8						
hf ^{0.21}	D=		pulg				
_	Dcom.=	1,00	pulg	(asumir)			
3,3 Determinacion de la Velocidad de	el Flujo:						
Q							
V = 1.9735	V=	0,45	m/seg	ок!			
D ²							

Anexo 15: Diseño Hidráulico – Línea de Aducción

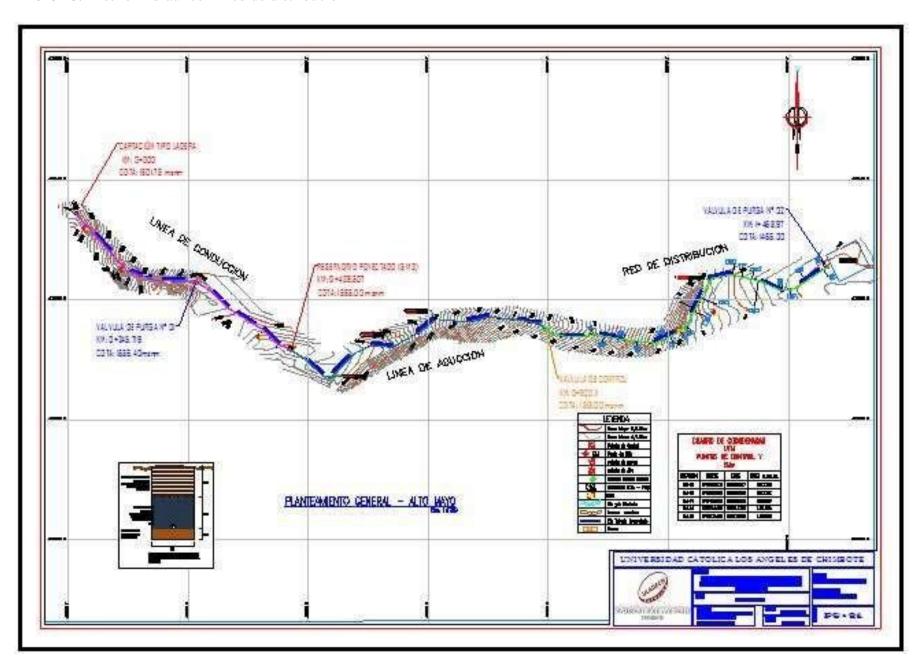
2721324	TV L	E RES	EAST V	ALV.		- ARRIGADO		SALO	#3 F	LOSC	OHEC	BAITES	IO PAP	A FI /	aro
												ERE Y			
								Notac							
Proyecto:		E BO BE L A P OTAB LI						Para calcu data salar		om Italija		بخضم أعف	> == 1 y=0	i, yesbiil y	yyeb/2t
Districa	:PAGEPA	HILLERA						en mekent Läito en zv							
Provincia	: SATIFO							ritanarios a				a=au:			
k ja	: HMN	Ţ													
DATOS:															
NGLUM EN (=	5,00										
ANCHO DE I				=	1,80 1.55		5.022	bih.	38 1	, ,	×Û	y=1	/4	y a	F2
ALTURA DEI BORGE LIER		y	_	=	0,90		2002	DAU	390	Mv	Mo	Mx	Mari	Mv	Mari
ALTURA TO				=	1,85				6	0.000	0.026	0.000	0,014	0.00D	-0.082
Æ30 €3Æ		L AGUA (Ex)		=	1.000,00				1/4	0,010	0,019	0,007	0,013	-0.0M	4071
reso esta	0F100/06	L TESTERO (SA		=	1.800,00	ADMIS.		3,00	14	0.005	0.010	0.008	0.010	-0,011	0.056
		A DEL TERREN L CONCRETO (=	1,20 2,400,00	Atoma Atoma			- % - 1	-0,083 -0,126	-0,004 -0,025	-0,018 -0,092	0,000	-0,00B 0,00D	40,028
		ros y espeso							0	0.000	0.027	0.000	0.013	0.000	-0.074
CHLUID'S		VALUE T CONTESSE	14.3						34	0.012	0.022	0.002	0.013	-0.013	0.086
Los Unites d	e archicator d	e irk son de 0.5	a 20					2,50	74	0,011	0,014	0,008	0,010	-0,011	0.053
				ist)	=	1,10			%	-0.021	0.001	0.010	0,001	-0.005	0.027
									_	-0,108	0,022	-0,077	0,015	0,000	
		y=0		у	-54	y:	₩2		0	0,000	0,027	0,000	0,009	0,000	-0,080
故物	MA							8.5-	74	0.013	0,023	0,006	0,010	-0,012	-0,059
	-	.MX	70.00	MX n.no	40.87	MX n.nn	-148.90	2,00	36	0,016 -0,008	0,018	0,010	0,010	-0,010 -0,005	-0,049
	- W	0,000 29,791	7820 7448	0,00 14,90	18,02 20,07		-148596 -1439,85		1	-0.096	0,017	40059	0,012	-0000	
110	8	59,582	59.58	97,24	29,79	-29,79			6	0.000	0.025	0.000	0.007	0.000	0.050
	×	11,172	22,54	11,17	14,90		-95,82		1/4	0,012	0,022	0,005	0,008	-0,010	0,052
	1	-229,499	-4409	- 52,6 8	-29,79	0,00	0,00	1,75	74	0.016	0.016	0.010	0.009	-0.003	0.046
									% 1	-0.002 -0.074	0,005 0,015	0,001 -0,050	0,004	-0,005 0,000	-0,027 0,000
		#=tijiiM				(97)			0	0,000	0,021	0,000	0,005	0,000	-0,040
OR CINOR	n-	14	-	229 489	Ab-m			150	74 14	0,008	0,020	0,004	0,007	-0,00B	-0,044
LL COALI			+-	2/4 403	ng-m.			450	16 36	0.003	0.006	0.003	0.004	-0.005	0.026
CNCLOD	EL 6343	OR DELAPAG	EQ:						ï	-0,080	0,012	0,041	0,008	0,000	0,000
			-	%					0	0,000	0,016	0,000	0,003	0,000	-0,029
		4=	-			(0.0)			34	0,005	0,016	0,002	0,005	-0,007	-0,034
			210					1,26	74	0,014	0,016	0,008	0,007	-0,007	-0,037
			+						*	0,006	0,009	0,005	0,005	-0,005	0.000
OONE:			-						0	-0,007 0,000	0009	-0,031 0,000	0.002	0.000	0.018
		=	0.8547079	=	12,32	Mytum2			34	0.002	0.011	0.000	0.003	-0.005	0.023
	Pc	=		At/Am2				1,00	14	0.009	0,013	0,005	0,005	-0.008	0.029
	Lik	=	22949	60-m .					%	0,008	0,008	0,005	0,004	-0,001	-0,020
	14	=	109,85						1	-0,086	-0,007	-0,022	4,005	0,000	0,000
	b	=	100,00	MT.					- 0 %	0,000 0,001	0,004	0,000	0,001	-0.000 0.000	-0,007
RELEVAÇÃO	DO MALO	TES EN (02) TE	escs:					0.75	76	0,005	0,010	0,002	0,003	-0.00B	4017
								1,	34	0,007	0,007	0,003	0,003	-0.00B	0.013
	e	=	1049	am.					1	-0.024	0,005	0,015	0,003	0,000	0,000
ANNEL CE	EÑDSE A	SILE QUE							- 0 %	0,000	0,001 0,005	0,000	0,000 0,001	-0.000	0,002 0,002
	e	=	15,00	OM.				0,50	14	0.002	0,008	0,001	0,001	-0.002	0,009
	đ	=	10,00						% 1	0,004 -0,045	0,008 -0,003	0,001 -0,008	0,001	-0,000 0,000	0,000 -0,007
CNCLOD	EL 6343	OR DELATOS	A DE CABB	₫A					•	·HOR	-4480			سعب	لععب
Œ OLCLU	00000	SA ARBADA E	NDOS DEPES	XXXXES											
		Especar 4	=	L/34		, VOI									
			=	b+(@*\j2		(0)									

		ESENIPI): L	=	1,95	m.										
		_							+	_		-	-		
LEGOENO	_								-	-		-	-		
LUEGOENIA		_													
		Espesar e	=	0,05	m.										
ASULAENDO	ARME.	RICYECTO													
		Epser 4	=	0,10	a .										
		4			M1				_	_		_	-		
		-		7,50								_		-	
SEGUNEL N	BLAKE	NO NACIONAL CE	CONSTR	XXXXXIES,	PARM LOS	AC THICKNY	ENDOS	ZINECCOON	3 1.7						
		MA=MB=CAF	.*2)			' (10 9)									
DONDE		С		=	0,090										
		PESO ANDRIO		=	Q10 x 240	=	240,00			_		_	-		
					MIN X 24	=			-			-	-		
		CARGA VIVA					100,00								
		PESO TOTAL		=	Moter	=	340,00	Agrim 2							
RESIDENZA	NOO ENIL	AECUACIONOS:													
			TW.	=	16	=	JE 54	i	-	_		_	-		
				-	aG.		45,54	ng m.	-	-		-	-		
CHOLOD	I PERM	Æ													
			ď	=		%	(44)								
					70										
					140		-		+	-		-	-		
									-	-					
SENIO:															
	M=TW:	146	=	40,54	Ag∙m.										
	b		=	100,00											
			R=%*#:	****					_	_					
			K=2.1E	.).E		(87			_			-	-	-	
			=	9,28											
		k	=	0,344											
		- 1	=	7-6/3		(49)									
						17			_	_		_			
									_	_		_	-		
									-	-					
(i)n =	@n=B	B:=(271 P4)	M-15*F	<u>y • (111) • 4</u>											
PARA	W	=		The first	Thirth 9										
	fc	=	21000	AgAtm2.	ig/on2										
	Py	=	4.20000		AgADM2										
	-1														
A11-	***								-	+	-	-	-		
2)K =	147-24	' 9								-					
PARA	26	=	1.400,00	AgAtm2											
	£	=		AgAtm2.											
	THE PARTY OF									1					
BU 4 B7 B	THE PERSON NAMED IN			0,885					-	+	-	-	-		
ENLA BOUN									-				-		
			=	D,002											
	CHOINDS:														
	CICIN09:	j R	=	12,02											
	CICINO9:														
ENLA ECLAK		R													
ENLA ECLAK		R													
ENLA ECLAK		R XRES ENDO:	=	12,02											
ENLA ECLAK		R			cm.										
ENLA ESTAN	NDO VALO	R SRES ENDO: a	=	12,02											
ENLA ESTAN	NDO VALO	R XRES ENDO:	=	12,02		v									
ENLA ESTAN	NDO VALO	R SRES ENDO: a	=	12,02		M.									
ENLA ESTAN	NDO VALO	R MES ENDO: d), CONSIDERAND	= = XO LNIFEC	12,02 1,97	D DE 25 C	M.									
ENLA ESTAN	NDO VALO	R SRES ENDO: a	=	12,02	D DE 25 C	M.									
ENLA ECUM RECLETAZA EL ESPESION	NOO VALO	R MES ENDO: d), CONSIDERANC END (1)	= = XO <i>UNREC</i>	12,02 1,97 2,50	O DE 2.5 C										
ENLA ESLAN RESIGNAZA EL ESPESION	NOO VALO	R MES ENDO: d), CONSIDERAND	= = XO LNIFEC	12,02 1,97	O DE 2.5 C	34 =	do.	m.							
ENLA ESLAN RESIGNAZA EL ESPESION	NOO VALO	R MES ENDO: d), CONSIDERANC END (1)	= = XO <i>UNREC</i>	12,02 1,97 2,50	O DE 2.5 C		QDI	m.							
ENLA ESLAN PERLAZA EL ESPESION EL INDIA - d'+7	NOO VALO	R MES ENDO: d CONSIDERANC Lendo (r) elotal	= = XO <i>UNREC</i>	12,02 1,97 2,50 4,47	on.	=		mL							
ENLA ESLAN PERLAZA EL ESPESION EL INDIA - d'+7	NOO VALO	R MES ENDO: d), CONSIDERANC END (1)	= = = = = =	12,02 1,97 2,50 4,47	on.			m.							
enia espeson e espeson e espeson	REGISTAL (A	R NNES ENDO: d CONSIDERANC endo (r) endo	= = = = = =	12,02 1,97 2,50 4,47	on.	=		m.							
ENIA ESIM REESELAZA B. ESPESOK e kial = d+r SENIO:	REGISTAL (A	R NNES ENDO: d CONSIDERANC endo (r) endo	= = = = = =	12,02 1,97 1,97 2,50 4,47	on.	=		m.							

041011100	F1 F0DF0	00.05141004	DE FOUDO										
CALCULO D	EL ESPES	OR DE LA LOSA I	DE FONDO										
ASUMIENDO	EL ESPES	SOR DE LA LOSA	DE FONDO	Y CONOCID	A LA ALTU	JRA							
	e'		0,15	m									
	h	=	1,55										
	PESO PE	ROPIO DEL AGUA	(h x §a)		-	1.550,00	kg/m2.						
	PESO PE	ROPIO DEL CONC	RETO (e' x §	ic)	-	360,00	kg/m2.						
				w	-	1.910,00	ka/m2						
						7.070,00	ng/mz.						
		DE LAS CARGAS		S ACTUANT	ES PARA	UNA LUZ INT	ERNA, SE	PRODUCEN					
SE PRODUC	EN LOS SI	GUIENTES MOME	NTOS:										
моменто в	DE EMPOT	RAMIENTO EN LO	S EXTREM	DS:									
	M = -(W)	(L^2 /192)	(09)	М	-	-32,23	kg-m.						
моменто в	N EL CEN	TRO:											
	M = W x		(10)	М	=	16,12	kg-m.						
CHEQUEO L	EL ESPES	OR DE LA LOSA:											
EL ESPESOR	R SE CHEC	UEA POR MEDIO	DEL METO	DO ELASTIC	CO, CONSI	DERANDO E	L MAXIMO	MOMENTO A	BSOLUTO	l:			
	-		6M	1/									
	е	=	ft x b	1/2		(11)							
						(.,,)							
	ft F'c	=	0.85(F'c)^½	= KG/CM2.	11,24	KG/CM2.							
	M	=		KG-M									
	b	=	100,00										
REMPLAZAN	IDO EN LA	ECUACION 11:	е	-	4.15	cm.							
			e	-	4,10	CIII.							
			4,15	<	15,00	cm.	CONFO	RME					
POR LO TAN Espesort de l	ITO CONSI	DERANDO EL RE	CUBRIMIEN e	TO: =	15,00	om							
Lapeson de n	usa paia ui	serio	r		7,50								
PERALTE:													
			d	-	7,50	cm.							
DISTRIBUCIO	ON DE LA	ARMADURA DEL	RESERVOR	NO OI									
		As	-	M			(12)						
				fs x j x d									
DONDE:				TO E1110									
		MOMENTO MAXI FATIGA DE TRAE			IVI.								
		RELACION ENTR			RESULTA	NTE DE LOS	ESFUER	ZOS DE					
		DE COMPRESION	V AL CENTR	O DE LA GF									
	d =	PERALTE EFECT	IVO EN CM.										
CALCIII O D	E LA ARM	ADURA DE LA PA	RED:										
		M+	=	223,43									
		M-	=	163,85	kg-m. kg/cm2.								
		fs n	=			comendado e	n las Nor	nas Sanitarias	- ACI-350				
		e	-	15,00					2. 220				
		r		2,50	cm								
		r d efectivo	=	10,00									
		j	=	0,85									
		k	-	0,457									
		b	=	100,00	cm.								
			R = ½ * fs	'i * k									
			/2 18	, ^]								
		n	=	9,58									
		k	-	0,46									
		j	-	1 - k/3									
		,											

(4)	(4): = -		WIAIA										
(1)n =	(1)n = Es/E	$Ec = (2.1 \times 10^6)$	/(W^1.5 * Fy	^ (f'c)^½)									
PARA	W	=	2.40	Tn/m3.	Tn/m3.								
	f'c	=			kg/cm2.								
	Fy	=	4.200,00		kg/cm2.								
/21k -	1//1 - 50 //	oll.											
(2)k =	1/(1+fs/(nf	(C))											
PARA	fs	=	900.00	kg/cm2.									
	f'c	=		kg/cm2.									
EN LA ECU	JACION 08:												
ENLLA ECLI	IACIONI OO:	j	-	0,85									
EN LA ECU	JACION 09:	R	-	15,30									
		- A		10,30									
REEMPLAZ	ZANDO VALOF	RES EN 06:											
		d	-	3,82	cm.								
							_						
ŀ	RESUM	IEN DEL	. CALC	ULO	DEL A	<i>ACER</i> ()						
	/DE	CEDVO	ח חום	E 6 50	1/2								
	(74	SERVO	ע טואי	E 0.50	ivis.)								
					1071	1071						-	
	DESCRIPCIO	101	PARE	υ	LOSA DE	LOSA DE						-	
	DESCRIPCIO	// V	VERTICAL	HORIZONTAL		FONDO						-	
Momento "N	M" (kg - m)		223,43	148,96	46,54	-32,23							
	til "d" (cm.)		10,00	10,00	7,50	7,50							
fs (kg/cm2.)			900,00	900,00	1.400,00	900,00							
n		-	9,00	9,00	10,00	9,00							
f'c (kg/cm2.)			79,00	79,00	79,00	79,00						-	
k = 1/(1 + fs) i = 1 - (k/3)	: / (n x f'c))		0,441	0,441	0,361	0,441							
j = 1 - (k/3) Area de Ace			0,853	0,853	0,880	0,853	 						
	(M)/(fsxjxd)	(cm2.)	2,91	1,94	0,50	-0,56							
	nima (C)		0,002	0,002	0,0018	0,002			0,222	4,545			
b (cm.)			100	100	100	100							
e (cm.)			15,00	15,00	15,00	15,00							
				15,00	15,00				3,550				
Asmín = C >	x b x e (cm2.)	2.1	3	15,00 3	15,00 2,7	3			3,550		4.750		
Asmín = C > Area Efectiv	va de As2. (cm.		3,55	15,00 3 3,55	15,00 2,7 2,55	3,4			3,550		4,750		
Asmín = C x Area Efectiv Area Efectiv		(cm2.)	3	15,00 3	15,00 2,7	3			3,550	0,22188	4,750		
Asmín = C x Area Efectiv Area Efectiv	va de As2. (cm. va de Asmín2.	(cm2.)	3 3,55 0,71	3 3,55 0,71	2,7 2,55 0,71	3 3,4 0,71			3,550		4,750 3,55		
Asmín = C x Area Efectiv Area Efectiv Distribución	iva de As2. (cm. iva de Asmín2. n 3/8"(Aacero/A	(cm2.) lacero total)	3,555 0,71 0,20	3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71			3,550				
Asmín = C x Area Efectiv Area Efectiv Distribución	iva de As2. (cm. iva de Asmín2. n 3/8"(Aacero/A	(cm2.)	3,555 0,71 0,20	3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71			3,550				
Asmín = C > Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO	iva de As2. (cm. iva de Asmín2. n 3/8"(Aacero/A	(cm2.) lacero total) RZO CORTANTE	3,555 0,71 0,20	3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71			3,550				
Asmín = C > Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO	iva de As2. (cm. iva de Asmín2. n 3/8"(Aacero/A	(cm2.) lacero total) RZO CORTANTE	3,555 0,71 0,20	3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71			3,550				
Asmín = C ; Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmín2. n 3/8"(Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) lacero total) RZO CORTANTE	3,555 0,71 0,20	3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71			3,550				
Asmín = C ; Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmín2. n 3/8"(Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) Lacero total) RZO CORTANTE	3 3,55 0,71 0,20 : Y ADHEREI	15,00 3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71 0,21			3,550				
Asmín = C ; Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmín2. n 3/8"(Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) Lacero total) RZO CORTANTE	3,555 0,71 0,20	15,00 3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71			3,550				
Asmín = C ; Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmín2. n 3/8"(Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) Lacero total) RZO CORTANTE	3 3,55 0,71 0,20 : Y ADHEREI	15,00 3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71 0,21			3,550				
Asmín = C ; Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmín2. n 3/8"(Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) Lacero total) RZO CORTANTE	3 3,55 0,71 0,20 : Y ADHEREI	15,00 3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71 0,21			3,550				
Asmín = C ; Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmín2. n 3/8"(Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) Lacero total) RZO CORTANTE	3 3,55 0,71 0,20 : Y ADHEREI	15,00 3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71 0,21			3,550				
Asmín = C : Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmin2. n 3/8" (Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) accero total) RZO CORTANTE D ITE MAXMA (V)	3 3.55 0.71 0.20 Y ADHERE!	15,00 3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71 0,21			3,550				
Asmín = C : Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmin2. n 3/8" (Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) Lacero total) RZO CORTANTE	3 3.55 0.71 0.20 Y ADHERE!	15,00 3 3,55 0,71 0,20	2,7 2,55 0,71	3 3,4 0,71 0,21			3,550				
Asmín = C : Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmin2. n 3/8" (Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) accero total) RZO CORTANTE D ITE MAXMA (V)	3 3,55 0,71 0,20 Y ADHERE! , SERA: V=(§a x h	15,00 3 3,55 0,71 0,20 NCIA	15,00 2,7 2,55 0,71 0,28	3 3.4.4 0.711 0.211 0.211 (13)			3,550				
Asmín = C : Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO	va de As2. (cm. va de Asmin2. n 3/8" (Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) accero total) RZO CORTANTE D ITE MAXMA (V)	3 3.55 0.71 0.20 Y ADHERE!	15,00 3 3,55 0,71 0,20	2,7 2,55 0,71	3 3.4.4 0.711 0.211 0.211 (13)			3,550				
Asmín = C ; Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI	va de As2. (cm. va de As2.) (cm. va de Asmin2.) 9 POR ESFUER 9 DE LA PAREI FRZO CORTAN	(cm2.) acero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU.	3 3,55 0,71 0,20 Y ADHERE! , SERA: V=(§a x h	15,00 3 3,55 0,71 0,20 NCIA	15,00 2,7 2,55 0,71 0,28	3 3.4.4 0.711 0.211 0.211 (13)			3,550				
Asmín = C ; Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI	va de As2. (cm. va de Asmin2. n 3/8" (Aacero/A D POR ESFUER D DE LA PAREI	(cm2.) acero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU.	3 3,55 0,71 0,20 Y ADHEREI , SERA: V=(§a x h	15,00 3 3,55 0,71 0,20 NCIA	15,00 2,7 2,55 0,71 0,28	3 3.4.4 0.711 0.211 0.211 (13)			3,550				
Asmín = C ; Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI	va de As2. (cm. va de As2.) (cm. va de Asmin2.) 9 POR ESFUER 9 DE LA PAREI FRZO CORTAN	(cm2.) acero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU.	3 3,55 0,71 0.20 E Y ADHEREI V = (§a x h	15,00 3,55 0,711 0,20 NCIA ^2) /2	15,00 2,7 2,55 0,71 0,28	3 3.4 0.771 0.21 0.21 (13)			3,550				
Asmín = C ; Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI	va de As2. (cm. va de As2. (cm. va de Asmin2.) n 38 (Aacero/A n 98 (Aacero/A n POR ESFUER n DE LA PAREI RRZO CORTAN	(cm2.) acero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU.	3 3,55 0,71 0,20 Y ADHEREI , SERA: V=(§a x h	15,00 3,55 0,711 0,20 NCIA ^2) /2	15,00 2,7 2,55 0,71 0,28	3 3.4.4 0.711 0.211 0.211 (13)			3,550				
Asmín = C ; Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI	va de As2. (cm. va de As2. (cm. va de Asmin2.) n 38 (Aacero/A n 98 (Aacero/A n POR ESFUER n DE LA PAREI RRZO CORTAN	(cm2.) acero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU.	3 3,55 0,71 0.20 E Y ADHEREI V = (§a x h	15,00 3,55 0,711 0,20 NCIA ^2) /2	15,00 2,7 2,55 0,71 0,28	3 3.4 0.771 0.21 0.21 (13)			3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI ESFUEIX REEMPLAZ ESFUEIX CDATOS	va de As2. (cm. va de As2. (cm. va de Asmid.) va de Asmid. va de Asc. (cm. va de Asmid.) va de Asmid. va de Asc. (cm. va de Asmid.) va de Asmid.	(cm2.) acero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU.	3,55 0,71 0,20 E Y ADHEREI V = (§a x h ACION 13: V = V/(j x b	15,00 3,3,55 0,71 0,20 NCIA *2) /2 = x d)	15,00 2,7 2,55 0,71 0,28	3 3.4 0.771 0.21 0.21 (13)			3,550				
Asmín = C : Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI REEMPLAZ	va de As2. (cm. va de As2. (cm. va de Asmid.) va de Asmid. va de Asc. (cm. va de Asmid.) va de Asmid. va de Asc. (cm. va de Asmid.) va de Asmid.	(cm2.) acero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU.	3 3,55 0,71 0.20 E Y ADHEREI V = (§a x h V = V/(j x b V	15,00 3 3,55 0,71 0,20 NCIA ^2) /2 = x d) 0,88	15,00 2,7 2,55 0,71 0,28	3 3.4 0.71 0.21 0.21 (13) kg.			3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI ESFUEIX REEMPLAZ ESFUEIX CDATOS	va de As2. (cm. va de As2. (cm. va de Asmid.) va de Asmid. va de Asc. (cm. va de Asmid.) va de Asmid. va de Asc. (cm. va de Asmid.) va de Asmid.	(cm2.) acero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU.	3 3,55 0,71 0.20 E Y ADHEREI V = (§a x h V = V/(j x b V	15,00 3,3,55 0,71 0,20 NCIA *2) /2 = x d)	15,00 2,7 2,55 0,71 0,28	3 3.4 0.771 0.21 0.21 (13)			3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI ESFUEI DATOS POR LO TA	va de As2. (cm. va de As2. (cm. va de Asmin2.) 3.86 (Aacero/A)	(cm2.) Lacero total) RZO CORTANTE D LITE MAXMA (V) RES EN LA ECU. NOMINAL	3 3,55 0,71 0.20 E Y ADHEREI V = (\$a x h) V = V/(j x b) V = V/(j x b)	15,00 3,3,55 0,71 0,20 NCIA ^2) /2 = x d) 0,88	15,00 2,7 2,55 0,71 0,28	3 3.4 0.71 0.21 0.21 (13) kg. (14)			3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI ESFUEI DATOS POR LO TA	va de As2. (cm. va de As2. (cm. va de Asmin2.) 3.86 (Aacero/A)	(cm2.) acero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU.	3 3,55 0,71 0,20 0,71 0,20 0 0,5 E.Y. ADHERE! V = (\$a x h) V = V'([] x b) V = V = V = V = V = V = V = V = V = V	15,00 3 3,55 0,71 0,20 NCIA *2) /2 = x d) 0,88 = RETO PARA	15,00 2,7 2,55 0,71 0,28	3 3.4 0.71 0.21 0.21 (13) kg. (14)			3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI ESFUEI DATOS POR LO TA	va de As2. (cm. va de As2. (cm. va de Asmin2.) 3.86 (Aacero/A)	(cm2.) Lacero total) RZO CORTANTE D LITE MAXMA (V) RES EN LA ECU. NOMINAL	3 3,55 0,71 0.20 E Y ADHEREI V = (\$a x h) V = V/(j x b) V = V/(j x b)	15,00 3 3,55 0,71 0,20 NCIA *2) /2 = x d) 0,88 = RETO PARA	15,00 2,7 2,55 0,71 0,28	3 3.4 0.71 0.21 0.21 (13) kg. (14)			3,550				
Asmin = C.) Area Efectiv Area Efectiv Area Efectiv Area Efectiv CHEQUEO CHEQUEO 1 ESFUEI ESFUERZO DATOS POR LO TA EL ESFUEF	va de ASZ. (cm. va de ASZ. (cm. va de ASMIC). 3.86 (Ascero.) 3.86 (Ascero.) 3.86 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 4.87 (Ascero.) 5.87 (Ascero.)	(cm2.) Lacero total) RZO CORTANTE D LITE MAXMA (V) RES EN LA ECU. NOMINAL	3 3.55 0.71 0.20 E Y ADHEREN V = (§a x h ACION 13: V = V/(j x b V V = V/(j x b V = V/(j x b) V = V/(j x b)	15,00 3 3,55 0,71 0,20 NCIA *2) /2 = x d) 0,88 = RETO PARA	15,00 2,7 2,55 0,71 0,28	3 3.4 0.71 0.21 0.21 (13) kg. (14) kg/cm2.			3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI ESFUEI DATOS POR LO TA	va de As2. (cm. va de As2. (cm. va de Asmin2.) 3.86 (Aacero/A)	(cm2.) Lacero total) RZO CORTANTE D LITE MAXMA (V) RES EN LA ECU. NOMINAL	3 3,55 0,71 0,20 0,71 0,20 0 0,5 E.Y. ADHERE! V = (\$a x h) V = V'([] x b) V = V = V = V = V = V = V = V = V = V	15,00 3 3,55 0,71 0,20 NCIA *2) /2 = x d) 0,88 = RETO PARA	15,00 2,7 2,55 0,71 0,28	3 3.4 0.71 0.21 0.21 (13) kg. (14) kg/cm2.			3,550				
Asmin = C.) Area Efectiv Area Efectiv Area Efectiv Area Efectiv CHEQUEO CHEQUEO 1 ESFUEI ESFUERZO DATOS POR LO TA EL ESFUEF	va de ASZ. (cm. va de ASZ. (cm. va de ASMIC). 3.86 (Ascero.) 3.86 (Ascero.) 3.86 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 4.87 (Ascero.) 5.87 (Ascero.)	(cm2.) Lacero total) RZO CORTANTE D LITE MAXMA (V) RES EN LA ECU. NOMINAL	3 3.55 0.71 0.20 Y ADHEREI V = (§a x h V = W(j x b V = V (x b b b b b b b b b b b b b b b b b b	15,00 3,3,55 0,71 0,20 VCIA *2)/2 = x.d) 0,88 = RETO PARA 2* Fc	15,00 2,7 2,55 0,71 0,28 1,201,25	3 3,4 0,71 0,21 0,21 (13) (13) kg. (14) kg/cm2.			3,550				
Asmin = C.) Area Efectiv Area Efectiv Area Efectiv Area Efectiv CHEQUEO CHEQUEO 1 ESFUEI ESFUERZO DATOS POR LO TA EL ESFUEF	va de ASZ. (cm. va de ASZ. (cm. va de ASMIC). 3.86 (Ascero.) 3.86 (Ascero.) 3.86 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 4.87 (Ascero.) 5.87 (Ascero.)	(cm2.) Lacero total) RZO CORTANTE D LITE MAXMA (V) RES EN LA ECU. NOMINAL	3 3.55 0.71 0.20 Y ADHEREI V = (§a x h V = V/(j x b = V N EL CONCE Vmáx = 0,6 kg/cm2.	15,00 3 3,55 0,71 0,20 NCIA *2) /2 = x d) 0,88 = RETO PARA	15,00 2,7 2,55 0,71 0,28 1,201,25	3 3.4 0.71 0.21 0.21 (13) kg. (14) kg/cm2.			3,550				
Asmin = C.) Area Efectiv Area Efectiv Area Efectiv Area Efectiv CHEQUEO CHEQUEO 1 ESFUEI ESFUERZO DATOS POR LO TA EL ESFUEF	va de ASZ. (cm. va de ASZ. (cm. va de ASMIC). 3.86 (Ascero.) 3.86 (Ascero.) 3.86 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 4.87 (Ascero.) 5.87 (Ascero.)	(cm2.) Lacero total) RZO CORTANTE D LITE MAXMA (V) RES EN LA ECU. NOMINAL	3 3.55 0.71 0.20 V ADHEREI V = (\$a x h) V = V/(j x b) = V N EL CONCE Vmáx = 0.0 kg/cm2.	15,00 3,3,55 0,71 0,20 VCIA *2) /2 = x d) 0,88 = RETO PARA 2 * fc	15,00 2,7 2,55 0,71 0,28 1,201,25 1,37 MUROS N	3 3,4 0,71 0,21 0,21 (13) (13) kg. (14) kg/cm2.	A DE:	ME	3,550				
Asmin = C.) Area Efectiv Area Efectiv Area Efectiv Area Efectiv CHEQUEO CHEQUEO 1 ESFUEI ESFUERZO DATOS POR LO TA EL ESFUEF	va de ASZ. (cm. va de ASZ. (cm. va de ASMIC). 3.86 (Ascero.) 3.86 (Ascero.) 3.86 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 4.87 (Ascero.) 5.87 (Ascero.)	(cm2.) Lacero total) RZO CORTANTE D LITE MAXMA (V) RES EN LA ECU. NOMINAL	3 3.55 0.71 0.20 Y ADHEREI V = (§a x h V = W(j x b V = V (x b b b b b b b b b b b b b b b b b b	15,00 3,3,55 0,71 0,20 VCIA *2) /2 = x d) 0,88 = RETO PARA 2 * fc	15,00 2,7 2,55 0,71 0,28 1,201,25	3 3,4 0,71 0,21 0,21 (13) (13) kg. (14) kg/cm2.		EME .	3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI DATOS POR LO TA EL ESFUEF Para fc =	va de ASZ. (cm. va de ASZ. (cm. va de ASMIC). 3.86 (Ascero.) 3.86 (Ascero.) 3.86 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 3.87 (Ascero.) 4.87 (Ascero.) 5.87 (Ascero.)	(cm2.) lacero total) REZO CORTANTE D RES EN LA ECU. NOMINAL	3 3.55 0.71 0.20 V ADHEREI V = (\$a x h) V = V/(j x b) = V N EL CONCE Vmáx = 0.0 kg/cm2.	15,00 3,3,55 0,71 0,20 VCIA *2) /2 = x d) 0,88 = RETO PARA 2 * fc	15,00 2,7 2,55 0,71 0,28 1,201,25 1,37 MUROS N	3 3.4 0.71 0.21 0.21 (13) (13) kg. (14) kg/cm2.	A DE:	_	3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI DATOS POR LO TA EL ESFUEF Para fc =	va de ASZ. (cm. va de ASZ. (cm. va de ASZ. (cm. va de Asmíra.) va de Asmíra. va de Asmíra. va de Asmíra. va de Aszára. va de Asz	(cm2.) lacero total) REZO CORTANTE D RES EN LA ECU. NOMINAL	3 3.55 0.71 0.20 V ADHEREI V = (§a x h V = V/(j x b V	15,00 3,3,55 0,71 0,20 VCIA *2) /2 = x d) 0,88 = RETO PARA 2 * fc	15,00 2,7 2,55 0,71 0,28 1,201,25 1,37 MUROS N	3 3,4 0,71 0,21 0,21 (13) (13) (14) (14) (14) (15) (15) (15) (15) (15) (17) (17) (17) (17) (17) (17) (17) (17	A DE:	_	3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI DATOS POR LO TA EL ESFUEF Para fc =	va de ASZ. (cm. va de ASZ. (cm. va de ASZ. (cm. va de Asmíra.) va de Asmíra. va de Asmíra. va de Asmíra. va de Aszára. va de Asz	(cm2.) lacero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU. NOMINAL BLE NOMINAL E	3 3.55 0.71 0.20 V ADHEREI V = (\$a x h) V = V/(j x b) = V N EL CONCE Vmáx = 0.0 kg/cm2.	15,00 3,3,55 0,71 0,20 VCIA *2) /2 = x d) 0,88 = RETO PARA 2 * fc	15,00 2,7 2,55 0,71 0,28 1,201,25 1,37 MUROS N	3 3,4 0,71 0,21 0,21 (13) (13) kg. (14) kg/cm2. (15) kg/cm2.	A DE:	_	3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI DATOS POR LO TA EL ESFUEF Para fc =	va de ASZ. (cm. va de ASZ. (cm. va de ASZ. (cm. va de Asmíra.) va de Asmíra. va de Asmíra. va de Asmíra. va de Aszára. va de Asz	(cm2.) lacero total) RZO CORTANTE D ITE MAXMA (V) RES EN LA ECU. NOMINAL BLE NOMINAL E	3 3.55 0.71 0.20 V ADHEREI V = (\$a x h) V = V/(j x b) = V = V/(j x b) V = V/(j x b) V = V/(j x b) V	15,00 3,55 0,71 0,20 VCIA ^2) /2 = x d) 0,88 = RETO PARA 2 * Fc	15,00 2,7 2,55 0,71 0,28 1,201,25 1,37 MUROS N	3 3.4 0.71 0.21 0.21 (13) (13) kg. (14) kg/cm2. (15) kg/cm2.	A DE:	'c	3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI DATOS POR LO TA EL ESFUEF Para fc =	va de ASZ. (cm. va de ASZ. (cm. va de ASZ. (cm. va de Asmíra.) va de Asmíra. va de Asmíra. va de Asmíra. va de Aszára. va de Asz	(cm2.) lacero total) RZO CORTANTE D ITE MAXIMA (V) RES EN LA ECU. NOMINAL BLE NOMINAL E	3 3.55 0.71 0.20 V ADHEREI V = (\$a x h) V = V/(] x b = V N EL CONCE Vmáx = 0.6 kg/cm2. Vmáx 1,37	15,00 3,55 0,71 0,20 VCIA ^2) /2 = x d) 0,88 = RETO PARA 2 * Fc	15,00 2,7 2,55 0,71 0,28 1,201,25 1,37 MUROS N 4,20 4,20	3 3,4 0,71 0,21 0,21 (13) (13) (13) (14) (14) (15) (15) (15) (15) (17) (17) (17) (17) (17) (17) (17) (17	A DE:	'c	3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI DATOS POR LO TA EL ESFUEF Para fc =	va de ASZ. (cm. va de ASZ. (cm. va de ASZ. (cm. va de Asmíra.) va de Asmíra. va de Asmíra. va de Asmíra. va de Aszára. va de Asz	(cm2.) lacero total) RZO CORTANTE D ITE MAXIMA (V) RES EN LA ECU. NOMINAL BLE NOMINAL E	3 3.55 0.71 0.20 V ADHEREI V = (\$a x h) V = V/(j x b) = V = V/(j x b) V = V/(j x b) V = V/(j x b) V	15,00 3,55 0,71 0,20 VCIA ^2) /2 = x d) 0,88 = RETO PARA 2 * Fc	15,00 2,7 2,55 0,71 0,28 1,201,25 1,37 MUROS N	3 3,4 0,71 0,21 0,21 (13) (13) (13) (14) (14) (15) (15) (15) (15) (17) (17) (17) (17) (17) (17) (17) (17	A DE:	'c	3,550				
Asmin = C : Area Efectiv Area Efectiv Area Efectiv Area Efectiv Distribución CHEQUEO CHEQUEO 1 ESFUEI DATOS POR LO TA EL ESFUEF Para fc =	va de ASZ. (cm. va de ASZ. (cm. va de ASZ. (cm. va de Asmíra.) va de Asmíra. va de Asmíra. va de Asmíra. va de Aszára. va de Asz	(cm2.) lacero total) RZO CORTANTE D ITE MAXIMA (V) RES EN LA ECU. NOMINAL BLE NOMINAL E	3 3.55 0.71 0.20 V ADHEREI V = (\$a x h) V = V/(] x b = V N EL CONCE Vmáx = 0.6 kg/cm2. Vmáx 1,37	15,00 3,55 0,71 0,20 VCIA ^2) /2 = x d) 0,88 = RETO PARA 2 * Fc	15,00 2,7 2,55 0,71 0,28 1,201,25 1,37 MUROS N 4,20 4,20	3 3,4 0,71 0,21 0,21 (13) (13) (13) (14) (14) (15) (15) (15) (15) (17) (17) (17) (17) (17) (17) (17) (17	A DE:	kg/cm2	3,550				

Anexo 16: Diseño Hidráulico – Línea de Aducción


00 CRITERIOS DE DISEÑOS PARA SAP							
Coef. de Hanzen-Willia	ams:				Tub. de diamet	ros comercial	es
MATERIAL	С			Diametro		D(cm)	
F°F° - F°G°	100			0,75	3/4"	0,75	1,905
Concreto	110			1	1"	1	2,54
Acero	120			1.5	1 1/2"	1,5	3,81
Asbesto cemento	140			2	2"	2	5,08
P.V.C	140			3	3"	2.5	6,35
				4	4"	3	7,62
Velocidades admisik	oles			5	5"	4	10,16
DESCRIPCION	V			6	6"	6	15,24
Velocidad minima (m/seg.)	0,60						
Velocidad maxima (m/seg.)	3,00						
Velocidad Justificada (m/seg.)	5,00						
, , , , ,	,						
3,00 CALCULO DE LA TUBERIA DE ADL	ICCION						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				participal ((Constitute)		
Donde:				Autom 1			
Gasto Máximo diario	Qmd=	0,35	1/c	2			
Longitud Tramos	L=	1004,00			The same of the sa		250
Cota de Inicio (Reservorio)	Ci=	1565,00	-			Sincia dell'urge - Villenta de fare	4
Cota de Descarga (Punto final)	Dc=	1515,00		distinction of			ti
Carga Disponible (CD=Ci-Cd)	CD=	50,00			T THE PERSON		
carga disponible (cb-ci-cu)	CD-	30,00	71111		- AMERICAN STREET		R
3,1 Perdidas:				Charleman		1	
				altitute :			I tro
Carga disponible				Name of Street	1	1	-3-
L.	Hf=	0,0498		an format	tanna 🖽		
	111-	0,0430					
3,2 Hallando el diametro tuberia:							
$D = \frac{0.71 * Q_{ma}}{h f^{0.21}}$	18						
$D = \frac{0.001}{0.0021}$	D=	0,898	nulg				
(AL) 2-00000	Dcom.=		pulg	(asumir)			
	200111	1,30	Jr0	(usumin)			
	el Fluio:						
3 3 Determinacion de la Velocidad d							
3,3 Determinacion de la Velocidad d	erriajo.						
3,3 Determinacion de la Velocidad d $V = 1.9735$	V=	0.600	m/seg	OK!			

Anexo 17: Diseño Hidráulico – Red de distribución

)CALCULO BA	SICODEDISEÑO										
	DATOS:	Pobla	ciónactual Pa=	115							
			Dotacion =	100,00	t/hab/dia	RESULTADOS:	Caudal promedio=		lt/seg		
		PoblacionFutu	ra o diseño Pf=	153	ab.		Caudal maximo diario=		lt/seg		
			K1=	1,30			Caudal maximo horario=	0,35	lt/seg		
			k2=	2,00			Construentario (Qual.):	(Orabidisald	ación figural.		
		Tasa de crecin	nientoanual r=	1,659			communication (Commis-	Serie			
		Densidad P	oblacional Dp=	5,75	hab./vivienda		Caudal unitario=	0,0023	t/seg/hab		
CALCULODE	LOS GASTOS POR	TRAMO				CRITERIOS:					
						Columna 1 :	Corresponde a la identifiacion de	l tramo a cal	cula.		
Orano	= Quit xan	de habitante	por			Columna 2 : 0	asto portramo determinado y de t	alladoentab	lan°01		
2010	tmmp	3.47	5.00			Columna 3 : 0	asto de diseño; este gasto se deter	rmina en func	ion a los gastos acumu	lados por tramo.	
						Columna 4 :	ongitud del tramo.				
	Tablar	°01				Columna 5 :	ie asumira un diametro inicial en fu	ıncion a las ve	elocidades limites y al g	asto de diseño.	
TR.	AMO	N° HAB.	GASTOS			Columna 6 : 1	/elocidad determinada mediante	la e cuacion:			
		OB. FUTURA	POR TRAMO					₹			
INICIO	FINAL	PORTRAMO	(lt/seg)		N° HAB.		V = 1.9735				
VAL. CONT.	VALV. PURGA	152,9	0,353910		115)2			
						Columna 7 : F	erdidad de carga unitaria, se consid	era que esta t	rabajando con tuberia i	ovc(c=140), por lo qu	e la perdida de
							carga es determinada por la rela	cion.			
							Q				
							the state of the s	-100			
							2.492 x D ^{co}	9			
						Columna8 : F	erdidade carga del tramo.				
							£-Ls8/00				
							E-LERVIN	W			
						Columna 9 : 0	ota piezometrica inicial se consider	a la cota incial	del terreno en la colum	nna 11 v para las sigu	ientes cotas se
							tomara la cota piezometrica del			- 1 3 5 6	
							a cota piezometrica final es igual a l			rdida de carga unitar	ia (Hf).
							Cota inicial de terreno en msnm				i
							Cota final del terreno en msnm				
							Presion inicial . Se calcula media	inte la difere	ncia de las col. 09 - 11		
						COMMING 13					
							Mili-Cota Pier (i) - Cota la	kind del Tes	1000		
	OTAL	153	0.35		115	Columna 14	Presion final, Esla diferencia de co	dum 10-12			
TC	JIAL	133	0,33		113	Columna 14	i resionima. Esta une renda de ce	iiuiii.10-12			

CALCULU H	IDRAULICO DE L															
	1	2 3		3	4			6	7	8	9	10	11	12	13	14
TRAMO GASTO (It/seg)			LONGITUD	DIAMETRO		VELOCIDAD	PERDIDA DE CARGA		COTA PIEZOMETRICA		COTA DEL TERRENO		PRESION			
		(seg)		(m)	NOMINAL	INTERNO	RNO (m/s)	UNIT.	TRAMO	(m.s.n.m.)		(m.s.n.m.)		(m)		
INICIO	FINAL	TRAMO	DIS	EÑ O		(pulg.)	lg.) (mm)		(‰)	(m)	INICIAL	FINAL	INICIAL	FINAL	INICIAL	FINA
VAL. CONT.	VALV. PURGA	0,000	0,3	354	548,86	1	29,4	0,698	27,02900	14,83510	1515,00	1500,16	1515,00	1465,00	0,00	35,10
		0,01	II/Seg		0,00											
						Tuberia de:		0,00								
						Tuberia de:	1	0,00	mi							
) DIAMETROS	COMERCIALES DE	TUBERIA PVO														
-	LOS CALCULOSS	EREALIZARO	N CON	TUBERI	APVCPRESION	N CLASE 10 NT	P399.002									
	Same and the same	Tarro M	-	100	**	£-										
	100	<u>H</u> ,	4	1	- 4											
	MILITANE															
	4	212	174	- 0		27										
	14	36.0	22.8	1.6	4 3	(del.										
	1000	803	20,4	1.8	0. 3	(86)										
	1100	47.1	352	2,8	4. 9	.00										
	134	45.8	45/4	2,3		35.										
	7	60.00	643	10.		No										
	24	35.5	80.0	35		100 100										
	1	88.5	80.1	1.2		50										
	4		K12	54		.90										
	100	400	NO.	88		.65										
		2193	1982	104		.88										
	18		ATR	122		79										
	- 17	723.5	160.7	154	4 9	75										

Anexo 18: Diseño Hidráulico – Red de distribución

