

UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

CRUZ ANCAJIMA, LUIS FELIPE ORCID: 0000-0002-2985-0178

ASESOR:

LEÓN DE LOS RÍOS, GONZALO MIGUEL ORCID: 0000-0002-1666-830X

CHIMBOTE – PERÚ 2021

1. Título de tesis

Diseño del sistema de abastecimiento de agua potable en el caserío de Aija, distrito Cabana, provincia Pallasca, región Ancash, para su incidencia en la condición sanitaria de la población - 2021.

2. Equipo de Trabajo

AUTOR

Cruz Ancajima, Luis Felipe Orcid: 0000-0002-2985-0178

Universidad Católica Los Ángeles de Chimbote, Estudiante de pregrado, Chimbote, Perú.

ASESOR

Mgtr. León De los Ríos, Gonzalo Miguel
Orcid: 0000-0002-1666-830X
Universidad Católica Los Ángeles de Chimbote, Facultad de Ingeniería, Escuela
Profesional de Ingeniería Civil, Chimbote, Perú.

JURADO

Mgtr. Sotelo Urbano, Johanna del Carmen Orcid: 0000-0001-9298-4059

Presidenta

Dr. Cerna Chávez, Rigoberto Orcid: 0000-0003-4245-5938

Miembro

Mgtr. Quevedo Haro, Elena Charo Orcid: 0000-0003-4367-1480

Miembro

3. Hoja de firma del jurado y asesor

Mgtr. Sotelo Urbano, Johanna del Carmen Presidente

Dr. Cerna Chávez, Rigoberto Miembro

Mgtr. Quevedo Haro, Elena Charo Miembro

Mgtr. León De los Ríos, Gonzalo Miguel Asesor 4. Hoja de agradecimiento y/o dedicatoria

Agradecimiento

Le agradezco a Dios por guiarme y no dejarme solo a lo largo de toda mi formación profesional, fue mi fortaleza en los momentos más difíciles brindándome una vida llena de aprendizajes mutuos y experiencia que recalcaron felicidad en toda mi carrera.

A mi familia por ser mi apoyo mutuo y constante a lo largo de mi formación académica, en todos estos duros años que pasaron.

A mis maestros por brindarme una enseñanza de calidad y aprendizaje, impulsándome a ser cada día mejor.

Son diversas cosas que agradecer a las personas que formaron parte a lo largo de mi formación académica, agradeciéndoles su amistad, consejos, apoyo y animo en los momentos más difíciles.

Dedicatoria

A Dios por estar guiándome en los pasos que doy,

Cuidando de mi salud y fortaleciéndome en los momentos difíciles.

A mis padres por el esfuerzo y la confianza que me dieron para poder seguir con mi carrera

Y poder culminar esta meta tan importante para mí.

5. Resumen y Abstract

Resumen

Esta tesis se desarrolló bajo la línea de investigación: Sistema de saneamiento básico en zonas rurales, de la escuela profesional de Ingeniería civil de la Universidad Católica los Ángeles de Chimbote. Dicha investigación tuvo como problemática; ¿El diseño del sistema de abastecimiento de agua potable en el caserío de Aija, distrito de Cabana, provincia de Pallasca, región Áncash, incide en la mejora de la condición sanitaria de la población - 2021?, obteniendo un objetivo general; Diseñar el sistema de abastecimiento de agua potable para la mejora de la condición sanitaria de la población en el caserío de Aija, distrito Cabana. Se usó una metodología con las siguientes características: de tipo correlacional, de nivel cuantitativo y cualitativo, de diseño no experimental de corte transversal. La investigación se basó identificar los lugares en donde se empleará el diseño hidráulico de un sistema de agua potable, partiendo desde la captación con sus dimensiones en la cámara húmeda y seca con los parámetros reglamentados, en la línea de conducción y aducción, tuvieron un diámetro de 2.00 pulg. y 1 pulg. de tipo PVC y de clase 10, el reservorio obtuvo una capacidad de 20m³, en la red de distribución el sistema fue ramificado de diámetro de 1.00 pulg. y ¾ pulg. conectando a 50 viviendas y 2 lugares públicos, dicho diseño incide de manera positiva en a la condición sanitaria de la población cumpliendo con cobertura, calidad, cantidad y continuidad del servicio.

Palabras clave: Diseño del sistema de agua potable, sistema de abastecimiento de agua potable, incidencia en la condición sanitaria de la población.

Abstract

This thesis was developed under the line of research: Basic sanitation system in rural areas, of the professional school of Civil Engineering of the Los Ángeles de Chimbote Catholic University. This investigation had as problematic; Does the design of the drinking water supply system in the village of Aija, district of Cabana, province of Pallasca, Ancash region, affect the improvement of the sanitary condition of the population - 2021?, obtaining a general objective; Design the drinking water supply system to improve the sanitary condition of the population in the hamlet of Aija, Cabana district. A methodology with the following characteristics was used: correlational, quantitative and qualitative level, non-experimental cross-sectional design. The research was based on identifying the places where the hydraulic design of a drinking water system will be used, starting from the catchment with its dimensions in the wet and dry chamber with the regulated parameters, in the conduction and adduction line, they had a diameter 2.00 in. and 1 in. PVC type and class 10, the reservoir obtained a capacity of 20m3, in the distribution network the system was branched with a diameter of 1.00 in. and 3/4 in. connecting 50 homes and 2 public places, this design positively affects the health condition of the population, complying with coverage, quality, quantity and continuity of service.

Keywords: Design of the drinking water system, drinking water supply system, impact on the sanitary condition of the population.

6. Contenido

1.	Título de te	sis	ii
2.	Equipo de '	Гrabajo	iii
3.	Hoja de fir	ma del jurado y asesor	v
4.	Hoja de agi	radecimiento y/o dedicatoria	vii
5.	Resumen y	Abstract	X
6.	Contenido.		xiii
7.	Índice de g	ráficos, tablas y cuadros	xviii
		ón	
		e la literatura	
		edentes	
	2.1.1.	Antecedentes internacionales	3
	2.1.2.	Antecedentes nacionales	5
	2.1.3.	Antecedentes locales	8
	2.2. Bases	Teóricas de la investigación	11
	2.2.1.	Agua	11
	2.2.2.	Agua potable	11
	2.2.3.	Afloramiento	12
	2.2.4.	Fuente	13
		2.2.4.1. Tipos de fuentes de agua	13
		A. Aguas superficiales	13
		B. Aguas superficiales	14
		C. Aguas superficiales	15
	2.2.5.	Aforo	15
	2.2.6.	Caudal	15
	227	Diseño	16

2.2.8.	Poblacio	ón de diseño y demanda de agua	16
2.2.9.	Poblacio	ón futura	17
	2.2.9.1.	Método de cálculo	17
		A. Método analítico	17
		B. Método racional	17
		C. Método arimetico	18
	2.2.9.2.	Periodo de diseño	19
	2.2.9.3.	Demanda de agua	19
	2.2.9.4.	Demanda de dotaciones	19
2.2.10	Poblacio	ón futura	20
2.2.11	Compor	nentes de un sistema de agua potable	21
	2.2.11.1	.Captación	21
		A. Captación de ladera	22
		B. Captación de fondo	22
		C. Captación por manantiales	22
		D. Captación por bombeo	23
		E. Captación de agua pluviales	23
	2.2.11.2	.Línea de Conducción	24
		A. Tipos de línea de conducción	24
		B. Diámetro	25
		C. Velocidad	25
		D. Presión	26
		E. Perdida de carga	26
		F. Válvula de aire	27
		G. Válvula de purga	27
		H. Cámara rompe presión	27
	2 2 11 3	Reservorio	27

A. Tipos de reservorio	8.
B. Volumen de regulación	9
C. Volumen de reserva	9
D. Volumen contra incendio	9
E. Desinfección	0
F. Caseta de válvulas 3	0
2.2.11.4.Línea de aducción	0
A. Caudal 3	1
B. Diámetro 3	1
C. Velocidad3	1
D. Presión	1
2.2.11.5.Red de distribución	2
A. Tipos de red de distribución 3	2
A. Caudal 3	3
B. Tipo de tubería3	4
C. Clase de tubería	4
D. Diámetro	4
E. Velocidad3	4
F. Presión	5
2.2.12. Condición Sanitaria	5
2.2.12.1.Cobertura de servicio de agua potable	5
2.2.12.2.Cantidad de servicio de agua potable	6
2.2.12.3.Continuidad de servicio de agua potable 3	7
2.2.12.4. Calidad de servicio de agua potable 3	7
2.3. Hipótesis	8
2.4. Variables	9
III. Metodología 4	0

	3.1. Tipo :	y nivel de la investigación	. 40
	3.1.1.	Tipo de investigación	. 40
	3.1.2.	Nivel de investigación	. 40
	3.2. Diseñ	o de la investigación	. 40
	3.3. Pobla	ción y muestra	. 41
	3.3.1.	Población	. 41
	3.3.2.	Muestra	. 41
	3.4. Defin	ición y operacionalización de variables e indicadores	. 42
	3.5. Técni	cas e instrumentos	. 44
	3.5.1.	Técnica	. 44
	3.5.2.	Instrumentos	. 44
		3.5.2.1. Encuestas	. 44
		3.5.2.2. Fichas Técnicas	. 44
		3.5.2.3. Protocolos	. 45
	3.6. Plan o	le análisis	. 45
	3.7. Matri	z de consistencia	. 46
	3.8. Princi	pios éticos	. 47
IV.	Resultado)S	. 48
	4.1. Resul	tados	. 49
	4.2. Análi	sis de Resultados	. 81
	4.2.1.	Identificar el sistema de agua potable existente	. 81
		4.2.1.1. Captación	. 81
		4.2.1.2. Línea de conducción	. 82
		4.2.1.3. Reservorio de almacenamiento	. 83
		4.2.1.4. Línea de aducción	. 84
		4.2.1.5. Red de distribución	
	4.2.2.	Realizar el diseño del sistema de agua potable	
		4.2.2.1. Calculo hidráulico de la captación	. 86

Δn	avos 100
Ref	ferencias bibliográficas104
	5.2. Recomendaciones
	5.1. Conclusiones
V.	Conclusiones y recomendaciones
	4.2.3.4. Calidad del Servicio
	4.2.3.3. Continuidad del Servicio
	4.2.3.2. Cantidad del Servicio
	4.2.3.1. Cobertura del Servicio
	4.2.3. Determinación en la incidencia de la condición sanitaria 92
	4.2.2.6. Calculo hidráulico de la cámara rompe presión tipo 691
	4.2.2.5. Calculo hidráulico de la red de distribución 90
	4.2.2.4. Calculo hidráulico de la línea de aducción
	4.2.2.3. Calculo hidráulico del reservorio de almacenamiento 88
	4.2.2.2. Calculo hidráulico de la línea de conducción

7. Índice de gráficos, tablas y cuadros

Índice de gráficos

Gráfico 1. Cobertura del servicio
Gráfico 2. Cantidad del servicio
Gráfico 3. Continuidad del servicio
Gráfico 4. Calidad del servicio
Gráfico 5. Estado de los componentes de la condición sanitaria
Gráfico 6. Estado de la condición sanitaria
Gráfico 7. Persona encuestada
Gráfico 8. ¿Cuántas personas habitan en su vivienda?
Gráfico 9. ¿Qué servicios públicos tiene el caserío?
Gráfico 10. ¿Cuenta con fuentes de agua identificadas en el caserío?
Gráfico 11. ¿Tiene algún proyecto para agua potable?
Gráfico 12. ¿De dónde consigue normalmente el agua para el consumo
de su familia?
Gráfico 13. ¿Quién o quienes traen el agua?
Gráfico 14. ¿Aproximadamente que tiempo se debe recorrer para traer agua
para su consumo familiar?197
Gráfico 15. ¿Cuántos litros de agua consume la familia por día?
Gráfico 16. ¿Almacena o guarda agua en la casa?
Gráfico 17. ¿En qué tipo de depósito almacena el agua?
Gráfico 18. ¿Los depósitos se encuentran protegidos?
Gráfico 19. ¿Cada cuánto tiempo lava los depósitos donde guarda el agua? 200
Gráfico 20. ¿Cómo consume el agua que toma diario?
Gráfico 21. ¿Con el diseño del sistema de abastecimiento de agua
potable, ayudará a la mejora de la cobertura del servicio? 201

Gráfico 22. ¿Con el diseño del sistema de abastecimiento de agua potable	
ayudara a la mejora de la cantidad del servicio?	201
Gráfico 23. ¿Con el diseño del sistema de abastecimiento de agua potable	
ayudara a la mejora de la continuidad del servicio?	202
Gráfico 24. ¿Con el diseño del sistema de abastecimiento de agua potable	
ayudara a la mejora de la calidad del servicio?	202
Gráfico 25. Esquema del diseño de la línea de conducción	233
Gráfico 26. Esquema del diseño de la línea de aducción, red de distribución.	246

Índice de tablas

Tabla 1. Diseño hidráulico de la captación de manantial de ladera	59
Tabla 2. Diseño hidráulico de la línea de conducción	61
Tabla 3. Diseño hidráulico del reservorio de almacenamiento	64
Tabla 4. Diseño hidráulico de la línea de aducción	66
Tabla 5. Diseño hidráulico de la red de distribución	67
Tabla 6. Diseño hidráulico de la cámara rompe presión tipo 6	68
Tabla 7. Ficha 06 "Cobertura del servicio"	70
Tabla 8. Ficha 07 "Cantidad del servicio"	72
Tabla 9. Ficha 08 "Continuidad del servicio"	74
Tabla 10. Ficha 09 "Calidad del servicio"	76
Tabla 11. Estado de la condición sanitaria	78
Tabla 12. Coordenadas del levantamiento topográfico	115
Tabla 13. Cálculo del caudal de la fuente en época de estiaje	211
Tabla 14. Cálculo del caudal de la fuente en época de lluvia	211
Tabla 15. Cálculo de la densidad poblacional	212
Tabla 16. Datos censales de la población	212
Tabla 17. Cálculo del coeficiente de crecimiento poblacional	213
Tabla 18. Cálculo de la población futura	213
Tabla 19. Cálculo del consumo no doméstico	216
Tabla 20. Cálculo del consumo doméstico	216
Tabla 21. Cálculo de las variaciones de consumo	218
Tabla 22. Cálculo de la cota número 2	222
Tabla 23. Cálculo de la distancia de afloramiento y la cámara húmeda	223
Tabla 24. Cálculo del ancho de la pantalla	224
Tabla 25. Cálculo del cono de rebose	226

Tabla 26. Cálculo de la tubería de limpieza	. 227
Tabla 27. Cálculo de la tubería de conducción	. 227
Tabla 28. Cálculo de la canastilla	. 228
Tabla 29. Cálculo de la cámara húmeda	. 230
Tabla 30. Cálculo de la cota de conducción	. 230
Tabla 31. Cálculo hidráulico de la línea de conducción	. 233
Tabla 32. Cálculo del volumen del reservorio	. 237
Tabla 33. Dimensionamiento del reservorio rectangular	. 238
Tabla 34. Cálculo de los diámetros de las tuberías	. 239
Tabla 35. Cálculo del llenado y vaciado del reservorio	. 241
Tabla 36. Cálculo de la canastilla en el reservorio	. 242
Tabla 37. Cálculo hidráulico de la línea de aducción y red de distribución	. 245
Tabla 38. Cálculo hidráulico de la cámara rompe presión tipo 6	. 247
Tabla 39. Cálculo de la tubería de rebose en la CRP6	. 248
Tabla 40. Cálculo de la canastilla en la CRP6	. 248
Tabla 41. Metrado de la cámara de captación	251
Tabla 42. Metrado de la línea de conducción	260
Tabla 43. Metrado de la cámara rompe presión tipo 6	264
Tabla 44. Metrado del reservorio de almacenamiento	. 268
Tabla 45. Metrado de la línea de aducción y red de distribución	. 276
Tabla 46. Costos y presupuestos	. 283

Índice de cuadros

Cuadro 1. Periodo de diseño en estructuras
Cuadro 2. Dotación por números de habitantes
Cuadro 3. Dotación por regiones
Cuadro 4. Dotación por la opción tecnológica
Cuadro 5. Presiones máximas en tuberías PVC
Cuadro 6. Definición y operacionalización de variables e indicadores
Cuadro 7. Matriz de consistencia
Cuadro 8. Identificación de la fuente donde se diseñará la captación
Cuadro 9. Identificación del lugar donde se diseñará la línea de conducción 51
Cuadro 10. Identificación al lugar donde se realizará el diseño del reservorio 53
Cuadro 11. Identificación del lugar donde se diseñará la línea de aducción 55
Cuadro 12. Identificación del lugar donde se diseñará la red de distribución 57
Cuadro 13. Dotación de agua para centros educativos
Cuadro 14. Dotación de agua para locales de salud
Cuadro 15. Dotación según la opción tecnológica
Cuadro 16. Datos para el cálculo de las variaciones de consumo "k1 y k2" . 217
Cuadro 17. Parámetros de diseño para el cálculo de las variaciones de consumo "k1 y k2"
Cuadro 18. Criterios técnicos para el cálculo de las variaciones de consumo "k1 y k2"
Cuadro 19. Criterios para los caudales hallados según las variaciones
de consumo
Cuadro 20. Resumen del cálculo de los caudales de diseño
Cuadro 21. Periodo de diseño para el cálculo de la cámara de captación 220
Cuadro 22. Dotación para el cálculo de la cámara de captación
Cuadro 23. Coeficiente de rugosidad y coeficiente de descarga en orificios. 220

Cuadro 24.	Coeficiente de variación diaria	220
Cuadro 25.	Datos para el diseño hidráulico de la cámara de captación	221
Cuadro 26.	Coeficiente de rugosidad "Hazen Williams" según el tipo de	
	material de tubería	231
Cuadro 27.	Presiones máximas en tuberías tipo PVC	231
Cuadro 28.	Diámetros comerciales para tuberías de clase 10 de tipo PVC	231
Cuadro 29.	Descripción de los datos que tendrá la línea de conducción	232
Cuadro 30.	Formular para el cálculo en la línea de conducción	234
Cuadro 31.	Periodo de diseño para el cálculo del reservorio	235
Cuadro 32.	Coeficiente de variación para el cálculo del reservorio	235
Cuadro 33.	Datos para el diseño hidráulico del reservorio de	
	almacenamiento	236
Cuadro 34.	Descripción de datos en la línea de aducción y red de	
	distribución	244

I. Introducción

Esta investigación especificó el diseño del sistema de agua potable en el caserío Aija, se encuentra ubicado en las coordenadas UTM, E 826058, N 9069026 zona 17L con altitud de 2371.00 m.s.n.m, esta investigación estuvo basada en identificar los lugares o ambientes donde se ara el diseño del sistema de abastecimiento de agua potable en el caserío de Aija, partiendo desde una captación, conducción, reservorio, aducción y red de distribución, dicho diseño influyó de manera positiva a la condición sanitaria de la población, los cuales parten desde cobertura, continuidad, cantidad y cobertura, tuvo como problema de investigación dicha pregunta, ¿El diseño del sistema de abastecimiento de agua potable en el caserío de Aija, distrito de Cabana, provincia de Pallasca, región Áncash, inciden en la mejora de la condición sanitaria de la población -2021?, como objetivo general se obtuvo lo siguiente, Diseñar el sistema de abastecimiento de agua potable para la mejora de la condición sanitaria de la población en el caserío de Aija, distrito Cabana, provincia de Pallasca, región Áncash – 2021, como objetivos específicos; Identificar el sistema de abastecimiento de agua potable en el caserío de Aija, distrito Cabana, provincia Pallasca, región Ancash - 2021; Realizar el diseño del sistema de abastecimiento de agua potable en el caserío de Aija, distrito Cabana, provincia Pallasca, región Ancash - 2021; Conocer la incidencia en la condición sanitaria de la población potable en el caserío de Aija, distrito Cabana, provincia Pallasca, región Ancash - 2021.

Se **justificó** en base a la necesidad de cada poblador del caserío de Aija en tener un agua potable apta para el consumo humano ya que el agua actualmente está contaminada ocasionando enfermedades a los pobladores, esta investigación será un beneficio para el desarrollo sostenible de 50 viviendas, ubicadas en el caserío de Aija.

La metodología a usar fue de características: de tipo correlacional, de nivel cuantitativo y cualitativo, de diseño no experimental y de corte transversal, la población se constituyó por el sistema de abastecimiento de agua potable en zonas rurales y la **muestra** por el sistema de abastecimiento de agua potable del caserío de Aija, distrito Cabana, provincia Pallasca, región Ancash, la delimitación espacial constituye el caserío de Aija, distrito Cabana, provincia Pallasca, región Ancash, comprendida con un periodo desde marzo 2021 – junio 2021, para la recolección de datos se usó la **técnica** de observación directa por medio de visitas a la zona de estudio, como instrumento se utilizaron, cuestionarios (encuentras), y fichas técnicas, como resultado se identificaron los lugares en donde se empleara el diseño hidráulico de un sistema de abastecimiento de agua potable, teniendo como respuesta que cada lugar en donde se encontrara cada componentes se encuentran libres de contaminación y peligros, dicha identificación llevó a la ejecución de diseño de cada uno de los componentes que conforman un sistema de agua potable y haci mejorar la condición sanitaria de la población, por último se dio la **conclusión** que la identificación de todos los lugares en donde se encontrara cada componente es óptimo para realizarse un diseño de un sistema de agua potable el cual parte desde la captación, que comprendió accesorios y estructura, en la línea de aducción, línea de conducción y red de distribución comprendió los diseño de los diámetros, clase y tipo de tuberías, por ultimo para el diseño del reservorio comprendió desde el volumen total, el tipo, la forma y una caseta de válvulas que ayudara a controlar el agua proveniente de la captación y la salida de agua hacia la población, dicho diseño hidráulico fue de beneficio para todo el caserío brindando agua de calidad y mejorando su condición sanitaria de la población.

II. Revisión de la literatura

2.1. Antecedentes

2.1.1. Antecedentes internacionales

Según Vásquez¹, en su **tesis** "Diseño del sistema de agua potable de la comunidad de Guantopolo Tiglán parroquia Zumbahua Cantón Pujilí provincia de Cotopaxi"; tuvo como objetivo; Diseñar el sistema de agua potable de Guantopolo Tiglán, Parroquia Zumbahua, del cantón Pujilí de la provincia de Cotopaxi; la metodología utilizada por el investigador fue descriptivo cuyo único fin consistió en describir los fenómenos, situaciones, contexto y sucesos, es decir detallar como es y cómo se manifiesta, se obtuvo como resultado una población futura de 437 habitantes, un caudal promedio de 0.365 l/s, y un caudal máximo diario 0.463 l/s, un caudal máximo horario de 1.11 l/s, estos caudales de diseño fueron hallados con los coeficientes de 1.3 y 2, cuentan con una captación de ladera con una tubería de limpieza y de reboce de 1.37 pulgadas, la línea de conducción cuenta con diámetros de 32 mm cuenta con un reservorio de 20 metros cúbicos con una altura de 3 metros, la línea de aducción y la red de distribución contaron con diámetro similares a la conducción, en conclusión; El diseño de las línea de aducción del sistema de abastecimiento de agua potable cumple con la norma de velocidades con el rango recomendado de 0,45 – 2.5 m/s para la tubería de PVC.

Según Guamán et al², en su **tesis** "Diseño del sistema para el abastecimiento del agua potable de la comunidad de Mangacuzana, Cantón Cañar, provincia de Cañar; tuvo como **objetivo** es Realizar el diseño definitivo del sistema para el abastecimiento de agua potable de la comunidad de Mangacuzana, Cantón Cañar, Provincia de Cañar, mediante cálculos e investigaciones en las normativas vigentes, la metodología utilizada por el investigador fue Cualitativo y Cuantitativo, se obtuvo como resultado una población futura de 357 habitantes, un caudal promedio de 0.32 l/s, y un caudal máximo diario 0.395 l/s, un caudal máximo horario de 0.95 l/s, estos caudales de diseño fueron hallados con los coeficientes de 1.3 y 2, cuentan con una captación de ladera de 1.05 metro de ancho, altura de 1.00 metro, cuenta también con una tubería de reboce y limpieza de 2 pulg, la línea de conducción cuenta con un diámetro de 3/4 pulg, cuenta con un reservorio de 15 metros cúbicos, la línea de aducción y la red de distribución contaron con diámetro similares a la conducción tuvo como conclusión mediante las encuestas socio-económicas aplicadas a la Comunidad de Mangacuzana se determinaron un total de 72 viviendas con 280 habitantes cuyas principales actividades económicas son la ganadería y la agricultura y determinó el caudal mínimo de las dos fuentes en época de estiaje, de 0.3 l/s de la vertiente de Cocha-Huaico 1 y de la vertiente Cocha-Huaico 2 de 0.5 l/s, con fines de uso múltiple un caudal total de 0,8 l/s.

2.1.2. Antecedentes nacionales

Según Fernández³, en su **tesis** Diseño del sistema de agua potable y saneamiento básico rural para el caserío de Rumichaca, distrito de Huamachuco, provincia de Sánchez Carrión, región la libertad tuvo como objetivo: Realizar el diseño del sistema de agua potable v saneamiento básico rural para el caserío de Rumichaca, distrito de Huamachuco, provincia de Sánchez Carrión, departamento La Libertad; la **metodología** utilizada por el investigador fue descriptivo no experimental, se obtuvo como resultado una población futura de 502 habitantes, un caudal promedio de 0.789 l/s, y un caudal máximo diario 1.03 l/s, un caudal máximo horario de 1.58 l/s, estos caudales de diseño fueron hallados con los coeficientes de 1.3 y 2, cuentan con una captación de ladera con una tubería de reboce y limpieza de 2 pulg, la línea de conducción cuenta con un diámetro de 2 pulg., cuenta con un reservorio de 20 metros cúbicos, la línea de aducción y la red de distribución contaron con diámetro similares a la conducción, en conclusión, Se logró diseñar el sistema de agua potable para un total de 502 personas proyectadas al año 20 y una tasa de crecimiento de 1.75% con un caudal de demanda de 1.03 lt/seg y un reservorio circular apoyado de 20 m3 de capacidad, línea de conducción de 2 pulgadas y una captación con un caudal de aforo de 1.36 lt/seg.

Según Machado⁴, en su **tesis** diseño del sistema de abastecimiento de agua potable del centro poblado Santiago, Distrito de Chalaco, Morropon – Piura; tuvo como objetivo realizar el diseño de la red de abastecimiento de agua potable del Centro Poblado de Santiago, Distrito de Chalaco, la metodología utilizada por el investigador fue descriptivo, se obtuvo como resultado una población futura de 256 habitantes, un caudal promedio de 0.789 l/s, y un caudal máximo diario 0.339 l/s, un caudal máximo horario de 0.552 l/s, estos caudales de diseño fueron hallados con los coeficientes de 1.3 y 2, cuentan con una captación de ladera con una tubería de reboce y limpieza de 2 pulg, la línea de conducción cuenta con un diámetro de 2 pulg, cuenta con un reservorio de 20 metros cúbicos, la línea de aducción y la red de distribución contaron con diámetro similares a la conducción llegando a la siguiente conclusión; Se diseñó la captación del tipo manantial teniendo en cuenta cada uno de los parámetros y criterios establecidos en la norma técnica peruana, lo cual os garantiza una mejor captación del manantial y Se diseñó la red conducción con una longitud de 604.60 metros lineales y con un diámetro de 2 pulgadas, así como la red de aducción con una longitud de 475.54 metros lineales con un diámetro de 2 pulgadas. La red de distribución se diseñó teniendo una longitud de 732.94 metros lineales con un diámetro de 1 ½ pulgadas

Según Ledesma⁵, en su **tesis** titulada: Diseño del mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del

sector Parva del Cerro, caserío el Espino, distrito de Chugay, provincia de Sánchez Carrión, departamento La Libertad – 2018, se tuvo como objetivo Realizar el diseño del mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del sector Parva del Cerro, caserío el Espino, distrito de Chugay, provincia de Sánchez Carrión, departamento La Libertad – 2018, el investigador aplico la metodología no experimental transversal, descriptivo teniendo como resultado una población futura de 336 habitantes con 82 viviendas en un periodo de diseño de 20 años, el caudal promedio es de 0.41 l/s, el caudal máximo diario de 0.73 l/s y el caudal máximo horario de 1.13 l/s, se obtuvo una captación de ladera con dimensiones de 1.00 mts de ancho y 0.90 mts de altura de cámara húmeda, el área de la ranura es de 75 mm2, en las tubería de rebose y limpieza se obtuvo un diámetro de 2", en la línea de conducción se utilizó tubería PVC 2" de diámetro, el reservorio de almacenamiento es de 15 m3 de forma circular con un diámetro de 3.40 mts y una altura 2.10 mts; el investigador llego a la conclusión de que se logró diseñar el sistema de agua potable para un total de 336 personas proyectadas en un periodo de diseño de 20 años, con un caudal máximo diario de 0.73 l/s se diseñó una captación de ladera y con un caudal de 1.30 l/s, una línea de conducción de 2", se diseñó un reservorio circular de 15 m3 de capacidad, y una red de distribución de 5286m el cual beneficiará a 67 viviendas domiciliarias, 2 Instituciones educativas, 3 locales sociales.

2.1.3. Antecedentes locales

Según Velásquez⁶, en su **tesis**, "Diseño del Sistema de Abastecimiento de Agua Potable para el Caserío de Mazac, Provincia de Yungay, Áncash – 2017"; tuvo como objetivo; Diseñar el Sistema de Abastecimiento de Agua Potable para el Caserío de Mazac, Provincia de Yungay, Áncash – 2017; la **metodología** utilizada por el investigador fue descriptivo cuyo único fin consistió en describir los fenómenos, situaciones, contexto y sucesos, es decir detallar como es y cómo se manifiesta, se obtuvo como **resultado** una población futura de 739 habitantes, un caudal promedio de 0.76 l/s, y un caudal máximo diario 0.99 l/s, un caudal máximo horario de 1.51 l/s, estos caudales de diseño fueron hallados con los coeficientes de 1.3 y 2, cuentan con una captación de ladera de 1.00 metro de ancho, altura de 0.76 metros, cuenta también con una tubería de limpieza y de reboce de 2", la línea de conducción cuenta con diámetros de ¾ de pulg, 1 pulg y 1 ½ pulg, cuenta con un reservorio de 25 metros cúbicos, la línea de aducción y la red de distribución contaron con diámetro similares a la conducción, llegando a la **conclusión** de que el tipo de Captación que se empleó en el Sistema de Abastecimiento Agua Potable para el Caserío de Mazac es de tipo Ladera y Concentrado, además, según su caudal que este posee es de tipo C-1 ya que tiene un caudal promedio mensual máximo de 2.20 lt/seg. y un mínimo de 1.4 lt/seg. en épocas de estiaje cumpliendo de esta forma los requisitos para este tipo de captaciones con un rango entre 0.8 y 2.5 l/seg el reservorio será de tipo apoyado.

Según Chirinos⁷, en su **tesis**, "Diseño del sistema de abastecimiento de agua potable y alcantarillado del Caserío Anta, Moro - Ancash 2017", tuvo como objetivo; Diseñar el sistema de abastecimiento de agua potable y alcantarillado en el Caserío Anta, Moro - Ancash 2017; la metodología utilizada por el investigador fue descriptivo no experimental, se obtuvo como resultado una población futura de 226 habitantes, un caudal promedio de 0.28 l/s, y un caudal máximo diario 0.37 l/s, un caudal máximo horario de 0.57 l/s, estos caudales de diseño fueron hallados con los coeficientes de 1.3 y 2, cuentan con una captación de ladera concentrado de 1.05 metro de ancho, altura de 1.00 metro, cuenta también con una tubería de reboce y limpieza de 1½ pulg, la línea de conducción cuenta con un diámetro de ¾ de pulg, cuenta con un reservorio de 7 metros cúbicos, la línea de aducción y la red de distribución contaron con diámetro similares a la conducción, llegando a la **conclusión** de que el tipo de Captación que se empleó en el Sistema de Abastecimiento Agua Potable para el Caserío de Anta es de tipo Manantial de Ladera y Concentrado, Distancia donde brota el agua y caseta húmeda 1.1m, el ancho a considera de la pantalla es de 1.05 m y la altura de la pantalla será de y 1.00 m, se tendrá 8 orificios de 1", la canastilla será de 2", la tubería de rebose y limpieza será de 1 1/2" con una longitud de 10 m.

Según Gonzales⁸, en su tesis titulada: Diseño del sistema de abastecimiento de agua potable del caserío de Breña Isco, distrito de

Moro, provincia Del Santa, región Áncash y su incidencia en la condición sanitaria en la población - 2020., tuvo como objetivo Diseñar el sistema del abastecimiento de agua potable para la mejora de la condición sanitaria de la población en el caserío de Breña Isco, distrito de Moro, provincia Del Santa, región Áncash – 2021, el investigador aplicó una metodología de tipo correlacional y nivel de investigación cualitativa y cuantitativo obteniendo un resultado de un se diseñó para una longitud de tubería de 1046 ml, esta tubería de conducción iniciará desde la cota de captación que es de 1327.37 m.s.n.m hasta la cota del reservorio ubicado en 1270.55, el caudal de diseño se utilizó para el cálculo de esta infraestructura, el cálculo del diámetro de tubería en toda la línea está en base a la Resolución Ministerial N o 192 para criterios de diseño, el tipo de tubería fue de PVC de clase 10, nuestra línea de conducción se dividió en 2 tramos mientras que la condición sanitaria de la población se encuentra en un estado Bueno estando en la clasificación de evaluación "sostenible", evaluando la cobertura, cantidad, continuidad y calidad del servicio, se llegó a la **conclusión** que el tipo de captación que se empleó es de tipo ladera y concentrado, tiene un caudal máximo de 0.75 l/s, la línea de conducción y aducción es de tipo PVC, el tipo de reservorio de almacenamiento que se empleó en el sistema de rectangular y se calculó a base del volumen de regulación y reserva, la red de distribución se optó por una red de tipo ramificada o abierta, por la dispersión de las viviendas con una separación superior a los 50 mts.

2.2. Bases Teóricas de la investigación

2.2.1. Agua

Su naturaleza se compone de tres cuartas partes de la superficie del planeta. Compuesto de tres átomos, dos de oxigeno que unidos entre si forman una molécula de agua (H2O).

Según Tello⁹, el agua es una sustancia líquida desprovista de olor, sabor y color, que existe en estado más o menos puro en la naturaleza y cubre un porcentaje importante (71%) de la superficie del planeta Tierra, además, es una sustancia bastante común en el sistema solar y el universo, aunque en forma de vapor o de hielo. El agua es indispensable para la vida como la conocemos, y en su interior tuvieron lugar las primeras formas de vida del mundo.

Figura 1. Agua

Fuente: fmmundo.

2.2.2. Agua potable

Llamamos agua potable al agua que podemos consumir o beber sin que exista peligro para nuestra salud. El agua potable no debe contener 15 sustancias o microorganismos que puedan provocar enfermedades o

perjudicar nuestra salud. Por eso, antes de que el agua llegue a nuestras casas, es necesario que sea tratado en una planta potabilizadora. En estos lugares se limpia el agua y se trata hasta que está en condiciones adecuadas para el consumo humano.

Según Cordero¹⁰, Significa que el agua debe estar libre de microorganismos patógenos, de minerales y sustancias orgánicas que puedan producir efectos fisiológicos adversos. Debe ser estéticamente aceptable y, por lo tanto, debe estar exenta de turbidez, color, olor y sabor desagradable. Puede ser ingerida o utilizada en el procesamiento de alimentos en cualquier cantidad, sin temor por efectos adversos sobre la salud.

Figura 2. Agua potable

Fuente: Milenio

2.2.3. Afloramiento

Según Agüero¹¹, El agua fluye por lo general a través de una formación de estratos con grava, arena o roca fisurada. En los lugares donde

existen estratos impermeables, estos bloquean el flujo subterráneo del agua y permiten que aflore a la superficie.

Figura 3. Afloramiento

Fuente: biodiversidad virtual.

2.2.4. Fuente

Es el punto de donde brota una corriente de agua, para que pueda ser captada y ser conducida a través de una red de conducción. La fuente es la que alimenta y abastece a una la población.

2.2.4.1. Tipos de fuentes de agua

A. Aguas superficiales

Según Arocha¹², Para su uso se deberá constatarse su calidad y disponibilidad del caudal con información exacta y detallada, porque son constituidas por los ríos, quebradas, arroyos, y lagos que discurren naturalmente por la superficie terrestre. "Normalmente estas fuentes no son tomadas en especial porque existen zonas de pastoreo o

zonas que son habitadas por lo tanto existe razones de que se puedan arrojar desechos, elementos tóxicos, que puedan contaminar el agua".

Figura 5. Agua superficial (2020)

Fuente: dreams time.

B. Aguas superficiales

Según Fair, et al.¹³, "Las aguas subterráneas poseen un espacio para su obtención, se recargan mediante las infiltraciones o por algunas grietas en el suelo, son menores en su aportación diaria, pero son superiores en calidad a los abastecimientos superficiales"

Figura 5. Agua subterránea

Fuente: emaze.

C. Aguas superficiales

"Las aguas de lluvia son raramente la fuente inmediata de abastecimientos, su uso generalmente es en el ámbito rural y en lugares donde se carece de aguas del subsuelo (subterránea) y superficiales. Son empleadas en casa habitación a través de los tejados que escurre y se conduce por canales y ductos de bajada a barriles o cisternas de almacenamiento para su posterior desinfección y consumo". 14

Figura 6. Agua subterránea (2016)

Fuente: imagen agropecuaria.

2.2.5. Aforo

El aforo significa calcular la duración que se toma en llenar el agua a un recipiente de volumen conocido para lo cual, el caudal es fácilmente calculable. expresado en lt/seg.

2.2.6. Caudal

Caudal se define como El volumen de agua (litros, metros cúbicos, etc.) que atraviesa una superficie (canal, tubería, etc.) en un tiempo determinado (segundos, minutos, horas).

Según Calderón¹⁵, Representa el volumen de un flujo de agua en unidades de tiempo, representada en litros por segundo, galones por minuto o metros cúbicos por segundo.

Donde:

Q: Caudal de la fuente

V : Volumen del recipiente

t : Tiempo de llenado

2.2.7. **Diseño**

El diseño se hará de acuerdo a como lo requiera el proyecto y para qué tipo de captación estará apto el terreno donde se ubicará de acuerdo al manantial elegido para el proyecto planificado

2.2.8. Población de diseño y demanda de agua

Según Agüero¹⁶. Las obras de agua potable no se diseñan para satisfacer solo una necesidad del momento actual, sino que deben prever el crecimiento de la población en un periodo de tiempo prudencial que varía entre 10 y 40 años; siendo necesario estimar cual será la población futura al final de este periodo. Con la población futura se determina la demanda de agua para el final del periodo de diseño. La dotación o la demanda per cápita, es la cantidad de agua que requiere cada persona de la población, expresada en litros/habitante/día. Conocida la dotación, es necesario estimar el consumo promedio diario anual, el consumo máximo diario y el consumo máximo horario. El consumo promedio diario anual servirá para el cálculo del volumen del reservorio de

almacenamiento y para estimar el consumo máximo diario y horario. El valor del consumo máximo diario es utilizado para el cálculo hidráulico de la línea de conducción; mientras que el consumo máximo horario, es utilizado para el cálculo hidráulico de la línea de aducción y red de distribución.

2.2.9. Población futura

Para el cálculo de la población futura en las zonas rurales es se tiene métodos que determina el diseño a futuro, de acuerdo a la pasa de crecimiento de la zona donde se desarrollara este Proyecto.

2.2.9.1. Método de cálculo

A. Método analítico

"Presuponen que el cálculo de la población para una región dada es ajustable a una curva matemática. Es evidente que este ajuste dependerá de las características de los valores de población censada, así como de los intervalos de tiempo en que estos se han medido. Dentro de los métodos analíticos tenemos el aritmético, geométrico, de la curva normal, logística, de la ecuación de segundo grado, el exponencial, de los incrementos y de los mínimos cuadrados." 16

B. Método racional

Se basa en un estudio socioeconómico del lugar considerado el crecimiento vegetativo que, en función de los nacimientos, difusiones inmigraciones, emigraciones y población flotante.

$$\mathbf{P} = (\mathbf{N} + \mathbf{1}) - (\mathbf{D} + \mathbf{E}) + \mathbf{P}\mathbf{f} \qquad (2)$$

Donde:

P = Población

Pf = Población flotante

E = Emigraciones

I = Inmigraciones

D = Defunciones

N = Nacimientos

C. Método arimetico

Se usa cuando no se tiene mucha información del lugar. La fórmula de crecimiento aritmético:

La fórmula del método aritmético es la siguiente:

$$P_f = P_o(1 + r.t)$$
(3)

Donde:

Pf: Población futura

Po : Poblacional actual

r : Coeficiente de crecimiento

t : Periodo de diseño

El coeficiente de crecimiento se obtiene por medio de censos el cual nos sirve para obtener nuestra tasa de crecimiento aplicando la formula siguiente:

$$\mathbf{r} = \frac{\frac{\mathbf{P_f}}{\mathbf{P_0}} - \mathbf{1}}{\mathbf{t}} \tag{4}$$

2.2.9.2. Periodo de diseño

Según (Ministerio de Vivienda Construcción y Saneamiento), determina que Los periodos de diseño de los diferentes componentes del sistema se determinarán considerando los siguientes factores:

Cuadro 1. Periodo de diseño en estructuras

Periodo de diseño en estructuras				
Componente Peridod de diseño				
Obras de captación	20 años			
Conduccion	10 a 20 años			
Reservorio	20 años			
Red principal	20 años			
Red secundaria	10 años			

Fuente: Resolución Ministerial. Nº 192 – 2018 – Vivienda

2.2.9.3. Demanda de agua

De acuerdo al número de habitantes de la población elegida y el tipo de la comunidad, se determina la variación del consumo de agua debido a que la temperatura y el clima juegan un papel importante en la población y por ende los factores económicos y sociales, en las comunidades rurales y las regiones del país se proyectan las dotaciones en base al número de habitantes

2.2.9.4. Demanda de dotaciones

En las siguientes tablas se muestran las dotaciones por la cantidad de habitantes en las localidades rurales del país.

Cuadro 2. Dotación por números de habitantes

POBLACION (Habitantes)	DOTACIÓN (1/hab/día)
Hasta 500	60
500 – 1000	60 - 80
1000 - 2000	80 - 100

Fuente: Ministerio de salud

Cuadro 3. Dotación por regiones

REGIÓN	DOTACIÓN
	(1/hab/día)
SELVA	70
COSTA	60
SIERRA	50

Fuente: Ministerio de salud

Cuadro 4. Dotación por la opción tecnológica

Criterios	Costa	Sierra	Selva	
Letrinas sin arrastre	50 - 60	40 - 50	60 - 70	
hidráulico.	30 - 00	40 - 30	00 - 70	
Letrinas con arrastre	90	80	100	
hidráulico.	90	6 U	100	

Fuente: Ministerio de vivienda construcción y

saneamiento (2016)

2.2.10. Población futura

Un sistema de abastecimiento de agua potable, tiene como finalidad primordial, la de entregar a los habitantes de una localidad, agua en cantidad y calidad adecuada para satisfacer sus necesidades, ya que como se sabe los seres humanos estamos compuestos en un 70% de agua, por lo que este líquido es vital para la supervivencia. Uno de los puntos principales de este capítulo, es entender el término potable. El agua potable es considerada aquella que cumple con la norma

establecida por la Organización Mundial de la Salud (OMS) que debe obtener la calidad de agua.

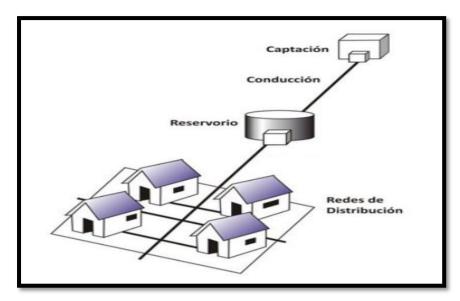


Figura 7. Sistema de abastecimiento de agua potable.

Fuente: López R.

2.2.11. Componentes de un sistema de agua potable

Este sistema está constituido por partes elementales que son el complemento para un correcto funcionamiento del sistema de abastecimiento de agua potable.

2.2.11.1. Captación

La captación es una estructura destinada a recoger o extraer una determinada cantidad de agua de la fuente que se ha seleccionado y descargarla en la conducción del sistema de agua potable, estas obras pueden ser tanto para aguas superficiales como para subterráneas.

Según Moreno¹⁷, Obra que recolecta el agua proveniente de manantiales (nacimientos) que salen de las montañas. Esta obra es la más crítica y de ella depende el éxito o fracaso del

proyecto, por lo que se deberá tener información a detalle para lograr el objetivo final, de beneficio a los habitantes.

A. Captación de ladera

Se capta agua que emerge en terreno llano. La estructura de captación es una cámara sin losa de fondo que rodea el punto de brote del agua; consta de cámara húmeda que sirve para almacenar el agua y regula el caudal al utilizarse y una cámara seca que protege las válvulas de control de salida, rebose y limpia.

B. Captación de fondo

Cuando se realiza la protección de una vertiente que aflora a una superficie tipo plano inclinado con carácter puntual disperso.

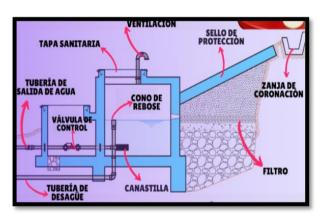


Figura 8. Captación de ladera.

Fuente: Sanitary Engineer. (2020)

C. Captación por manantiales

En su mayoría de veces no se encuentran cercanos a la población sus descripciones demográficas generalmente están compuestas por laderas de los cerros o montañas

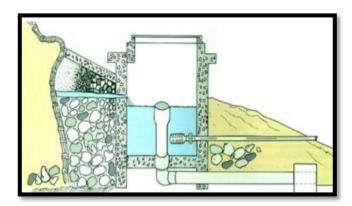


Figura 9. Sistema de captación de manantial.

Fuente: CARE Perú. (2001

D. Captación por bombeo

Para dar uso a este sistema de captación se atiza una bomba centrifuga horizontal

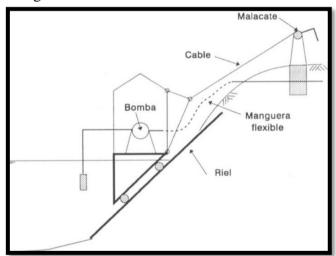


Figura 10. Captación directa por bombeo.

Fuente: slideplayer. (2016)

E. Captación de agua pluviales

En este tipo de captación en ejecutada mediante los techos de la casas o áreas especiales debidamente preparado mediante.

2.2.11.2.Línea de Conducción

Es la línea que transporta el agua desde la captación hasta el punto de entrega, que usualmente es el reservorio de regulación, pero eventualmente puede ser la planta de tratamiento o puede ser directamente a la red de distribución cuando el caudal de conducción corresponde al caudal máximo horario, lo que hace innecesario el reservorio de regulación. Sólo se requiere un pequeño reservorio para la cloración. Según Seguil¹⁸, la línea de conducción es un juego de tuberías, válvulas, accesorios, estructuras y obras de ingeniería que están encargadas de transportar el agua atreves de ella desde la captación hasta el reservorio, aprovechando la carga estática existente.

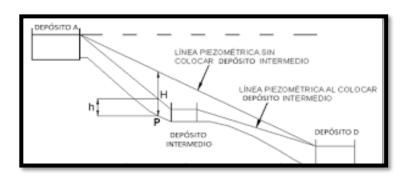


Figura 11: Línea de conducción

Fuente: Ingeniería civil

A. Tipos de línea de conducción

a. Conducción por bombeo o impulsión

"Se dice conducción por bombeo cuando una fuente de agua potable se encuentra debajo del nivel de un reservorio de almacenamiento y dicho sistema necesita de una impulsión de energía para que pueda funcionar el sistema de agua potable"¹⁸.

b. Conducción por gravedad

"Se dice conducción por gravedad al sistema de agua potable que no necesita de una energía para que funcione si no que transporta el agua naturalmente (gravedad), esto ocurre cuando la fuente se encuentra en un nivel alto del reservorio de almacenamiento".18.

B. Diámetro

Dependerá del caudal máximo diario del diseño, donde el diseño será el diámetro interior:

Menos diámetro más velocidad obtendremos

Mas diámetro, menos perdida de energía obtendremos con más presión.

Donde:

D: Diámetro Interno Tubería (mm).

Qmd: Caudal máximo diario

C : Coeficiente de rugosidad

S : Pendiente en el tramo

C. Velocidad

Es la velocidad que circula el agua por las tuberías ejerciendo presión en ella misma.

$$V = 1.9735 \frac{Q}{D^2}$$
(6)

Donde:

V : Velocidad del agua (m/s)

D : Diámetro Interno Tubería (mm).

Q : Caudal

D. Presión

Es la presión del agua por la cantidad gravitacional que contiene el fluido.

"Es la energía que se encuentra sobre el área de la tubería que es producida por las grandes pendientes que se ejercen en los tramos de la tubería." 18

Cuadro 5. Presiones máximas en tuberías PVC

Presiones máximas en tuberías PVC					
Tipo	P. máx. de prueba	P. máx. de trabajo			
5	50	35			
7.5	75	50			
10	100	70			
15	150	100			

Fuente: Ministerio de salud.

E. Perdida de carga

La pérdida de carga es el gasto de energía necesario para soportar las resistencias que se pueden contrariar al movimiento del fluido de un lado a otro en una sección de la tubería.

a. Perdida de carga unitaria

La pérdida de carga unitaria se puede determinar con la fórmula de Hazen y Williams.

b. Perdida de carga por tramo

Es la perdida de carga que se da en los diferentes tramos de la tubería.

F. Válvula de aire

Según García¹⁹, se utiliza para eliminar bolsones de aire en los lugares de contrapendiente, que de no eliminarse produce cavitaciones en la tubería. Se debe colocar en el punto más alto de la tubería.

G. Válvula de purga

"Se utiliza en sifones, en el punto más bajo para eliminar sedimentos." 19

H. Cámara rompe presión

Según Vargas²⁰, son estructuras pequeñas, su función principal es de reducir la presión hidrostática a cero u a la atmosfera local, generando un nuevo nivel de agua.

2.2.11.3. Reservorio

Este tipo de obra se realiza con la función de almacenar y distribuir el agua que ha llegado de la captación por la línea de conducción, Este tanque se realiza de acuerdo a la cantidad de agua que se desea almacenar con el fin de abastecer a la población. Es un tanque de almacenamiento y reserva de agua

para abastecer a la población con las cantidades requeridas diariamente, En los proyectos de agua potable mayormente se usan los reservorios apoyados, que ya como algo empírico tienen forma rectangular y circular, son construidos directamente sobre la superficie del suelo.

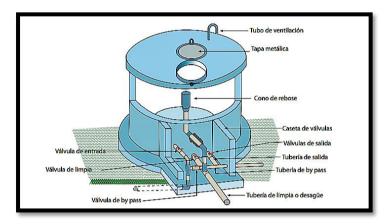


Figura 12: Reservorio de almacenamiento de agua potable

Fuente: Pérez L. (2016)

A. Tipos de reservorio

a. Reservorio elevado

"Es una estructura de almacenamiento de agua potable que se encuentra por encima del nivel del terreno natural, son soportados por columnas y pilotes el cual se encargan de sostener las cargas que ejerce dicha estructura, son usados en sistema de agua potable por bombeo"²¹.

b. Reservorio apoyado

"Son estructuras de almacenamiento de agua potable que generalmente tienen forma circular y rectangular, estos son construidos sobre la superficie del terreno natural, se utilizan para capacidades mediana y pequeñas, son usados en sistemas de agua potable por gravedad"²¹.

c. Reservorio enterrado

"Se les conoces mayormente como cisternas, sirve para el almacenamiento de agua potable, se encuentran construidos por debajo del terreno natural, este tipo de almacenamiento tiene como ventaja resistir presiones interiores"²¹.

B. Volumen de regulación

"Se calcula con el diagrama de masa correspondiente a las variaciones horarias de la demanda, cuando se comprueba la no disponibilidad de esta información, se considera del 15 al 25% del caudal promedio anual de la demanda, este porcentaje se aplica en sistemas de agua potable por gravedad."²²

C. Volumen de reserva

"El volumen de reserva se considera el 20% del volumen de regulación, este volumen sirve como sustento en casos que el reservorio presente un caso de emergencia o tenga que realizarse algún mantenimiento"²².

D. Volumen contra incendio

"Este volumen solamente aplica cuando nos encontramos en zonas industriales, comerciales y poblaciones que tengan más de 1000 habitantes, en zonas rurales no aplica"²².

E. Desinfección

Es mucha importancia para mantener el agua en óptimas condiciones para el consumo de una población.

F. Caseta de válvulas

Conjunto de válvulas y tubería que controlan el reservorio de almacenamiento.

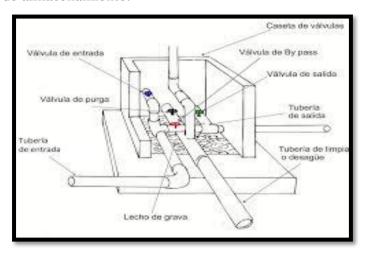


Figura 13. Caseta de válvulas

Fuente: Saneamiento básico

2.2.11.4.Línea de aducción

"Es un conjunto de tubería, que traslada el agua desde un reservorio de almacenamiento hasta el inicio de la red de distribución, la clase de tubería se elige de acuerdo con la presión que existe en la línea de aducción la cual soporta presiones"²³.

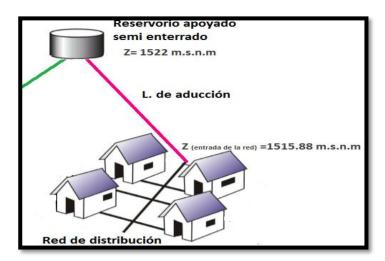


Figura 14. Esquema de una línea de aducción

Fuente: Saneamiento básico

A. Caudal

"El caudal de diseño depende del consumo promedio anual de la población el cual ayudara con el coeficiente de variación horaria (k2) teniendo como resultado un caudal máximo horario."²³

B. Diámetro

"El diámetro va de la mano con el caudal máximo horario, teniendo en cuenta que a más caudal mayor diámetro como nos menciona la formula líneas arriba."²³

C. Velocidad

La velocidad máxima para una línea de aducción es de 3,0 m/s y una velocidad mínima de 0,60 m/s.

D. Presión

"Es la energía que se encuentra sobre el área de la tubería que es producida por las grandes pendientes que se ejercen en los tramos de la tubería."²³

2.2.11.5. Red de distribución

"La red de distribución es aquella que está constituida por un conjunto de tubería, accesorios y estructuras, esta deberá proporcionar un servicio constante en cantidad y calidad de agua adecuada a una población"²⁴.

A. Tipos de red de distribución

a. Red de distribución abierta y ramificada

Según Iza²⁵, Esta red consiste en una tubería principal de la cual se derivan arterias secundarias, de las que a su vez se subdividen otras de tercero o cuarto orden. Los diámetros cada vez se van reduciendo a medida que las tuberías se alejan de las arterias principales. Este tipo de red presenta el problema cuando se produce una avería porque para su mantenimiento, deja seco toda la red a continuación del sector averiado.

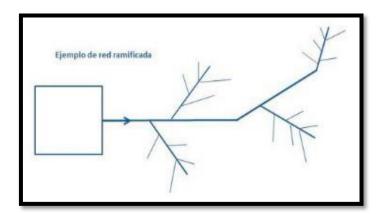


Figura 15. Red de distribución abierta o ramificada

Fuente: Eadic.

b. Red de distribución cerrado o reticulado

Según Hernández ²⁶, En las redes reticuladas, se van acoplando a las tuberías anteriores y el agua tiene diversos caminos para poder llegar a un determinado lugar. El problema que se presenta en estas redes es la indeterminación circulatoria de la dirección del flujo, sin embargo, posee una superioridad, cuando en los casos de desperfectos en un determinado punto, el flujo llegará a las demás redes siguiendo otros caminos, siendo la falla solo en el tramo averiado que además se puede clausurar mediante llaves.

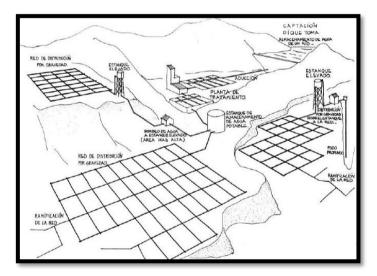


Figura 17: Redes cerradas.

Fuente: Unefm. (2010)

A. Caudal

"La estructura deberá tener capacidad para conducir como mínimo, el caudal máximo diario (Qmh), desde el

reservorio hasta la red principal, el caudal de diseño será el caudal unitario (Qunit.)"²⁷.

$$Qunit = \frac{Qmh}{N^{\circ}viviendas} \qquad (7)$$

Donde:

Qunit. : Caudal unitario/caudal de diseño

Qmh : Caudal máximo horario

N°viviendas : Número de Viviendas

B. Tipo de tubería

"Existen varios tipos el cual se aprecia en el cuadro 7 líneas arriba, el tipo de tubería recomendable para redes de distribución son de PVC"²⁷.

C. Clase de tubería

Se recomienda trabajar con la clase de tubería 10.

D. Diámetro

"Para tubería en la red principal debe ser un diámetro mínimo a 1 pulg., si son redes secundarias el diámetro mínimo será de ¾ y si es para conexiones domiciliarias será como mínimo ½ pulg".

E. Velocidad

"La velocidad máxima será de 2 m/s. y la velocidad mínima será de 0.5 m/s, todo esto depende del diámetro y caudal con la que se está calculando nuestra red"²⁷.

F. Presión

"La presión máxima no será mayor de 50 mts. en cualquier punto de la red mientras que la presión mínima no debe ser menor de 10 mts"²⁷.

2.2.12. Condición Sanitaria

La incidencia en la condición sanitaria se refiere, que el sistema de agua potable debe de tener la cantidad suficiente, con la finalidad de obtener una buena presión para su distribución, los accesorios del sistema deben encontrarse en un buen estado. Cabe indicar que la cantidad, la calidad y la cobertura de agua tienen que ser eficiente para que al momento de consumirlo la población del proyecto no tenga ningún inconveniente.

Figura 18: Agua Potable.

Fuente: Líder empresarial.

2.2.12.1. Cobertura de servicio de agua potable

"Es la proporción suministrada de agua potable hacia una población, esta tendrá que facilitar el abastecimiento del agua potable a toda la población, si esto falla se dice que nuestra cobertura de servicio no es sostenible"²⁸.

2.2.12.2. Cantidad de servicio de agua potable

AGUA²⁹, "La disponibilidad de agua promedio anual en el mundo es de aproximadamente 1,386 millones de km3, de estos el 97.5% es agua salada, el 2.5%, es decir 35 millones de km3, es agua dulce y de esta casi el 70% no está disponible para el consumo humano debido a que se encuentra en forma de glaciares, nieve o hielo. Del agua que técnicamente está disponible para consumo humano, sólo una pequeña porción se encuentra en lagos, ríos, humedad del suelo y depósitos subterráneos relativamente poco profundos, cuya renovación es producto de la infiltración. Mucha de esta agua teóricamente utilizable se encuentra lejos de las zonas pobladas, lo cual dificulta o vuelve imposible su utilización efectiva. Se estima que solamente el 0.77% se encuentra como agua dulce accesible al ser humano. Las aguas subterráneas abastecen de agua potable por lo menos al 50% de la población mundial y representan el 43% de toda el agua utilizada para el riego. 2,500 millones de personas dependen exclusivamente de los recursos de aguas subterráneas para satisfacer sus necesidades básicas diarias de agua. Se estima que el 20% de los acuíferos mundiales está siendo sobreexplotado, lo que tendrá consecuencias graves, como el hundimiento del suelo y la intrusión de agua salina. A nivel mundial, la proporción de

extracción de agua es aproximadamente 69% agropecuaria, 19% industrial y 12% municipal".

2.2.12.3. Continuidad de servicio de agua potable

"Significa que el servicio de agua potable debe de abastecer permanentemente las veinticuatro horas del día."²⁹

2.2.12.4. Calidad de servicio de agua potable

La calidad del agua potable preocupa a todo el mundo, por su repercusión en la salud de la población, los agentes infecciosos, los productos químicos tóxicos y la contaminación son factores de riesgo, la experiencia pone de manifiesto el valor de los enfoques de gestión preventivos que abarcan desde los recursos hídricos al consumidor, más en las zonas rurales.

2.3. Hipótesis

No aplica.

2.4. Variables

2.4.1. Variable independiente

Diseño del sistema de abastecimiento de agua potable

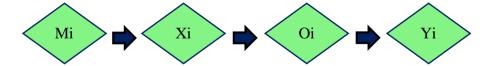
2.4.2. Variable dependiente

Incidencia en la condición sanitaria de la población

III. Metodología

3.1. Tipo y nivel de la investigación

3.1.1. Tipo de investigación


El tipo de investigación fue correlacional, comprendiendo la descripción de la relación entre una variable independiente y dependiente, en otras palabras, la condición sanitaria (variable dependiente) depende del diseño del sistema de agua potable (variable independiente), se especifica a través de la respuesta de los objetivos y conclusiones en la investigación.

3.1.2. Nivel de investigación

El nivel de la investigación fue de carácter cualitativo y cuantitativo, teniendo como objetivo la descripción de todas las cualidades que se puedan presentar en las variables a investigar, para luego dichos datos se expresaran de manera numérica o estadística.

3.2. Diseño de la investigación

El diseño de la investigación fue no experimental de corte transversal, porque solamente se desarrolló la descripción de todos los fenómenos tal y como se encuentran en su contexto natural, aplicando herramientas y técnicas para luego analizarlas e identificar las variables.

Leyenda de diseño:

M_i: Sistema de abastecimiento de agua potable en el caserío Aija, distrito
 Cabana, provincia Pallasca, región Ancash.

Xi: Diseño del sistema de abastecimiento de agua potable

O_i: Resultados

Yi: Incidencia en la condición sanitaria de la población.

3.3. Población y muestra

3.3.1. Población

La población estuvo conformada por el sistema de abastecimiento de agua potable en zonas rurales.

3.3.2. Muestra

La muestra en esta investigación estará constituida por el sistema de abastecimiento de agua potable en Aija, distrito Cabana, provincia Pallasca, región Ancash.

3.4. Definición y operacionalización de variables e indicadores

Cuadro 6. Definición y operacionalización de variables e indicadores

VARIABLE	TIPO DE VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	INDICADORES	SUBDIMEN- SIONES	INDICAD	ORES		ALA DE DICIÓN		
			Se realizará la		• Captación	 Aforo de la fuente Tipo de manantial Cota de la fuente	Tipo de la fuenteTipo de captaciónTipo de suelo	 Ordinal Nominal Nominal	NominalNominal		
덦	ъ	abastecimiento de agua potable es un conjunto de obras que permiten	identificación del sistema de abastecimiento de agua	Identificar el sistema de	Línea de conducción	Tipo de terrenoTipo de línea de conducción	Longitud de tramoTipo de suelo	NominalNominal	NominalNominal		
MENTO D	INDEPENDIENTE	que una comunidad pueda obtener el agua para fines de consumo	potable que abarque desde la captación hasta las redes de distribución, a través de	la captación hasta las redes de distribución, a través de	la captación hasta las redes de distribución, a través de	abastecimiento de agua potable	• Reservorio	Lugar del reservorioTipo de suelo	Cota de reservorioTipo de reservorio	NominalNominal	NominalNominal
BASTECE		doméstico, servicios públicos, industrial y	fichas técnicas por reglamentos vigentes.	1	Línea de aducción	Distribución de viviendasTipo de línea de aducción	Longitud de tramoTipo de suelo	NominalNominal	NominalNominal		
MA DE Al ¡UA POT⊿	VARIABLE	otros usos. Consiste en proporcionar agua a la población de manera			Red de distribución	Distribución de las viviendasTipo de terreno	Cotas de viviendasTipo de suelo	NominalNominal	NominalNominal		
EÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE		eficiente considerando la calidad (desde el punto de vista físico, químico y			• Captación	Tipo de tuberíaClase de tuberíaCerco PerimétricoAccesorios	Diámetro de tuberíaCaseta de válvulasCámara humedad	NominalNominalNominal	 Ordinal Nominal Nominal		
DISE		bacteriológico), cantidad, continuidad y confiabilidad de esta.		Diseño del sistema de abastecimiento de	Línea de conducción	 Clase de tubería Diámetro de tubería Presión 	 Tipo de tubería Velocidad Perdida de carga 	NominalOrdinalIntervalo	NominalIntervaloIntervalo		
				agua potable	Reservorio	 Caudal máximo diario Tipo de tubería Accesorios Caseta de cloración 	 Válvulas Clase de tubería Cerco Perimétrico Diámetro de tubería 	IntervaloNominalNominalNominal	NominalNominalNominalOrdinal		

						Clase de tubería		• Nominal	
					T / 1	Diámetro de tubería	 Tipo de tubería 	 Ordinal 	Nominal
					 Línea de aducción 	 Presión 	 Velocidad 	• Intervalo	• Intervalo
					33333 232	Caudal máximo horario	• Perdida de carga	• Intervalo	• Intervalo
						• Clase de tubería	Tino do tuborío	• Nominal	Nominal
					• Red de	• Diámetro de tubería	• Tipo de tubería	 Ordinal 	
					distribución	 Presión 	• Velocidad	• Intervalo	• Intervalo
						Caudal máximo horario	• Perdida de carga	• Intervalo	• Intervalo
_	•				•	 Viviendas cor 	nectadas a la red	• Ord	linal
VRL		La condición sanitaria	Se realizará fichas técnicas		• Cobertura	 Dotación 		• No	minal
		guiadas por el Sistema de			• Caudal máxin	no	• Inte	ervalo	
SAL	H	del ser humano es una	Información Regional en			Caudal mínin	no de la fuente	• Inte	ervalo
ÍÓN	E	condición no observable	_		 Cantidad 	• Conexión don	niciliaria	• Ord	linal
La condición sanitaria del ser humano es una condición no observable a simple vista, sino que se puede verificar de	Agua y Saneamiento	Condición		• Piletas		• Inte	ervalo		
NO.	EP		(SIRAS), para la			Determinació	n del estado de la fuente	• Nor	minal
		se puede verificar de	evaluación de la	sanitaria	 Continuidad 	• Tiempo de tra	abajo de la fuente	• Inte	ervalo
EN LA	VARIABLE	acuerdo a la calidad de	satisfacción de la condición			 Colocación de 	e cloro	•	Intervalo
IA I	ARI	agua y su sistema de	satisfaccion de la condicion			• Nivel de clore	residual	•	Intervalo
ZNC V	eliminación de excretos	sanitaria de la población en		• Calidad del agua	• Enfermedades	S	•	Nominal	
INCIDENCIA		eminiación de excretos	el caserío de Aija.			Análisis quím	ico y bacteriológico del agua	•	Intervalo
Ž						• Supervisión d	el agua	•	Nominal

Fuente: Elaboración propia - 2021

3.5. Técnicas e instrumentos

3.5.1. Técnica

Se realizó la técnica de observación directa a través de visitas correspondientes al caserío de Aija y se procedió recolectar los datos respectivos de la población utilizando la obtención de información necesaria el cual identifico a la población actual, dotaciones y sus respectivas ubicaciones donde estarán los componentes del sistema de agua potable.

3.5.2. Instrumentos

3.5.2.1. Encuestas

Conjunto de preguntas que ayudara a la recolección de información sobre la evaluación del sistema de agua potable actual y la condición sanitaria de la población, obteniendo también la satisfacción de los pobladores con su sistema de agua potable y quien son los encargados de gestionar y darle mantenimiento a dicho sistema.

3.5.2.2. Fichas Técnicas

Con este formato se recolectó todos los datos posibles y los más importantes que me sirvió de aporte para el desarrollo del diseño del sistema de abastecimiento de agua potable en el caserío de Aija.

3.5.2.3. Protocolos

Documento formal que certifica los resultados obtenidos del muestreo in situ, estos documentos se basan en el análisis físico químico y bacteriológico del agua y el estudio de mecánica de suelos en puntos estratégicos como la captación, reservorio y red de distribución.

3.6. Plan de análisis

Se determinó el caudal de la fuente, con el método volumétrico, se censo a la población, se le aplico el estudio de análisis químico, físico y bacteriológico al agua y se realizó el levantamiento topográfico, luego se aplicó encuestas y fichas técnicas según el Sistema de Información Regional en Agua y Saneamiento (SIRAS), para identificar el lugar donde se empleara las estructuras del sistema de abastecimiento de agua potable en el caserío de Aija, también ayudo para poder evaluar y darle una escala de medición a la incidencia en la condición sanitaria de la población, los cuadros de identificación del sistema respondieron a nuestro primer objetivo, las tablas nos representaran el resumen del diseño hidráulico de cada componente otorgándonos respuesta a nuestro segundo objetivo, y los gráficos darán respuesta nuestro tercer objetivo, también los cuadros de operacionalización nos dará conocer las dimensiones, indicadores y escala de medición, las conclusiones resultantes del análisis fundamentaran cada parte de la propuesta de solución al problema que dio un lugar al inicio de la investigación.

3.7. Matriz de consistencia

Cuadro 7. Matriz de consistencia

Diseño del sistema de abastecimiento de agua potable en el caserío de Aija, distrito Cabana, provincia Pallasca, región Ancash, para su incidencia en la							
condición sanitaria de la población - 2021.							
Problema	Objetivos	Marco Teórico y Conceptual	Metodología	leferencias Bibliográficas			
El principal problema que tiene el caserío de Aija, es la falta del sistema de abastecimiento de agua potable, donde la población consume agua de los canales de irrigación y los más afectados son la población infantil por el líquido que no es apto para el consumo humano, dado que está contaminado provocando enfermedades gastrointestinales y epidemias que representan un grave riesgo para su salud. Por ese motivo es de suma urgencia para la población del caserío de Aija contar con el sistema de abastecimiento de agua potable y mejorar su condición sanitaria. Enunciado del problema: ¿El diseño del sistema de abastecimiento de agua potable en el caserío de Aija, distrito de Cabana, provincia de Pallasca, región Áncash, inciden en la mejora de la condición sanitaria de la población - 2021?,	Conocer la incidencia en la	Antecedente Se necesitó de la ayuda de buscadores en internet, de los cuales ayudaron a obtener: Antecedentes Internacionales Antecedentes Nacionales Antecedentes Locales Bases Teóricas: Agua Agua potable Afloramiento Fuente Aforo Caudal Diseño Población de diseño y demanda Población futura Población futura Componentes del sistema de abastecimiento de agua potable Condición sanitaria	El tipo de investigación fue correlacional, teniendo como objetivo la relación de las dos variables dependiente e independiente obteniendo resultados que llevara a obtener una conclusión a nuestra investigación. El nivel de investigación fue de carácter cualitativo y cuantitativo, teniendo como objetivo la descripción de las cualidades de las variables a desde un inicio y fin, llevándolos a un cálculo matemático y estadístico. El diseño de la investigación fue no experimental de tipo transversal, porque se describe todos los fenómenos tal y como están en su contexto natural. El universo estará conformado por el sistema de abastecimiento de agua potable en zonas rurales y la muestra por el sistema de abastecimiento de agua potable en el caserío de Aija, distrito Cabana, provincia Pallasca, región Ancash - 2021. Definición y operacionalización de las variables Técnicas e instrumentos Plan de análisis Matriz de consistencia Principios éticos	 Vásquez B., "Diseño del sistema de agua potable de la comunidad de guantopolo tiglán parroquia zumbahua cantón pujilí provincia de cotopaxi" [Tesis para optar título], pg: [196;01-91-93-36-35]. Quito, Ecuador: Universidad Central Ecuador; 2016. Guaman et al. Diseño del sistema para el abastecimiento del agua potable de la comunidad de Mangacuzana, Canton Cañar, provincia de Cañar [Tesis para optar título], pg: [412;01-44-78-180]. Trujillo, Perú: Universidad privada Nacional de Chimborazo; 2017. Fernández C., Diseño del sistema de agua potable y saneamiento básico rural para el caserío de Rumichaca, distrito de Huamachuco, provincia de Sánchez Carrión, región La Libertad [Tesis para optar título], pg: [516;01-31-32-36-235]. Trujillo, Perú: Universidad Cesar Vallejo; 2018. 			

Fuente: Elaboración propia – 2021.

3.8. Principios éticos

Al realizar una investigación se debe tener en cuenta el respeto a la dignidad humana, diversidad, confidencialidad, identidad y privacidad al lugar donde realizará una investigación.

3.8.1. Ética para la identificación del sistema de agua potable

Lo principal y primordial que se debe saber ates de dar inicio a identificar o realizar un diagnóstico se debe realizar un documento pidiendo permiso a las autoridades del lugar a investigar especificando los puntos a trabajar luego de ello se tiene que realizar la identificación de los lugares donde se diseñará el sistema de agua potable.

3.8.2. Ética en la recolección de datos

Al momento de la recolección de datos se debe aplicar la honestidad y responsabilidad para que nuestros resultaos sean confiables y auténticos tal y como se encuentra en el lugar de estudio.

3.8.3. Ética en el diseño del sistema de agua potable

Durante el cálculo hidráulico del diseño del sistema de agua potable, leer y analizar los criterios dictados por los reglamentos para que los resultaos obtenidos en gabinete sean igual a lo que se encuentra en el sistema de agua potable.

IV. Resultados

4.1. Resultados

1.-Dando respuesta a mi primer objetivo específico: Identificar el sistema de abastecimiento de agua potable actual del caserío de Aija, distrito de Cabana, provincia de Pallasca, región Ancash – 2021.

Cuadro 8. Identificación de la fuente donde se diseñará la captación

Mediante la visualización y el levantamiento topográfico se pudo observar la fuente que abastecerá a la captación, dicha fuente se encuentra en las siguientes coordenadas; norte: 9068923.893 y este: 830327.356. Gracias al levantamiento topográfico se pudo obtener la cota de la fuente natural de agua donde se diseñara la captación, est cota es de 2821 m.s.n.m. Mediante el estudio de mecánica de suelos, se conoce el tipo de suelo que tiene la fuente de captación el cual tendrá un suelo arcilloso. CAPTACIÓN La fuente natural tiene características para el diseño de una captación de manantial de tipo ladera. El afloramiento que fluye en la fuente natural es de tipo concentrado ya que el agua nace desde un solo punto. Obteniendo las características de la fuente se obtuvo una captación de manantial de ladera concentrada. La accesibilidad para la construcción y futuros mantenimientos es adecuada ya que no se encuentra	COMPONENTE	DESCRIPCIÓN
muy alejada a caserios cercanos y al caserio que se	CAPTACIÓN	topográfico se pudo observar la fuente que abastecerá a la captación, dicha fuente se encuentra en las siguientes coordenadas; norte: 9068923.893 y este: 830327.356. Gracias al levantamiento topográfico se pudo obtener la cota de la fuente natural de agua donde se diseñara la captación, est cota es de 2821 m.s.n.m. Mediante el estudio de mecánica de suelos, se conoce el tipo de suelo que tiene la fuente de captación el cual tendrá un suelo arcilloso. La fuente natural tiene características para el diseño de una captación de manantial de tipo ladera. El afloramiento que fluye en la fuente natural es de tipo concentrado ya que el agua nace desde un solo punto. Obteniendo las características de la fuente se obtuvo una captación de manantial de ladera concentrada. La accesibilidad para la construcción y futuros

Se obtuvo el aforo de la fuente mediante el método volumétrico, en épocas de estiaje la fuente tiene un caudal mínimo de 2.5 l/s y de y de lluvia un caudal de 2.81 l/s.

Se identificó los peligros que puede tener la estructura a futuro, el cual no se encontró ningún peligro para el diseño y futura construcción y mantenimiento.

Fuente: Elaboración propia – 2021

Interpretación: Se realizó la identificación del lugar en donde se realizará el diseño hidráulico de nuestra captación teniendo como resultado las siguientes características: estará ubicada en las coordenadas norte: 9068923.893 y este: 830327.356, teniendo una altitud de 2821.00 m.s.n.m., será de tipo manantial de ladera concentrado con un tipo de suelo arcilloso, el acceso para su diseño, construcción y futuros mantenimientos es adecuada ya que al momento de realizarse la construcción los materiales a utilizar se podrán obtener de caseríos cercanos y el mismo caserío que abastecerá dicha fuente, no se logró identificar peligros que puedan dañar la estructura a futuro, ni contaminación de animales que puedan habitar por donde se encuentra nuestra fuente natural de agua, para más detalles ver el cuadro N° 8. "Identificación de la fuente donde se diseñará la captación." y en el Anexo 06.

Cuadro 9. Identificación del lugar donde se diseñará la línea de conducción

COMPONENTE	DESCRIPCIÓN						
LINEA DE CONDUCCIÓN	Mediante el levantamiento topográfico se pudo obtener que el terreno en donde pasara la tubería de la línea de conducción es accidentado ondulado. Aparentemente mediante la visualización y el recorrido por todo el tramo donde ira nuestra tubería de conducción se pudo decir que dicha tubería tendrá aproximadamente una longitud de 3400 mts. La fuente natural de agua se encuentra en un nivel más alto que donde se proyectara el reservorio de almacenamiento obteniendo un resultado de que el tipo de sistema que tendrá nuestra línea de conducción es por gravedad. Mediante el recorrido de todo el tramo donde ira nuestra conducción se pudo obtener el resultado de que nuestra tubería no estará expuesta a peligros como derrumbes, quebradas, deslizamientos de terreno o contaminación por animales de la zona. También mediante el recorrido se puedo conocer que la tubería no contara con pases aéreos, ya que no se encontró ninguna quebrada en todo el tramo. La accesibilidad para la construcción y futuros mantenimientos es adecuada ya que todo el tramo donde se encontrara nuestra línea de conducción está cerca al caserío que abastecerá.						

Interpretación: Se realizó la identificación del lugar en donde se realizará el diseño hidráulico de la línea de conducción, obteniendo los siguientes resultados que el terreno donde se proyectara la línea de conducción es accidentado ondulado, gracias al recorrido y la técnica de observación directa se pudo obtener que posiblemente nuestra línea de conducción tendrá una longitud de 3000 mts. esta longitud solo es experimental ya que la verdadera longitud se dará mediante el cálculo hidráulico de dicho componente, teniendo en cuenta las altitudes de los lugares de la fuente natural de agua y el reservorio se obtuvo que el tipo de sistema que tendrá nuestra línea de conducción es por gravedad, por último se pudo observar que todo el tramo donde estará proyectada el diseño hidráulico de nuestro componente no está expuesta a peligros de derrumbes, quebradas, deslizamientos de rocas y contaminación por animales de la zona, para más detalles ver el cuadro Nº 9. "Identificación del lugar donde se diseñará la línea de conducción." y en el Anexo 06.

Cuadro 10. Identificación del lugar donde se realizará el diseño del reservorio

COMPONENTE	DESCRIPCIÓN
RESERVORIO	Mediante la visualización y el levantamiento topográfico se pudo observar el lugar donde estará nuestro reservorio, dicha lugar se encuentra en las siguientes coordenadas; norte: 9070130.522 y este: 826700.110. Gracias al levantamiento topográfico se pudo obtener la cota del lugar donde estará y se diseñara hidráulicamente el reservorio, esta cota es de 2553.020 m.s.n.m. Mediante el estudio de mecánica de suelos, se conoce el tipo de suelo que tiene el lugar donde estará nuestro reservorio, el cual tendrá un suelo arcilloso limoso. Mediante la observación directa obtuvimos como resultado un terreno plano para el diseño hidráulico de nuestro reservorio de almacenamiento. El reservorio será de tipo apoyado ya que el terreno es plano y esto ayuda bastante para el diseño hidráulico y futuras construcciones de nuestro componente Las medidas que tendrá nuestro reservorio se obtendrán mediante el cálculo, pero gracias al método de observación directa el lugar puede tener un reservorio de hasta 25 m³. Se identificó los peligros que puede tener la estructura a futuro, el cual no se encontró ningún peligro para el diseño hidráulico y futura construcción y

La accesibilidad para la construcción y futuros mantenimientos es adecuada ya que no se encuentra muy alejado al caserío que se abastecerá.

Fuente: Elaboración propia - 2021

Interpretación: Se realizó la identificación del lugar en donde se realizará el diseño hidráulico de nuestro reservorio teniendo como resultado las siguientes características: estará ubicado en las coordenadas norte: 9070130.522 y este: 826700.110., teniendo una altitud de 2553.020 m.s.n.m., será de tipo apoyado de forma rectangular con un tipo de suelo arcilloso, el acceso para su diseño, construcción y futuros mantenimientos es adecuada ya que al momento de realizarse la construcción los materiales a utilizar se podrán obtener de del mismo caserío que se beneficiara con su diseño, el lugar donde se encontrara el reservorio es plano, por ultimo no se logró identificar peligros que puedan dañar la estructura a futuro, ni contaminación de animales que puedan habitar por donde se encontrara el componente, para más detalles ver el cuadro N° 10. "Identificación del lugar donde se diseñará el reservorio." y en el Anexo 06.

Cuadro 11. Identificación del lugar donde se diseñará la línea de aducción

COMPONENTE	DESCRIPCIÓN						
LINEA DE ADUCCIÓN	Mediante el levantamiento topográfico se pudo obtener que el terreno en donde pasara la tubería de la línea de aducción es accidentado ondulado. Aparentemente mediante la visualización y el recorrido por todo el tramo donde ira nuestra tubería de aducción se pudo decir que dicha tubería tendrá aproximadamente una longitud de 500 mts. El reservorio a diseñar se encuentra en un nivel más alto del caserío obteniendo un resultado de que el tipo de sistema que tendrá nuestra línea de aducción es por gravedad. Mediante el recorrido de todo el tramo donde ira nuestra aducción se pudo obtener el resultado de que nuestra tubería no estará expuesta a peligros como derrumbes, quebradas, deslizamientos de terreno o contaminación por animales de la zona. También mediante el recorrido se puedo conocer que la tubería no contara con pases aéreos, ya que no se encontró ninguna quebrada en todo el tramo. La accesibilidad para la construcción y futuros mantenimientos es adecuada ya que todo el tramo donde se encontrara nuestra línea de aducción está cerca al caserío que abastecerá.						

Interpretación: Se realizó la identificación del lugar en donde se realizará el diseño hidráulico de la línea de aducción, obteniendo los siguientes resultados que el terreno donde se proyectara la línea de aducción es accidentado ondulado, gracias al recorrido y la técnica de observación directa se pudo obtener que posiblemente nuestra línea de conducción tendrá una longitud de 500 mts. esta longitud solo es experimental ya que la verdadera longitud se dará mediante el cálculo hidráulico de dicho componente, teniendo en cuenta las altitudes de los lugares de del reservorio y el caserío se obtuvo que el tipo de sistema que tendrá nuestra línea de aducción es por gravedad, por último se pudo observar que todo el tramo donde estará proyectada el diseño hidráulico de nuestro componente no está expuesta a peligros de derrumbes, quebradas, deslizamientos de rocas y contaminación por animales de la zona, para más detalles ver el cuadro N° 11. "Identificación del lugar donde se diseñará la línea de aducción." y en el Anexo 06.

Cuadro 12. Identificación del lugar donde se diseñará la red de distribución

COMPONENTE	DESCRIPCIÓN
RED DE DISTRIBUCIÓN	La red de distribución a diseñar estará compuesta con una cota inicial de la primera vivienda de 2551.55 m.s.n.m, y una cota final de la última vivienda de 2449.90 m.s.n.m. Mediante el levantamiento topográfico se pudo obtener que el terreno en donde pasara las tuberías de la red de distribución es accidentado Mediante el estudio de mecánica de suelos se obtuvo el resultado que el tipo de suelo que tiene el área donde estarán enterradas las tuberías de la red es arcilloso limoso. Las viviendas en el caserío de Aija se encuentran dispersas con diferentes direcciones por lo que se obtuvo como resultado un tipo de red ramificada. La red de distribución a diseñar tendrá el abastecimiento de 50 viviendas que existen actualmente en el caserío de Aija y 2 lugares públicos.

Interpretación: Se realizó la identificación del lugar donde se realizará el diseño hidráulico de la red de distribución teniendo como resultado una cota inicial de la primera vivienda de 2551.55 m.s.n.m, y una cota final de la última vivienda de 2449.90 m.s.n.m., el terreno por donde pasaran las tubería de la red es accidentado, con un tipo de suelo arcilloso, las viviendas que actualmente están en el caserío de Aja se encuentran dispersas en diferentes direcciones por lo que se utilizara en el diseño hidráulico un tipo de red abierta, por ultimo toda la red de distribución estará compuesta por el abastecimiento del suministro de agua para 50 viviendas y 2 lugares públicos, para más detalles ver el cuadro N° 12. "Identificación del lugar donde se diseñará la red de distribución." y en el Anexo 06.

2.- Dando respuesta a mi segundo objetivo específico: Realizar el diseño del sistema de abastecimiento de agua potable del caserío de Aija, distrito Cabana, provincia de Pallasca, región Ancash – 2021.

Tabla 1. Diseño hidráulico de la captación de manantial de ladera

MANIANT	IAL DE TIDO	LADEDA CONCENTO	ADO.					
MANANTIAL DE TIPO LADERA CONCENTRADO Descripción Simbologia Formula Resultados Unidad								
Nombre de la captación	N		Aija					
Altitud	Alt.		2821.000	m.s.n.r				
Caudal máximo de la fuente	Qmax	$Q = \frac{V}{T_t}$	2.810	Lt/seg				
Caudal mínimo de la fuente	Qmin	$Q = \frac{V}{T_t}$ $Q = \frac{V}{T_t}$	2.500	Lt/seg				
Material de construcción	Мс		Concreto armado 210 - 280 KG/CM2					
Caseta de válvulas	Cv		0.80 x 0.80 x 0.70					
Caudal máximo diario (diseño)	Qmd	$Qmd = k1 \cdot Qm$	0.700	Lt/seg				
Distancia entre el afloramiento y la captación	L	$L = \frac{hf}{0.30}$	1.30	mts				
Diámetro del orificio de la pantalla	D	$D = \left(\frac{4 \cdot A}{\pi}\right)^{0.5}$	2.00	pulg				
Ancho de la pantalla	b	$b = 2(6 \cdot D) + NA \cdot D + 3D \cdot (NA - 1)$	2.00	mts				
Núnmero de orificios	NA	$NA = \left(\frac{D}{D_2}\right)^2 + 1$	4.00	und.				
Diámetro de la tuberia de rebose	Dr	$Dr = \frac{0.71 \cdot Qmax^{0.38}}{hf^{0.21}}$	2.00	pulg				
Diámetro del cono de rebose	Dcono	Dcono = 2 * D	4.00	pulg				
Diámetro de la tuberia de limpieza	Dr	$Dr = \frac{0.71 \cdot Qmax^{0.38}}{hf^{0.21}}$	2.00	pulg				
Longitud de la canastilla	L		30.00	cm				
Número de ranuras	Nr	$N_r = \frac{A_t}{A_r}$	117.00	ranura				
Diámetro de la tuberia de salida	D	$D = \left(\frac{\left(\frac{Qmd}{1000}\right)}{0.2786 * C * S^{0.54}}\right)^{0.38}$	2.00	pulg				
Altura de la camara humeda	Н	H = E + D + H + B + A	1.00	mts				

Fuente: Elaboración propia - 2021

Interpretación: Se realizó el diseño hidráulico de la captación, obteniendo ciertas características para el inicio de su diseño, esta fueron que el tipo de captación es de ladera concentrado el cual estará ubicada en las coordenadas 830327.356 E, 9068923.893 N, con una altura de 2821.00 m.s.n.m.

En el mejoramiento hidráulico para la captación se calculó con los estándares dictados por Resolución Ministerial Nº 192 el cual nos brinda formulas y criterios de diseño, se usó el método volumétrico para hallar los caudales en época de sequía (Q. min. = 2.50 l/s) y en época de lluvia (Q. máx. = 2.81 l/s), el caudal máximo de la fuente ayudo para el cálculo de las tuberías de rebose y limpia, seguidamente del cono de rebose, ancho de la pantalla número de orificios y su diámetro entrada todo lo mencionado se encontró en la cámara húmeda, el caudal mínimo de la fuente ayudo a la comparación del caudal máximo diario el cual fue calculado mediante la población futura y el coeficiente de variación diaria, la fórmula de Hazen Williams también ayudo en los cálculos de la distancia de afloramiento, cámara humedad, ancho de la pantalla y la cantidad de orificios, en la **tabla 1** se puede observar un resumen de los cálculos mencionados, en el anexo 7 "memoria de cálculo de la captación" se puede apreciar con más detalle los cálculos y en el anexo 12 se podrá observar el plano a detalle de la estructura, se obtuvo un costo que cubrirá su construcción el cual se aprecia en el anexo 9. Este diseño ayudara a la condición sanitaria de la población teniendo algo más relevante en la calidad del agua.

Tabla 2. Diseño hidráulico de la línea de conducción

SITEMA DE LÍNEA DE CONDUCCIÓN POR GRAVEDAD					
Descripción		Formula	Resultados	Unidad	
Longitud de la línea de conducción	L		3439.000	ml	
Tipo de tubería	Tb	Recomendado	PVC		
Clase de tubería	Ctb	Recomendado	10.000		
Caudal maximo diario	Qmd	$Qmd = k1 \cdot Qm$	0.70	Lt/s	
Cota de la captación	Ср		2821.0000	m.s.n.m	
Cota del reservorio	Cr		2553.000	m.s.n.m	
Diámetro de la tuberia de conducción	D	$D = \left(\frac{\left(\frac{Qmd}{1000}\right)}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	2.00	pulg	
Altura de agua	Ht	Ht = c.mayor - c.menor	268.000	m.c.a	
Longitud en el tramo 1	L1		349.000	ml	
Cota del la CRP6 - 1	C.Crp6		2778.000	m.s.n.m	
Altura de agua en el tramo 1	H1	H1 = c.p - c.crp6	43.000	m.c.a	
Velocidad del flujo en el tramo 1	V1	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	1.827	m/s	
Perdida de carga en el tramo 1	hfl	$fh1 = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$	14.951	mts	
Presión en el tramo 1	P1	P1 = H1 - hf1	P1 = H1 - hf1 28.049		
Longitud en el tramo 2	L2		881.000	ml	
Cota del la CRP6 - 2	C.Crp6		2728.000	m.s.n.m	
Altura de agua en el tramo 2	Н2	H1 = c.p - c.crp6	50.000	m.c.a	
Velocidad del flujo en el tramo 2	V2	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	1.827	m/s	
Perdida de carga en el tramo 2	hf2	$fh1 = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$	37.740	mts	
Presión en el tramo 2	P2	P1 = H1 - hf1	12.260	mts	
Longitud en el tramo 3	L3		930.000	ml	
Cota del la CRP6 - 3	C.Crp6		2678.000	m.s.n.m	

Altura de agua en el tramo 3	Н3	H1 = c.p - c.crp6	50.000	m.c.a
Velocidad del flujo en el tramo 3	V3	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	1.827	m/s
Perdida de carga en el tramo 3	hf3	$fh1 = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$	39.840	mts
Presión en el tramo 3	Р3	P1 = H1 - hf1	10.160	mts
Longitud en el tramo 4	L4		231.000	ml
Cota del la CRP6 - 4	C.Crp6		2628.000	m.s.n.m
Altura de agua en el tramo 4	Н4	H1 = c.p - c.crp6	50.000	m.c.a
Velocidad del flujo en el tramo 4	V4	$V = \frac{4 \cdot \mathbf{Q}}{\mathbf{\pi} \cdot \mathbf{D}^2}$	1.869	m/s
Perdida de carga en el tramo 4	hf4	hf4 $fh1 = \left(\frac{Q}{0.2785 \cdot C \cdot D^{263}}\right)^{\frac{1}{0.54}}$		mts
Presión en el tramo 4	P4	P1 = H1 - hf1	40.104	mts
Longitud en el tramo 5	L5		1048.000	ml
Cota del Reservorio	C. Reser.		2553.000	m.s.n.m
Altura de agua en el tramo 5	Н5	H1 = c.p - c.crp6	75.000	m.c.a
Velocidad del flujo en el tramo 5	V6	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	1.897	m/s
Perdida de carga en el tramo 5	hf5	$fh1 = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$	44.894	mts
Presión en el tramo 5	P5	P1 = H1 - hf1	30.106	mts

Interpretación: Se realizó el diseño hidráulico de la línea de conducción, obteniendo ciertas características para el inicio de su diseño, esta fueron que el tipo de conducción será por gravedad partiendo des de la cota de la fuente de captación de 2821.00 m.s.n.m. hasta la cota de reservorio de 2553.020 m.s.n.m. con una altura de columna de agua de 268 mts., con la fórmula de Hazen Williams y el caudal máximo diario de 0.70 m/s se realizó el cálculo del diámetro, presión y velocidad de la tubería, la Resolución Ministerial Nº

192 ayudo a tener el tipo de tuberías el cual fue PVC y la clase que fue la número 10, toda la longitud de la tubería estará constituida por 5 tramos y 4 cámaras rompe presión para evitar que se generen patologías en todo el componente, el primer tramo la tubería tendrá una altura de agua de 43.00, con una presión de 28.049 mts. y una pérdida de carga de 14.915 mts., el segundo tramo tendrá una altura de agua de 50.00mts con una presión de 12.26 mts. y una pérdida de carga de 37.74 mts., el tercer tramo tendrá una altura de agua de 50.00mts con una presión de 10.16 mts. y una pérdida de carga de 39.84 mts., el cuarto tramo tendrá una altura de agua de 50.00mts con una presión de 40.104 mts. y una pérdida de carga de 9.896 mts. y el último tramo tendrá una altura de agua de 75 mts. con una presión de 30.106 mts. y una pérdida de carga de 44.894 mts., todos los tramos tienen como diámetro de tubería 2 pulg. y una velocidad mínima de 1.827 m/s y máxima de 1.897 m/s, en la tabla 2 se aprecia un resumen de dichos cálculos interpretados, en el anexo 7 "memoria de cálculo de la conducción" se aprecia con más detalles todo lo resumido de los cálculos y en el anexo 12 se observa los planos del componente diseñado hidráulicamente, dicho mejoramiento obtendrá un costo que cubrirá su construcción el cual se aprecia en el anexo 9.

Tabla 3. Diseño hidráulico del reservorio de almacenamiento

DISEÑO HIDRÁULICO DEL RESERVORIO DE ALMACENAMIENTO						
RESERVORIO D	RESERVORIO DE FORMA RECTANGULAR DE TIPO APOYADO					
Descripción	Resultados	Unidad				
Altitud	Alt.		2553.000	m.s.n.m		
Volumen total del reservorio	Vt	$V_t = V_{reg} + V_i + V_r$	20.000	m ³		
Material de construcción	Мс		Concreto armado 280 KG/CM2			
Ancho interno	b		3.000	mts		
Largo interno	1		3.000	mts		
Altura de agua	ha		2.55	mts		
Tubería de entrada	Тс		2.00	pulg		
Diámetro de la tuberia de rebose	Dr	$Dr = \frac{0.71 \cdot Qmd^{0.38}}{hf^{0.21}}$	2.00	pulg		
Diámetro del cono de rebose	Dcono	Dcono $Dcono = 2 * D$		pulg		
Diámetro de la tuberia de limpieza	Dr	$Dr = \frac{0.71 \cdot Qmd^{0.38}}{hf^{0.21}}$	2.00	pulg		
Orificios de ventilación	Ov		1.00	und		
Diámetro de los orifcios	Do		2.00	pulg.		
Diámetro de la tuberia de salida	D	$D = \left(\frac{\left(\frac{Qmh}{1000}\right)}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	1.00	pulg		
Longitud de la canastilla	L		13.00	cm		
Numero de ranuras	Nr	$N_r = \frac{A_t}{A_r}$	30.00	ranuras		
Caseta de válvulas	Cv		.80 x 0.80 x 0.45	mts		
Tiempo de llenado	T_{LL}		28571.43	seg.		
Tiempo de vaciado	T _{va}		7187.56	seg.		

Interpretación:

Se realizó el diseño hidráulico del reservorio de almacenamiento, obteniendo ciertas características para el inicio de su diseño, el tipo de reservorio será apoyado de forma rectangular, dicha estructura estará ubicada en las coordenadas 826700.110 E, 9070130.522 N, con una altura de 2553.020 m.s.n.m.

El diseño hidráulico del reservorio de almacenamiento se calculó con los estándares dictados por Resolución Ministerial Nº 192 el cual nos brinda formulas y criterios de diseño, se obtuvieron los siguientes volúmenes: regulación y reserva, en total el volumen de reservorio es de 20 m³, sus dimensiones son, 3 mts. de largo x 3 mts de ancho y 2.55 mts. de altura de agua, el diámetro de la tubería de entrada es de 2 pulg. la caja de válvulas contara con todos sus accesorios el cual tendrán diámetros que se calcularon con la fórmula de Hazen Williams y el caudal máximo diario, el tiempo en que llenara el reservorio será de 28571.43 seg. (5.6 horas) y un tiempo de vaciado de 7367.02 seg. (2 horas), en la **tabla 3** se aprecia un resumen de los datos más importantes del cálculo mientras que en el **anexo 7** "memoria de cálculo de reservorio de almacenamiento" se aprecia con más detalles, también ver el **anexo 12** donde se observa la estructura en planta, elevación y cortes, dicho mejoramiento obtendrá un costo que cubrirá su construcción el cual se aprecia en el **anexo 9**.

Tabla 4. Diseño hidráulico de la línea de aducción

DISEÑO HIDRÁULICO DE LA LÍNEA DE ADUCCCIÓN						
SITEMA DE	LÍNEA DE .	ADUCCIÓN POR GRAVI	EDAD			
Descripción Formula Resultados Unidad						
Longitud de la línea de aducción	L		54.720	ml		
Tipo de tubería	Tb	Recomendado	PVC			
Clase de tubería	Ctb	Recomendado	10			
Caudal máximo horario	Qmh	$Qmd = k2 \cdot Qmh$	0.800	Lt/s		
Cota del reservorio	Crd		2551.5500	m.s.n.m		
Cota de la red de distribución	Crd		2549.000	m.s.n.m		
Diámetro de la tuberia de aducción	D	$D = \left(\frac{\left(\frac{Qmh}{1000}\right)}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	1.00	pulg		
Altura de agua	Ht	Ht = c.r - c.rd	2.550	m.c.a		
Velocidad del flujo	v	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	0.808	m/s		
Perdida de carga en la línea de aducción	hf	$hf = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$	0.303	mts		
Presión en la línea de aducción	P	P1 = H - hf	1.550	mts		

Interpretación: Se realizó el diseño hidráulico de la línea de aducción, obteniendo ciertas características para el inicio de su diseño, esta fueron que el tipo de aducción será por gravedad partiendo desde la cota de fondo de los del reservorio de 2551.55 m.s.n.m. hasta la cota de inicio de la red de 2549 m.s.n.m. con una altura de columna de agua de 2.55 mts. Con la fórmula de Hazen Williams y el caudal máximo horario de 0.80 m/s se realizó el cálculo del diámetro, presión y velocidad de la tubería, la Resolución Ministerial Nº 192 ayudo a tener el tipo de tuberías el cual fue PVC y de clase 10, toda la longitud de la tubería estará constituida por un total de 54.72 mts., tendrá un diámetro de 1 pulg., una presión de 1.55 mts, una pérdida de carga de 0.303 mts y una velocidad de 0.808 m/s, en la tabla 4 se aprecia un resumen de los

datos más importantes del cálculo mientras que en el **anexo 7** "memoria de cálculo de la aducción" se aprecia con más detalles y en el **anexo 12** se puede observar los planos de dicho componentes, se obtendrá un costo que cubrirá su construcción el cual se aprecia en el **anexo 9**.

Tabla 5. Diseño hidráulico de la red de distribución

DISEÑO HIDRÁULICO DE LA RED DE DISTRIBUCIÓN							
SISTEMA	DE RED DI	E DISTRIBUCIÓN ABIER	RTA				
Descripción Formula Resultados Unidad							
Caudal de diseño	Qmh	$Qmd = k2 \cdot Qmh$	0.700	Lt/s			
Viviendas	viv.		50.00	viviendas			
Caudal unitaro	Qu	$Qu = \frac{Qmh}{viviendas}$	0.0140	Lt/s			
Tipo de tubería	Tb	Recomendado	PVC				
Clase de tuberia	Ctb	Recomendado	10				
Diámetro en la tuberia principal	D			mm			
Diámetro de la tuberia secundaria	D	$D = \left(\frac{\frac{Q}{1000}}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	22.90	mm			
Presión mínima	P	P = H - hf	17.970	mts			
Presión máxima	P	r = n ny	63.040	mts			
Velocidad mínima	v	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	0.411	m/s			
Velocidad máxima	v	- π · D ²	1.200	m/s			
CRP TIPO 7	CRP7	Cantidad	7	und			

Fuente: Elaboración propia – 2021

Interpretación: Se realizó el diseño hidráulico red de distribución, obteniendo ciertas características para el inicio de su diseño, esta fueron que el tipo de sistema a diseñar fue ramificado, ya que las viviendas no se encuentran en conjunto, la fórmula de Hazen Williams y el caudal máximo horario de 0.80 m/s y caudal unitario 0.014 l/s, se realizó el cálculo del diámetro, presión y velocidad de la tubería, la Resolución Ministerial Nº 192, se tendrá una tubería principal de diámetro de 1 pulg. y una tubería secundaria de diámetro de 3/4 pulg. la presión máxima en todo el tramo es 63.040 mts. y mínima de 17.97 mts., tendrá una velocidad mínima es 0.411 m/s y máxima de 1.2 m/s, en la tabla 5 se aprecia un resumen de los datos más importantes del cálculo mientras que en el anexo 7 "memoria de cálculo de la red de distribución" se aprecia con más detalles y en el anexo 12 se puede observar los planos de dichas componentes, se obtendrá un costo que cubrirá su construcción el cual se aprecia en el anexo 9.

Tabla 6. Diseño hidráulico de la cámara rompe presión tipo 6

CAMARA ROMPE PRESIÓN TIPO 6						
Descripción Formula Resultados Unid						
Altitud	Alt.		-	m.s.n.m		
Material de construcción	Mc		Concreto armado 280 KG/CM2			
Diámetro del cono de rebose	Dcono	Dcono = 2 * D	4.00	pulg		
Diámetro de la tuberia de limpieza	$Dr Dr = \frac{0.71 \cdot Qmd^{0.38}}{hf^{0.21}}$		2.00	pulg		
Altura total de camara humedad	Ht		1.00	mts		
Diámetro de la tuberia de salida	D	$D = \left(\frac{\left(\frac{Qmd}{1000}\right)}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	2.00	pulg		
Longitud de la canastilla	L		30.00	cm		
Número de ranuras	Nr	$N_r = \frac{A_t}{A_r}$	117.00	ranuras		

Fuente: Elaboración propia - 2021

Interpretación: Se realizó el diseño hidráulico las cámaras rompe presión, obteniendo ciertas características para el inicio de su diseño, será de tipo CRP 6, el cual se encontrará en ciertos tramos de la línea de conducción, ayudan a reducir las presiones ejercidas en la tubería, todo el diseño contara con 4 CRP6, para su diseño se utilizó los parámetros dictados por la Resolución Ministerial Nº 192 el cual nos muestra fórmulas para el cálculo hidráulico, como resultados se obtuvieron diámetros de las tuberías de limpieza y rebose, sus dimensiones serán 1.00 mts. de altura de cámara húmeda y 30.00 cm. de canastilla con 14 ranuras, en la tabla 6 se aprecia un resumen de los datos más importantes del cálculo mientras que en el anexo 7 "memoria de cálculo de la CRP 6" se aprecia con más detalles y en el anexo 12 se puede observar los planos de dichas componentes, se obtendrá un costo que cubrirá su construcción el cual se aprecia en el anexo 9.

3.- Dando respuesta a mi tercer objetivo específico: Determinar la incidencia en la condición sanitaria de la población en el caserío Aija, distrito de Cabana, provincia Pallasca, región Ancash – 2021.

Tabla 7. Ficha 06 "Cobertura del servicio"

NGENIERIA	TÍTULO	EL CA	EÑO DEL SISTEMA DE ABATECIMETINO DE AGUA POTABLI EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.		
FICHA 06	Tesista:		BACH. CRUZ AI	NCAJIMA	, LUIS FELIPE
FICHA 00	Asesor:	MGTR	ING. GONZALO	MIGUEL,	, LEÓN DE LOS RIOS
			RA DEL SERIV		
33. Cu	ántas familias de		benefician con e	l sistema (de agua potable
			0 Familias		
			le opción tecnoló		
Región	n	Sin arraste	Hidráulico	Con	arrastre Hidráulico
Sierra			50		80
Selva			70		100
Costa			50		90
Fuente: Resolución					
((V1) PRIMERA	VARIABL	E: consta de una :	sola pregu	ınta (P14)
Dato	s para el cálculo		Puntaje	de V1 "C	COBERTURA"
Caudal míni	mo (lts/s) =	2.5	Si A > B	=	Bueno = 4
Promedio de	e inte. (P7) =	5	Si A = B	=	Regular = 3
Dotación (D) = 80			Si A < B > 0	0 =	Malo = 2
			Si B = 0	=	Muy malo = 1
	Cálculo y	resultado de	e la variable "cob	e rtura" (V	71)
			A > B		
Formulas:			Calculo:		
$A = N^{\circ}. de$	e personas atendil	oles Cob			
$A = \frac{Qmin * 86400}{D}$ = 2700 personas.					= 2700 personas.
$B = N^{\circ}. de$	e personas atendil	oles Cob			
$B = Promedio \ x \ familias$ $= 250 \ personas.$					
		Cober	tura (V1) = 4.0		
Fuente: Sistema de información regional en agua y saneamiento					

Fuente: Sistema de información regional en agua y saneamiento

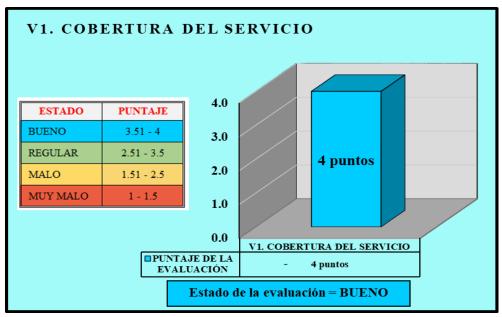


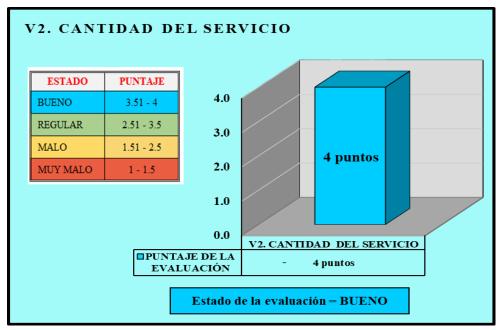
Gráfico 1. Cobertura del servicio

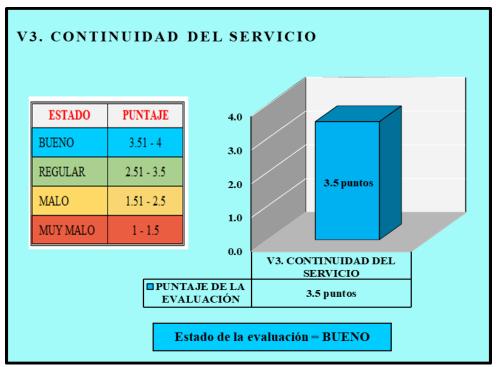
Interpretación: La cobertura del servicio se evaluó en base al cálculo de la cantidad de pobladores/personas que la fuente puede abastecer, gracias a los siguientes datos: caudal mínimo de la fuente (2.50 l/s) y la dotación (80 l/hab./día), el siguiente cálculo estuvo en base a la densidad poblacional que tiene el caserío (5 hab./viv.) y el número de familias que habitan actualmente (50 familias), con el resultado de los dos cálculos se hizo la comparación para ver si la fuente puede abastecer al número de personas actualmente y a futuro teniendo como resultado que la fuente puede abastecer a 2700 personas superando a las que se necesitan, entonces nuestra cobertura del servicio cumple al 100%, por lo que se le asignó un puntaje de 4 teniendo un estado de evaluación "bueno" y de categoría de evaluación "Sostenible", en la tabla 07 llamada "Ficha 01: Cobertura del servicio." se puede apreciar a detalle todo el procedimiento de la evaluación.

Tabla 8. Ficha 07 "Cantidad del servicio"

NGENIERIA	TÍTULO	EL CA PALLA	SEÑO DEL SISTEMA DE ABATECIMEITNO DE AGUA POTA EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINO PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.						
ELCHIA 07	Tesista:		UIS FELIPE						
FICHA 07	Asesor:	MGTR	. ING. GONZALC) MIGUEL, LE	EÓN DE LOS RIOS				
		G. CANTID	AD DEL SERIVI	CIO					
34. ¿	34. ¿Cuál es el caudal de la fuente en epoca de sequía? (litros/segundo)								
	2.500 lts/s								
35. ¿Cı	iántas conexio		arias tiene su sis	tema? (Indica	ar el número)				
			conexiones						
36. ¿El sistema tiene piletas publicas? Marque con una X.									
Si			No Y (Pasar a la p.38)						
	37. Indique el numero de piletas								
	0 piletas								
	Dotación	según tipo d	le opción tecnoló	gica (l/hab.d)					
Región	n	Sin arraste Hidráulico		Con arrastre Hidráulico					
Sierra			50		80				
Selva			70	100					
Costa		(50 90						
Fuente: Resolución	n Ministerial. N°	92 – 2018 – Vi	vienda	l					
(V2) SEGUNDA VARIABLE: consta de 4 preguntas P34 - P37									
Dato	s para el cálcu	0	Puntaje de V2 "CANTIDAD"						
Conexiones dom. (P33) = 52		52	Si D > C	= B	ueno = 4				
Número de fami	lias (P33) =	50	Si D = C	= R	egular = 3				
Promedio de inte	e. (P7) =	5	Si D < C >	$=$ \mathbf{N}	falo = 2				
Promedio de inte	egrantes =	5	$\operatorname{Si} D = 0$	= N	Iuy malo = 1				
Número de Pilet	as (P36) =	0							
Caudal mínimo (lts/s) =	2.5							
Cálculo y resultado de la variable "cantidad" (V2)									
D > C									
Formulas:	nen demandad	_	Calculo:						
		\	$3 = conex \cdot prome \cdot D \cdot 1.3 = 325 +$						
$3 = conex. prome. D \cdot 1.3$ $4 = pile. (famconex.) \cdot prom. 1.3$			$4 = pile \cdot (fam conex.) \cdot prom. \cdot 1.3 = 0$						
C = 3 + 4 $C = 3 + 4 = 325$ D = Volumen ofertado									
D = Volume 11 ole 11 add 0 $D = Qmin x 86400 = 216000$									
Cantidad (V2) = 4.00									

Fuente: Sistema de información regional en agua y saneamiento




Gráfico 2. Cantidad del servicio

Interpretación: La cantidad del servicio se evaluó en base al cálculo del volumen que puede ofertar la fuente y el que se necesita para tener un sistema de agua potable optimo, el ofertado se calculó en base al caudal mínimo y la cantidad de segundos que hay en un día, por otro lado el demandado se calculó a través de las conexiones domiciliarias, número de familias, la existencia de piletas y la cantidad de ellas, unas ves calculado se hizo la comparación para ver si la fuente tiene un volumen de agua suficiente para abastecer a la demanda requerida actualmente, se tuvo como resultado que dicho volumen ofertado es muy superior al que se necesita, llegando a decir que la cantidad del servicio cumple al 100% por lo que se le asignó un puntaje de 4 teniendo un estado de evaluación "bueno" y de categoría de evaluación "Sostenible", en la tabla 08 llamada, "Ficha 02: Cantidad del servicio." se puede apreciar a detalle todo el procedimiento de la evaluación.

Tabla 9. Ficha 08 "Continuidad del servicio"

NGENIERIA	TÍTULO	DISEÑO DEL SISTEMA DE ABATECIMETINO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.						
EICHA 00	Tesista:	BACH. CRUZ ANCAJIMA, LUIS FELIPE						
FICHA 08	Asesor:	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RIOS						
H. CONTINUIDAD DEL SERIVICIO								
38.	38. ¿Cómo es la fuente de agua en epoca de sequía? Marque con una X							
N. 1. 1.	Descripción							
Nombre de las fuentes		Permanente		Baja cantidad pero Seca totalmen no seca algunos me			Si el caudal 0	
F1: AIJA	F1: AIJA			X				
39.¿En los últimos doce (12) meses, cuánto tiempo a tenido caudal la fuente a captar?								
Todo el dia	Todo el dia durante todo el año X Por horas todo el año							
Por horas solo en epoca de sequia Solamente algunos dias por semana								
	(V3) TERCERA VARIABLE: Consta de 2 preguntas P38 - P39							
El puntaje de "V3" en la pregunta 38 sera:								
Permanente = 4 puntos Seca totalmente en algunos meses =				=	2 puntos			
Baja cantidad pe	3 puntos	Si e	caudal 0		=	1 punto		
El puntaje de "V3" en la pregunta 39 sera:								
Todo el dia dura año	nte todo el =	4 puntos	Por	horas todo el año		=	2 puntos	
Por horas solo en sequia	n epoca de =	3 puntos	Sola sem	mente algunos dias ana	por	=	1 punto	
Cálculo y resultado de la variable "Continuidad" (V3)								
Fórmulas:				Cálculo:				
$V3 = \frac{P38 + P39}{2} \qquad V3 = \frac{P38 + P39}{2} = 3.5$								
Continuidad (V3) = 3.50								

Fuente: Sistema de información regional en agua y saneamiento

Gráfico 3. Continuidad del servicio

Interpretación: La continuidad del servicio se evaluó en base a los moradores encuestados de la zona, los cuales se le pregunto a los pobladores si la fuente en donde se tiene previsto realizar el diseño de agua potable en los últimos 12 meses el agua que emerge en ella es constante y a la vez si es que dicha fuente en épocas de sequía aún sigue manteniendo su caudal de agua, se llegó a un resultado que la fuente en época de sequía no es de gran cantidad, si no es baja, pero se mantiene y no escasea el caudal, entonces el resultado de la continuidad cumple en un 70% por lo que se calificó con un puntaje de 3.5 teniendo como estado de evaluación "bueno" y de categoría "Medianamente sostenible", en la tabla 09 llamada, "Ficha 03: Continuidad del servicio." se puede apreciar a detalle todo el procedimiento de la evaluación.

Tabla 10. Ficha 09 "Calidad del servicio"

NGENIERIA	TÍTULO	DISEÑO DEL SISTEMA DE ABATECIMETINO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLAS CA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.								
	Tesista:		BACH. CRUZ ANCAJIMA, LUIS FELIPE							
FICHA 09	Asesor:	MGTR.	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RIOS					OS		
		I. CALIDA	D DE	L SERIVIO	CIO					
40. ¿Colocan cloro en el agua en forma periódica?										
	Si		No X							
41. ¿Se les dios por cuidar su fuente natural de agua manteniendola con una porcentaje de cloro?								e de		
					Descrip	ción				
Nombre de	las fuentes	Baja cloración		Ideal (0.7, 0.0, 10.0)		Alta cloración (1.0 - 01.5 mg/lt)			No tier	ne cloro
Parte alta	A	(U - U.4 mg	0.5 - 0.9 mg/lt) (0.5 - 0.9 mg/lt)		ng/1t)	(1.0 -	01.5 mg	(/IL)		X
Parte media										X
Parte baja	С									X
	42. ¿Cómo es el agua que consumen?									
Agua clara		Agua turbia	X	Agua	i con e	lemente	os extra	nños		
43. ¿Se ha realizado el analisis bacteriológico para saber si la fuente de donde extraen agua es										
	apta para consumo humano? Si No X									
44. ¿Quién supervisa el consumo de agua en todo el caserío?										
Municipalidad MINSA JASS X Nadie										
	(V4) CUARTA VARIABLE: Consta de 5 preguntas P21 - P25									
El puntaje de "V4" en la pregunta 40 será: El puntaje de "V4" en la pregunta 43 será:										
SI = 4 puntos No = 1 punto SI = 4 puntos No = 1 punto										
El puntaje de ''V4'' en la pregunta 41 será:										
Baja cloración	aja cloración = 4 pu		untos Ideal				=	3 pu	ntos	
Alta cloración	Alta cloración = 2 pu		ntos No tiene cloro		= 1 punto					
El puntaje de ''V4'' en la pregunta 44 será:										
Municipalidad	= 4 puntos			JASS		= 4 pu				
MINSA		untos		Nadie			=	1 pu	ntos	
El puntaje de "V4" en la pregunta 42 será:										
Agua clara	-	1		Agua turl	oia =		=	1 pu	nto	
Agua son eleme extraños	ntos = 1 p	unto								
Cálculo y resultado de la variable "Calidad"										
Fórmulas: $V3 = \frac{P40 + P4}{V3}$	P40 + P41 + P42 + P43 + P44									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
		Cand	au (V-	r) - 1.00						

Fuente: Sistema de información regional de agua y saneamiento.

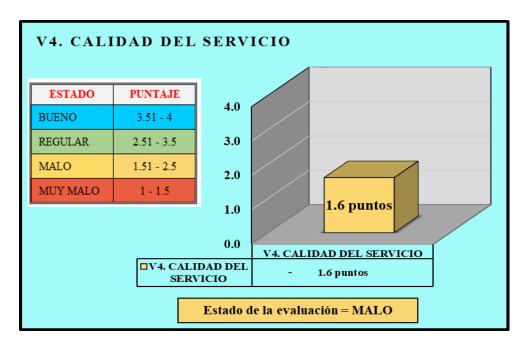


Gráfico 4. Calidad del servicio

Interpretación: La calidad del servicio se evaluó en base a 5 preguntas relacionas a la satisfacción de un sistema de agua potable optimo, estas preguntas empezaron desde la colocación periódica de cloro para cuidar la fuente natural de agua (no cloran el agua), el nivel del cloro con lo que mantienen el agua (no nivelan el cloro ya que no toman importancia a que la fuente es algo muy esencial a favorecerles a futuro), el agua que consumen los pobladores es por medio de canales y ríos por lo que el agua es turbia, la ejecución de un estudio físico químico y bacteriológico del agua de la fuente para futuros diseños, por último los responsables de ver el agua con el que se está abasteciendo la población es la JASS, toda la evaluación no cumple con los estándares es por eso que se calificó con un puntaje de 1.6 teniendo como estado de evaluación "mala" y de categoría "no sostenible", en la tabla 10

llamada "Ficha 04: Calidad del servicio." se puede apreciar a detalle todo el procedimiento de la evaluación.

Tabla 11. Estado de la condición sanitaria

NGENIERIA	TÍTULO	DISEÑO DEL SISTEMA DE ABATECIMETINO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.				
	Tesista:	BACH. CRUZ ANCAJIMA, LUIS FELIPE				
	Asesor:	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RÍOS				
	ESTADO DE LA CONDICIÓN SANITARIA					
Comprende de la P1 a la P12						
1) Cobe	ertura del servicio	= 4.0 puntos P33 a P33				
2) Cant	idad del servicio	= 4.0 puntos P34 a P37				
3) Cont	inuidad del servici	io = 3.5 puntos P38 a P39				
4) Calid	lad del servicio	= 1.6 puntos P40 a P44				
El puntaje del estado de la infraestructura es						
Puntaje C.S = $\frac{V1 + V2 + V3 + V4}{4}$ = 3.28						
Condición Sanitaria =						

Fuente: Elaboración propia – 2021

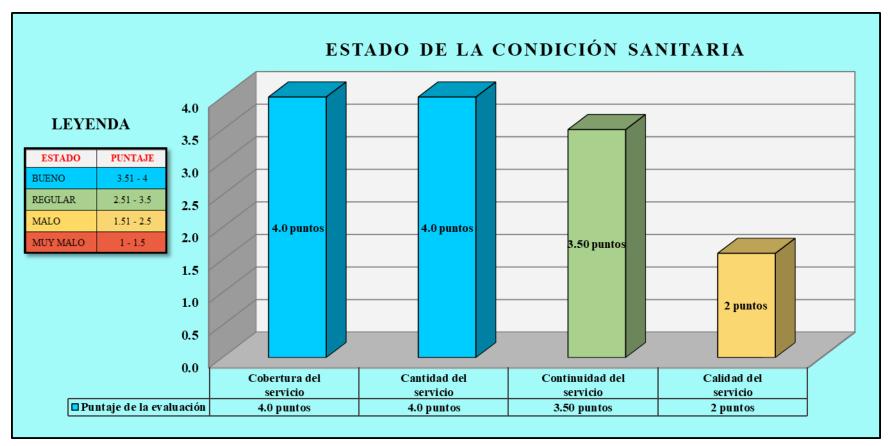


Gráfico 5. Estado de los componentes de la condición sanitaria

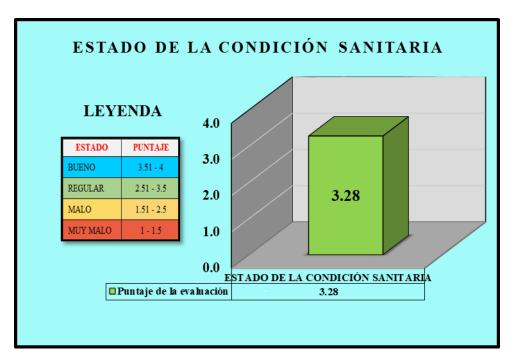


Gráfico 6. Estado de la condición sanitaria

Interpretación: La evaluación de la condición sanitaria, estuvo conformada por 4 componentes, el cual nos muestra el grafico 19, estos componentes parten desde la cobertura del servicio, cantidad del servicio, la continuidad del servicio y la calidad del servicio, sumando y promediando los resultados se obtuvo un puntaje de 3.38 tal y como muestra el gráfico 20, obteniendo un estado de evaluación "regular" y de categoría "medianamente sostenible", en la tabla 11 llamada "Estado de la condición sanitaria.", se pueden apreciar dichos puntajes de las evaluaciones con más detalle.

4.2. Análisis de Resultados

4.2.1. Identificar el sistema de agua potable existente

Se determinó la identificación de los lugares en donde se realizará el diseño hidráulico del sistema de abastecimiento de agua potable, comenzando desde el lugar de la fuente de la captación, el trayecto donde se ara el diseño de la línea de conducción, el lugar donde ira nuestro reservorio de almacenamiento, el trayecto donde se ara el diseño de la línea de aducción y la distribución de como si deñara la red de distribución en el caserío.

4.2.1.1.Captación

En la identificación del lugar donde se realizará el diseño hidráulico de la captación se obtuvieron los siguientes resultados, que la fuente natural de agua a captar se encuentra en perfectas condiciones, teniendo un caudal mínimo de 2.5 l/s y un caudal máximo de 2.81 l/s., el terreno en donde se encuentra nuestra captación está compuesto por un terreno arcilloso, el agua fluye de un solo punto y se concentra en un solo lugar, por último el dicha fuente no está expuesta a peligros como derrumbes quebradas, deslizamientos de rocas o contaminación por animales de la zona por lo que se le denomino una fuente segura para un diseño hidráulico de una cámara de captación, la accesibilidad a la zona donde se encuentra la fuente es apta para su construcción a futuro y posibles mantenimientos. En la tesis de Illán titulada: "Diseño del sistema de agua potable de la comunidad de

Guantopolo Tiglán parroquia Zumbahua Cantón Pujilí provincia de Cotopaxi"; se hizo la identificación del lugar en donde estará estructura que captará agua para abastecer a la población, teniendo como resultado que dicho lugar cuenta con buenas condiciones, para construir allí ese complemento por lo que no se encuentra expuesta a contaminación o desastre natural a futuro, el caudal mínimo en la fuente es mayor al que se necesita para el diseño, pero el problema que encontró el autos fue la accesibilidad de los materiales que se utilizaran a futuro para su construcción.

4.2.1.2.Línea de conducción

En la identificación del lugar donde pasara la tubería de la línea de conducción se obtuvieron los siguientes resultados, que el tipo de suelo será arcilloso, el terreno tiene una topografía accidentada, al tener la fuente de captación a un nivel más alto que el lugar donde ira nuestro reservorio se obtuvo como resultado un sistema por gravedad, en todo el tramo gracias al recorrido desde la fuente hasta el lugar del reservorio también se tuvo como resultado que dicha tubería no estará expuesta a contaminación por animales de la zona y desastres naturas como quebradas derrumbes o deslizamientos, todo el tramos es accesible para su construcción y mantenimiento. En la tesis de Guamán titulada: "Diseño del sistema para el abastecimiento del agua potable de la comunidad de Mangacuzana, Cantón Cañar,

provincia de Cañar", se realizó la identificación a todo el tramo por donde pasara la tubería de conducción encontrándose que en todo el trayecto no se presentaron peligros a contaminación o desastres naturales, el tipo será por gravedad ya que la fuente se encuentra también a una altitud mayor que el reservorio.

4.2.1.3. Reservorio de almacenamiento

En la identificación del lugar donde se realizará el diseño hidráulico del reservorio de almacenamiento se obtuvieron los siguientes resultados, el tipo de terreno que cuenta toda el área en donde ira la estructura es arcilloso, gracias a que el lugar es plano y se encuentra a una altura mayor que la población se obtuvo como resultado que el componente será de tipo apoyado y de forma rectangular, la accesibilidad para llegar al lugar es adecuada por lo que también facilitara la llegada de los materiales a futuro para su construcción y mantenimiento, el lugar también no se encuentra expuesto a contaminación de animales de la zona, ni posibles desastres naturales que se puedan generar, se puede construir un reservorio de hasta25 m³ ya que el área del lugar es grande. En la tesis de Fernández titulada: "Diseño del sistema de agua potable y saneamiento básico rural para el caserío de Rumichaca, distrito de Huamachuco, provincia de Sánchez Carrión, región la Libertad", se realizó la identificación del área en donde se realizara el diseño hidráulico de su reservorio el cual ayudo a obtener los siguientes resultados, será de tipo apoyado de

forma circular, el tipo de suelo es arcilloso limoso, con una capa de topsoil, el área es lo suficientemente grande para poder construir un reservorio con más de 25 m³ de volumen, no se encontraron peligros de contaminación o desastres naturas que se puedan ocasionar, por último el lugar es accesible para la población para futura construcción o mantenimiento.

4.2.1.4.Línea de aducción

En la identificación del lugar donde pasara la tubería de la línea de aducción se obtuvieron los siguientes resultados, que el tipo de suelo es arcilloso, el terreno tiene una topografía accidentada, al tener el reservorio a un nivel más alto que la población se obtuvo como resultado un sistema por gravedad, en todo el tramo gracias al recorrido desde el reservorio hasta el inicio de la red también se tuvo como resultado que dicha tubería no estará expuesta a contaminación por animales de la zona y desastres naturas como quebradas derrumbes o deslizamientos, todo el tramos es accesible para su construcción y mantenimiento. En la tesis de Machado titulada: "Diseño del sistema de abastecimiento de agua potable del centro poblado Santiago, Distrito de Chalaco, Morropon – Piura", se realizó la identificación a todo el tramo por donde pasara la tubería de aducción encontrándose que en todo el trayecto no se presentaron peligros a contaminación o desastres naturales, el tipo será por gravedad ya que el reservorio se encuentra en una altitud mayor a la población, su futura construcción y mantenimiento es accesible ya que el terreno es accidentado pero de bajas pendientes.

4.2.1.5.Red de distribución

En la identificación del lugar donde pasara las tuberías red de distribución se obtuvieron los siguientes resultados, que el tipo de suelo es arcilloso, el terreno tiene una topografía poco accidentada, las viviendas encontradas en el caserío no están distribuidas por manzanas, ya que están dispersas en diferentes direcciones, por lo que el sistema a diseñar será el ramificado, en todo el trayecto donde se encontrara tanto las tuberías principales y secundarias no presentan signos de contaminación ni posibles desastres naturales, por lo que se menciona que el caserío cuenta con excelentes autoridades para poder mantener su caserío en perfectas condiciones gracias a la ayuda de la población. En la tesis de Gonzales titulada: "Diseño del sistema de abastecimiento de agua potable del caserío de Breña Isco, distrito de Moro, provincia Del Santa, región Áncash y su incidencia en la condición sanitaria en la población – 2020", se identificó el lugar en donde estará distribuida las tubería secundarias y principales de la red, encontrándose como resultado de que su sistema a diseñar fue ramificado y el lugar en donde se hará todo el diseño hidráulico no estará expuesta a posibles daos o contaminación que puedan generar los habitantes o animales que se encuentran en el caserío.

4.2.2. Realizar el diseño del sistema de agua potable

Se realizó el diseño hidráulico a todos los componentes que tiene que tener un sistema de abastecimiento de agua potable actual en el caserío de Aija, ya que el resultado de la identificación de los ambientes o lugares en donde estará y pasaran nuestros componentes son aptos para poder realizar el diseño hidráulico, este diseño partió desde la cámara de captación, línea de conducción, reservorio, línea de aducción, red de distribución y cámara rompe presión tipo 6.

4.2.2.1. Calculo hidráulico de la captación

El diseño hidráulico de nuestra primera estructura tuvo como resultado una captación de ladera concentrado, los caudales en la fuente fueron; caudal mínimo 2.5 l/s y máximo de 2.81 l/s los cuales se calcularon con el método volumétrico, la estructura tendrá una caseta de válvulas con dimensiones de 0.80 m x 0.80 m x 0.70 m, la distancia de afloramiento desde la fuente hacia la estructura es de 1.30 m, tendrá una cámara húmeda de 1.00 mts. con un ancho de pantalla de 2.00 mts. contará con tubería de limpieza de 2 pulg. un cono de rebose de 4 pulg. y una tubería de salida de 2 pulg. Todos los cálculos realizados cumplen los estándares y parámetros estandarizados en la Resolución Ministerial – 192, dicho mejoramiento se hizo con la intención de mejorar la calidad de vida de la población. En la tesis de Velázquez titulada: "Diseño del sistema de abastecimiento de agua potable del caserío de Mazac, provincia de Yungay, Ancash

– 2017", se calculó con el método volumétrico para hallar el caudal de la fuente tanto el máximo y el mínimo, la captación tuvo como dimensiones 1 mt. X 0.76 mt. de altura de cámara húmeda con tuberías de limpieza y rebose de 2.00 pulg, por ultimo tendrá una tubería de salida de 1 pulg., por último, los cálculos planteados mejoraran la condición y calidad de vida de la población.

4.2.2.2. Calculo hidráulico de la línea de conducción

El diseño hidráulico de la línea de conducción tuvo como resultado una línea de conducción por gravedad con un caudal máximo diario de 0.70 l/s, con la ayuda de la fórmula de Hazen Williams se obtuvo resultados como el diámetro de la tubería (2 pulg.), será de PVC de clase 10, al ser de PVC su coeficiente de rugosidad será de 150, se consideró 4 CRP6 el cual líneas abajo se detallara el diseño, toda la tubería tiene una carga disponible de 268 m.c.a. y una longitud total de 3439 ml. distribuyéndose de la siguiente manera

 Los cálculos realizados cumplen los estándares y parámetros estandarizados en la Resolución Ministerial – 192, dicho diseño se hizo con la intención de mejorar la calidad de vida de la población.

En la tesis de Gonzales titulada: ": Diseño del sistema de abastecimiento de agua potable del caserío de Breña Isco, distrito de Moro, provincia Del Santa, región Áncash y su incidencia en la condición sanitaria en la población – 2020", calcula con la fórmula de Hazen Williams los diámetros, presiones y velocidades en el trayecto de la tubería, todo el tramo de su tubería fue de diámetro de 1 pulg., el autor plantea una CRP 6 para disipar la energía o presión que esta tendrá cuando lleve el agua al reservorio y pueda generar en la tubería ciertas patologías, los cálculos realizados por el autor también cumplen lo que menciona la Resolución Ministerial – 192.

4.2.2.3. Calculo hidráulico del reservorio de almacenamiento

El diseño hidráulico tuvo como resultado un reservorio de almacenamiento de forma rectangular y de tipo apoyado, se tendrá un volumen de 20 m³, el cual se divide en un volumen de regulación y un volumen de reserva, tendrá una caseta de válvulas con todos sus accesorios, dicho reservorio tendrá una caseta de válvulas con sus accesorios al 100% con dimensiones de 0.80 mts. x 0.80 mts. x 0.45 mts. dicha caseta ayudará controlar el agua que llega desde la captación y el agua que saldrá hacia la población.

En la tesis de Fernández titulada: "Diseño del sistema de agua potable y saneamiento básico rural para el caserío de Rumichaca, distrito de Huamachuco, provincia de Sánchez Carrión, región la Libertad", se hizo el cálculo hidráulico del reservorio con un volumen de 20 m3, una caseta de válvulas para ayudar al control del agua que abastecerá a la población, por ultimo tendrá un sistema de cloración ya debido a que existen diversidad de enfermedades por la mala calidad de agua, tendrá un cerco perimétrico para evitar el contacto de la estructura con animales de la zona evitando la contaminación, dichos cálculos cumplen con lo establecido por los reglamentos.

4.2.2.4. Calculo hidráulico de la línea de aducción

El diseño hidráulico de la aducción, tuvo como resultado una línea de aducción por gravedad con un caudal máximo horario de 0.80 l/s, con la ayuda de la fórmula de Hazen Williams se obtuvo resultados como el diámetro de la tubería (1 pulg.), será de PVC de clase 10, al ser de PVC su coeficiente de rugosidad será de 150, toda la tubería tiene una carga disponible de 2.55 m.c.a. y una longitud total de 54.720 ml. distribuyéndose de la siguiente manera

Tramo - Tubería de Ø 1" PVC- SAP, clase 10..........54.72 ml El cálculo hidráulico de esta estructura cumple los estándares estipulados por la Resolución Ministerial – 192, por último, los cálculos planteados mejoraran la condición y calidad de vida de la población. En la tesis de Velásquez. titulada: Diseño del Sistema de Abastecimiento de Agua Potable para el Caserío de Mazac, Provincia de Yungay, Áncash – 2017", Se hizo el cálculo hidráulico con el caudal máximo horario de 1.51 l/s, teniendo como resultado una tubería de 1 pulg. de diámetro de tipo PVC clase 10, todo el cálculo realizado en la línea de aducción cumple con lo estipulado en la Resolución Ministerial – 192.

4.2.2.5. Calculo hidráulico de la red de distribución

El diseño hidráulico tuvo como resultado una red de distribución ramificada el cual se calculó con los parámetros que estipula la Resolución Ministerial – 192, dicha red parte desde la línea de aducción con un diámetro de 1 pulg. empalmando con el inicio de la red, este sistema ramificado estará distribuido por tuberías principales con un diámetro de 1 pulg. de tipo PVC y clase 10 y secundarias de ¾ pulg. el cual cumplen la función de trasladar el suministro de agua hacia las conexiones domiciliarias, tendrá una velocidad mínima de 0.411 m/s y máxima de 1.20 m/s. este componente abastecerá a 50 viviendas y 2 lugares públicos (colegio y posta medica), tendrá una longitud total de 3353.71 mts., que se distribuye de la siguiente manera:

Tubería Principal de Ø 1" PVC- SAP, clase 10......1025.97 ml

Tubería Secundaria de Ø 3/4" PVC- SAP, clase 10.....2327.74 ml

La red calculada cumple los estándares dictados por la Resolución Ministerial Nº 192. En la tesis de Chirinos titulada: "Diseño del sistema de abastecimiento de agua potable y alcantarillado del Caserío Anta, Moro - Ancash 2017", aplica el software WaterCAD connection y el caudal máximo horario de 0.57 l/s para el cálculo de la red obteniendo como resultados una velocidad de 0.40 m/s a 3 m/s y una presión de 7 m.c.a hasta 30 m.c.a, los diámetros fueron para tubería principal 1 pulg. y para la tubería secundaria fueron de ¾ pulg., todos esos cálculos cumplen con los estándares de la Resolución Ministerial – 192.

4.2.2.6. Calculo hidráulico de la cámara rompe presión tipo 6

El diseño hidráulico tuvo como resultado 4 CRP6 que ayudara a disipar la energía que genera el suministro de agua al pasar por la tubería, estas estructuras se encuentran en la cota 2778.00 m.s.n.m., 2728.00 m.s.n.m., 2678.00 m.s.n.m., 2628.00 m.s.n.m., las dimensiones de este componente son 1.00 mts de altura de cámara húmeda, tubería de limpieza con un diámetro de 2 pulg., tubería de rebose de 2 pulg. y un cono de rebose de 4, por último, tendrá una canastilla de 30 cm con 117 ranuras en su interior. todos los cálculos cumplen con los estándares de la Resolución Ministerial – 192. En la tesis de Ledesma titulada: "Diseño del mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del sector Parva del Cerro, caserío el Espino, distrito de Chugay, provincia de Sánchez Carrión,

departamento La Libertad – 2018", también se hizo la proyección de una CRP 6 para disipar la energía que transmitirá el agua en la línea de conducción cumpliendo haci con la Resolución Ministerial Nº 192.

4.2.3. Determinación en la incidencia de la condición sanitaria

Se determinó la incidencia de la condición sanitaria de la población por medio de 4 evaluaciones, ayudando haci a ver el estado que se podría encontrar a futuro el sistema de agua potable y condición sanitaria de la población con el suministro actual de agua a consumir, sumando los puntajes de la evaluación y promediándolos se obtuvo un resultado de 3.38 puntos, el cual se encuentra en el estado de evaluación "regular" de categoría "medianamente sostenible", se requiere una mejora para que el estado de evaluación sea "bueno", es por eso que se realizó el diseño hidráulico del sistema de agua potable del caserío de Aija. A continuación, se explicará a detalle cada resultado para luego realizarle una comparación con los resultados de los autores que se encuentran como antecedentes en la investigación.

4.2.3.1.Cobertura del Servicio

La evaluación de la cobertura del servicio se dio por medio de 2 cálculos el cual determino la cantidad de personas que puede abastecer la fuente de manantial vs la cantidad de personas que se abastecerá actualmente en el caserío, se dio un resultado positivo ya que la fuente nos puede abastecer a una gran cantidad de personas superando a lo que se necesita, por lo que se calificó con

un puntaje de 4 clasificando con un estado de evaluación "Bueno" de categoría de evaluación "Sostenible". En la tesis de Gonzales titulada: "Diseño del sistema de abastecimiento de agua potable del caserío de Breña Isco, distrito de Moro, provincia Del Santa, región Áncash y su incidencia en la condición sanitaria en la población – 2020", el autor utilizo el mismo método para la evaluación de la cobertura del servicio teniendo como resultado un puntaje alto ya que la fuente donde se captara el agua para su diseño de un sistema de agua potable es mayor a la que el autor necesita, se obtuvo un puntaje de 4.

4.2.3.2. Cantidad del Servicio

La evaluación de la cantidad del servicio se dio por medio de 2 cálculos el cual determino que el volumen que nos puede ofertar nuestra fuente natural de agua es mayor al volumen que se necesita para tener una cantidad de agua óptima en el diseño del sistema de agua potable, por lo que se calificó con un puntaje de 4 clasificando con un estado de evaluación "Bueno" de categoría de evaluación "Sostenible". En la tesis de Chirinos titulada: "Diseño del sistema de abastecimiento de agua potable y alcantarillado del Caserío Anta, Moro - Ancash 2017", el autor ejecuto la evaluación de la cantidad del servicio el cual obtuvo como resultado que el volumen demandado que necesita para poder realizar el diseño de agua potable con un grado de confiabilidad es un poco mayor al volumen de demanda que tiene

para realizar el diseño por lo que se le considero un puntaje de 2 ya que a futuro dicha fuente no abastecerá al 100% a la población y se tendrá que buscar una nueva para poder abastecer a toda su población.

4.2.3.3. Continuidad del Servicio

La evaluación de la continuidad del servicio tuvo un puntaje de 3.5 clasificándose una evaluación "Regular" con categoría de evaluación "Medianamente Sostenible", ya que el caudal de la fuente natural de agua en épocas de sequía es bajo, pero no se seca, manteniendo el flujo de agua siempre constante teniendo como referencia 12 meses el cual nos dieron datos los mismos poblares, teniendo como respuesta que si se puede optar esa fuente natural de agua para realizar el diseño hidráulico del sistema de abastecimiento de agua potable. En la tesis de Gonzales titulada: "Diseño del sistema de abastecimiento de agua potable del caserío de Breña Isco, distrito de Moro, provincia Del Santa, región Áncash y su incidencia en la condición sanitaria en la población – 2020", el caudal de la fuente que opto en evaluar es baja y no seca, por lo que el autor opto por dicha fuente para realizar un diseño hidráulico confiable, se le obtuvo un puntaje de 3.5 teniendo como referencia la evaluación de la épocas tanto de sequía y de lluvia en la fuente natural de agua.

4.2.3.4. Calidad del Servicio

La evaluación de la cobertura del servicio se dio por medio de 5 preguntas el cual se empezó por la importancia de la población en tener una fuente en donde abastecerse de agua potable y dejar de recolectar agua de ríos o canales ya que eso no es potable, como primera pregunta se le menciono a la población si hay una fuente natural de agua cercana que le hayan realizado un mantenimiento como es la cloración hacia el agua para que esta sea más potable de lo que ya es, por otro lado el porcentaje de cloro que hayan echado en esa fuente, por otro lado también se le menciono si algún encargado de velar por un diseño de agua potable se tomó la intención de realizar un colecta y ejecutar un estudio físico, químico bacteriológico, en la fuente natural de agua que se puedan abastecer evitando enfermedades, por último se mencionó si existe o plantearon a un grupo de personas que puedan velar por dicho suministro que es de mucha necesidad en el caserío el cual nos respondieron que si denominándose la JASS, se le asignó un puntaje de 2.00 ya que las respuestas fueron negativas enfocándose en la realidad actual del caserío por lo que se clasifico con un estado de evaluación "Mala" de categoría de evaluación "No sostenible". En la tesis de Gonzales titulada: "Diseño del sistema de abastecimiento de agua potable del caserío de Breña Isco, distrito de Moro, provincia Del Santa, región Áncash y su incidencia en la condición sanitaria en la población

– 2020", el agua que consume la población no es apta para el consumo humano ya que también no se cuenta con un sistema de agua potable, es por eso que el autor realizo una evaluación para ver la calidad de agua que se consume actualmente y si se buscó alguna fuente natural de agua para realizarse un estudio o mantenimiento mejorando haci la calidad de vida de su caserío, teniendo como respuesta un puntaje negativo para esta incidencia siendo uno de los puntos más importantes para la mejora de una población.

V. Conclusiones y recomendaciones

5.1. Conclusiones

- Se concluye, en la identificación del sistema de abastecimiento de agua potable en el caserío de Aija, los lugares en donde se realizó la técnica de observación directa son aptos para la ejecución de un diseño hidráulico de abastecimiento de agua potable, dicha identificación se inició en la fuente natural de agua, obteniendo resultado desde un tipo de terreno arcilloso, con una buena accesibilidad a la población y a caseríos cercanos, el agua aflora de un solo punto, su caudal mínimo fue de 2.50 l/s y máximo de 2.81 l/s, se observó un área limpia sin riegos de peligros a contaminación, en la identificación del lugar donde se proyectara la línea de conducción y aducción se observó el tipo de terreno accidentado ondulado, la verificación de posibles pases aéreos (no se encuentran quebradas activas o desniveles muy altos de terreno), se identificó también que todo el tramo en donde irán nuestras tuberías no está expuestas a contaminación ni peligros por lo que es seguro, su sistemas de ambas tuberías será por gravedad debido a que las estructuras principales que reparte el suministro de agua potable se encuentran a una altura mayor que las que reciben el suministro de agua, por último la construcción a futuro de las tuberías son accesibles tanto en materiales y ejecución in situ, en la identificación del lugar donde ira nuestro reservorio de almacenamiento se obtuvo resultado de que el área del lugar donde se proyectara el diseño hidráulico es plana y puede soportar un reservorio de tipo apoyado de forma rectangular o circular, la accesibilidad para su futura construcción o mantenimiento es adecuada ya que no está muy lejos a la población siendo muy fácil llegar al lugar, el área no se encuentra expuesta a peligros de contaminación o desastres naturales, por último en la identificación del tramo donde se proyectara nuestra red de distribución se obtuvo resultados que nuestra red a diseñar estará proyectada para abastecer a 50 viviendas y 2 lugares públicos, el sistema será ramificado ya que las viviendas no se encuentras en conjunto, el terreno es poco accidentado, su tipo de suelo es arcilloso y en toda el área de influencia de las tuberías no se detectó posibles daños y riesgos de contaminación a futuro en el componente.

-Se concluye el diseño hidráulico del sistema de abastecimiento de agua potable del caserío de Aija, este diseño cumple con todos los parámetros y normas mencionadas en la Resolución Ministerial – 192, diseño parte desde la captación, se tuvo un tipo de captación de ladera concentrado, con un caudal en época de sequía de 2.5 l/s y en época de lluvia 2.81 l/s, tendrá un caudal máximo diario de 0.70 l/s, sus dimensiones son 2.00 mts- de cámara humedad x 1.00 mts de altura, una cámara seca de 0.8 mts. 0 x 0.80 mts x 0.70 mts., tendrán tubería de limpia y rebosa de diámetro de 2 pulg. con un cono de rebose e 4 pulg., para el cálculo hidráulico de línea de conducción se tomó en cuenta el caudal máximo diario de 0.70 l/s, tiene una longitud total de 3439.00 ml., estará enterrada a 0.80 mts. debajo del terreno natural, tendrá una tubería de 2 pulg. de diámetro de tipo PVC de clase 10, con una velocidad mínima en la tubería de 1.827 m/s y máxima de 1.897 m/s, por último, contará con 4 CRP6 que tendrá una tubería de limpieza y rebose de 2 pulg. de diámetro, un cono de rebose de 4 pulg. y una caseta de válvulas

con todos sus accesorios, el mejoramiento hidráulico del reservorio se empezó con un volumen de almacenamiento de 20 m³ cumpliendo con la demanda a futuro (según el número de personas a 20 años), tendrá una tubería de limpieza y rebose de 2 pulg., una caseta de válvulas de 0.80 mts. de ancho x 0.80 mts. de largo y 0.45 mts. de alto, será de tipo apoya y de forma rectangular con dimensiones de 3.00 de ancho x 3.00 de largo y 2.55 de altura de agua, para el cálculo hidráulico de línea de aducción se tomó en cuenta el caudal máximo horario de 0.80 l/s, tiene una longitud total de 54.72 ml., estará enterrada a 0.80 mts. debajo del terreno natural, tendrá una tubería de 1 pulg. de diámetro de tipo PVC de clase 10, para el cálculo de la red de distribución se usó el caudal máximo horario y el caudal máximo unitario 0.014 l/s, abastecerá a 50 viviendas y 2 lugares públicos, estará constituida por una tubería principal de 1 pulg. de diámetro y una secundaria de ¾ pulg. de diámetro, ambas tuberías serán de tipo PVC de clase 10 y estarán enterradas a 0.80 mts. debajo del terreno natural.

- Se concluye que la incidencia en la condición sanitaria de la población en el caserío de Aija se encuentra en un estado de evaluación "regular" de categoría "medianamente sostenible", obteniendo el resultado que la condición sanitaria es estable pero se necesita mejorar la condición calidad (mediante el diseño del sistema de agua potable) para que puede llegar al 100%, esta evaluación comenzó desde la cobertura del servicio obteniendo que la cantidad de persona que puede abastecer la fuente es muy superior a la cantidad de personas que se necesita abastecer actualmente y a futuro por lo que se asignó un estado de evaluación "bueno" de categoría "sostenible"

con un puntaje de 4, en la cantidad del servicio se obtuvo que el volumen que puedan darnos la fuente es muy superior al volumen que se necesitó para abastecer al caserío en su diseño propuesto por lo que se asignó un estado de evaluación "bueno" de categoría "sostenible" con un puntaje de 4, en la continuidad del servicio se obtuvo el resultado que la fuente que se eligió para la ejecución del diseño de abastecimiento de agua potable en épocas de sequía sigue brindando un suministro de agua pero en baja cantidad y permanentemente, es por eso que se le asignó un estado de evaluación "regular" de categoría "medianamente sostenible" con un puntaje de 3.5, por último en la calidad del servicio se obtuvo un resultado de que la población o le toma interés en buscar alguna alternativa que le mejore la calidad y el suministro de agua potable ya que vienen abasteciéndose de canales y ríos dando como respuesta que no se le hizo ninguna cloración a una fuente natural de agua cercana, por lo que no existe un nivel de cloro, debido a esas circunstancias el agua que consume la población presenta características turbias, dicho caserío si cuenta con representantes que son la Junta Administrativa de los Servicios de Saneamiento, se asignó un estado de evaluación "mala" de categoría "no sostenible" con un puntaje de 2.

5.2. Recomendaciones

- Para la identificación de los lugares en donde se plantean realizar un diseño hidráulico y posible construcción de un sistema de abastecimiento de agua potable se debe tener conocimiento que para identificar un lugar adecuado y apto para el diseño hidráulico de una captación se debe conocer los tipos de fuentes, conocer la zona en donde se encuentra la fuente, verificar si el agua que fluye del manantial nace de un solo punto, si cuenta con accesorios de topografía conocer la altitud en la que encuentra y por ultimo verificar y analizar si existen peligros en toda el área donde está el manantial, para la identificación del tramo donde se realizara el diseño hidráulico de la línea de conducción y aducción se recomienda verificar y recorrer todo el trayecto de la línea de conducción para conocer el sistema que se empleara en el cálculo, si existen pases aéreos debido a quebradas de gran dimensión, conocer los tipos de terreno que se puedan identificar, observar si los tramos están expuestos a contaminación de animales o desastres naturales (deslizamientos de roca, hundimientos, etc.) por último se debe saber la accesibilidad que el componente tiene al momento de su construcción y posibles mantenimientos, para la identificación del lugar del reservorio es necesario tener en cuenta la ubicación en donde dicha estructura se diseñara viendo a la vez s peligros que se puedan presentar, el tipo de terreno y la accesibilidad del componente con las población para futuros mantenimiento o su propia construcción, en la identificación de los tramos de la red de distribución se debe verificar la separación de las viviendas conociendo así

- el tipo de sistema a emplear, conocer el tipo de terreno y si existen peligros que puedan generarse a futuro cuando las tuberías ya se hayan instalado.
- Se recomienda para el diseño hidráulico del sistema de abastecimiento de agua potable conocer los parámetros criterios y fórmulas que dicta la Resolución Ministerial Nº 192, para el mejoramiento de la captación se debe calcular los caudales de la fuente con el método volumétrico (caudal máximo y mínimo), con el caudal máximo se calculará el ancho de la pantalla, diámetro de la tubería de rebose y limpieza, el caudal de diseño (caudal máximo diario), ayudara al cálculo de la tubería de salida, toda la estructura debe contar con un cerco perimétrico que la proteja, en el cálculo hidráulico de la conducción y aducción se calculara con el caudal de diseño diario (conducción) y el horario (aducción), ambas tuberías deben tener el tipo de tubería PVC de clase 10 (zonas rurales), deben realizarse perfiles longitudinales para conocer el terreno por donde está pasando nuestra tubería para ver si se proyectara válvulas de aire y purga, para la conducción verificar la altura de agua entre reservorio y captación para ver si contara con una CRP6, ambas tuberías deben tener velocidades desde 0.60 m/s hasta 3.00 m/s y presiones desde 10 mts. hasta 50 mts, para el mejoramiento del reservorio realizar el cálculo con el caudal promedio, también se debe conocer el lugar de estudio para verificar si es una zona comercial, industrial o rural, dependiendo de dichas zonas se calculará los volúmenes, debe tener un cerco perimétrico que proteja a toda la estructura, el lugar del reservorio debe tener accesibilidad para su mantenimiento y debe contar con una caseta de cloración para mantener el agua que se almacena de calidad, para el

mejoramiento hidráulico de la red se debe calcular con el caudal máximo horario y unitario, debe tener una tubería principal con diámetro mínimo de 1 pulg. y secundaria con un diámetro mínimo de 3/4" pulg. ambas tuberías deber ser de PVC de clase 10, deben tener velocidades desde 0.30 m/s hasta 5.00 m/s, presiones desde 5 mts hasta 60 mts, ambas tuberías deben estar entradas desde 0.30 mts hasta 1 mt. debajo del terreno natural.

- Se recomienda dar una evaluación periódica al caserío investigado para conocer la mejoría de la incidencia de la condición sanitaria que tiene actualmente o a futuro, para haci conocer y comparar los cambios que pueden generar un diseño de agua potable en el caserío, también se recomienda evaluar la satisfacción de los moradores con el consumo de agua actual que tienen actualmente ayudando haci ambas evaluaciones a conocer la incidencia de la condición sanitaria que existe en esa población actual y a futuro.

Referencias bibliográficas

- (1) Vásquez B., "Diseño del sistema de agua potable de la comunidad de guantopolo tiglán parroquia zumbahua cantón pujilí provincia de cotopaxi" [Tesis para optar título], pg: [196;01-91-93-36-35]. Quito, Ecuador: Universidad Central Ecuador; 2016.
- (2) Guaman et al. Diseño del sistema para el abastecimiento del agua potable de la comunidad de Mangacuzana, Canton Cañar, provincia de Cañar [Tesis para optar título], pg: [412;01-44-78-180]. Trujillo, Perú: Universidad privada Nacional de Chimborazo; 2017.
- (3) Fernández C., Diseño del sistema de agua potable y saneamiento básico rural para el caserío de Rumichaca, distrito de Huamachuco, provincia de Sánchez Carrión, región La Libertad [Tesis para optar título], pg: [516;01- 31-32-36-235]. Trujillo, Perú: Universidad Cesar Vallejo; 2018.
- (4) Machado A. Diseño del sistema de abastecimiento de agua potable del centro poblado Santiago, distrito de Chalaco, Morropon Piura [Tesis para optar título], pg: [129;17-45]. Piura Perú: Universidad Nacional de Piura; 2018.
- (5) Ledesma C., Diseño del mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del sector Parva del Cerro, caserío el Espino, distrito de Chugay, provincia de Sánchez Carrión, departamento La Libertad 2018 [Tesis para optar título], pg. [200;01-18-32-41-86-89]. Trujillo. Perú: Universidad Cesar Vallejo; 2018.
- (6) Velásquez J. Diseño del Sistema de abastecimiento de agua potable para el caserío de Mazac, Provincia de Yungay, Áncash - 2017 [Tesis para optar título], pg: [587;17-45-46-53-107]. Nuevo Chimbote, Perú: Universidad Cesar

- (7) Chirinos S. Diseño del sistema de abastecimiento de agua potable y alcantarillado del Caserío Anta, Moro Áncash 2017 [Tesis para optar título], pg: [218;01-24-25-30-45]. Chimbote, Perú: Universidad Cesar Vallejo; 2017.
- (8) Gonzales J. Diseño del sistema de abastecimiento de agua potable del caserío de Breña Isco, distrito de Moro, provincia Del Santa, región Áncash y su incidencia en la condición sanitaria en la población 2020. [Tesis para optar título], pg: [341;01-24-25-30-45]. Chimbote, Perú: Universidad Los Ángeles de Chimbote; 2020.
- (9) Tello J. Diseño de redes de distribución de agua potable y alcantarillado y su Estela influencia en la calidad de vida de los pobladores del asentamiento humano José Luis Lomparte Monteza, Casma. 2018 [cited 2021 abril 12]; Available from: http://repositorio.ucv.edu.pe/handle/20.500.12692/23774
- (10) Cordero ML, Ullauri PN. Filtros caseros, utilizando ferrocemento, diseño para servicio a 10 familias, constante de 3 unidades de filtros gruesos ascendentes (fgas), 2 filtros lentos de arena (fla), sistema para aplicación de cloro y 1 tanque de almacenamiento; [monografía previa a la obtención del título de ingeniero civil]. [cited 2021 abril 12]. Available from: http://dspace.ucuenca.edu.ec/bitstream/123456789/747/1/ti874.pdf
- (11) Agüero R. Agua potable para poblaciones rurales sistemas de abastecimiento por gravedad sin tratamiento. [cited 2021 abril 12]; Available from: http://www.cepes.org.pe/pdf/OCR/Partidos/agua_potable/agua_potable_para_ p oblaciones_rurales_sistemas_de_abastecim.pdf

- (12) Arocha S. Abastecimientos de agua: teoría y diseño. [cited 2021 abril 12];

 Available
 from:http://bases.bireme.br/cgibin/wxislind.exe/iah/online/?IsisScript=iah/iah
 .xis&src=google&base=REPIDISCA&lang=p&nextAction=lnk&exprSearch
 =151106&indexSearch=ID
- (13) Fair G, et al. Ingeniería Sanitaria y de Aguas Residuales: purificación de Aguas y Tratamiento y remoción de Aguas Residuales. [cited 2021 abril 12]; Available
 from:http://www.sidalc.net/cgibin/wxis.exe/?IsisScript=FAUSAC.xis&metho
 d=post&formato=2&cantidad=1 &expresion=mfn=028399
- (14) Vera D. Agua Potable. Scribd; [seriada en línea]; 2009; [citado 2021 mayo 28]:
 [15 pg; 01-03]. Disponible en: https://es.scribd.com/doc/64398942/Agua-potable-obtencion.
- (15) Calderón J. mejoramiento del sistema de agua potable en la localidad milagro distrito del milagro, provincia utcubamba, amazonas 2018 [internet]. universidad cesar vallejo; 2018 [cited 2021 abril 12]. Available from: http://repositorio.ucv.edu.pe/bitstream/handle/UCV/27771/Calderón_TJO.pdf ?sequence =1&isAllowed=y
- (16) Agüero R. Agua potable para poblaciones rurales. Servicio E. Lima, Perú; 167
 p. [cited 2021 abril 12]. Available from:
 https://es.slideshare.net/yanethyovana/agua-potable
- (17) Moreno Solano JE. "mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del caserío pampa hermosa alta, distrito de usquil otuzco - la libertad" [internet]. universidad cesar vallejo; 2018 [cited 2021 abril

12].

- Available from:http://repositorio.ucv.edu.pe/bitstream/handle/UCV/27172/m oreno_sj.pdf?sequence=1 &isAllowed=y
- (18) Seguil P. Linea de conducción [Seriado en línea]. Slideshare. 2016 [cited 2021 abril 12] Available from:

 https://es.slideshare.net/pool2014?utm_campaign=profiletracking&utm_medium

 u
- (19) Garcia E. Agua Potable En Poblaciones Rurales, Slideshare: [seriado en linea].
 2016. [cited 2021 abril 12] Available from:
 https://es.slideshare.net/rubenfloresyucra5/manual-de-aguapotable-en--
- (20) Vargas E, Huerta M. Cámaras Rompe Presión [cited 2021 abril 12]. 2017.

 Available from: https://www.academia.edu/16516478/Camarasrompepresion-141014205508-conversion-gate02
- (21) Agüero R. Agua potable para poblaciones rurales sistemas de abastecimiento por gravedad sin tratamiento. [cited 2021 abril 12]; Available from:http://www.cepes.org.pe/pdf/OCR/Partidos/agua_potable/agua_potable_para_p oblaciones_rurales_sistemas_de_abastecim.pdf
- (22) Morales L. Sistema de abastecimiento de agua potable en el centro poblado

 Tutín El Cenepa Condorcanqui Amazonas. [Tesis para optar el título] pg:

 [167;50-51-56-57]. Universidad Nacional Agraria la Molina; 2016.
- (23) Magne F. Abastecimiento, Diseño y Construcción de Sistemas de Agua Potable Modernizado en el Aprendizaje y Enseñanza en la Asignatura de Ingenieria Sanitaria I. [Tesis de Diplomado Academico]; [401 pg; 114-115]. Cochabamba: Universidad Mayor de San Simón; 2008.

- (24) Reglamento Nacional de Edificaciones. Obras de saneamiento. Red de Distribución de Agua para Consumo humano. [OS. 050]: [08 pg; 02]. Lima: Ministerio de vivienda, construcción y saneamiento.; 2016.
- (25) Iza E. Evaluación, control de calidad y rediseño del sistema de agua potable y alcantarillado pluvial de la urbanización Bohíos de Jatumpamba, cantón Rumiñahui [Internet]. Universidad de las Fuerzas Armadas ESPE. Carrera de Ingeniería Civil.; 2018 [cited 2021 abril 12]. Available from: http://repositorio.espe.edu.ec/handle/21000/13979
- (26) Hernández A. Abastecimiento y distribución de agua [Internet]. Coleccion Seinor. Colegio de Ingenieros de Caminos, Canales y Puertos; 1987 [cited 2021 abril 12]. Available from: http://bases.bireme.br/cgiin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&sr c=google&base=REPID

 ISCA&lang=p&nextAction=lnk&exprSearch=111289& indexSearch=ID
- (27) Norma técnica de diseño: opciones tecnológicas para sistemas de saneamiento en el ámbito rural. Ley N° 30156. Resolución Ministerial N°192 (16-05-2018)
- (28) Ministerio de Salud, Abastecimiento de Agua y Saneamiento para poblaciones rurales y urbano-marginales. Norma Técnica [MINSA], pg: [42; 11]. Lima: Ministerio de Salud; 2005.
- (29) AGUA.org.mx. Agua en el planeta [Seriado en línea]. agua.org.mx. 2020 [citado 2020 jul. 30] p. 1. Available from: https://agua.org.mx/en-el-planeta/

Anexos

Anexo 01: Análisis Químico, Físico y Bacteriológico del agua

Ensayos Físicos, Químicos y de Mecánica de Suelos, Concreto y Pavimentos, Análisis Químicos de Minerales y Agua. Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos. Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil. PROYECTOS – ASESORIA Y CONSULTORIA RPM: *696826 CELULAR: 976026950 TELEFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA

SOLICITA

LUIS FELIPE CRUZ ANCAJIMA

URB. LAS CASUARINAS MZ. F1 LT. 14

ENCARGADO

: JOSÉ WILSON POMPA HUAMÁN

PROCEDENCIA

: CASERIO DE AIJA, DISTRITO DE CABANA, PROVINCIA DE

PALLASCA. REGION ANCASH.

MUESTRA

: M-1

FECHA

: 21/04/2021

ANALISIS BACTERIOLOGICO METODO FILTRO DE MEMBRANA

VOLUMEN FILTRADO	N° COLIFORMES ENCONTRADAS MNP/100 ML	N° COLIFORMES FECALES TOTALES MNP/ 100ML
100ml.	1.00	0.0

OBSERVACIONES:

CLASIFICACION DEL AGUA DE CONSUMO HUMANO

CATEGORIA	RECUENTO DE COLIFORMES FECALES MNP/ 100 MI
\odot	0 AGUA BACTERIOLOGICAMENTE APTA
В	1-10 AGUA BACTERIOLOGICAMENTE INAPTA (CONTAMINADA)
С	11-50 AGUA BACTERIOLOGICAMENTE INAPTA (CONTAMINADA)
. D	Mayor a 50 AGUA BACTERIOLOGICAMENTE INAPTA (CONTAMINADA)

Observaciones: Los resultados encuadra dentro de los parámetros dados por OMS/ MINSA para agua de consumo humano.

Nota: La muestra fue alcanzada por el Laboratorio por el interesado.

Jugo Musqueira Estraver Jefe Lab. Químico 1.Q. CIP/27064

Ensayos Físicos, Químicos y de Mecánica de Suelos,
Concreto y Pavimentos, Análisis Químicos de Minerales y Água.
Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos.
Impacto Ambiental, Construcción de Edificios, Obras de Ingeniería Civil.
PROYECTOS – ASESORIA Y CONSULTORIA
RPM: *696826 CELULAR: 976026950 TELEFONO: 364793

ANÁLISIS BACTERIOLÓGICO DE UNA MUESTRA DE AGUA

SOLICITA

LUIS FELIPE CRUZ ANCAJIMA

URB. LAS CASUARINAS MZ. F1 LT. 14

ENCARGADO

: JOSÉ WILSON POMPA HUAMÁN

PROCEDENCIA

CASERIO DE AIJA, DISTRITO DE CABANA, PROVINCIA DE

PALLASCA. REGION ANCASH.

MUESTRA

: M-1

FECHA

: 21/04/2021

RESULTADOS DE ANALISIS

N° ORDEN	CARACTERISTICAS	MEDIDAS	RESULTADOS	MAXIMO RECOMENDADO OMS	MAXIMO ADMISIBLE DIGESA CLASS
01	ASPECTO	- 999	TRANSPARENTE	-10	LIMPIO
02	OLOR	900	INODORO	20190	INOFENSIVO
03	SABOR	1- 6	AGRADABLE	2/83	INOFENSIVO
04	COLOR	- 10	INCOLORO	15	15
05	CONDUCTIVIDAD A 20°C	US/CM	120	-14	2000
06	SÓLIDOS DISUELTOS TOTALES	ppm	110	500	1000
07	SÓLIDOS SUSPENSION	ppm	70	250	300
80	DUREZA CALCIÓ(CaCO ₃)	ppm	100	75	200
09	DUREZA MAGNESIO (CaCO ₃)	ppm	80	30	150
10	рН	Unid	6.91		6.5 - 8.5
11	ALCALINIDAD TOTAL CaCO ₃	ppm	20.10		25

Ensayos Físicos, Químicos y de Mecánica de Suelos, Concreto y Pavimentos, Análisis Químicos de Minerales y Agua. Estudio de: Mecánica de Suelos y Rocas, Concreto y Pavimentos. Impacto Ambiental, Construcción de Edificios, Obras de Ingenieria Civil. PROYECTOS – ASESORIA Y CONSULTORIA RPM: *696826 CELULAR: 976026950 TELEFONO: 364793

12	OXIGENO DISUELTO (O2)	ppm	1.4		2.5
13	CLORUROS (CI ¹⁻)	-	32	-	250
14	ALUMINIO (Al ³ *)	ppm	0.09	0.2	0.2
15	SULFATOS (SO4)2	ррт	60	250	400
16	FIERRO (Fe)	ppm	0.06	0.1	1.0
17	COBRE (Cu)	-	0.00	0.05	1.5
18	MANGANESO (Mn)	ppm	0.008	0.5	0.5
19	NITRITO (NO ₂) ¹⁻	ppm		3.0	3.0
20	ZINC (Zn)	ppm		3.0	3.00
21	NITRATO (NO ₃) ¹⁻	ppm		50.00	50.0
22	CADMIO (Ca)	ppm	•	0.003	0.003
23	CROMO (Cr)	ppm	2	0.05	0.05
24	FLORURO F-	ppm		1.5	1.0

Nota: La muestra fue alcanzada por el Laboratorio por el interesado.

Anexo 02: Coordenadas del levantamiento topográfico y certificado de calibración

Tabla 12. Coordenadas del levantamiento topográfico

PUNTOS	ESTE	NORTE	COTA	DESCRIPCIÓN
1	830327.356	9052776.199	2826.000	T. Natural
2	830334.097	9052769.415	2824.000	T. Natural
3	830334.196	9052778.900	2821.000	L. Conducción
4	830325.150	9052783.161	2822.921	T. Natural
5	830343.077	9052774.303	2819.427	T. Natural
6	830339.095	9052787.618	2818.806	L. Conducción
7	830330.016	9052791.810	2820.572	T. Natural
8	830348.194	9052783.471	2817.632	T. Natural
9	830344.062	9052796.296	2813.408	L. Conducción
10	830334.958	9052800.433	2818.104	T. Natural
11	830353.167	9052792.160	2815.338	T. Natural
12	830349.034	9052805.016	2810.899	L. Conducción
13	830339.762	9052808.762	2812.833	T. Natural
14	830358.306	9052801.270	2809.141	T. Natural
15	830354.225	9052813.601	2807.089	L. Conducción
16	830344.668	9052817.008	2809.310	T. Natural
17	830363.578	9052810.508	2803.102	T. Natural
18	830359.039	9052822.334	2802.896	L. Conducción
19	830349.584	9052825.589	2805.478	T. Natural
20	830368.494	9052819.078	2801.169	T. Natural
21	830363.999	9052831.017	2800.590	L. Conducción
22	830354.443	9052833.962	2802.778	T. Natural
23	830373.556	9052828.072	2799.046	T. Natural
24	830368.948	9052839.706	2798.591	L. Conducción
25	830359.358	9052842.542	2800.580	T. Natural
26	830378.419	9052836.497	2796.301	T. Natural
27	830373.919	9052848.383	2795.521	L. Conducción
28	830364.831	9052852.557	2797.290	T. Natural
29	830383.190	9052844.634	2794.200	T. Natural
30	830378.890	9052857.061	2793.301	L. Conducción
31	830370.183	9052862.023	2795.902	T. Natural
32	830387.769	9052852.508	2791.299	T. Natural
33	830383.820	9052865.663	2790.171	L. Conducción
34	830374.595	9052869.635	2792.633	T. Natural
35	830393.151	9052862.190	2787.923	T. Natural
36	830385.132	9052875.576	2786.617	L. Conducción
37	830375.547	9052878.577	2789.812	T. Natural
38	830394.841	9052873.366	2783.952	T. Natural
39	830386.335	9052885.503	2782.243	L. Conducción
40	830376.663	9052888.208	2785.621	T. Natural
41	830396.073	9052883.423	2781.111	T. Natural

_			i			
	DESCRIPCIÓN	42	830387.613	9052895.421	2780.028	L. Conducción
)	T. Natural	43	830377.848	9052897.768	2781.789	T. Natural
)	T. Natural	44	830397.300	9052893.117	2776.616	T. Natural
)	L. Conducción	45	830388.922	9052905.335	2776.239	L. Conducción
_	T. Natural	46	830379.134	9052907.582	2779.299	T. Natural
_	T. Natural	47	830398.632	9052903.130	2774.101	T. Natural
<u> </u>	L. Conducción	48	830390.139	9052915.261	2774.211	L. Conducción
,	T. Natural	49	830380.363	9052917.560	2776.499	T. Natural
	T. Natural	50	830399.837	9052913.004	2771.364	T. Natural
	L. Conducción	51	830391.405	9052925.181	2769.480	L. Conducción
	T. Natural	52	830381.684	9052927.704	2772.841	T. Natural
	T. Natural	53	830401.080	9052922.826	2767.299	T. Natural
	L. Conducción	54	830392.823	9052935.065	2766.619	L. Conducción
	T. Natural	55	830382.899	9052937.301	2769.511	T. Natural
	T. Natural	56	830402.355	9052932.675	2764.169	T. Natural
	L. Conducción	57	830394.058	9052944.989	2762.611	L. Conducción
	T. Natural	58	830384.327	9052947.889	2765.290	T. Natural
,	T. Natural	59	830403.479	9052942.127	2760.168	T. Natural
	L. Conducción	60	830398.830	9052953.745	2759.432	L. Conducción
	T. Natural	61	830389.779	9052957.867	2762.170	T. Natural
	T. Natural	62	830407.410	9052948.503	2757.582	T. Natural
	L. Conducción	63	830403.879	9052962.376	2756.285	L. Conducción
	T. Natural	64	830395.220	9052967.378	2760.795	T. Natural
	T. Natural	65	830412.332	9052957.033	2754.788	T. Natural
	L. Conducción	66	830408.825	9052971.067	2752.990	L. Conducción
	T. Natural	67	830399.964	9052975.703	2755.841	T. Natural
	T. Natural	68	830417.516	9052966.121	2750.316	T. Natural
	L. Conducción	69	830413.784	9052979.751	2750.018	L. Conducción
	T. Natural	70	830404.805	9052984.155	2752.028	T. Natural
	T. Natural	71	830422.610	9052975.051	2747.572	T. Natural
	L. Conducción T. Natural	72	830418.769	9052988.420	2746.918	L. Conducción
	T. Natural	73	830409.681	9052993.278	2748.230	T. Natural
	T. Natural L. Conducción	74	830427.433	9052983.467	2743.939	T. Natural
	T. Natural	75	830423.714	9052997.111	2742.535	L. Conducción
	T. Natural	76	830414.867	9053001.773	2745.515	T. Natural
	L. Conducción	77	830432.634	9052992.589	2740.190	T. Natural
	T. Natural	78	830428.677	9053005.792	2739.833	L. Conducción
	T. Natural	79	830419.543	9053009.862	2742.441	T. Natural
	L. Conducción	80	830437.813	9053001.724	2736.895	T. Natural
	T. Natural	81	830433.647	9053014.484	2737.472	L. Conducción
	I, Mailliai					

83	830442.826	9053010.521	2735.011	T. Natural
84	830438.604	9053023.155	2734.949	L. Conducción
85	830429.365	9053026.982	2736.228	T. Natural
86	830447.404	9053018.406	2733.089	T. Natural
87	830443.083	9053032.017	2732.847	L. Aducción
88	830433.404	9053034.452	2734.310	T. Natural
89	830452.444	9053028.468	2730.808	T. Natural
90	830447.635	9053041.001	2729.290	L. Aducción
91	830437.809	9053042.859	2731.999	T. Natural
92	830457.348	9053038.622	2728.806	T. Natural
93	830452.170	9053049.913	2726.647	L. Aducción
94	830442.434	9053052.198	2729.304	T. Natural
95	830461.703	9053046.895	2726.695	T. Natural
96	830456.705	9053058.826	2724.469	L. Aducción
97	830447.036	9053061.379	2727.801	T. Natural
98	830465.963	9053055.047	2724.410	T. Natural
99	830461.295	9053067.710	2722.843	L. Aducción
100	830452.606	9053072.661	2725.031	T. Natural
101	830469.983	9053062.760	2722.203	T. Natural
102	830465.807	9053076.634	2718.890	L. Aducción
103	830457.178	9053081.688	2722.172	T. Natural
104	830474.436	9053071.581	2719.166	T. Natural
105	830478.594	9053079.762	2717.308	T. Natural
106	830472.395	9053089.662	2715.028	L. Aducción
107	830462.547	9053091.400	2718.257	T. Natural
108	830482.215	9053087.929	2712.259	T. Natural
109	830469.286	9053099.167	2712.365	L. Aducción
110	830459.287	9053099.005	2714.167	T. Natural
111	830479.285	9053099.328	2710.190	T. Natural
112	830466.186	9053108.674	2710.167	L. Aducción
113	830456.401	9053106.612	2712.219	T. Natural
114	830475.972	9053110.730	2708.286	T. Natural
115	830463.086	9053118.181	2707.289	L. Aducción
116	830453.293	9053116.158	2710.185	T. Natural
117	830472.879	9053120.205	2705.791	T. Natural
118	830459.986	9053127.689	2705.779	L. Aducción
119	830450.066	9053126.429	2708.769	T. Natural
120	830469.906	9053128.949	2703.319	T. Natural
121	830456.874	9053137.233	2701.262	L. Aducción
122	830446.960	9053135.928	2704.293	T. Natural
123	830466.649	9053139.342	2700.089	T. Natural
124	830453.774	9053146.740	2700.003	L. Aducción

125	830443.816	9053145.757	2701.369	T. Natural
126	830463.685	9053148.069	2697.019	T. Natural
127	830450.665	9053156.276	2696.580	L. Aducción
128	830440.715	9053155.278	2699.243	T. Natural
129	830460.615	9053157.274	2694.519	T. Natural
130	830447.586	9053165.718	2694.252	L. Aducción
131	830437.856	9053163.410	2696.832	T. Natural
132	830457.342	9053167.916	2693.121	T. Natural
133	830491.962	9053193.010	2688.648	V-1
134	830506.814	9053191.721	2688.168	V-1
135	830506.489	9053200.811	2688.089	V-1
136	830492.999	9053200.486	2688.141	V-1
137	830521.975	9053205.041	2687.185	V-2
138	830522.854	9053211.990	2686.936	V-2
139	830535.417	9053210.810	2686.791	V-2
140	830535.634	9053203.811	2687.173	V-2
141	830461.847	9053201.702	2687.299	V-3
142	830448.685	9053198.528	2687.501	V-3
143	830446.264	9053206.688	2687.186	V-3
144	830460.637	9053209.861	2687.143	V-3
145	830454.918	9053224.803	2684.510	V-4
146	830454.551	9053234.442	2684.263	V-4
147	830443.521	9053233.799	2684.190	V-4 V-5
148	830443.980	9053223.793	2684.166	V-4 V-5
149	830431.658	9053223.098	2683.900	V-5 V-6
150	830431.096	9053234.000	2683.948	V-5 V-6
151	830414.077	9053223.204	2683.166	V-6 V-7
152	830413.995	9053232.954	2683.157	V-6 V-7
153	830399.214	9053222.494	2682.584	V-7
154	830398.895	9053233.258	2682.494	V-7
155	830384.712	9053219.278	2682.059	V-8
156	830385.917	9053227.423	2682.169	V-8
157	830368.160	9053230.344	2681.903	V-8
158	830367.276	9053221.579	2681.761	V-8
159	830546.845	9053278.488	2679.616	V-9
160	830546.632	9053271.200	2679.826	V-9
161	830537.521	9053280.634	2679.938	V-9 V-10
162	830538.664	9053273.274	2679.969	V-9 V-10
163	830528.753	9053280.553	2680.168	V-10
164	830528.346	9053273.366	2680.255	V-10
165	830514.390	9053269.267	2681.050	V-11
166	830516.952	9053263.206	2681.171	V-11

167	830504.208	9053257.145	2681.626
168	830501.107	9053262.195	2681.260
169	830496.574	9053248.753	2682.141
170	830492.539	9053256.161	2681.895
171	830486.096	9053253.000	2682.157
172	830489.484	9053244.395	2682.368
173	830477.096	9053249.000	2683.048
174	830474.977	9053253.871	2682.675
175	830464.510	9053250.990	2683.071
176	830466.158	9053243.988	2683.175
177	830457.212	9053241.766	2683.738
178	830456.972	9053248.935	2683.468
179	830453.871	9053239.684	2683.966
180	830452.140	9053250.431	2683.395
181	830444.533	9053250.786	2683.465
182	830444.615	9053240.431	2683.794
183	830434.299	9053240.258	2683.169
184	830433.096	9053251.000	2683.138
185	830418.926	9053250.581	2682.875
186	830418.684	9053240.318	2682.769
187	830404.179	9053240.240	2682.241
188	830405.796	9053250.203	2682.388
189	830398.325	9053250.922	2682.158
190	830399.959	9053263.805	2681.995
191	830388.635	9053265.664	2681.556
192	830387.550	9053253.270	2681.662
193	830376.381	9053268.608	2681.167
194	830374.675	9053255.594	2681.286
195	830402.184	9053268.302	2681.769
196	830403.656	9053276.715	2681.256
197	830385.922	9053281.889	2681.028
198	830382.454	9053274.239	2681.258
199	830415.867	9053280.666	2680.936
200	830402.710	9053281.256	2681.068
201	830402.973	9053288.956	2680.695
202	830415.939	9053288.694	2680.455
203	830427.077	9053298.229	2679.455
204	830427.411	9053307.152	2679.167
205	830440.353	9053306.818	2678.966
206	830440.770	9053297.145	2679.088
207	830455.652	9053306.568	2678.508
208	830456.070	9053296.228	2678.795

209	830467.499	9053302.279	2678.166
210	830467.098	9053289.347	2678.472
211	830480.714	9053289.347	2678.566
212	830479.646	9053302.013	2678.257
213	830457.326	9053272.543	2680.277
214	830457.171	9053257.088	2683.046
215	830425.112	9053261.206	2682.519
216	830425.450	9053273.625	2681.028
217	830491.953	9053274.119	2680.577
218	830503.277	9053279.921	2680.482
219	830494.819	9053292.742	2680.587
220	830484.498	9053286.654	2680.167
221	830498.216	9053171.528	2690.895
222	830547.406	9053192.947	2688.695
223	830558.483	9053237.236	2683.564
224	830573.438	9053276.188	2679.041
225	830550.667	9053297.010	2677.995
226	830508.190	9053314.140	2677.895
227	830465.200	9053319.415	2677.190
228	830426.602	9053319.321	2677.141
229	830396.379	9053307.790	2678.890
230	830361.474	9053293.989	2679.193
231	830344.763	9053265.678	2680.471
232	830347.567	9053228.662	2682.163
233	830365.108	9053206.753	2682.385
234	830393.049	9053192.800	2689.190
235	830411.605	9053181.381	2692.208
236	830426.764	9053171.919	2695.277
237	830349.735	9052866.923	2798.523
238	830433.683	9052946.697	2758.808
239	830433.241	9053091.143	2721.168
240	830425.697	9053195.173	2690.808
241	830353.682	9053246.135	2682.172
242	830509.486	9053290.172	2680.190
243	830523.017	9053239.547	2682.785

Certificado de calibración

Anexo 03: Estudio de Mecánica de suelos

CONSULTORES E INGENIERIA E.I.R.L.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

INDICE

- 1.0 GENERALIDADES
- 2.0 UBICACIÓN Y ACCESO A LA ZONA EN ESTUDIO
- 3.0 GEOLOGÍA DEL ÁREA EN ESTUDIO
- 4.0 DATOS GENERALES DE LA ZONA
- 5.0 INVESTIGACIONES REALIZADAS
- 6.0 PERFIL ESTRATIGRÁFICO
- 7.0 ANÁLISIS DE LA CIMENTACIÓN
- 8.0 CLASIFICACION DE MATERIALES PARA EXCAVACIÓN
- 9.0 CONCLUSIONES DE LA ZONA EN ESTUDIO
- 10.0 RECOMENDACIONES DE LA ZONA EN ESTUDIO

ANEXOS

- REGISTRO DE SONDAJE
- ANALISIS GRANULOMETRICO
- ANALISIS QUIMICO
- CAPACIDAD PORTANTE
- PANEL FOTOGRAFICO

WILDCATE PERLISSIENCE NOS B.A.C.

CASA D. DIPOCAT

ING. Refinel demands Charcope Minaya
Carl N 100cs - Consultation Charcope Minaya
Carl N 100cs - Consultation Charcope
Minds - Consultation
Minds -

CALCONSULTORES E INCENIERA E M REIS CONSULTORIA IP C 40518

Ing Wilsold Zelaya Santa

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

ESTUDIO DE MECANICA DE SUELOS CON FINES DE CIMENTACION PROYECTO:

"CREACION DEL SISTEMA DE AGUA POTABLE DEL CASERÍO DE AIJA DEL DISTRITO DE CABANA – PROVINCIA DE PALLASCA-ANCASH"

1.0 GENERALIDADES

El objetivo fundamental del presente informe es determinar de las características físico mecánicas y químicas; así como las condiciones naturales del terreno de cimentación, para el proyecto

El programa de trabajo realizado con este propósito ha consistido en:

- Ejecución de Calicatas de Exploración.
- Estudio de Suelos en el área, que involucra a las obras de Cimentación de las estructuras proyectadas.
- Toma de muestras representativas.
- Registro de excavaciones.
- Ensayos Estándar de Laboratorio para definir los Parámetros físicos y resistentes del Subsuelo.
- Perfiles Estratigráficos.
- Análisis de la Cimentación.
- Agresión química del suelo al concreto de la cimentación.
- Conclusiones y Recomendaciones.

CELOONSULTORIES E MODITERIA E LR

INC. William / Zelaya Santo INCENTING CIVIL REG. CIP 198372 JEFE DE LABORATORIO

1.1 Normatividad

La evaluación del suelo está en concordancia con la Norma E-0.50 de suelos y cimentaciones del Reglamento Nacional de Edificaciones y con La guía de elaboración de expediente técnicos de proyectos de saneamiento 2016.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

2.0 UBICACIÓN Y ACCESO A LA ZONA EN ESTUDIO

La zona en estudio se encuentra en el distrito de Cabana, está en la provincia de Pallasca, Región Ancash.

Específicamente el Proyecto comprende: "CREACION DEL SISTEMA DE AGUA POTABLE DEL CASERÍO DE AIJA DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH".

FIGURA Nº 01: Ubicación de la Zona de estudio, caserío de Alja.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

FIGURA Nº 02: Mapa provincial del departamento de Ancash. La zona en estudio se Encuentra en la Provincia de Pallasca.

THE CONSULTORES EINGENERASIRE

Ing Wilson | Zelaya Santos INGENIDRO CAN REA CIP 194213 JEFE DE LABORATORIO

WIDENTS TEMPLEMENOS S.A.F.

JOS AND WITH THE THE TEMPLEMENT TO THE TEMPLEMENT OF THE

FIGURA Nº 08: Mapa del Perú. La zona en estudio se encuentra en el Departamento de Ancash.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

2.1 Condición climática

Las condiciones meteorológicas del sector están caracterizados por dos fechas bastantes definidos, que las precipitaciones pluviales comienzan en el mes de setiembre y se prolongan hasta el mes de abril, siendo las precipitaciones mayores entre los meses de enero a marzo y la época de estiaje se da de abril a setiembre registrándose las mayores horas de sol y el incremento del calor al mediodía y se da entre los meses de julio y agosto. En la zona los mayores vientos se dan en el mes de agosto y estos tienen dirección sur a norte.

2.2 Características de la Zona de estudio -Terreno

En la fecha el área de estudio cuenta con construcciones de casas de material noble y rustico (adobe y quincha) en estado regular.

2.3 Características del proyecto

El proyecto consiste en la ubicación de redes de agua potable, reservorios.

El proyecto se ha efectuado por medio de trabajos de exploración de campo y ensayos de laboratorio, necesarios para definir el perfil estratigráfico del área en estudio, así como sus propiedades de esfuerzo y deformación, proporcionándose las condiciones mínimas de cimentación, indicándose tipo y profundidad de los cimientos, capacidad portante admisible, magnitud de asentamientos, así como la zonificación desde el punto de vista de los tipos de suelos, a lo largo del trazo.

Estos resultados también nos permitirán definir las actividades del proceso constructivo dependiendo del tipo de suelo encontrado (normal, semirocoso ó rocoso) así como estimar los costos unitarios asociados al presupuesto de la obra en la partida de excavaciones.

CALCONSULTORES E RIGERARIA ELR.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

3.0 GEOLOGÍA DEL ÁREA EN ESTUDIO

3.1GEOLOGÍA REGIONAL

La región de Ancash se encuentra relacionado a un sistema de fallas regionales que generalmente tienen una principal orientación NO-SE (rumbo andino). Este sistema de fallas son cortadas por fallas trasversales (NESO). Las fallas de rumbo andino han permitido definir dominios tectónicos que limitan las principales franjas: 1) sulfuros masivos vulcanogénicos 2) epitermales miocénicos de Au-Ag y depósitos polimetálicos, 3) depósitos de W-Mo-Cu y 4) Pórfidos Cu-Mo-Au, Skarns Pb-Zn-Cu (Ag) y depósitos polimetálicos.

La rocas más antiguas que afloran en la parte oriental son las rocas metamórficas del Complejo Marañón, que está formada de una alternancia de lutitas, areniscas y calizas del Paleozoico.

El Mesozoico está representado por una gruesa secuencia sedimentaria que está relacionada a lutitas de la formación Chicama. Después en el Cretácico inferior tenemos en la parte oriental y central de la zona de estudio una secuencia silococlástica llamada Grupo Goyllarisquizga y en la parte occidental una secuencia volcánica de origen marino llamada Grupo Casma.

El Cenozoico está representado por rocas volcánicas de origen continental llamados Grupo Calipuy, el cual está compuesto por secuencias de lavas y piroclastos interdigitados con horizontes sedimentarios.

Las rocas intrusivas están relacionadas a los procesos de mineralización. Estas rocas pertenecen al Batolito Andino (Cretácico superior a Paleógeno) conocido también como Batolito de la Costa y al Batolito de la Cordillera Blanca (Mioceno tardío).

CAL CONSULTORES EINGEMERIA ELR

Ing Witson I Zeleyo Santo BOSSIERO CIUE, RED. CIP 196573

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

3.2 RASGOS GEOMORFÓLOGICOS

Los primeros estudios de geomorfología realizados en la Región Ancash, fueron primeramente establecidos por Mc LAUGHLIN en 1924, donde se reconocía dos períodos de erosión sobre la superficie Puna; el estadio Chacra, un levantamiento a 500 m de elevación y un estadio Cañón, con una elevación de aproximadamente 1,500 m. En las cumbres andinas se reconoce una superficie de peneplanización, denominándola superficie Puna. En la actualidad, INGEMMET reconoce las unidades geomorfológicas como mayores y menores. Las unidades mayores son la faja costera, los valles de la Vertiente del Pacífico y las estribaciones de la Cordillera Occidental, que se han podido identificar en la región.

Cerros Costeros

Son aquellos cerros aislados próximos al litoral y promontorios rocosos que forman colinas bajas y que muestran señales de haber sido afectados parcialmente por la erosión marina. Se encuentran en una faja costera de 2 a 10 Km. de ancho. Los cerros costeros están conformados por rocas volcánicas y sedimentarias pertenecientes al Grupo Casma y con cobertura eólica Hacia la costa, en algunas partes, forman empinados farallones tal es el caso del Cerro de Chimbote, el Cerro Península, Cerro División, Cerro Tortuga y Puerto de Casma, estas elevaciones contrastan con los terrenos menos elevados que los circundan.

Los cerros o elevaciones costeras se encuentran separados por valles, quebradas y partes bajas en el continente, y hacia el mar se expresan como islas de dimensiones variables, que corresponden a unidades rocosas resistentes a los procesos exógenos y que parecen haber formado una cadena de elevaciones de rumbo NO-SE, coincidente con la línea litoral actual.

Las rocas de esta zona son de colores oscuros, principalmente marrón, verde y rojo ladrillo; se hallan muy fracturadas y muchas veces se dividen en fragmentos angulosos. Los flancos de algunas colinas tienen un aspecto muy suave y están

ing Wilson't Zelaya Santo

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

cubiertas muchas veces por un manto de cantos angulosos. Al suroeste de Samanco, en la Playa Mar Brava se puede las sucesivas líneas de costa que se han preservado llegando a alcanzar una altitud de 20 metros en el acantilado.

A. Pampa Costera

Son áreas de muy poca pendiente que incluyen playas y pampas que están en su totalidad cubiertas por arenas eólicas o marinas. Estas pueden llegar a tener una amplia extensión en la costa, tal es el caso de Pampa Los Médanos, Pampa de Tortuga , Pampa El Arenal, y Pampa Carbonera. Estas zonas se presentan en la costa y se reducen paulatinamente hasta desaparecer hacia el Este. Algunas veces estas pampas incluyen otras unidades geomorfológicas tales como dunas o médanos y superficies disectadas.

El origen primario de la arena eólica es la línea de costa. Los vientos dominantes del suroeste retrabajan constantemente la arena, rellenando e invadiendo quebradas y los cerros remanentes asociados con el piedemonte. En las bahías y ensenadas que consisten de arena de grano fino a medio; el retrabajo eólico destruye y cubre los depósitos de playa; un buen ejemplo de esto puede verse al suroeste de Samanco en la playa Mar Brava.

B. Valles

Estos valles siguen la tendencia general de Este a Oeste, a la vez que van haciéndose más amplios, se caracterizan por ser valles de actividad fluvial durante todo el año. Sus afluentes son quebradas de actividad esporádica durante el año y son aprovechadas para la agricultura. En el pueblo de Nepeña, el ancho del valle puede llegar a 5 o 6 Km. Se presentan varios tipos de terrazas, desde bancos cubiertos por una delgada capa de material hasta terrazas compuestas en su totalidad de sedimento. Así tenemos el caso de las terrazas de primer tipo, sobre la que se encuentra el pueblo de Jimbe, al Norte del Cuadrángulo de Casma. Numerosos ejemplos de terrazas más recientes, compuestas completamente de sedimentos, se pueden encontrar en la parte inferior del Río Nepeña. Se han encontrado terrazas

Englishmend S.A.C.

In preside Minaya

on Consultation Minaya

on Consultation

Delatorycology station

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

cerca a Jimbe, Cushi Pampa, parte inferior del Río Larca y en las desembocaduras de algunas quebradas en la parte alta del Río Loco, con alturas varían de 50 a 150 metro.

C. Superficie Disectada

Estas superficies son zonas de muy poca pendiente o pampas, en las que afloran, de manera aislada, promontorios rocosos de relativa elevación. Estas zonas corresponden a rocas plutónicas, donde han actuado los agentes meteorizantes y particularmente la erosión cólica en diferentes direcciones, logrando una morfología uniforme con excepción de los promontorios rocosos que resaltan levemente sobre las áreas adyacentes. Muchas veces estas zonas de poca pendiente son pequeñas colinas originadas por la acumulación de arena, donde existe algo de vegetación que actúa a modo de barreras que estabilizan el movimiento del material cólico.

D. Quebradas

Las quebradas rellenadas se muestran cubiertas por depósitos aluviales, coluviales y eólicos. Algunas de las quebradas tienen cursos de agua durante la época de lluvias. Los depósitos de Quebrada son gravas, arenas y limos pobremente seleccionados y ligeramente estratificados, que se acumulan como conos de deyección a ambos lados del valle principal. Su depositación ocurre a partir de flujos rápidos provenientes del Este. También ocurren flujos de lodo en época de lluvias torrenciales, que originan depósitos irregulares en las salidas de quebradas ubicadas en los tramos medios a superior de los valles.

E. Dunas y Medaños

Estas geoformas son alargadas y perpendiculares a la línea de costa. Cubren áreas que se encuentran contiguas a las zonas de pampas costeras. Las zonas de dunas y médanos muchas veces pueden llegar a tener una extensión horizontal hasta de 30 km., tierra adentro, cubriendo elevaciones hasta de 1200 m.s.n.m.. Tal como se

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

observa en la prolongación de los cerros Médano Grande (Culebras). La depositación de dunas con su forma característica, es resaltante en la pampa El Arenal; en cambio los depósitos tipo lomadas alargadas y barcjanes predominan entre los ríos Casma y Culebras.

F. Contrafuerte de La Cordillera

Es una franja continua de rocas ígneas o sedimentarias y se ubican en todo el sector Este de la región; presenta una topografía agreste; llegando a alcanzar alturas de hasta 4450 m.s.n.m. (Cuadrangulo de Casma). Lo constituyen cadenas de elevaciones continuas que se digitan hacia el Oeste disminuyendo su altura paulatinamente. Ellos se encuentran separados, irregularmente, por valles y quebradas cuyo estadio de evolución geomorfológica es juvenil a maduro.

Estos relieves muestran laderas con inclinaciones de 25° a 30°, ligeramente convexos en la cumbre, sobre todo cuando la superficie esta cubierta de depósitos pelíticos, mezclados con fragmentos de rocas, generalmente muy alteradas. El macizo batolítico superior, que ocupa gran parte de las estribaciones andinas, se caracteriza por sus grandes cimas convexas cubiertas por bloques subredondeados y material arenoso en algunos casos, resultante de la meteorización diferencial y granular de estas rocas.

G. La Superficie Puna

La superficie Puna, consiste en una superficie pobremente desarrollada, la cual no ha logrado una peneplanización completa y que fue reconocida principalmente por la concordancia de las cumbres. Esta superficie se estableció truncando los pliegues de la tectónica incaica que afectó a los estratos paleozoicos y mesozoicos. La unidad superficie Puna, pueden ser vistos afectando a los volcánicos del Grupo Calipuy en la Cordillera Occidental de la Región Ancash.

CALCONSULTORES E INCENTERIA E.
REG. CONSULTORIA Nº C 40013

MISON / Zetaya Sant MGENIERO CIVIL REG. CIP 19627

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

H. Glaciación

La región Ancash contiene las partes más altas del Perú, que han sido profundamente afectadas por la glaciación pleistocénica, con significativas acumulaciones de hielo que cubren parcialmente los picos de la Cordillera Blanca y la Cordillera Huayhuash.

En las alturas de 3,500 m, las acumulaciones de hielo han desaparecido, dejando una topografía intacta que vienen siendo afectadadas por la fricción del hielo. Los picos invariablemente muestran una apariencia angular peñascosa debido al hielo y a los depósitos de morrenas.

En la parte más alta, los lagos ocupan cubetas labradas por la glaciación, estando comúnmente encerrados por morrenas que actúan como diques. Algunas de estas lagunas represadas por morrenas son muy recientes y consecuentemente débiles, constituyendo un riesgo para las comunidades que viven en las cuencas de drenaje.

En el Valle del río Santa, es un área particular de acumulación de morrenas. Se trata de un valle ancho que evidentemente ha sido desarrollado como resultado de la erosión a lo largo del complejo sistema de fallas que se encuentran al pie de la Cordillera Blanca. La depresión de este valle fue inicialmente tectónica, en donde los terrenos bajos fueron cubiertos con depósitos glaciares que formaron grandes morrenas. Al Norte de Recuay, se encuentran depósitos morrénicos asociados con depósitos lacustrinos; estos tienen un buzamiento hasta de 20° al NE. Se puede distinguir dos tipos de depósitos morrénicos que consecuentemente son de diferentes edades, dado que los más antiguos que han sufrido meteorización, presentan crestas de morrenas han sido degradadas, formando colinas y lomadas de cumbres redondeadas y escarpas profundas donde han sido disectadas por cursos de agua. En cambio, las morrenas más recientes muestran aún sus crestas agudas y que generalmente se localizan en las partes más altas y próximas a los glaciares actuales.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

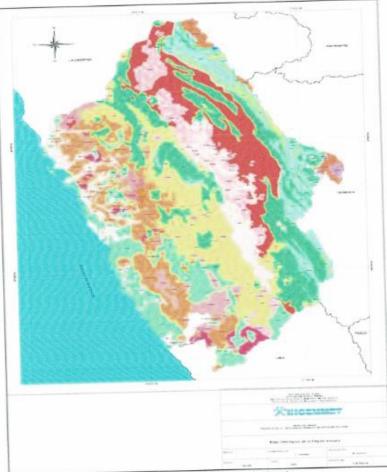


Figura Nº 3: Mapa Geológico de la región Ancash

MERCATS PERLUMENTANCES S.A.C.

July of horrory M.

Ng. Riskel Amando Character Minaya

CHINA M. No. 18 (1995)

PRINT MARK S. 1995 (1995)

Ing Wilson) Zelaya Santos

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

4.0 DATOS GENERALES DE LA ZONA

4.1 Geodinámica Externa

En la zona de cierre no se han observado procesos geodinámicos de Inestabilidad de Talud, como; deslizamientos, derrumbes, caída de bloques, flujos, etc.

Los observados coinciden con derrumbes de bloques rocosos, como consecuencia de los grandes períodos de lluvias, pero que son de magnitud leve y no son determinantes en los criterios del proyecto.

La actividad geodinámica externa se encuentra relacionada básicamente a la presencia de materiales Coluviales y los derrumbes de bloques rocosos de naturaleza volcánica (Derrames volcánicos tipo aglomerados) por acción de la gravedad y en épocas de lluvias intensas.

4.2 Geodinámica Interna

Sismicidad

La distribución de sismos en tiempo y espacio es una materia elemental en sismología, observaciones sísmicas, las cuales no solo debe tenerse en cuenta el número de eventos registrados, sino también su dimensión, frecuencia y distribución espacial, así como su modo de ocurrencia.

4.3 Parámetros sísmicos de sitio

Dentro de los alcances de la norma técnica e.030 "diseño sismoresistente" del Reglamento Nacional de Edificaciones 2016, la zona de estudio se encuentra en el Distrito de Cabana, Provincia de Pallasca y Departamento de Ancash; la cual está dentro de la denominada "Zona 3" correspondiéndole un "factor de zona" de Z=0.35, interpretándose como la aceleración máxima del terreno con una probabilidad de 10% de ser excedida en 50 años. Además, le corresponde una sismicidad alta de intensidad IX en la Escala Mercalli Modificado

La descripción litológica hecha precedentemente, indica que las estructuras proyectadas se emplazarán sobre suelo tipo Gravo arenoso de semi consolidado,

REG. CONSULTORES E INGENERIAL IR.

INGENERO CIVIL REG. CIP 19637

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

según la Norma E.030, pertenece a un "Perfil Tipo S2": Suelos Intermedios, teniéndose los siguientes parámetros:

Factor de Zona 3(Z) = 0.35

Factor de Uso (U): U = 1.0 (Edificaciones comunes Categoría C)

Valores del factor de amplificación del suelo S y de los períodos T_P y T_L, para el tipo de suelo (S1)

 $T_P(S) = 0.6$

 $T_L(S)=2.0$

4.4 Tectonismo

Esta región es considerada como un área de concentración sísmica caracterizada por movimientos con hipocentros entre 40 y 70 Km. de profundidad frente al litoral de Chimbote y en la falla de Cerro península en Samanco, con relación a los focos sísmicos indicados se estima que en 70 años se puede alcanzar una magnitud de 6.9 mb y una aceleración de 0.28g para condiciones medidas de cimentación en material blando.

Sismicidad Histórica:

Aunque se tiene referencias históricas del impacto de terremotos durante el Imperio de los Incas, la información se remonta a la época de la conquista. En la descripción de los sismos se han utilizado como documentos básicos los trabajos de Silgado (1968) y Tesis, de los cuales hacemos algunas referencias de eventos sísmicos hasta antes del 23 de Junio del 2001.

18 de Setiembre de 1833.- A las 05:45 violento movimiento sísmico que ocasionó la destrucción de Tacna y grandes daños en Moquegua, Arequipa, Sama, Arica, Torata, Locumba e llabaya, murieron 18 personas; fue, sentido en La Paz y Cochabamba, en Bolivia.

WEG CONSILTONIA OF C 40513

INGENIERO CIVIL REG. CN 19527.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

24 de Agosto de 1942.- A las 17:51. Terremoto en la región limítrofe de los departamentos de Ica y Arequipa, alcanzando intensidades de grado IX de la Escala Modificada de Mercalli, el epicentro fue, situado entre los paralelos de 14º y 16º de latitud Sur. Causó gran destrucción en un área de 18,000 kilómetros cuadrados. Murieron 30 personas por los desplomes de las casas y 25 heridos por diversas causas. Se sintió fuertemente en las poblaciones de Camaná, Chuquibamba, Aplao y Mollendo, con menor intensidad en Moquegua, Huancayo, Cerro de Pasco, Ayacucho, Huancavelica, Cuzco, Cajatambo, Huaraz y Lima. Su posición geográfica fue -15º Lat. S. y -76º long. W. y una magnitud de 8.4, en Arequipa tuvo una intensidad de V en la Escala Modificada de Mercalli.

03 de Octubre de 1951.- A las 06:08. Fuerte temblor en el Sur del país. En la ciudad de Tacna se cuartearon las paredes de un edificio moderno, alcanzó una intensidad del grado VI en la Escala Modificada de Mercalli. Se sintió fuertemente en las ciudades de Moquegua y Arica. La posición geográfica fue de -17º Lat. S. y 71º Long. W., y su profundidad de 100 Km.

15 de Enero de 1958.- A las 14:14:29. Terremoto en Arequipa que causó 28 muertos y 133 heridos. Alcanzó una intensidad del grado VII en la Escala Modificada de Mercalli, y de grado VIII en la escala internacional de intensidad sísmica M.S.K. (Medvedev, Sponheuer y Karnik), este movimiento causó daños de diversa magnitud en todas las viviendas construidas a base de sillar, resistiendo sólo los inmuebles construidos después de 1940.

23 de Junio de 2001.- A las 15 horas 33 minutos, terremoto destructor que afectó el Sur del Perú, particularmente los Departamentos de Moquegua, Tacna y Arequipa. Este sismo tuvo características importantes entre las que se destaca la complejidad de su registro y ocurrencia. El terremoto ha originado varios miles de post-sacudidas o réplicas.

Las localidades más afectadas por el terremoto fueron las ciudades de CALCOMSULTORES E INCENERIA ELGA.

JESE DE LABORATORIO

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

Moquegua, Tacna, Arequipa, Valle de Tambo, Caravelí, Chuquibamba, llo, algunos pueblos del interior y Camaná por el efecto del Tsunami.

El Sistema de Defensa Civil y medios de comunicación han informado la muerte de 35 personas en los departamentos antes mencionados, así como desaparecidos y miles de edificaciones destruidas.

FIGURA Nº 1: Mapa de Zonificación Sísmica del Perú, según el Reglamento Nacional de Edificaciones (2016)

WIECAS PERI GICENEUOS B.A.C.

Lefa A Present A

Ing. Bifuel formania Chercipe Minage

Color Coping Continue Color

PERIO NO CONTINUE CONTINUE

PERIO NO CONTINUE

PERIO

REG. CONSULTORES T MODERNARIAR
REG. CONSULTOREA IT C 40910

INGENIERO CIVIL REG. CO 194073

FIGURA Nº 2: Mapa de distribución de máximas intensidades sísmicas (Alva et., al, 1984)

Figura 3. Mapa de Isoaceleraciones para 475 años de Periodo de Retorno.

ONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

5.0 INVESTIGACIONES REALIZADAS

5.1 Trabajos de campo

Se presenta la descripción de los trabajos realizados en campo, desde la ubicación, excavación manual de las calicatas, muestreo y descripción de los materiales encontrados.

Norma E-0.50 de suelos y cimentaciones del Reglamento Nacional de Edificaciones

TABLA N° 2.3.2 NÚMERO DE PUNTOS DE INVESTIGACION		
Tipo de edificación	Número de puntos de investigación (n)	
A	1 cada 225 m ²	
8	1 cada 450 m ²	
C	1 cada 800 m²	
Urbanizaciones para Viviendas Unifamiliares de hasta 3 pisos	3 por cada Ha. de terreno habilitado	

La guía de elaboración de expediente técnicos de proyectos de saneamiento 2016.

Recomendaciones:

Para definir el número de calicatas se hará uso de los siguientes criterios: Para Líneas de conducción, 1 calicata @ 400m

Para Redes de Distribución Primarias: 1 calicata @ 200m

Para Redes de Distribución Secundarias: 1 calicata @ 50 lotes

Para Reservorios, câmaras de bombeo, PTAP: 1 calicata @ 200m². Plantas de Tratamiento Desagüe, 3 calicatas mín. @ 1 Ha. (Lagunas)

5.1.1 Excavación de Calicatas

Con la finalidad de determinar el perfil estratigráfico, se realizó un programa de exploración geotécnica en la zona de estudio, que consistió en realizar calicatas o pozos, en las ubicaciones probables de las estructuras proyectadas, realizados manualmente; así se ejecutaron 7 calicatas o pozos a cielo abierto.

En el Cuadro N° 01, se indica la identificación de las calicatas y la profundidad alcanzada.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

CUADRO Nº1

Nº	CALICATA	PROFUND IDAD (M)	CLASIFICACION	LOCALIZACION
1	C-1	2.00	TOP SOIL, SC	RESERVORIO
2	C-2	1.20	TOP SOIL, GP	L.COND - 3+900
3	C-3	1.20	TOP SOIL, SM-SC	L.COND - 2+400
4	C-4	1.20	TOP SOIL, GP	L.COND - 0+400
5	C-5	0.50	TOP SOIL, GP	L.COND - 0+040
6	C-6	1.20	GP	L. DIST - CASA(37-38)
7	C-7	1.20	TOP SOIL, GP	L. DIST - CASA(11-12)

5.1.2 Muestreo de suelo

De las calicatas se tomaron muestras representativas, para ser enviadas al laboratorio y poder identificar el tipo de material y sus características físicasmecánicas.

5.1.3 Registro de excavaciones

Conjuntamente con el muestreo se efectuó el registro de cada una de las calicatas (Ver Registro de Sondaje), en las cuales se tomó nota de las principales características de los tipos de suelos encontrados, tales como: Espesor de los estratos, clasificación manual, compacidad, consistencia, humedad, color, nivel freático, etc.

MECATS PENU GREENEROS S.A.E.

JOHN DIFFTEN

G. Biller Amazado Chanador Minago

THE GOUSTA CONSULTADOR

THE GOUSTA CONSULTATION

THE G

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

5.2 Trabajos de laboratorio

Las muestras obtenidas del subsuelo fueron enviados al Laboratorio de mecánica de suelos y pavimento de la empresa C&I CONSULTORES E INGENIERIA E.I.R.L., para los ensayos en mecánica de suelos.

5.2.1 Características físicas (Ensayos estándar)

Los ensayos estándar para la identificación del tipo del suelo se realizaron según la Norma:

- Análisis granulométrico por tamizado ASTM D 422
- Contenido de humedad ASTM D 2216
- Limite líquido y plástico ASTM D 4318
- Clasificación de los suelos SUCS, ASTM D 2487
- Descripción visual de los suelos ASTM D 2487
- Densidad Mínima y Densidad Máxima ASTM D 4253 y D 4254

5.3 Análisis e Interpretación en gabinete

Esta fase comprende, tanto el análisis e interpretación de los resultados obtenidos en las dos fases precedentes, como la elaboración de criterios para el análisis de la Cimentación, conociendo los tipos de terreno y sus características, sobre el cual se cimentará la estructura proyectada y el efecto sobre el mismo.

CAL COMSTRUCTOR

Wilson / Zelaya Sant-

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

6.0 PERFIL ESTRATIGRÁFICO

Sobre la base de los registros de excavaciones inspección superficial del terreno y ensayos de laboratorio se deduce la siguiente conformación.

En la Calicata C-1 RESERVORIO, tiene una profundidad de 2.00 m, se registró de 0.00m a 0.20m de profundidad un estrato de suelo orgánico (TOP SOIL), Seguido de un segundo estrato de 0.20m a 2.00m Arena arcillosa mal graduada (SC), el estrato es de color marrón oscuro, condición in situ: compacidad media y moderadamente húmeda.

En la Calicata C-2 – LINEA DE CONDUCCION 3+900, tiene una profundidad de 1.20 m, se registró de 0.00m a 0.20m de suelo orgánico (TOP SOIL), Seguido de un segundo estrato de 0.20m a 1.20m Grava mal graduada (GP), sus granos son de forma sub angular y redondeada, con presencia de finos no plásticos, el estrato es de color marrón claro, condición in situ: compacidad media y ligeramente húmeda.

En la Calicata C-3 – LINEA DE CONDUCCION 2+400, tiene una profundidad de 1.20 m, se registró de 0.00m a 0.40m de profundidad un estrato de suelo orgánico (TOP SOIL), Seguido de un segundo estrato de 0.40m a 1.20m Arena arcillosa mal graduada (SC), de color marrón claro, en estado ligeramente húmedo, de compacidad media, con propiedades plásticas, con bolonerias aisladas.

En la Calicata C-4- LINEA DE CONDUCCION 0+400, tiene una profundidad de 1.20 m, se registró de 0.00m a 0.40m de profundidad un estrato de suelo orgánico (TOP SOIL), Seguido de un segundo estrato de 0.40m a 1.20m Grava mal graduada (GP), de color marrón claro, en estado ligeramente húmedo, de compacidad media, con propiedades plásticas, seguido de bolonerias aisladas de 30".

En la Calicata C-5 – LINEA DE CONDUCCION 0+040, tiene una profundidad de 0.50 m, se registró de 0.00m a 0.10m de profundidad un estrato de suelo orgánico (TOP SOIL), Seguido de un segundo estrato de 0.10m a 0.50m Grava mal graduada (GP),

CALCONSULTORES E INGENERIA ELIX.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

de color marrón claro, en estado ligeramente húmedo, de compacidad media, con propiedades plásticas, seguido de roca fragmentada.

En la Calicata C-6 – LINEA DE DISTRIBUCION CASA (37-38), tiene una profundidad de 1.20 m, se registró de 0.00m a 0.30m de profundidad un estrato de suelo orgánico (TOP SOIL), Seguido de un segundo estrato de 0.30m a 1.20m de Grava mal graduada (GP), con propiedades plásticas, acompañado de bolonerias.

En la Calicata C-7 – LINEA DE DISTRIBUCION CASA (11-12), tiene una profundidad de 1.20 m, se registró de 0.00m a 0.30m de profundidad un estrato de suelo orgánico (TOP SOIL), Seguido de un segundo estrato de 0.30m a 1.20m de Grava mal graduada (GP) con propiedades plásticas, acompañado de bolonerias.

Nota: Finalmente, hasta la profundidad explorada se aprecia matriz gravosa con partículas sub alargadas, de compacidad media a firme, en estado húmedo.

6.1 Nivel freático

Hasta la profundidad máxima explorada de 2.00m, no se ha localizado nivel freático, en ninguna de las excavaciones.

6.2 Características del suelo de cimentación

De acuerdo a los ensayos realizados a las muestras de la zona en estudio, se clasifico de acuerdo al método (SUCS) 2 tipos de suelos conformado por grava mal gradada (GP), arena arcillosa (SC).

July Street March Street March March

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

7.0 ANÁLISIS DE LA CIMENTACIÓN

Se presenta a continuación el análisis de la cimentación, que incluye recomendaciones para su diseño. Realizada sobre la base de las características del terreno y al tipo de estructura proyectada.

7.1 Tipo de cimentación

Dada la naturaleza Gravo arenosa y compacidad firme a media, se recomienda para la construcción de los reservorios, el empleo de una cimentación superficial convencional, tal como zapatas armadas conectadas con vigas de cimentación, cimientos corridos armado en el sobrecimiento, etc.

7.2 Profundidad de cimentación

Sobre la base del estudio del perfil estratigráfico, características físicomecánicas del subsuelo y solicitaciones de carga, se recomienda cimentar a una profundidad no menor de 2.00m por debajo del nivel de falso piso y sobre el estrato gravo arenoso.

7.3 Capacidad admisible

Se ha determinado la capacidad portante del terreno sobre la base de las características de los suelos subyacentes y solicitaciones de carga. Para lo cual se utilizarán los parámetros de resistencia presentados en el Cuadro Nº 4.

Luego se calcula la capacidad portante con la siguiente ecuación:

 $Qadm = \frac{1}{FS}(0.4 * y * B * Ny + y * Df * Nq + 1.3 * C * Nc)$

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

PARÁMETROS PARA DISEÑO DE CIMENTACIÓN CASERIO DE AIJA

Cuadro nº 4

Tipo de suelo	GP
Φ(tn/m²)	33
Y(tn/m³)	1.86
B(m)	1.00
Dr	2.00

CAPACIDAD DE CARGA Y PRESIONES ADMISIBLES

Teoria	Qu (tn/m2)	F.S	Qu (tn/m²)	Q ₀ (kg/cm ²)
	The second second	- 0	16.0	1.60
TERZAGHI	48.0	3	10.0	1.00

8.0 CLASIFICACION DE MATERIALES PARA EXCAVACIÓN

Los materiales presentes en los diversos lugares explorados, se han clasificado con respecto al grado de dificultad para fines de excavación. Para tal efecto se ha tomado como referencia las siguientes especificaciones para excavaciones en obras de agua potable y alcantarillado, los materiales se han agrupado en los siguientes tipos de terreno considerando el grado de dificultad ante la excavación:

TERRENO NORMAL

Conformado por materiales sueltos tales como: arena, limo, arena limosa, gravillas, etc. y terrenos consolidados como materiales granulares, afirmado o mezcla de ellos, etc. los cuales pueden ser excavados sin dificultad con herramientas manuales y / δ equipo mecánico. En este grupo se ha considerado además, los materiales de relleno que pueden ser excavados sin dificultad.

TERRENO SEMIROCOSO

Conformado por el terreno normal descrito en el ítem anterior, pero que está mezclado con fragmentos del tipo "boloneria" de diámetro de 8" (20 cm.) hasta 20" (51cm.) cuando la extracción se realiza con mano de obra y a pulso ó hasta 30" (76 cm) cuando la extracción

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

se realiza con cargador frontal o equipo similar.

De igual forma, se considera terreno semirocoso a la roca fragmentada o intemperizada para cuya extracción no se requiere el empleo de equipos de rotura o explosivos.

Por lo general, los terrenos semirocosos son aquellos mantos rocosos en pleno proceso de alteración por intemperismo y presenta matriz de material fino proveniente de la desintegración de la roca madre.

TERRENO ROCOSO

Está conformado por roca fija, y/ó roca descompuesta, y/ó fragmentos del tipo "boloneria" mayores de 30", para cuya extracción se requiere necesariamente la utilización de equipos de rotura y/ó explosivos.

La clasificación de los materiales ubicados en las calicatas bajo este criterio, se indica en el siguiente cuadro:

Nº	CALICA TA	PROFUN DIDAD (M)	CLASIFICACION	TIPO DE MATERIAL	LOCALIZACION
1	C-1	2.00	TOP SOIL, SC	NORMAL	RESERVORIO
2	C-2	1.20	TOP SOIL, GP	TOP SOIL, GP NORMAL	
3	C-3	1.20	TOP SOIL,SM-SC	SEMIROCOSO	L.COND 2+400
4	C-4	1.20	TOP SOIL, GP	SEMIROCOSO	L.COND 0+400
5	C-5	0.50	TOP SOIL, GP	ROCOSO	L.COND 0+040
6	C-6	1.20	GP	NORMAL	L.DIST CASA (37-38)
7	C-7	1.20	TOP SOIL, GP	NORMAL	L.DIST CASA (11-12)

Según el cuadro anterior, hay predominio del terreno Normal, semirocoso y rocoso en las zonas comprendidas en el proyecto.

WILDON'S PERLY SIGENIEROS S.A.F.

JULIAN METERA

MIG. RIGHE (FRIENDE CHING)

CONTO VIEW CONCENTRACIONO

PERE AND SALVANOMINADO SALVANO

PERE AND SALVANOMINADO SALVANOMINA

EM CONSULTORES TO STATE OF THE STATE OF THE

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

9.0 CONCLUSIONES DE LA ZONA EN ESTUDIO

- Geológicamente y geomorfológicamente, la zona de estudio no presentan estructuras geológicas tales como fallas o problemas potenciales de deslizamiento. Ni problemas por efectos de Geodinámica externa como son huaycos, viento excesivo, etc.
- Con el propósito de identificar las características físicas y mecánicas del suelo de fundación se ubicaron 07 calicatas o excavaciones a cielo abierto, con una profundidad que varía de 1.20 m, a 2.00m aprox.
- 3) De acuerdo a los ensayos realizados a las muestras de la zona en estudio, se clasifico de acuerdo al método (SUCS) 2 tipos de suelos conformado por grava mal gradada (GP), arena arcillosa (SC), con bolonerias.
- No se ha determinado el nivel freático, en ninguna de las excavaciones.
- 5) La conformación del subsuelo en el área de estudio es como sigue:

. SUELO TIPO I: (Normal)

Este sector corresponde a las calicatas C1, C2, C6 Y C7en estudio: Dichos suelos están conformados por arenas y gravas de compacidad mediana.

SUELO TIPO II: (SEMIROCOSO)

Este sector corresponde a las calicatas C3 Y C4en estudio:
Dichos suelos están conformados por grava mal graduadas con bolonerias aisladas, de compacidad media a firme.

SUELO TIPO III: (ROCOSO)

Este sector corresponde a las calicatas C5 en estudio:

Dichos suelos están conformados por grava mal graduadas con bolonerias, roca fragmentadas.

PARTICONSULTORIES E INCEMENTA E 1

PARTICON GULTORIA Nº O 49913

INGENIERO CIVIL REG. CIP 19637

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

10.0 RECOMENDACIONES DE LA ZONA EN ESTUDIO

De acuerdo a las exploraciones realizadas, descripción visual, y ensayos realizados en laboratorio, se pudo realizar las siguientes recomendaciones:

LA CAPACIDAD ADMISIBLE CASERÍO DE AIJA, del terreno a la profundidad de cimentación de Df = 2.00 metros, se puede considerar:

> - Por carga ultima Qad = 1.60 kg/cm2 a) PARA TODO TIPO DE CIMIENTO:

Capacidad de Carga Ultima, qu

qc=c' *N' c + Gm*Df*N' q + 0.5*Gm*B*N' g

Capacidad de Carga Admisible, que

qa= qc	/F5
c"Nc=	0.22
Gm*Df*Nq=	3.98
0.5"Gm"B"Ng=	0.59

qc=		Kg/Cm²
qa=	1.60	Kg/Cm ²

- 1) Para las cimentaciones de las edificaciones a proyectarse (RESERVORIOS) se recomienda el empleo de zapatas armadas conectadas con viga de cimentación; cimientos corridos reforzadas en el sobrecimiento, por el tipo de estructura proyectada y el terreno de cimentación encontrado, dejando a criterio del ingeniero estructural el empleo del tipo de cimentación adecuada.
- 2) Se debe evitar perturbar el suelo debajo de los niveles de Cimentación recomendados. El fondo de toda excavación para cimentación debe quedar limpio y parejo. Se deberá retirar todo material suelto, antes del procedimiento de vaciado.
- 3) se recomienda emplear Cemento Portland Tipo I en la preparación del concreto.

Se recomienda el uso de impermeabilizante en la preparación del concreto en los reservorios.

 DELEGENSTATIONES ENGENERALEURL

ng Wilson J Zelaya Sant

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

- 5) Es conveniente tener presente el cuidado necesario para que los empalmes de las tuberías estén bien instalados de tal forma evitar fugas que pueden generar la reacción de los sulfatos y cloruros.
- 6) Se recomienda, que se debe realizar cunetas alrededor de la edificación o caso contrario unos drenes para evacuar las aguas de lluvia que no puedan ser captadas por las tuberías de evacuación.
- Cualquier variación de la estratigrafía señalada en este informe deberá ser comunicada al proyectista.
- El presente estudio es recomendado solo para la zona en estudio y no respalda ningún otro lugar y tipo de obra diferente a las estudiadas.

INDESTS PEN GRENEROS SAL John Johnson House Ing Rither Amends Charoline Minory Carlot India Consenting China Grent China Consenting China Grent China China Grent China China Grent China China Grent REG. CONSULTORES E INCERIENTA CIGIL
REG. CONSULTORA IV C 43813

Ing Wilson | Zelaya Santos INGENESO CIVIL REG. CIP VILLY

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

10.1 RECOMENDACIONES ADICIONALES

PARA EL RELLENO DE ZANJAS, SE DEBERÁ SEGUIR EL SIGUIENTE TRATAMIENTO:

- Se nivelara y refinara el fondo de zanja y luego se colocara una cama de apoyo con material de préstamo seleccionado de cantera de la clasificación SUCS SP, con un espesor de 0.10 m.
- Para el ancho de zanja podrá usarse cualquier ancho en la parte superior de la zanja, pero siempre que el ancho al nivel de la tubería. No exceda los límites recomendados en la siguiente tabla:

Tabla Nº 15.1

DIÁMETRO DEL TUBO (mm)	ANCHO MÍNIMO (cm)	ANCHO MÁXIMO (cm)
100 - 200	40	80
250 - 300	50	90
350 - 400	75	110
450 - 630	90	120

Fuente, NTP ISO 4435

- Para los rellenos de zanjas se podrá usar el mismo material excavado, retirando las partículas mayores de 2", compactada al 98 % de la Máxima Densidad Seca del Ensayo de Proctor Modificado (ASTM D 1557).
- En caso de encontrarse rellenos no aptos (desmonte, top Soil), serán reemplazados por un material granular seleccionado, debidamente compactado por capas.
- El material de préstamo para rellenos de zanjas, consistiría en un suelo gravoso de cantera, compactada por capas al 95% de la Máxima Densidad Seca del Ensayo de Proctor Modificado (ASTM D 1557).
- La frecuencia de estos ensayos, será determinada por la Supervisión y serán obligatorios cuando se evidencie un cambio en el tipo de suelos del material.

El material de préstamo llenará los requisitos de granulometría dados en la Tabla siguiente:

 CALCONSULTOBES EMPRESALEAL

CALCONSULTOBES EMPRESALEA

CALCONSULTOBES EMPRESALEAL

CALCONSULTOB

ag Wilson J Zeleya Santu

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

Tamaño de la Malla tipo AASHTO T-11 Y T-27	Porcentaje en peso que pasa				
(ABERTURA CUADRADA)	Gradación A	Gradación B	Gradación C	Gradación D	
2 pulg.	100	100			
1 pulg.		75 - 97	100	100	
3/8 pulg	30 - 65	40 - 75	50 - 85	60 - 100	
Nº4-(4.76 mm.)	25 - 55	30 - 60	35 - 65	50 - 85	
Nº10-(2.00 mm.)	15 - 40	20 - 45	25 - 50	40 - 70	
Nº40-(0.420 mm.)	8 - 20	15 - 30	15 - 30	25 - 45	
Nº200-(0.074 mm.)	2 - 8	5 - 20	5 - 15	5 - 20	

- La granulometría definitiva que se adopte dentro de estos límites, tendrá una gradación uniforme de grueso a fino.
- La fracción del material que pase la malla N° 200, no debe exceder de 1/2, y en ningún caso de los 2/3 de la fracción que pase el Tamiz N°40.
- La fracción del material que pase el Tamiz N° 40, debe tener un límite líquido no mayor de 25% y un índice de plasticidad inferior o igual a 6% determinados de acuerdo a los Métodos T-89 y T-91 de la AASHTO.
- En el sector donde se va a utilizar tuberías principales de hierro dúctil, se recomienda el empleo de mangas de polietileno.
- se tomará muestras y elaboraran probetas según Método ASTM C-31 "Practica estándar para elaborar y curar probetas de ensayo de concreto en campo", las probetas se someterán ensayó de cuerdo a ASTM C-39 "Método estándar de resistencia a la compresión de probetas cilíndricas de concreto" para ensayos de resistencia.
- Los resultados son solo para la zona en estudio.

CALBORRANTONES E INCERNATELL MEG. CONGULTONA IN C. 40113

masseno GWL REG. CP 194373

ANALISIS QUIMICO

WILDCAR'S PERMY SIGNAGE NOS S.A.C.

LOLAND HOPELY

IND. RAISEN FROM CONTROL MANAGE

CONTROL OF SIGNAGE NOS SIGNAGE

SIGNAGE NOS SIGNAGE NOS SIGNAGE NOS SIGNAGE

SIGNAGE NOS SIGNAGE NO

CA-CORUA IOREA FUNCIONERIA ELILA
REG. CONSULTONAN C. 40613

LING WITSOIL Zeleyu Sunton
BASINERIO COM. 16572
LINE DE L'AROMATORA
LINE DE L'AROMATORA

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS

PROYECTO: CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÍO DE AIJA

DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH

UBICACIÓN : CASERIO DE AIJA-RESERVORIO

SOLICITA: MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

FECHA: MAYO DEL 2020

ANALISIS QUIMICO

N=	ANALISIS QUIMICO	VALORES MAXIMOS ADMISIBLES	RESULTADOS (%)			
			C-1	C-1	PROMEDIC	
	Profundidad (m)		0.00 -2.00	0.00 -2.00		
1	Sales Delocuescentes o Cloruros	300	96	72	84	
2	Sulfatos Solubles (SO4)	300	45	36	40.5	
3	Seles Solubles Totales	0.04%	0.006%	0.003%	0.004%	
4	Sólidas en suspensión	1000				
5	Meteria Orgánica expresado en Dxigeno	10				
6	Sales Solubles de Magnesio	150				
7	Limite de Turbidez	2000				
8	Dureze	>5				
9	Potencial de Hidrógeno (PH)	>7	7.2	6.9	7.05	

Limites permisibles

= 0.0 + 0.04%

Las muestras obtenidas de la calicatas, se encuentran dentro de los limites permisibles de sales solubles totales en suelos.

los materiales finos no deberan de contener sales solubles totales en porcentaje mayor del 0.04% si se trata de concreto armado

CALCONSULTORS E WOOMERING AND

REGISTRO DE SONDAJE

Ing Wilson / Zelaya Santon Ingeniero chii, red oir 19479

PROYECTO	: CREACION DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE AIJA		
	: DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH		
UBICACIÓN	: RESERVORIO		
SOLICITANTE	: MUNICIPALIDAD PROVINCIAL DE PALLASCA- CABANA		
FECHA	: MAYO 2020		
	PERFIL ESTRATIGRAFICO		
	DATOS DE LA MUESTRA		
Material:	TERRENO NATURAL	Calicata:	t.
Ubicación de la	Nuestra: 1	Book Cont.	

ESTRATO	CLA	SIFICACIÓN			
	AASHTO SUCS		DESCRIPCIÓN MATERIAL	Prof. (m.)	OBSERVACIONES
		•	TOP SOIL	0.10 0.20	
M-1	A-2-6 SC	•	Arena arcillosa mai graduada, el estrato es de color marron ocuro, condición in sina compacidad media y moderadamente húmedo.	2.00	
			CALCOURDE TERMS E INCENTRA ZUAL NEG. CONSULTORIA IN C. 48553 LIDE WILSON L. Zelayor Santos INCENTRO CININ REG. Cir. 186473 MEDICATS PERU SICENEHOS S.A.E. LOCAL CHERCAL INS. Sident Extransion Consultoria Minaga THE TORIO. CONSULTORIA CHARACTERIA THE SIGEN CONSULTORIA CHARACTERIA THE SIGNAL CHARACTERIA CHARACTERIA THE SIGNAL CHARACTERIA CHARACTERIA THE SIGNAL CHARACTERIA		

UBICACIÓN	DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH	
SOLICITANTE	: CASERIO DE AIJA-LINEA CONDUCCION - 3+900 : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA	
FECHA	: MAYO 2020	
	PERFIL ESTRATIGRAFICO	
	DATOS DE LA MUESTRA	
Material: Ubicación de la	DATOS DE LA MUESTRA TERREDO NATURAL	2

ESTRATO	CLASIFICACIÓN			Prof.	
	AASHTO SUCS		DESCRIPCIÓN MATERIAL	(m.)	OBSERVACIONES
			TOP SOIL	0.10	
M-1	A - 2 - 6 GP		Grava mai graduada, con rocus aistadas mayor 30°, el estrato es de color marron ocuro, condición in situ: compacidad media y moderadamente húmedo,	0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00	_
			WILDOWS PERCHAPIOS S.A.F. (CALLAND INTERNATIONAL COMPANY OF THE PROPERTY OF T	3	
		(CALCONSULTORES ELUCEREMA EJRI, ROBE GENERAL PROPERTOR INTO SMICHAEL PROPERTOR INTO CA 196213 JEFE DE L'ABOURTORES		

PROYECTO	2 CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÍO DE AIJA			
UBICACIÓN SOLICITANTE	: DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH : CASERIO DE AIJA - LINEA DE CONDUCCION - 2+400			
	: MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA			
FECHA	: MAYO 2020			
	PERFIL ESTRATIGRAFICO	The Contract of the Contract o		
Material:	DATOS DE LA MUESTRA			
Ubicación de la	PERMENDINATURAL	Calicata:	3	
The same of the	manna:	Prof.(m):	120	

ESTRATO	CLASIFICA	CIÓN	The second of	The second secon	
	AASHTO SUCS	DESCRIPCIÓN MATERIAL	Prof. (m.)	OBSERVACIONE	
		TOPSOIL	0.40		
fd-1	A-2-6 SM SC	Arena arcillosa mal graduada, de color marron estado ligoremente lumedo, de compacidad mi propiedades plasticas. WILDOMS PERNANDEMO S.A.F. JOHN STANDARD COMPANION CONTROL PROPINS PERNANDEMO SERVICES PER SERVICES SERVI	claro, en edia, con		
		CRICONDULTORES EMICENIERIA EIRL. BEA OPPINETORIA O AREA Ing. Watson I Zeloye Santos INGENIERO EUS AND OPT TEST?	120		

PROYECTO	: CREACION DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE AIJA			
	: DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH			
UBICACIÓN	: CASERIO DE AIJA - LINEA DE CONDUCCION - 0+400			
SOLICITANTE				
FECHA	: MAYO 2020			
	PERFIL ESTRATIGRAFICO			
Material:	DATOS DE LA MUESTRA			
ubicación de la	TERRENO NATURAL	Calicata:	4	
The same of the	rivestra;	Prof.(m):	1.20	

→TRATO	CLASIFICACIÓN				
	AASHTO SUCS		DESCRIPCIÓN MATERIAL	Prof. (m.)	OBSERVACIONE
		EF.	TOPSOIL	0.10 0.20 0.30 0.40	
M-1	A - 2 - 6 GP		Grava mai graduada, de color marron claro, en estado ligeramente humedo, de compacidad media y con gravas aisladas mayor 6°, con propiedades plasticas.		
		0	THE STATE OF THE S	1.20	
		(Ing Wilson 1 Zelaya Santos Inga Wilson 1 Zelaya Santos	8	

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROYECTO	: CREACION DEL SISTEMA D	E AGUA POTABLE EN LOS CASERÍO DE AIJA		
	: DEL DISTRITO DE CABANA	-PROVINCIA DE PALLASCA-ANCASH		
UBICACIÓN	: CASERIO DE AIJA - LINEA I	DE CONDUCCION 0+040		
SOLICITANTE		IAL DE PALLASCA - CABANA		
FECHA	: MAYO 2020	Newson Section 197		
		PERFIL ESTRATIGRAFICO		
Material:	TERRENO NATURAL	DATOS DE LA MUESTRA		
Jbicación de la			Calicata:	5
			Prof.(m):	0.00

TRATO	CLASIFICA	IÓN			
	AASHTO SUCS	DES	CRIPCIÓN MATERIAL	Prof. (m.)	OBSERVACIONE
			TOPSOIL	0.10	
M-1	A-2-6 GP	ngeremente hi	nda, de color marron claro, en estado imedo, de compucidad media, con reopiedades plasticas. S rejugicasiasos 8, A.C. A CONTENT A H. Sanado Charador Minustrator Characo Charador Charad	8	
		SEGUIDO CON SUEL	O ROCOSO FRAGMENTADO	0.50	
		W.	CHES E INCEMENA ELEL WAS S ON 1 Evilage Sentos COURTE RED CH. 18032		

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROYECTO	: CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÍO DE AIJA	
UBICACIÓN	:: DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH	
111000	: CASERIO DE AIJA - LINEA DE DISTRIBUCION CASA (37-38).	
SOLICITANTE	:: MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA	
FECHA	:MAYO 2020	
	PERFIL ESTRATIGRAFICO	
Material:	TERRENO NATURAL	
Ubicación de la		6
	Prof.(m):	1.10

BOTRATO	CL	ASIFICACIÓN			
	AASHTO SUCS		DESCRIPCIÓN MATERIAL	Prof. (m.)	OBSERVACIONE
			TOPSOIL	0.30	
M-1	A-2-6 GP		Grava mai graduada con propiedades plásticas, acompañado de bolonerias. whocara rejugadesas sonos s. A.f. John Maria Manado Ouroco Miningo (2014) 1980. 1980. 1980. 1980. 1980. 1980. 1980. 1980. 1980. 1980. 1980. 1980. 1		
			CRICONSULTONA PENGENERA ELPL MEDICULTONA PE 4350 Ing. Witson J. Zelaya Santos MISENTO DE J. Zelaya Santos MISENTO DE J. Zelaya Santos MISENTO DE J. Zelaya Santos	1,20	

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

Telelono : 954877150

e-mail: wilze822@hotmail.com

TERRORIS COLUMNS										
PROYECTO	: CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÍO DE AIJA									
	: DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH									
UBICACIÓN										
SOLICITANTE	: MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA									
FECHA	: MAYO 2020									
	PERFIL ESTRATIGRAFICO									
	DATOS DE LA MUESTRA									
Material: Ubicación de la	DATOS DE LA MUESTRA	-								

STRATO	CL	ASIFICACIÓN			
	AASHTO SUCS		DESCRIPCIÓN MATERIAL	Prof. (m.)	OBSERVACIONES
			TOP SOIL	0.10 0.20 0.30	
M-1	A-2-6 GP		Grava mai graduada con propiodes plasticas, acompañado de bolocertas, en estado fisurado, altamente hamedo. WYLDCATS PERO SECENCIAOS 8.A.E. LOLA LA LA CONTRACTO MINAGO CONTRACTO AND SECENCIAO CONTRACTO CO		
			C&I CONSULTORES E INGENIESIA ELEL MET CONSULTORIAN C ROTTO Trig Wilson† Zelaya Santos Ing Hilson† Zelaya Santos Ing English Rei Cer 191313 JEFO & ARGONTORIO	1.20	

ANALISIS GRANULOMETRICO

WILDCATS PERCHEMINES 8.A.C.

Loga A Chrosof Mileson

Ing. Major Amando Chercipe Mileson

Control Holder - Control Mileson

Reference Angle School Control Control Mileson

Reference Angle School Control Control Control Control

Reference Angle School Control Control Control Control

Reference Angle School Control Control Control Control

Reference Angle School Control Cont

CALCONSILIONES EMPCEMENTAL REL
REG CONSILIONING C 4043

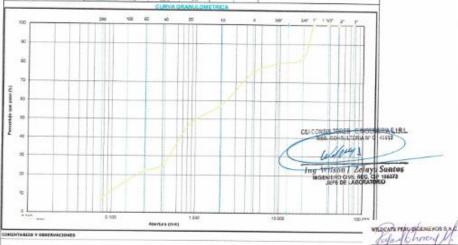
Ing Witson T Zelaya Santos
INGONESO CINA REC CH 194373

INGONESO CINA REC CH 194373

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

CREACION DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE AUJA

DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH


BESERVORIO

SOLICITANTE : MUNICIPALIDIAD PROVINCIAL DE PALLASCA- CABANA MAYO 2020

PECHA

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422 / AASHTO T 88 / MTC E107) DATOS DE LA MUESTRA Materiali TERRENO NATURA, Ubicación de la Musatra: 1 Tamado Máximo: Calicate: Prof.(m): Peac Jainel Scot: S41.8 p. Peac Lavado Secu-1 2 526

TAME	ent tase	PERSON	PORCENTAGE	WARRED	PERCENTILLE	MACHEPOON DE L		E LA PRIFETRA					
	-	-	iminme	ACCHELADO	gui mase.	Tipe							
	76:200	0.0					0.0	0.0	108.0			Contenido de Hamedad (%)	10.6
5.40	63.500	0.0	.0.0	0.0	186.0			Limite Liquido (LL)	24.8				
2"	68.800	0.0	0.0	0.0	180.0	D		Linde Piletico (LP)	19.7				
1.62	38.100	64	0.0	8.0	190.0			Prilite Phanco (P)	6.1				
+	25.400	0.0	0.0	4.0	100.0		0	Classificación (SIVCS)	OF BM SC				
24'	19,092	16.1	17.2	17.2	12.1			Cit	25.14				
10"	12,500	16.7	19	18.1	40.0			Cr.	440				
W	9 500	14	1.3	20.4	79.6	p	0	Clearflowsian (AASHTO)	A-2-6				
10"	6.350	12.0	2.2	22.6	17.4			Indice de Orupe	1				
10.4	4,750	10.0	2.7	25.4	34.0			Dates:					
Nº E	2.360	1.0	0.0	25.6	74.6			Ownerpalon (AASHTO)	BUENO				
6F 10	2,000	36.4	17.5	40.6	57.4			(Intensis > 2'	0.0 %				
NY 18	1.190	98.8	10.6	69.1	10.0								
MF 28	0.040	8.0	0.0	53.1	469			Crisis 3*-1x*4	25.4				
Nº 31	0,600	97.1	15.3	58.4	21.8				1000				
NF40	0.425	82.7	6.7	74.1	25.9			Anema tine - tet 200	67.0				
1/7-60	0,258	21.7	3.8	71.9	32.1	100		Finas < Nº 200	7,6				
197.80	0.177	6.8	0.0	77.6	201								
8P 130	0.160	31.0	5.6	83.5	36.6								
Nº 230	0.000	86.7	6.9	92.4	1.6	0	0						
F NP 200	PONDO:	43.5	7.6	100.0	4.0	7.00	-						

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

CREACION DEL SISTEMA DE AGUA POTABLE EN EL CASERÃO DE AUJA DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH

SOLICITANTE MUNICIPALIDAD PROVINCIAL DE PALLASCA- CARANA

RESERVORIO

UBICACIÓN

		(MTC E1	001		
		TOS DE LA P	MUESTRA		
MATERIAL: TERRENO NATURAL UBICACION DE MUESTRA: 1		,		CALICATA	1
				PROF.(m):	2
Descripcion	Und.		Ensa	yos	Promedio
Tara	No	1	2		
Peso Material Humedo + Tara (A)	gr.	127.2	165.3		
Peso Meterial Seco + Tara (B)	gr.	118.0	152.3		
Peso de Agua (A-B)	gr.	9.3	13.0		
Peso de Tara (C	gr.	27.5	32.5		
Peso Neto de Material Seco (B -C)	gr.	90.5	119.8		
Porcentaje de Humedad (A-B)/(B-C)*100	96	10.25	10.85		10.55
COMENTARIOS Y OBSERVACIONES:					

Ing Wilson I Zaleye Suntos InGenteRo CIVA REG. CP 198372 Jeff DE JABORATORIO

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROYECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN EL CASERIO DE ABJA

DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH

UBLICACIÓN : RESERVORIO

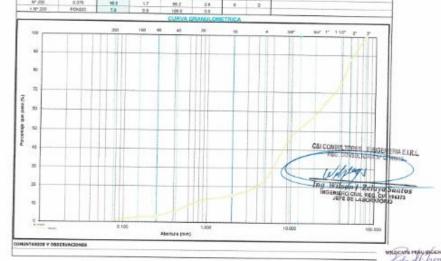
	7007000		E CONSISTENCI			
	(ASTI		HTO T 89 / МТС	E 110, 111)		
MATERIAL: TERRET	NO MATURAL	DATUS	DE LA MUESTRA		C41 104 14	
UBICACIÓN DE MUESTRA:	1				CALICATA	1
		I VALUE I TO	DUTE A LLEG BALL		PROF.(m):	2
Descripción	Und	CAMALE LIC	QUIDO (MTC E11) Ensayos	0)	1	
Nº TARRO		1	2	3	- Ot	servaciones
PESO TARRO + SUELO HUMEDO	(g)	55.89	86.59	54.79		
PESO TARRO + SUELO SECO	(g)	50.30	59.12	50.00		
ESO DE AQUA	(g)	5.50	7.47	4.79		
PESO DEL TARRO	(g)	29.70	28.30	27.50	-	
PESO DEL SUELO SECO	(g)	20.60	30.82	22.50		
CONTENDO DE HUMEDAD	(%)	27.14	24.24	21.29	1	
NUMERO DE GOLPES		18	27	36	0	
		LIMITE DIA	STICO (MTC E11:			
Descripción	Und	CAME PER	Ensayos	1)	1 01	servaciones
* TARRO		4	5		U	servaciones
ESO TARRO + SUELO HUMEDO	(g)	35.62	33.50		1	
ESO TARRO + SUELO SECO	(g)	34.60	32.50			
eso de agua (g)		1.22 1.00			1	
ESO DEL TARRO	(g)	28.30 27.50				
ESO DEL SUELO SECO	(9)	6.30 5.00				
DINTENIDO DE DE HUMEDAD (%)		19.37	20.00			
	CONTE	MIDO DE HITI	MEDAD A 25 GC	u nee		
28	CONTE	INDO DE HUI	MEDAD A 25 GC	LPES		
3						
E 27	_					
8 ×						
8 2						
5						
± 24					-	
0 23		-				
9 "					_	
GN 22		-				
ONTENS 55						
NO 21						
22 20 If	20	26 NUMERO D	-30		35	40

CONSTANTES PIOKA	DE LA MUESTRA	CAI CONSULTORES E MOENNER
LIMITE LIQUIDO	24.70 %	HING. CONSULTORIA IF C
LIMITE PLASTICO	19.00 %	(11/4.
INDICE DE PLASTICIDAD	6.08 %	Ways
CONFINANTIOS Y OBSERVACIONES WILLOUS PROVINCE Folia A Chi	1	INCOMEND CHARGE OF THE JUST DE CARGOSTORO

Colicato: 3

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS .CONCRETO Y PAVIMENTOS

PROYECTO CREACION DEL SISTEMA DE ACIJA POTABLE EN LOS CASERÍO DE AIJA


DEL DESTRETO DE CABANA -PROVINCIA DE PALLASCA-ANCASH

UBICACIÓN : CASERIO DE AIJA-LINEA CONDUCCION - 3+900 ROLDGITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

FECHA : MAYO 2020

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422 / AASHTO T 88 / MTC E107) DATOS DE LA MUESTRA

natio Máxico	OU.			Peso Inicial	Seco:	947.8	gr.	Prof.(m): Peso Lavado Seco:	948	,
TARKE	HIC 6304	700	PORCENIAN	ACTORIDO	PORCHASE	8990	FICHEDOR	BEFOREFEDOR DE LA MASSINA		
	(mm)	RETENESO:	AFFENDO	ACHINEADO	QUE PASS	PAGE TOPE		The second second second		
	76 390	3.0	40	0.0	100.6			Contentio de Humedad (%):	11.4	-
710	NX 500	0.0	4.0	0.0	100.9			Limite Liquido (LL):	29.0	
2	30,600	117.0	12.2	12.7	87.7			Livrie Plantso (LP)	29.4	
1100	98.100	199.2	13.5	26.9	74.1			Indica Plinter (P)	5.0	-
P.	75 400	30.0	6.5	30.4	64.6	- 4	0.0	Ctestracer (SUCS)	CP CP	-
24"	19.000	00.0	63	40.0	87.8			Cu		
10"	12.500	00.1	9.2	20.4	45.6			De:	16.15	-
30'	9.900	29.0	31	Saa	40.6	0		Classificación (AASHTID)	0.76	
59"	8.560	126.6	14.3	66.6	01.2	-		Préce de Orago	A-2-9	
Nº 6	6.790	80.0	60	17.2	00.8	-	100	Datos:	0	_
10'4	2360	44	00	77.2	22.1	0		77.75		
W IS	2.000	72.4		24.9			-	Descripción (AASHED)	80890	_
Nº 16	1.190	19.5	7.E 2.1	50.0	10.1	0	0	Doloheria + 21	0.0	4
Nº 30	0.046	0.0	0.0	88.0	12.0			20000100		
Nº 30	0,600	24.8	26	80.6	84		-	9/200 F - Nº 4	172	
10' 40	0.426	27.2	2.9	91.0	65	1		Arena NA - NP 200		_
Nº 60	0.250	21.2	12	96.7	23	-			32.0	
Nº 80	8.177	9.0	40	98.7	93			Fitner + NF 260	0.0	
W 100	0.100	7.4	0.0	87.5						
Nº JOG	0.075	16.0	4.7	87.3	25	_				

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROVECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÃO DE AUA

: DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH

URBICACIÓN : CASERIO DE AUG-LINEA CONDUCCION - 3+900

SOLICITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

PECHA : MAYO 2020

		(MTC E1	uej		
	DAT	TOS DE LA P	MUESTRA		
MATERIAL: TERRENO NATURAL UBICACION DE MUESTRA: 0)		CALICATA:	2
O TOTAL PROPERTY.				PROF.(m):	1.2
Descripcion	Und.		Ensa	yos	Promedic
Tara	No	1	2		
Peso Material Humedo + Tara (A)	gr.	188.6	265.9		
Peso Material Seco + Tara (B)	gr.	172.2	242.3		
Peso de Agua (A-B)	gr.	16.4	23.6		
Peso de Tara ©	gr.	28.5	32.5		
Peso Neto de Material Seco (B -C)	gr.	143.7	209.8		
Porcentaje de Humedad (A-B)/(B-C)*100	96	11.44	11.26		11.35
OMENTARIOS Y OBSERVACIONES:					
TODSET VACIONES.					

with the properties of the pro

CEI CONSIX IDRES. EMICHEMA ELRI

PET. CONSIXIONA N° C. 2008.

ING. ISTINOT J. Zelaya Santos

INGRANA CHILLIPPA CHILLIPPA

JEFE DE JURES. OP 19837.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROVECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÃO DE AUJA

DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH

UBICACION : CASERIO DE AIJA-LINEA CONDUCCION - 3+900
SOLICITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

FECHA : MAYO 2020

LIMITES DE CONSISTENCIA (ASTM D 4318 / AASHTO T 89 / MTC E 110, 111) DATOS DE LA MUESTRA FERLAL: TERRITO NATIONAL

| MATERIAL: | TERRINO NATURAL | CALICATA: 2 | UBICACIÓN DE MUESTRA: 0 | PROF.(m): 1.2

Descripción	Und	100 CO 10	QUIDO (MTC E1		
Nº TARRO		1	Linkyos		Observaciones
PESO TARRO + SUELO HUMEDO	(9)	52.16	53.40	96.46	
PESO TARRO + SUELO SECO	(g)	45.98	47.98	42.96	
PESO DE AGUA	(g)	6.18	5.42	3.50	
PESO DEL TARRO	(9)	26.86	26.28	28.46	
PESO DEL SUELO SECO	(0)	19.12	19.70	14.50	
CONTENEDO DE HUMEDAD	(%)	32.32	27.51	24.14	
NUMERO DE GIOLPES		16	29	39	0

		LIMITE PL	ASTICO (MTC E111)	
Descripción	Und		Ensayos	Observaciones
Nº TARRO		- 4	5	Othervaciones
PESO TARRO + SUELO HUMEDO	(g)	32.44	23.48	
PCSO TARRO + SUELO SECO	(9)	31.74	32.71	
PESO DE AGUA	(9)	0.70	0.77	
PESO DEL TARRO	(g)	28.52	29.64	
MESO DEL SUELO SECO	(9)	3.22	3.07	
DATENDO DE DE HUMEDAD	(%)	21.74	25.00	

CONSTANTES FISICAS DE LA MUESTRA.								
LIMITE LIQUIDO	29.00 %							
LIMITE PLASTICO	23.41 %							
INDICE DE PLANTICIDAD	0.00 No.							

C&I CONSULTORES E INSERIERIA ELIRIL.

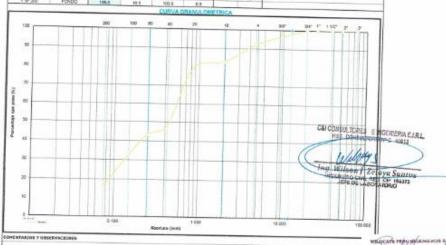
COMENTARIOS Y OBSERVACIONES:

which the glesses and the state of the state

ing Wilson | Zelaya Santos

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROYBETO CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERIO DE AIJA


: DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH

UBICACIÓN CASERIO DE AIJA - LINEA DE CONDUCCIÓN - 2+400 80LICITANTE - MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

FECHA NAYO 2020

ANALISIS GRAMULOMETRICO POR TAMIZADO (ASTM D 422 / AASHTO T 88 / MTC E197)

Ptsterich	TERREND NATO	107		DATOS	DE LA MUI	ESTRA					
Oblication de la résentra; i Cellicata; i Cellicata; i Pref.(mi); remitte Milasimos Pese Entitel Secos (34.6 Pese Lavade Secos)											
TAMEE	Ones)	PERO	PORCONIAGE	RETERIOR ACENTADO	PORCIWIANI OPT FASA	TEPECHNOON		TERROPHICAGON		посмения о	E LA MINISTRA
2"	2" 79.390		0.0	0.0	100.0	Priper.					
2.107	67.500	8.0	0.5	0.0	100-0		-	Contents on Humanian (A)	25.6		
2"	60 800	6.0	0.0	60	199.0		-	Litride Little (UL)	26.0		
1.92	38.100	- 13	0.0	10		.0	- 1	Limite Poletico (LP)	23.4		
+	26.400	64	0.0		110.0	-	-	Indica Plástico (IP)	6.0		
394	19.050	0.0		4.0	100 p	- 8	0	Classificación (SUCS):	SM RC		
	1 333		- 54	0.0	100.0			Cu Cu	22.71		
10	12 500	5.8	9.0	0.0	39.1			Cic	0.04		
34	9.500	95.6	2.6	24	10.6	16		Cteffesees (AGHTO)	A-2-8		
100*	6.350	20.3	3.2	6.6	93.4			Profee de Grupo	0		
97.4	4.750	7.8	2.1	7.6	90.2			Datos:			
MPE	2 360	44	4.4	-	7555	-	- 0	THE RESERVE OF THE PARTY OF THE			

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS

PROYECTO	: CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÃO DE AUA	
	DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH	
UBICACIÓN	CASERIO DE AIJA - LINEA DE CONDUCCION - 2×400	
SOLICITANTE		
FECHA	: MAYO 2020	

Tara Nº 1 2 Peso Material Humedo + Tara (A) gr. 107.1 345.6 Peso Material Seco + Tara (B) gr. 90.8 283.4 Peso de Agua (A-B) gr. 16.3 62.3	3.
CALICATA: PROF.(m):	
Descripcion Und. Ensayos Pro Tara Nº 1 2 2 Peso Material Humedo + Tara (A) gr. 107.1 345.6 345.6 Peso Material Seco + Tara (B) gr. 90.8 283.4 283.4 Peso de Agua (A-B) gr. 16.3 62.3 62.3	1.2
Tara No 1 2 Peso Material Humedo + Tara (A) gr. 107.1 345.6 Peso Material Seco + Tara (B) gr. 90.8 283.4 Peso de Agua (A-B) gr. 16.3 62.3	
Tara Nº 1 2 Peso Material Humedo + Tara (A) gr. 107.1 345.6 Peso Material Seco + Tara (B) gr. 90.8 283.4 Peso de Agua (A-B) gr. 16.3 62.3	medio
Peso Material Seco + Tara (8) 9r. 90.8 283.4 Peso de Agua (A-B) 9r. 16.3 62.3	neuro
Peso de Agua (A-B) gr. 16.3 62.3	
10.3 02.3	-
Peso de Tara ⊚ 9r. 27.1 38.6	
Peso Neto de Material Seco (B -C) gr. 63.7 244.8	-
Porcentaje de Humedad (A-B)/(B-C)*100 % 25.62 25.44 28	.53
APPENIANTOS Y OBSERVACIONES:	
COMENTARIOS Y OBSERVACIONES:	

which is the second of the sec

1 -0

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

: CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÃO DE AIJA

DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH

UBICACION CASERSO DE AUA - LINEA DE CONDUCCION - 2+400 SOLICITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

:MAY0 2020

FECHA

LIMITES DE CONSISTENCIA

(ASTM	D 4318 /	AASHT	T O	89 /	MTC	E 110,	111
	DA	TOS DE	LA	MUES	STRA		-
FT -			_		The State of the Local Division in the Local		_

MATERIAL: UBICACIÓN DE MUESTRA: TERRENO NATURAL CALICATA: PROF.(m):

Descripción	Und		QUIDO (MTC E1	20)	
Nº TASRO	UNIO		Ensayos		Observaciones
		-1	- 2	3	
PESO TARRO + SUELO HUMEDO	(g)	52.16	53.40	45.46	
PESO TARRO + SUELO SECO	(g)	45.98	47.98	42.96	
PESO DE AGUA	(a)	6.18	5.42	3.50	
PESO DEL TARRO	(9)	26.86	28.28	28.46	
PESO DEL SUELO SECO	(g)	19.12	19.70	14.50	
CONTENIDO DE HUMEDAD	(%)	32.32	27.51	24.14	
NUMERO DE GOLFES	1 1 7	16	29	39	0

		LIMITE PL	ASTICO (MTC E111)	
Descripción	Und	And the state of the	Ensayos	Observaciones
N= TARRO		4	5	- OUNCE FECTIONS
PESO TARRO + SUELO HUMEDO	(9)	32.41	33.48	
PESO TARRO + SUELO SECO	(g)	31.74	32.71	
PESO DE AGUA	(0)	0.70	0.77	
PESO DEL TARRO	(9)	28.52	29.64	
PESO DEL SUELO SECO	(g)	3.22	3.07	
CONTENIDO DE DE HUMEDAD	(%)	21.74	25.08	

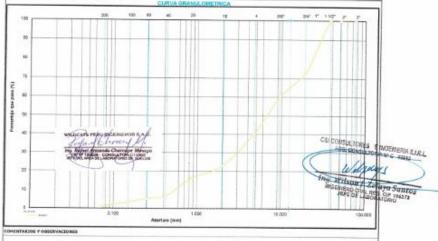
CONSTANTES FISICAS DE LA MUESTRA							
LIMITE LIQUIDO	25.00 %						
LIWITE PLASTICO	23.41 %						
INDICE DE PLASTICIDAD	5.59 %						

COMENTARIOS Y OBSERVACIONES:

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROVECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN EL CASERIO DE AGIA

: DEL DISTRITO DE CAHANA -PROVINCIA DE PALLASCA-ANCASH


UBICACIÓN CASERIO DE AIJA - LINEA DE CONDUCCION - 0+400 SOLICIENTE MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

FECHA : MAYO 2020

ANALISIS GRANULOMETRICO POR TAMEZADO (ASTM D 422 / AASHTO T 88 / MTC E107)

Haterial	TERREND NATU			DATOS	DE LA MU	ESTRA	-0100	The second	
Porcesión de la Tareaño Máxim	Macatrac	1		Pese Inicial	Seco	1,797.5 g.	Calicata: Prof.(as): Peas Lavado Seces	4 1.2 1782 gr	
Marco	HPC E304	PER S	PORCINTALE	MITERIO	PORCHEMI	INFICITION COME	DISCRIPCION	N to surrey	
111/0/1									
	[60m]	RETEREDED	erreates	ACCURACION .	QUE PASS	Ne	ATTENDED.		
P.	(644) 76 200	RETINEDO 2.0	0.0	ACCHROLADO D.D	QUE PARA 100-0	Non	Contemido de Humacoo (%)		
F 2 UP		-		-	The State of the S	Non	Contenido de Humacoa (No): Umile Liquido (LL):	12.0	

Steen's	HTC \$204	PETENDO	PORCENTAGE	MITERATOR	PRODUKE		HEACEDE	DISCRIPCION S	i ia matama	
	-	-	#110M100	ROWSUADO	QUE PASA	Nipe:				
	76.200	2.0	àà	0.0	100.9			Contemido de Humecoa (%):	10.0	
3 1/2"	63.500	1.0	0.0	0.0	100.0			Charle Calneto (CC)	36.7	
7	50.600	40	0.0	2.0	100.0	- 4		Limite Plaston (LP)	22.0	
110	39.100	8.0	6.0	0.0	100.0			Lodge Paiston (IP)	16.6	
17	25 400	286.0	16.6	16.5	60.5	. 0		Clasificación (SUCIS)	GP	
54"	19.650	310.3	11.2	27.7	12.3			Ou:	234	
100	12.500	902.3	6.7	33.4	86.6			Œ.	0.63	
7/6,	0.500	102.4	6.6	40.2	29.0	. 0	0.0	Clashipper (AASHTO) :-	A-2-8	
54"	6.300	272,6	15.2	88.4	44.0			Indice de Olugo	0	
117.4	A.150	80.2	4.5	50.6	40.2			Dates:		
191.3	2380	6.9	0.0	50.8	-61			Descripcolar (AASHTO)	REGULAR	
W16	2.000	815.3	17.5	77.4	22.8	0	0	Boronwitz > 3'	0.0 %	
10.1E	1 190	121.7	0.6	34.1	16.9			MARKET A.	0.0	
MF 20	0.640	0.0	00:	84.1	13.9			Grava 2* - N* 4	50.0	
AP 30:	2.600	114.5	14	99.5	9.5					
101.40	0.425	48.7	2.5	86.0	10	. 0		Avera N/4 - N/ 200	19.5	
H1 60	0.250	21.0	i.r	34.6	5.1		1277-2	Finos + NF 205	0.9	
W 80	ģ.197	88	0.0	91.6	6.2			ACCOUNTS OF THE PARTY OF THE PA		
Nº 100	0.150	36.7	2.0	96.0	3.2					
Nº 200	8.076	41	2.4	88.1	0.9	.0.	. 0			
F NP 200	FONDO	15.8	8.0	100.0	0.0					

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROVECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE AIJA

DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH

UBICACIÓN : CASERIO DE AIJA - LINEA DE CONDUCCION - 0 - 400

SOLICITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

PECHA : MAYO 2020

		OS DE LA M	*****		
MATERIAL: TERRENO NATURAL	DA		IUESTRA	CALI	CATA: 1
URICACION DE MUESTRA: 0				PROF	TO A STATE OF THE
Descripcion	Und.		Ensay	06	Promedic
Tara	No	1	2		
Peso Material Humedo + Tara (A)	gr.	182.4	189.4		
Peso Material Seco + Tara (B)	gr.	163.6	170.3		
Peso de Agua (A-B)	gr.	18.8	19.0		
Peso de Tara 🔘	gr.	27.6	32.6		
Peso Neto de Material Seco (B -C)	gr.	136.0	137.7		
Porcentaje de Humedad (A-B)/(B-C)*100	96	13.81	13.83		13.82
COMENTARIOS Y OBSERVACIONES:					

March State Security of the State of State of State Security of State Security of State of St

CBI CONSULTORES E INCENERIA EJAL
PAG. CONSULTORIA Mª C. 10841

Ing Wilson J Zelaya Santa

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROYECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE AIJA : DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH

CASERIO DE AIJA - LINEA DE CONDUCCION - 0+400 SOLICITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CAHANA

FECRA MAYO 2020

	(ASTR		DE CONSISTENC			
		DATOS	DE LA MUESTRA			
	NO NATURAL				CALICATA	4
UBICACIÓN DE MUESTRAI	0				PROF.(m):	1.2
		LIMITE LI	QUIDO (MTC E1:	10)		
Descripción	Und		Ensayos		Obser	vaciones
Nº TARRO		1	2	3		
PESO TARRO + SUELO HUMEDO	(9)	65.63	72.35	65.38		
PESO TARRO + SUELO SECO	(g)	54.00	60.12	56.12		
PESO DE AGUA	(9)	10.83	12.23	9.24		
PESO DEL TARRO	(g)	28.52	27.54	29.65		
PESO DEL SUELO SECO	(9)	26.28	32.58	26.47		
CONTENIDO DE HUMEDAD	(%)	41.21	37.54	34.91		
NUMERO DE GOLPES		18	28	35	0	
	IN TABLE	LIMITE PLA	STICO (MTC E1	11)		
Descripción	Und		Ensayos		Observ	raciones
Nº TARRO		+	5			
PESO TARRO + SUELO HUMEDO	(0)	32.44	33.48			
PESO TARRO + SUELO SECO	(9)	31.74	32.78			
PESO DE AGUA	(g)	0.70	0.70			
PESO DEL TARRO	(g)	28.52	29.64			
PESO DEL SUELO SECO	(g)	3.22	3.14			
CONTENIDO DE DE HUMEDAD	(%)	21.74	22.29			

CONSTANTES PISICAS DE LA MUESTRA				
LIMITE LIQUIDO	28.66 %			
LIMITE PLASTICO	22.02 %			
INDICE DE PLASTICIDAD	10.03 %			

CSI CONSULTORUS E INCERERN EIR L

COMENTARIOS Y DESERVACIONES:

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROVECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASENDO DE AIJA : DEL BISTRETO DE CARANA - PROVINCIA DE PALLASCA ANCASH UBRCACIÓN : CASERIO DE AIJA - LINEA DE CONDUCCION 0+040

SOLICITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CADANA

PECHA : MAYO 2020

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422 / AASHTO T 88 / MTC E187) DATOS DE LA MUESTRA Peso Inicial Secon 2,591.7 gr. Peso Lavado Secon 2977 PRITEREDO PRINCIPALIS REPRESENTATION . Crete (Appete (LL) Crete Flactics (LF) 20.4 20.7 40.1 22.1 67.3 50.6 55.5 0 0 25,400 1021 15:040 12:500 45.5 47.4 28.4 28.6 100.0 42 \$2.6 9 0 9.500 0 0 RUENO Nº 10 122.0 2 0 Small-Mil. Arena 1414 - 141 200 0 14" 80 14" 80 14" 130 14" 230 4 14" 230 97.6 97.6 06.6 6.0 nos + W1 200 6.6 .0 0 CEI CONSULTONNE E HIGHHERM EURA. Ing Wilson Zelaye Sentos INGENERIO CIRL RED CIP 196373 JAPE DE JABORATORIO

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

- CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERIO DE AIJA PROVECTO : DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCAS H

UBICACIÓN : CASERIO DE AIJA - LINEA DE CONDUCCION 0+040
SOLICITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA FECHA : MAYO 2020

CONTENIDO DE HUMEDAD DE LOS SUELOS
CARRO EAGO)

	DAT	OS DE LA M	UESTKA		
MATERIAL: TERRENO NATURAL	0			CALICATA:	5
UBICACION DE MUESTRA: 0				PROF.(m):	0.5
Descripcion	Und.		Ensay	05	Promedic
Tara	No	1	2		
Peso Material Humedo + Tara (A)	gr.	256.3	348.7		
Peso Material Seco + Tara (B)	gr.	238.4	323.3		
Peso de Agua (A-B)	gr.	17.9	25.4		
Peso de Tara ©	gr.	27.6	32.6		
Peso Neto de Material Seco (B -C)	gr.	210.8	290.7		
Porcentaje de Humedad (A-B)/(B-C)×100	%	8.49	8.74		8.62

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROYECTO : CREAGION DEL SISTEMA DE AGUA FOTABLE EN LOS CASERÃO DE ANIA

DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH

UBICACIÓN : CASERÍO DE ANIA - LINEA DE CONDUCCION 0+040

SOLICITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

FECIA : MAYO 2020

	(AST	LIMITES DE CONSISTENCIA M D 4318 / AASHTO T 89 / MTC E 110, 111)		
		DATOS DE LA MUESTRA	CALICATA:	5
MATERIAN	TERRENO NATURAL		PROF.(m):	0.5
UBICACIÓN DE MUESTRA:		LIMITE LIQUIDO (MTC E110)		
Descripción	Und	Ensayor	Obse	rvaciones

	1 11 1	LIMITE LI	Observaciones		
Descripción	Und	-	2	3	
(P TARRO		4	59.62	54,66	
PESO TARRO + SUELO HUMEDO	(g)	62.15	The state of the s	49.00	
PESO TARRO + SURLO SECO	(g)	53.94	51.80	100000	
PESO DE AGUA	(9)	25.0	7.82	5.66	
	(9)	28.35	25.30	27.50	
PESO DEL TARRO		25.59	26.50	21.50	
PESO DEL SUELO SECO	(0)	32.08	29.51	26.33	
CONTENSDO DE HUMEDAD	(96)		27	30	0
NUMERO DE GOLPES		17	47	34	

	Observaciones			
Descripción	Und		Ensayos	
Nº YARRO		4:	5	
PESO TARRO + SUELO HUMEDO	(g)	31.64	28.15	
PESO TARRO + SUELO SECO	(9)	30.90	27.80	
PESO DE AGUA	(g)	0.74		
PESO DEL TARRO	(9)	27.50	26.30	
PESO DEL SUELO SECO	(g)	3,40	1.50	
CONTENTOO DE DE HUMEDAD	(%)	21.76	23.33	

CONSTANTER FISICAS DE	E LA MUESTRA	
LIMITE LIQUIDO	29.90	56
LIMITE PLASTICO	22.65	14
INDICE DE PLASTICIDAD	7.02	56

Ing Wilson | Zelaya Santos

COMENTARIOS Y OBSERVACIONES:

WILDCAR'S PRINCIPION SOCIALIZADOS G.A.S.

J. C. A. C. Martine J. M.

Pagalled Altransic Character Mills.

Control Martine Consequential Character Mills.

Control Martine Consequential Character Mills.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROVECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÃO DE AUA

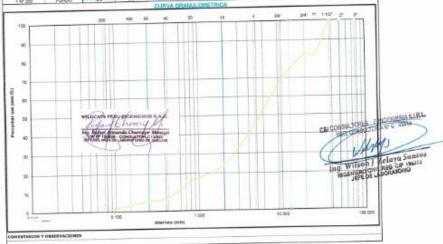
:: DEL DESTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH ACIÓN :: CASERIO DE AUJA - LINEA DE DESTRIBUCION CASA (37-38).

SOLICITANTE :: MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

PECHA | MAYO 2020

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422 / AASHTO T 8B / MTC E107)

DATOS DE LA MUESTRA


Caricala

TENCHO NIVURA.

Preso Caricala Seco: 1,473.5 y Peso Lavado Seco: 1,465 y:

mato Mislano:

1881	MC 6304	PERC	PORCENTACE	BETERREE	PROCESSAL	EUNICIN	CACSUM	DESCRIPCION DE LA MACUTAL	
	(mm)	Appearer	(68339630)	ACEHULADO	gat rack	Tipe		Corberdo de Humesad (N):	18.6
P	78.200	0.0	0.0	0.0	190.0				90.4
2.10"	62,500	0.0	0.9	0.0	199.0			Little Liquido (UL)	
	NO 1000	0.0	0.8	0.0	100.0	0	. 0	Links Plastor (LP)	20.6
7	2017/01/01	0.9	0.0	80	100.0			indice Plastics (P)	9.6
110	18 100		17.7	17.7	40.3		- 1	Clasfrooth (NUCS)	- 67
+	25.400	381.0			-			CN	7.15
34"	19.050	0.0	0.0	42.7	82.7	_	_	Ćc.	0.00
107	12:500	95.0	6.4	24.2	16.8		-	Cheeficación (AASHTC):	A-2-6
36"	9.500	117.0	7.8	82.1	67.9	0	. 0	Indice de Gride	
tur.	6.350	361.0	17.9	56.0	84.0			A Land Street Will Service and Children	
97.4	4.790	78.0	5.0	94.9	46.1		.0	Dates:	QUENO
91	2.360	2.0	0.0	54.0	45.1		-	Descripcion MARHTO	
197 10	2.000	312.0	21.8	76.0	24.0	0	. 0	Ballinetis > 1"	0.0 %
Nº 10	1.190	316.6	7.7	80.7	16.0				54.0
M° 20	0.640	0.0	2.0	53.7	10.5			Grava 3" - 10" 4	54.0
MF SE	0.600	100.9	4.6	90.8	0.4		100		44.5
10'40	0.405	33.0	2.2	92.9	7.4	-0	0	Aresa 614 - NF 200	0.5
W 80	0.194	27.0	1.6	96.7	3.2			Finos 4 Nº 200	0.0
107.80	9177	0.0	0.0	SAT	53				
Nº 100	0.150	32.0	22	96.9	3.1				
	0.075	38.6	2.5	20.5	0.6	.0	. 0		
H* 200	PONDO	8.0	0.0	190.0	0.0		100		

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

: CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÃO DE AUA PROYECTO :: DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH :: CASERIO DE AIJA - LINEA DE DISTRIBUCION CASA (37-38). UBICACIÓN SOLICITANTE :: MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA FECHA : MAY0 2020

	DAT	OS DE LA M	HESTRA		
HAVEBIAL: TERRENO NATURAL	DAT		OLDTAN	CALICATA	0
MATERIAL: TERRENO NATURAL UBECACION DE MUESTRA: 0				PROF.(m):	1.2
Descripcion	Und.	Ø = 8	Ensayos		Promedic
Tara	No	1	2		
Peso Material Humedo + Tara (A)	gr.	174.0	245.3		
Peso Material Seco + Tara (B)	gr.	155.3	221.4		
Peso de Agua (A-B)	gr.	18.6	24.0		
Peso de Tara ©	gr.	27.2	54.0		
Peso Neto de Materiel Seco (B -C)	gr.	128.1	167.4		
Porcentaje de Humedad (A-B)/(B-C)*100	96	14.54	14.31		14.42
COMENTARIOS Y OBSERVACIONES:					
COMENTARIOS Y OBSERVACIONES:					

178

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROVECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÃO DE AUA

: : DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH

UBICACIÓN :: CASEIJIO DE AIJA - LINEA DE DISTRIBUCIÓN CASA (37-38).
SOLICITANTE :: MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

FECRA : MAYO 2020

LIMITES DE CONSISTENCIA

(ASTM	D 4318 / AASHTO T 89 / MTC E 110, 111)
-	DATOS DE LA MUESTRA

		DATOS			CALICATA:	
MATERIAL	O NATURAL				PROF.(m):	1.2
UBICACIÓN DE HUESTRA:	0				1 100 15-15	
		LIMITE LIG	QUIDO (MTC E11	(0)	Observa	clones
Descripción	Und		Ensayon		Odociva	
	7 7 7 7 7 7	1	2	3		
Nº TARRO	(0)	64.35	68.36	59,04		
PESO TARRO + SUELO HUMEDO		55.25	59.12	52.62		
PESO TARRO « SUELO SECO	(g)		9.24	6.42		
PESO DE AGUA	(g)	9.10	29.74	29.84		
PESO DEL TARRO	(g)	27.52		22.78		
PESO DEL SUELO SECO	(g)	27.73	29.38			
CONTENUO DE HUMEDAD	(%)	32.82	31.45	28:18		
MUMERO DE GOLPES	A.177	12	20	39	0	


		PRIMAR LES	STICO (MTC E111)	Observaciones
Descripción	Und		Emel	
Nº TARRO	100000	4	3	
PESO TARRO + SUELO HUMEDO	(0)	25.96	27.20	
PESO TARRO + SUBLO SECO	(0)	25.56	26.92	
PESO DE AGUA	(g)	0.40	0.28	
	(g)	23.56	25.60	
PESO DEL TARRO		2.00	1.32	
PESO DEL SUELO SECO	(g)	20.00	21.21	
CONTENTDO DE DE HUMEDAD	(%)	20.00	41.00	

CONSTANTES FISICAS	DE LA MUESTRA
LIMITE LIQUIDO	30.43 %
LIMITE PLASTICO	20.01 %
INDICE OF PLASTICIDAD	0.83 %

Trig Wilson, Zekera Sonius
Trig Wilson, Zekera Sonius
Trig Wilson, Zekera Sonius
Trig Wilson, Zekera Sonius

COMENTARIOS Y OBSERVACIONES:

C& CONSULTORES E INCENERIA EIRI CA COMPANIO AND C 19912 Ling William J Serbaya Suncos INSENSERO CIVILIES COP 186172 APP DE ASSINATORIO

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS CONCRETO Y PAVIMENTOS

PROVECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÍO DE AIJA

: DEL DISTRITO DE CABANA «PROVINCIA DE PALLASCA-ANCASH

UBECACIÓN | CASERIO DE AIJA - LINEA DISTRIBUCION (11-12)
SOLICITANTE | MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

FECHA: MAYO 2020

ONENTARIOS Y OBSERVACIONES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422 / AASHTO T 88 / MTC E107) DATOS DE LA MUESTRA Materials THREETO Obscación de la Huestra Tarmaño Mikelmu: TERRENCI NATURAL 7 1.1 1125 Pese Inicial Seco: 2,128.0 gt. перекательного 100.0 76.7 80.0 \$1.7 \$6.0 \$2.0 1 2 Ctashwore (SUCS) 4.4 47.5 19:000 10.6 0.41 Clasfitación (Ano. Indice de Grupa) 8.350 198.0 7.2 86.4 0 0 18.8 50° 10' 50° 18 Oma 5'+N*4 88.3 12.2 76 5.7 44 44 Artino 1/14 - 1/7 200 : Finde < 1/7 200 : M* 80 M* 100 M* 100 M* 200 K* 200 95.6 88 0 0

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

: CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÃO DE AIJA : DEL DISTRITO DE CABANA - PROVINCIA DE PALLASCA-ANCASH

UBICACIÓN : CASEINO DE AIJA - LINEA DISTRIBUCION (11-12)
SOLICITANTE : MUNICIPALIDAD FROVINCIAL DE PALLASCA - CABANA
TECRA : MAYO 2020

		(MTC E10	18)		
	DAT	OS DE LA M	UESTRA		
MATERIALI TERRENO NATURAL UBICACION DE MUESTRA: 0				CALICAT. PROF.(m	
Descripcion	Und.		Ens	ayos	Promedic
Tara	No	1	2		
Peso Material Humedo + Tara (A)	gr.	302.5	425.4		
Peso Material Seco + Tara (B)	gr.	265.3	372.0		
Peso de Agua (A-B)	gr.	37.2	53.4		
Peso de Tara ©	gr.	0.0	0.0		
Peso Neto de Material Seco (B -C)	gr.	265.3	372.0		
	96	14.02	14.34		14.18

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS ,CONCRETO Y PAVIMENTOS

PROYECTO : CREACION DEL SISTEMA DE AGUA POTABLE EN LOS CASERÍO DE AIJA

: DEL DISTRITO DE CABANA -PROVINCIA DE PALLASCA-ANCASH

UBICACIÓN : CASERIO DE AIJA - LINEA DISTRIBUCION (11-12)

SOLICITANTE : MUNICIPALIDAD PROVINCIAL DE PALLASCA - CABANA

CHA : MAYO 2020

	(ASTM		E CONSISTENCE HTO T 89 / MTC			
		DATOS	DE LA MUESTRA			
MATERIAL: TERREN	O NATURAL				CALICATA:	7
UBICACIÓN DE MUESTRA:	0				PROF.(m):	1.2
		LIMITE LI	QUIDO (MTC E11	.0)	100	200
Descripción	Und		Ensayos		Obser	vaciones
NF TARRO		1	2	3		
PESO TARRO + SUELO HUMEDO	(0)	31.67	32.30	32.69		
PESO TARRO + SUELO SECO	(9)	27.04	26.27	28.80		
PESO DE AGUA	(0)	4.03	4.03	3.80		
PESO DEL TARRO	(9)	13.30	13.22	13.62		
PESO DEL SUELO SECO	(g)	14.54	15.05	15.18		
CONTENIDO DE HUMEDAD	(%)	27.72	26.78	25.63		
NUMERO DE GOLPES		15	25	34	0	
		LIMITE PL	ASTICO (MTC E1	11)		
Descripción	Und		Ensayos	170	Obser	rvaciones
NO TARRO		4	5			
PESO TARRO + SUELO HUMEDO	(9)	19.97	19.87			
PESO TARRO + SUELO SECO	(9)	19.02	18.89			
PESO DE AGUA	(g)	0.95	0.95			
PESO DEL TARRO	(g)	13.94	13.45			
PESO DEL SUELO SECO	(g)	5.08	5.44			
CONTENIDO DE DE HUMEDAD	(%)	18.70	18.01			

CONSTANTES FISICAS	DE LA MUESTRA
LIMITE LIQUIDO	28.74 %
LIMITE PLASTICO	18.34 %
NOICE DE PLASTICIDAD	8.09 %

CALCONSULTORES EINGEMERIA ELR BEO CONSULTORIA IP C 40918

COMENTARIOS Y OBSERVACIONES:

MILECULA THE PROPERTY OF THE P

INGENIERO CIVIL INICI CIP 196373

CAPACIDAD PORTANTE

THE CONSULTORAL C 4893

THE CONSULTORAL C 4893

THE WHISOT FEET YOU SUITOR MORNING CONTINUES OF 194322

JOSEP DE LABORATION

PROYECTO

CONSULTORES E INGENIERIA E.I.R.L.

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS CONCRETO Y PAVIMENTOS R.U.C. 20569119449

R.U.G. 20500110449

R.U.G. 2050011049

R.U.G.

: CREACION DEL SESTEMA DE AGRIA POTABLE DEL CASEREI DE ARIA DEL DISTRITO DE CABANA «PROVINCIA DE PALLASCA» ANCASH

UBICACIÓN SOLICITA : CASERIO DE ABA-RESERVORIO : MUNICIPALIDAD PROVINCIAL DE PALLASCA

FECHA : FEBRERO DEL 2020

ESTUDIO DE MECANICA DE SUELOS

DETERMINACION DE LA CAPACIDAD PORTANTE DEL SUELO

DATOS:

Profundidad de Desplante	Df (m)	2.00
Peso Volumetrico del Suelo	Gen (Ton/m ³)	1.86
Coheston del Suelo	C (Ton/m ³)	0.10
Angulo de Friccion Interna del Suelo	(grados)	33.00
Ancho de Cimiento	B (m)	1.00
Clasificación del suelo de Suelo (SUCS)		GP
Factor do Sonutidad	75	3.0

CALCULOS Y RESULTADOS:

FACTORES DEPENDIENTES DEL ANGULO DE FRICCIÓN:

Factor de Cohesión	N'es	22.39
Factor de Sobrecarga	N'q=	10.69
Factor de Piso	Ngm	6.32

a) PARA TODO TIPO DE CIMIENTO:

Capacidad de Carga Ultima, qc:

qc=c' *N' c + Gm*Df*N' q + 0.5*Gm*B*N' g

Capacidad de Carga Adminible, qu:

qa= qc/FS

c*Ne= 0.22 Gm*Df*Nq= 3.98 0.5°Gm*B*Ng=

Kg/Cm^{*} 4.79 qc= 1.60 Kg/Cm² qa=

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAYOS DE LABORATORIO Y CAMPO EN MECANICA DE SUELOS CONCRETO Y PAVIMENTOS E.U.G., 20560119449

Oficina: P.J Villa San Luis Primera Etpa Ms F Lt 26 - Nuevo Chimbote Teléfono 043 312661 e-mail: labcing23@hotmail.com

CALCULO DE LA CAPACIDAD PORTANTE DEL TERRENO

CREACION DEL SISTEMA DE AGUA POTABLE DEL CASERDO DE AUA DEL DISTRITO DE CARBANA - PROVINCIA DE PALLASCA-ANCASN CASENO DE AUJA ESSENVORIO MUNICIPALIDAD PROVINCIAL DE PALLASCA PERRERO DEL 2020 PROÉ NIVEL PROYECTO

UBICACIÓN: SOLICITA FECHA

Prof. NIVEL FREATICO, [m]: N.P.

Capacidad Adminible de Carga por Limitacion de Esfuerzo Cortante para Zapata Cuadrada

Capacidad ultima de carga Capacidad admistible de cargo Factor de seguridad Pesso especifico Total Ancho de Zapata en m. Profundidad de Circontación en m. Cobesión Angulo de fricción Interna

 $q_{_{\mathrm{V}}}\!=\!1.3c_{*}\!N_{_{\mathrm{C}}}\!+\!\gamma_{*}\!D_{_{\!f}}\!\mathcal{N}_{_{\!g}}\!+\!0.4\gamma_{*}\!BN\gamma$

1.86 kg/cm³ 33 ° 10.7 22.4 6.3 0.10 3.80 N'q N'c N'g C Fs

Capacidad Actrosible de Corge por Lemmeton de Hoberzo Cortama para Zapata Rectangatier (Christeina Corridos)

Capacidad ultima de carga Capacidad admisible de carga Factor de seguralad Pesu específico Total Ancho de Zapota en m. Profundidad de Cincentacion en m.

 $q_{ud} = \frac{q_{i}}{F_{s}}$

Cohesion Angulo de friccion Interna

 $q_c = c.N_+ + \gamma.D_f.N_q + 0.5\gamma.B.N\gamma$

1.86 kg/cm² 33 * 10.69 22.39 6.32 0.10 3.00 N'q N'c N'g C Fs

and a Pa	escidad.			- 1	ANCHO	DE CIMIEN	ero.		
Admi	Oble.	0.5 m.	0.6 m	0.7 m.	000 m.	0.9 m.	1.0 m.	1.1 m	1.5 m.
-21	0.5 m.	0.50	0.52	0.54	0.56	0.58	0.60	0.62	0.70
1097	1.0 m	0.84	0.85	0.87	0.89	0.91	0.93	0.95	1.03
PROF	1.5 m	1.17	1.19	1.00	1.21	1.17	1.26	1.28	1.36
de	2.0 m	1.50	1.52	1.54	1.56	1.58	1.60	1.62	1.69
lmenta	3.0 m.	2.10	2.18	2.20	2.22	2.24	2.26	2.28	2.36
cion.	CLUDY H	10000							

Whyleys ing Wilson J Zalaya Sentos WISSERFO CIVIL RES CIP 191572 JEPE DE JABORATORIO

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS ENSAVOS DE LABORATORIO Y CAMPO EN MECANICA DE NUELOS CONCRETO Y PAYIMENTOS R.U.G. 20560119449

R.U.C. 20009 1 1000 Officion: P.J. Villa Son Luis Primera Etpa Mx F Li 26 - Nuevo Chimbote Teléfono 043 312661 o-mail: labeing23@hotmail.com

CALCULO DEL ASENTAMIENTO DE CIMENTACIONES

CREACION DEL SISTEMA DE ACUA POTABLE DEL CASERIO DE AUA DEL DISTRITO DE CARANA - PROVINCIA DE PALLASCA-ANCASH CASERIO DE AUA RESERVORIO MUNICIPALINDO PROVINCIAL DE PALLASCA SCRIBURDO DE 19-3040 PROYECTO:

UBICACIÓN:

FECHA FEBRURO DEL 2020

CALCULO DE ASENTAMIENTO PARA ZAPATAS CUADRADAS

Asentamiento Total en cin. Capacidad idmisible de carga en Ton/m² Modulio de elevricidad Modulo de Poisson Ancho de Zaputa en m. factor de influencia Profundidad $S = \frac{\operatorname{quad}.B(1-\mu^2)}{E}J_W$

WILECAPE PERCENTING B. A.F.

JOSEPH L. LICECT J. J.

Ing. Suffer (generals Charriège Minings)

2016 1 1950 S. (2000) 2000 B. (1920)

2016 1 1950 S. (2000) 2000 B. (1920)

2016 1 1950 S. (2000) B. (1920)

2017 1 1950 S. (2000) B. (1920) B. (1920)

2017 1 1950 S. (2000) B. (1920) B. (1920)

2017 1 1950 S. (2000) B. (1920) B. (1920)

2017 1 1950 S. (2000) B. (1920) B. (1920) B. (1920)

2017 1 1950 S. (2000) B. (1920) B. (1920)

= 0.30 = 2500 Ten/m² = 112 cm/m = 2.0 m tw Df

			-	B" ANCHOL	DEZAPATA			10-21-2
Asentamiento	0.5 m	0.6.00	0.7 m.	0.8 m.	0.9 m.	1.0 m.	1.1 m	1.2 m.
ASCINATIONAL	4.50	1.57	1.51	1.55	1.56	1.58	1.59	1.61
gad Asentamiento	0.001 cm	0.037 cm	0.044 cm.	0.050 cm.	0.057 cm.	0.064 cm.	0.072 cm.	0.079 cm
Asentamoento	0.034 (8)	OLUGIA SHE	OUTT CHE	Debug Chief				

Prof. NIVEL FIREATICO, [m]: N.P.

CALCULO DE ASENTAMIENTO PARA ZAPATAS RECTANGULARES [Cimientos Cortidos]

Asentamiento Total en crit. Capacidad admisible de cargo en Ton/m² Module de elasticidad Module de Poisson Ancho de Zapata en m. Tactor de Influencia Prefundidad ged E $S = \frac{q_0 d \cdot B(1 - \mu^2)}{r} J_w$

= 0.30 = 2100 Ton/n = 112 cm/ss = 2.0 m.

CONCLUSIONES

Del Análisis. Tanto de Zapatas Cuadradas y Rectuagulares no se Esperan Asentamiento, ya que es inferior a lo Permisible 2.50 cm.

Welplas

Militari J Zelaya Santos Matemeno civil Real CD 194373 JEPE DE LABORATORIO

PANEL FOTOGRAFICO

Interests transport to the second seco

The Wilson J Zelaya Sancor missing charge and sancor missing charge and sancor

CONSULTORIA Y CONTROL DE CALIDAD EN OBRAS - ESTUDIOS GEOTECNICOS

CALICATA 06 Y 07.- CALICATAS PARA FINES DE DISTRIBUCION

WILDERTO PRINCIPALIMINADO RAF.

JOSÍA - LA POPERA JOSÉA

ING. Bifuel grassado Charcelon Minaya

SITO TORRO - CONSULTANCE 2000

SITO TORRO - CONSULTANCE 200

CELCONSTITUTORES E WIGHTERTALLIR.
REG. CONSULTORIA UP C. 40812

ng Wilson / Zelayu Sani

PLANO DE CALICATAS

WELCOTS PRINT OF ENERGY AND THE PRINT OF THE

Anexo 04: Encuestas

NGENIERIA	TÍTULO	DISEÑO DEL SISTEMA DE ABATECIMETINO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.					
ENCUESTA	Tesista:	BA	CH. CRUZ ANC	AJIMA, LU	IS FE	LIPE	
LITCOLSTA	Asesor:	MGTR. IN	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RIOS				
INFORMACIÓN DE LA POBLACIÓN							
		1. Persona	entrevistada				
Padre		X	Hijo (a)			X	
Madre		X	Otros				
	2. ¿Cuántas	s personas habita	n en su vivienda	? Expecifiq	ue.		
Mujeres		X	Niños (a).			X	
Varones		X					
		Total de habitar	ntes en su vivien	da			
		250 habitantes	en todo el caserío				
CARACTERISTICAS PARA EL DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE							
	3. ¿	Qué servicios pú	blicos tiene el ca	serío?			
Establecii	miento de salud	X	Energia electrica	ı			
Centro ed	lucativo	X	Otros.				
	4. ¿ Cuenta	con fuentes de ag	gua indentificadas	s en el case	río?		
SI		X	NO		(pas	ar a la	p.7)
		5. ¿Cuántas fuei	ntes de agua tien	e?			
			uente				
	(6. Descriptción d	e las fuente de a	gua			
E	Nombre del	Caudal (l/seg.)	Nombre del	Distancia		Tie	mpo
Fuentes	dueño	Caudai (l/seg.)	manantial	Distancia	Si	No	Por conservar
Fuente 1	-	2.81	Aija	4 km	1	hora 30) minutos
Fuente 2							
	7. ¿	Tiene algun proy	ecto para agua po	otable?			
No		X	Si en gestión				
SI enform	nulación		Si en ejecución				
8. 2	De donde consig	gue normalmente	el agua para el o	onsumo de	su fa	milia?	
De mana	ntial puquio		De asequia	_		X	
De río		X	Pileta pública				
De pozo			Otros				

9.	¿Quién o qui	ienes traen el agua?	
La madre	X	Madre e hijos	X
El padre	X	Los hijos (a)	X
Madre y padre		Otros	
10. ¿Aproximadamente que tie	mpo debe re	correr para traer agua	para su consumo familiar?
Menor a 30 minutos	X	Mayor a 2 horas	
Entre 30 y 60 minutos	X	Mayor a 3 o 4 horas	
De 1 a 2 horas	X	Otros	
11. ¿Cuánto	os litros de ag	ua consume la familia p	oor día?
Menor o igual a 20 lts		De 41 a 80 lts	X
De 21 a 40 lts	X	Mayor a 81 lts	
12. ¿	Almacena o g	guarda agua en la casa?	,
SI	X	NO	
13. ¿En c	que tipo de de	esposito almacena el ag	gua?
Tinajas o vasijas de barro		Cilindro	X
Baldes	X	Pozo	
Galoneras	X	Otros	
14. ¿L	os depositos	se encutran protegidos	s?
CI	V		
SI	X	NO	
		s deposios donde se gu	uarda el agua?
			uarda el agua?
15. ¿Cada cuanto t		s deposios donde se gu	
15. ¿Cada cuanto ti	ciempo lava los	s deposios donde se gu Cada quince dias	X
Todos los dias Interdiario Una vez a la semana	iempo lava los	s deposios donde se gu Cada quince dias Al mes	X
Todos los dias Interdiario Una vez a la semana	X X	S deposios donde se gu Cada quince dias Al mes Otros	X
15. ¿Cada cuanto ti Todos los dias Interdiario Una vez a la semana 16. ¿Có	X X	Cada quince dias Al mes Otros	X X X io?
15. ¿Cada cuanto ti Todos los dias Interdiario Una vez a la semana 16. ¿Có Directo del deposito de almace	X X Sómo cosume e	Cada quince dias Al mes Otros Cl agua que toma a diari	X X X io?
Todos los dias Interdiario Una vez a la semana 16. ¿Có Directo del deposito de almace Directo del grifo (sin clorar)	iempo lava los X X Sómo cosume e en	Cada quince dias Al mes Otros lagua que toma a diari Hervida La cura o desinfecta u Otros diento de agua potable,	io? X X X usted
15. ¿Cada cuanto ti Todos los dias Interdiario Una vez a la semana 16. ¿Có Directo del deposito de almace Directo del grifo (sin clorar) Directo del grifo (agua clorada	iempo lava los X X Sómo cosume e en	Cada quince dias Al mes Otros l agua que toma a diari Hervida La cura o desinfecta u Otros	io? X X X usted
15. ¿Cada cuanto ti Todos los dias Interdiario Una vez a la semana 16. ¿Có Directo del deposito de almace Directo del grifo (sin clorar) Directo del grifo (agua clorada 17. ¿Con el diseño del sistema	iempo lava los X X Sómo cosume e en a) de abastecim ser X	Cada quince dias Al mes Otros Plagua que toma a diari Hervida La cura o desinfecta u Otros Diento de agua potable, vicio? ? NO	io? X X X austed Augudara a la cobertura del
15. ¿Cada cuanto ti Todos los dias Interdiario Una vez a la semana 16. ¿Có Directo del deposito de almace Directo del grifo (sin clorar) Directo del grifo (agua clorada 17. ¿Con el diseño del sistema SI	iempo lava los X X Somo cosume e en a) a de abastecim ser X a de abastecim	Cada quince dias Al mes Otros Plagua que toma a diari Hervida La cura o desinfecta u Otros Diento de agua potable, vicio? ? NO	io? X X X austed Augudara a la cobertura del
15. ¿Cada cuanto ti Todos los dias Interdiario Una vez a la semana 16. ¿Có Directo del deposito de almace Directo del grifo (sin clorar) Directo del grifo (agua clorada 17. ¿Con el diseño del sistema SI 18. ¿Con el diseño del sistema SI	iempo lava los X X Smo cosume e en de abastecim ser X a de abastecim ser X	Cada quince dias Al mes Otros El agua que toma a diari Hervida La cura o desinfecta u Otros niento de agua potable, vicio?? NO miento de agua potable vicio??	io? X x io? x ayudara a la cobertura del , ayudara a la cantidad del
15. ¿Cada cuanto ti Todos los dias Interdiario Una vez a la semana 16. ¿Có Directo del deposito de almace Directo del grifo (sin clorar) Directo del grifo (agua clorada 17. ¿Con el diseño del sistema SI 18. ¿Con el diseño del sistema	iciempo lava los X X Simo cosume e en A) A de abastecim ser X a de abastecim ser X de abastecimien	Cada quince dias Al mes Otros El agua que toma a diari Hervida La cura o desinfecta u Otros niento de agua potable, vicio?? NO miento de agua potable vicio??	io? X x io? x ayudara a la cobertura del , ayudara a la cantidad del
15. ¿Cada cuanto ti Todos los dias Interdiario Una vez a la semana 16. ¿Có Directo del deposito de almace Directo del grifo (sin clorar) Directo del grifo (agua clorada 17. ¿Con el diseño del sistema SI 18. ¿Con el diseño del sistema SI	iciempo lava los X X Simo cosume e en A) A de abastecim ser X a de abastecim ser X de abastecimien	Cada quince dias Al mes Otros El agua que toma a diari Hervida La cura o desinfecta u Otros niento de agua potable, vicio?? NO miento de agua potable vicio?? NO ento de agua potable,	io? X x io? x ayudara a la cobertura del , ayudara a la cantidad del
15. ¿Cada cuanto ti Todos los dias Interdiario Una vez a la semana 16. ¿Có Directo del deposito de almace Directo del grifo (sin clorar) Directo del grifo (agua clorada 17. ¿Con el diseño del sistema SI 18. ¿Con el diseño del sistema SI 19. ¿Con el diseño del sistema	iciempo lava los X X Sómo cosume e en A) de abastecimi ser X de abastecimi ser X de abastecimi ser	Cada quince dias Al mes Otros el agua que toma a diari Hervida La cura o desinfecta u Otros niento de agua potable, vicio?? NO miento de agua potable vicio?? NO ento de agua potable, a vicio??	io? ayudara a la cobertura del , ayudara a la cantidad del ayudara a la continuidad del

GONZAIT EDUARDO FRANCE CERNA

. GENIERO CIVIL

. GEGITA GONZAIR PASS

REGISTRO DE SOMBULGA PE CAMB

Anexo 05: Gráficos de encuesta

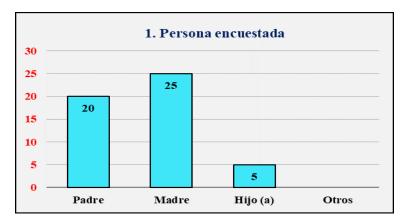


Gráfico 7. Persona encuestada

Los resultados obtenidos en la pregunta N° 1 fueron que dentro de las 50 viviendas que habitan en el caserío Aija, se logró encuestar a cada representante de hogar divido por 20 padres de familia, 25 madres de familia y 5 hijos (as), obteniendo un resultado que se muestra en el gráfico N° 7.

Gráfico 8. ¿Cuántas personas habitan en su vivienda?

Interpretación:

Los resultados obtenidos en la pregunta N° 2 fueron que toda la población del caserío de Aija, está constituida por 110 mujeres, 105 varones, 35 niños teniendo en total 50 viviendas el cual nos muestra el grafico N° 8.

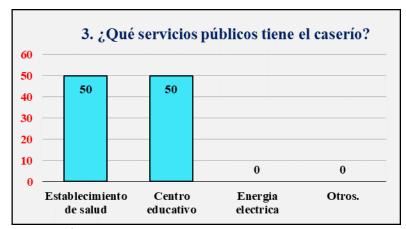


Gráfico 9. ¿Qué servicios públicos tiene el caserío?

Los resultados obtenidos en la pregunta N° 3 fueron que en el caserío de Aija se encuentran 2 servicios públicos divididos en establecimiento de salud y centro educativo, tal y cual nos muestra el grafico N° 9.

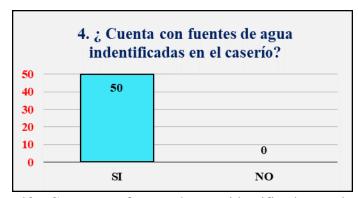


Gráfico 10. ¿Cuenta con fuentes de agua identificadas en el caserío?

Interpretación:

Los resultados obtenidos en la pregunta Nº 4 fueron que los 50 representantes de hogar que tiene el caserío Aija, conocen que existe una fuente de agua natural cerca al caserío tal y como nos muestra el gráfico Nº 10.

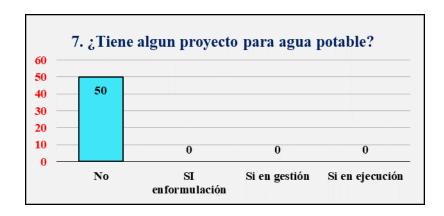


Gráfico 11. ¿Tiene algún proyecto para agua potable?

Los resultados obtenidos en la pregunta N° 7 fueron que 50 representantes de hogar dicen que no tienen y desconocen algún proyecto de agua potable para su caserío, tal y como nos muestra el gráfico N° 11.

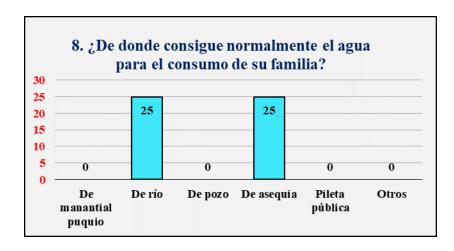
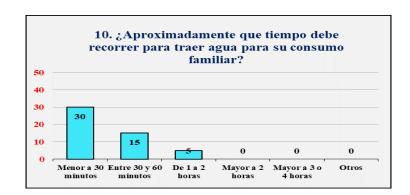


Gráfico 12. ¿De dónde consigue normalmente el agua para el consumo de su familia?


Interpretación:

Los resultados obtenidos en la pregunta Nº 8 indicó que 25 representantes de hogar consiguen el agua para su consumo desde un rio, mientras que los 25 restantes lo consiguen mediante una acequia, esto se muestra en el gráfico Nº 12.

Gráfico 13. ¿Quién o quienes traen el agua?

Los resultados obtenidos en la pregunta N° 9 fueron que 10 madres se encargan de traer el agua para su consumo, mientras que 25 padres de familia recogen agua para su consumo, 3 representantes de hogar (padre y madre) recogen agua para su consumo, a la vez 6 representes de hogar (madre e hijos) también se encargan de traer agua, mientras que 6 representantes de hogar envían a sus hijos (a) a recoger agua para su consumo, esto se muestra en el grafico N° 13.

Gráfico 14. ¿Aproximadamente que tiempo se debe recorrer para traer agua para su consumo familiar?

Interpretación:

Los resultados en la pregunta Nº 10 indicó que 30 representantes de hogar demoran menos de 30 minutos en recoger agua para su consumo mientras que 15 demoran entre 30 a 60 minutos y 5 entre 1 a 2 horas, tal y como se muestra en el gráfico Nº 14.

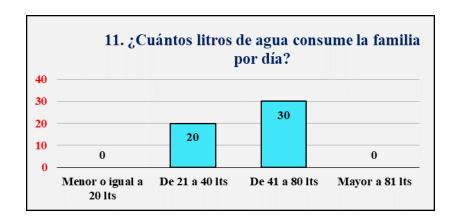


Gráfico 15. ¿Cuántos litros de agua consume la familia por día?

Los resultados obtenidos en la pregunta $N^{\rm o}$ 15 nos dice que 20 representantes de hogar gastan de 21 a 40 lts de agua por día, mientras que 40 gastan de 41 a 80 lts de agua por día, tal y como nos muestra el gráfico $N^{\rm o}$ 15.

Gráfico 16. ¿Almacena o guarda agua en la casa?

Interpretación:

Los resultados obtenidos en la pregunta Nº 12 indicó que 50 representantes de hogar guardan agua recolectada en su vivienda, como nos muestra el gráfico Nº 16.

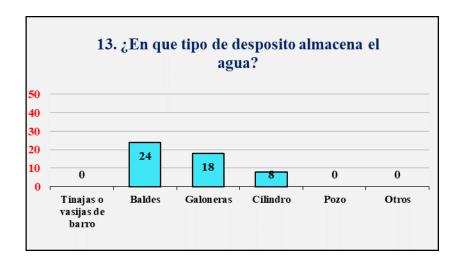


Gráfico 17. ¿En qué tipo de depósito almacena el agua?

Los resultados obtenidos en la pregunta Nº 13 indicó que 24 representantes de hogar almacenan agua para su consumo en baldes, mientras que 18 lo almacena en galoneras y solo 8 lo almacena en cilindros, tal y como indica el grafico Nº 17.

Gráfico 18. ¿Los depósitos se encuentran protegidos?

Interpretación:

Los resultados obtenidos en la pregunta Nº 14 indicó que 50 representantes de hogar protegen sus depósitos en donde guardan o almacenan agua para su consumo, tal y cual nos muestra el gráfico Nº 18.



Gráfico 19. ¿Cada cuánto tiempo lava los depósitos donde guarda el agua?

Los resultados obtenidos en la pregunta N° 15 indicó que 5 representantes de hogar lavan inter diario sus depósitos donde almacenan agua, mientras que 20 lo hacen una vez a la semana, 15 cada quincena y solo 10 cada mes, tal y cual nos muestra el grafico N° 19.

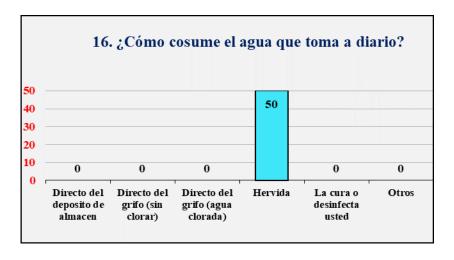


Gráfico 20. ¿Cómo consume el agua que toma diario?

Interpretación:

Los resultados obtenidos en la pregunta $N^{\rm o}$ 16 indicó que 50 representantes de hogar hierven el agua que recolectan para su consumo diario, tal como nos muestra el gráfico $N^{\rm o}$ 20.

Gráfico 21. ¿Con el diseño del sistema de abastecimiento de agua potable, ayudará a la mejora de la cobertura del servicio?

Los resultados obtenidos en la pregunta Nº 17 indica que 50 representantes de hogar mencionan que con el diseño del sistema si ayudara a la cobertura del servicio del caserío Aija, esto se muestra en el gráfico Nº 21.

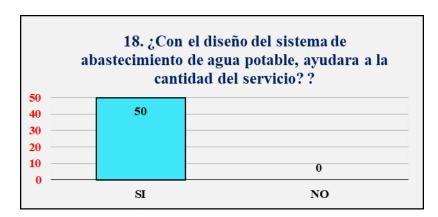


Gráfico 22. ¿Con el diseño del sistema de abastecimiento de agua potable ayudara a la mejora de la cantidad del servicio?

Interpretación:

Los resultados obtenidos en la pregunta Nº 18 indica que 50 representantes de hogar mencionan que con el diseño del sistema ayudará a la mejora de la cantidad del servicio del caserío Huargopata, esto se muestra en el gráfico Nº 22.

Gráfico 23. ¿Con el diseño del sistema de abastecimiento de agua potable ayudara a la mejora de la continuidad del servicio?

Los resultados obtenidos en la pregunta Nº 19 indica que 50 representantes de hogar mencionan que con el diseño del sistema ayudara a la mejora de la continuidad del servicio del caserío Aija, esto se muestra en el gráfico Nº 23.

Gráfico 24. ¿Con el diseño del sistema de abastecimiento de agua potable ayudara a la mejora de la calidad del servicio?

Interpretación:

Los resultados obtenidos en la pregunta Nº 20 indica que 50 representantes de hogar mencionan que con el diseño del sistema si ayudara a la mejora la calidad del servicio del caserío Aija, esto se muestra en el gráfico Nº 24.

Anexo 06: Elaboración de fichas para la evaluación del sistema de abastecimiento de agua potable mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 01: Identificación del lugar donde se realizará el diseño hidráulico de la captación

NGENIERIA	TÍTULO	DISEÑO DEL SISTEMA DE ABATECIMETINO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.						
FICHA 01	Tesista:	BACH. CRUZ ANCAJIMA, LUIS FELIPE						
FICHA 01	Asesor:	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RIOS						
A.	IDENTIFICA	R EL LUGAR PARA EL DISEÑO DE LA CAPTACIÓN						
		1. Ubicación						
Altitud:	2821	X: 830327.3560 Y:						
		9068923.8930						
2	. ¿A que altur	a de la población se encuentra la fuente de captación?						
A una altura ma	as alta de la pob	lación x A una altura mas baja de la población						
De acue	rdo a la pregu	nta 2. ¿Cuánto el la altura de agua entre la fuente y el caserío						
		270.55						
3.;	Cual es el tip	o de suelo que se encontro en la fuente natural de agua?						
Rocoso		Humifero						
Arcilloso	X	Arenoso						
	4. ¿Cu	ál es el tipo de fuente natural de agua a captar?						
Fuente su	perficial	Fuente pluvial						
Fuente su	bterranea X							
De acuerdo a	la P4. Si cons	ideró una fuente superficial, ¿Que tipo de captación tendrá para su diseño?						
Captacio	ón desde un lago	Canales						
Rios		Otros						
De acuerdo a la P4. Si consideró una fuente subterranea. ¿Que tipo de captación tendrá para su diseño?								
Captaión	n de ladera	X Captación de fondo						
5. ¿Qué tipo de afloramiento se encontro en la fuente natural de agua?								
Concent	rado	X Difuso						
6. ¿Qué tipo de terreno tiene el area domde se encuentra la fuente de captación?								
Terreno plano accidentado	• •	Terreno accidentado y Terreno ondulado y ondulado plano						

7. ¿	7. ¿Es accesible llegar a la fuente de captación para la población?							
Si	X No							
	8	. Rendimi	ento del cai	ıdal de la fı	e nte			
			4					
Descripción			Tiempos			Total	Resultado	
Descripcion	Tiempo 1	Tiempo 2	Tiempo 3	Tiempo 4	Tiempo 5	Total	(V/t)	
8.1 Caudal maximo							2.5	
8.1 Caudal mínimo							2.81	
	9. Identific	ación de p	eligros para	a el diseño	de la capta	ción		
No presenta		X	Hua	yco				
Crecidas o avenidas		Hundimiento de terreno						
Inundaciones		Deslizamiento						
Desprendimie	nto de rocas		Que	bradas				

Fuente: Elaboración de ficha mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 02: Identificación del tramo donde se realizará el diseño hidráulico de la línea de conducción

NGENIERIA	TÍTULO	DISEÑO DEL SISTEMA DE ABATECIMETINO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.					
FICHA 02	Tesista:	BACH. CRUZ ANCAJIMA, LUIS FELIPE					
FICHA 02	Asesor:	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RIOS					
B. IDENT	B. IDENTIFICAR EL TRAMO PARA EL DISEÑO DE LA LINEA DE CONDUCCIÓN						
		10. Ubicación					
Altitud ini	2821.000	X: 830327.3560 Y: 9068923.8930					
Altitud fin	al: 2553.02	X: 826700.1100 Y: 9070130.5220					
	11. ¿Qué tipo	de sistema de línea de conducción se diseñará?					
Po	r bombeo	Por gravedad X					
	12. A	Altura vertical de la linea de conducción					
		268.00 mts					
Según la pregu	unta 12 cuanto p	uede ser la longitud parcial de todo el tramo donde se encontrara la tubería de conducción					
		3000.00 ml					
13.	¿Qué tipo de te	rreno tendrá el transcruso de la línea de conducción?					
Terreno plane accidentade	• •	Terreno accidentado y ondulado y plano plano					
14. Identificación de peligros para el diseño de la linea de conducción							
No pres	enta	X Huayco					
Crecidas	s o avenidas	Hundimiento de terreno					
Inundac	iones	Deslizamiento					
Despren	ndimiento de rocas	Quebradas					

Fuente: Elaboración de ficha mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 03: Identificación del lugar donde se realizará el diseño hidráulico del reservorio de almacenamiento

NGENIERIA	TÍTULO	DISEÑO DEL SISTEMA DE ABATECIMETINO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.						
ELCHA 02	Tesista:	BACH. CRUZ ANCAJIMA, LUIS FELIPE						
FICHA 03	Asesor:	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RIOS						
C. IDE	NTIFICAR EL I	LUGAR PARA EL DISEÑO DEL RESERVORIO DE ALMACENAMIENTO						
		15. Ubicación						
Altitud:	Altitud: X: 826700.1100 Y: 9070130.5220							
Según la c	oordenada y altit	tud de la ubicación, el lugar se encuentra en un área libre						
Si	X	No						
16. ¿En	que tipo de terr	reno estará ubicado el reservorio de almacenamiento?						
Terreno plano	X	Terreno accidentado Terreno ondulado						
Segúi	n la pregunta 16.	¿Qué tipo de reservorio se empleará en el diseño?						
Reservorio eleva	ido 🗌	Reservorio apoyado X Reservorio enterrado						
17.¿C	ual es el tipo de	suelo que se encontro en la fuente natural de agua?						
Rocoso		Humifero						
Arcilloso	X	Arenoso						
	18. ¿Es accesibl	e la ubiación del reservorio para la población?						
Si		X No						
19. Identificación de peligros								
No presenta X Huayco								
Crecidas o avenidas Hundimiento de terreno								
Inundaci	ones	Deslizamiento						
Despren	dimiento de rocas	Desprendimiento de rocas						

Fuente: Elaboración de ficha mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 04: Identificación del tramo donde se realizará el diseño hidráulico de la línea de aducción

NGENIERIA	TÍTULO	DISEÑO DEL SISTEMA DE ABATECIMETINO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.					
FICHA 04	Tesista:	BACH. CRUZ ANCAJIMA, LUIS FELIPE					
FICHA 04	Asesor:	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RIOS					
D. IDEN	TIFICAR EL TI	RAMO PARA EL DISEÑO DE LA LINEA DE ADUCCIÓN					
		20. Ubicación					
Altitud ini	cial:	X:					
	2553.02	826700.1100					
	Y: 9070130.5220						
	21. ¿Qué tipo de sistema de línea de aducción se diseñará?						
Por	bombeo	Por gravedad X					
	22.	Altura vertical de la linea de aducción					
		268.00 mts					
Según la preg	unta 22 cuanto p	uede ser la longitud parcial de todo el tramo donde se encontrara la tubería de aducción					
		30.00 ml					
23	3. ¿Qué tipo de t	terreno tendrá el transcruso de la línea de aducción?					
Terreno plano	V	Terreno accidentado y Terreno ondulado y					
accidentado) [1	ondulado plano					
24. Identificación de peligros para el diseño de la linea de aducción							
No preso	enta	X Huayco					
Crecidas	s o avenidas	Hundimiento de terreno					
Inundaci	ones	Deslizamiento					
Despren	dimiento de rocas	Quebradas					

Fuente: Elaboración de ficha mediante las guías del de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 05: Identificación de los tramos donde se realizará el diseño hidráulico de la red de distribución

NGENIERIA	TÍTULO	DISEÑO DEL SISTEMA DE ABATECIMEITNO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.					
FICHA 05	Tesista:	В	ACH. CRUZ ANCAJIMA, LUIS FELIPE				
FICHA 05	Asesor:	MGTR. II	NG. GONZALO MIGUEL, LEÓN DE LOS RIOS				
E. IDENTIFICAR LOS TRAMOS PARA EL DISEÑO DE LA RED DE DISTRIBUCIÓN							
	25. ¿En que tip	o de terreno es	stará ubicado la red de distribución?				
Terreno plano accidentado	Y	Terreno accider ondulado	·				
	26. ¿Qué tipo	de sistema de	red de distribución se diseñará?				
Red abid	erta	X	Red mixta				
Red cer	rada						
	27. ¿En que tip	o de terreno es	stará ubicado la red de distribución?				
Terreno plano accidentado	Y	Terreno accider ondulado	· 1 1				
	28. ¿ Para cua		se diseñara la red de distribución?				
) familias				
	2	9. ¿ Existen Iı	nstituciones publicas?				
Si			No X				
	30. Mencione	que institucio	nes publicas existen en el caserío				
Instituci	ón Educativa	X	Local comunal				
Centro o	le salud	X	otros				
31. Qu	e tipo de suelo t	iene elcaserío	donde se emplementara el diseo hidráulico				
Rocoso			Humífero				
Liomoso)	X	Arenoso				
32. Identificación de peligros							
No pres	enta	X	Huayco				
Crecidas	s o avenidas		Hundimiento de terreno				
Inundac	iones		Deslizamiento				
Despren	ndimiento de rocas		Quebradas				

Fuente: Elaboración de ficha mediante las guías Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Anexo 07: Memoria de calculo

CÁLCULO DEL CAUDAL DE LA FUENTE MEDIANTE EL MÉTODO VOLUMÉTRICO

METODO VOLUMETRICO
$$Q = \frac{V}{T_t}$$
 $V = Volumen del recipiente$
 $T_t = Tiempo \ promedio$

Tabla 13. Cálculo del caudal de la fuente en época de estiaje

Cálculo del caudal de la fuente en epoca de estiaje		Simbolo	Fórmula	Cálculo	Resultado	unidad
Volumen del recipiente		v	-	-	4	litros
	1	t_1	-	-	1.59	seg.
	2	t_2	-	-	1.39	seg.
Pruebas realizadas "n" 5	3	t_3	-	-	1.49	seg.
_ →	4	t_4	-	-	1.47	seg.
	5	t_5	-	-	2.1	seg.
	_				8.04	seg.
Tiempo promedio		T_t	$T_t = \frac{\sum t_t}{n}$	$T_t = \frac{8.04}{5}$	1.608	seg.
caudal en epoca de estiaje	(junio)	Qmin	$Q_{min} = \frac{V}{T_t}$	$Q_{min} = \frac{4}{1.60}$	2.500	l/s

Fuente: Elaboración propia – 2021

Tabla 14. Cálculo del caudal de la fuente en época de lluvia

2 Cálculo del caudal de la fuente en epoca de lluvia		Simbolo	Fórmula	Cálculo	Resultado	unidad
volumen del recipiente		V	-	-	4	litros
	1	t_1	-	-	1.59	seg.
	2	t_2	-	-	1.21	seg.
Pruebas realizadas	3	t_3	-	-	1.39	seg.
	4	t ₄	-	-	1.34	seg.
	5	t_5	-	-	1.6	seg.
				7.12	7.13	seg.
Tiempo promedio		T_t	$T_t = \frac{\sum t_t}{n}$	$T_t = \frac{7.13}{5}$	1.426	seg.
caudal en epoca de llu	via (marzo)	Qmax	$Q_{max} = \frac{V}{T_t}$	$Q_{max} = \frac{4}{1.426}$	2.810	l/s

CÁLCULO DE LA POBLACIÓN FUTURA MEDIANTE EL MÉTODO **ARIMETICO**

FORMULAS DEL CÁLCULO DE LA POBLACIÓN FUTURA POR EL MÉTODO ARIMÉTICO

 $P_f = P_o(1 + r.t)$

t = Periodo de diseño

r = Coeficiente de crecimiento

Pa = Poblaci'on actual

 $Pf = Poblaci\'{o}n futura$

Tabla 15. Cálculo de la densidad poblacional

Datos	Fórmula	Resultado	
Nº de hab.	Hallado	250 Hab.	
Vivienda	Hallado	50	
Densidad	hab. viviendas	5	

Fuente: Elaboración propia – 2021

Tabla 16. Datos censales de la población

POBLACIÓN FUTURA								
AÑO	AÑO Mujeres Varones Total							
2011	75	70	145					
2013	88	80	168					
2016	93	86	179					
2018	95	94	189					
2021	120	130	250					

Tabla 17. Cálculo del coeficiente de crecimiento poblacional

COEFICIENTE DE CRECIMIENTO POBLACIONAL						
AÑO	POBLACIÓN	FÓRMULA	COEFICIENTE DE CRECIMIENTO	ТІЕМРО		
2011	145 Hab.		0.0397	4 años		
2013	168 Hab.	$\frac{P_f}{D} - 1$	0.0327	2 años		
2016	179 Hab.	$r = \frac{r_0}{t}$	0.0279	2 años		
2018	189 Hab.		0.1614	2 años		
2021	250 Hab.	PROMEDIO	0.06543	6.54 %		

Tabla 18. Cálculo de la población futura

CÁLCULO DE LA POBLACIÓN FUTURA						
AÑO	POBLACIÓN	FÓRMULA	TIEMPO			
2022	267 Hab.		1 años			
2027	332 Hab.	$P_{\rm f} = P_{\rm o}(1+{\rm r.t})$	5 años			
2031	414 Hab.	11 10(11119)	10 años			
2036	496 Hab.		15 años			
2041	578 Hab.	FUTURA	20 años			

CÁLCULO DE LA DEMANDA DE AGUA

Cuadro 13. Dotación de agua para centros educativos

Dotación de agua para centros educativos						
Descripción Dotación						
Educación primaria e inferior (sin residencia)	20 lt/alum. x dia					
Educación secundaria y superior (sin reside.)	50 lt/alum. x dia					
Educación en general (con residencia)	25 lt/alum. x dia					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 14. Dotación de agua para locales de salud

Dotación de agua para locales de salud					
Tipo de establecimiento	Dotación				
Hospitales y clínicas de hospitalización	600 lt/d x cama				
Consultorios medicos	500 lt/d x consultorio				
Clinicas dentales	100 lt/d x und. dental				

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 15. Dotación según la opción tecnológica

	Dotación según tipo de opción tecnológica (l/hab x d)						
Región	Sin arrastre hidraulico (compostera y hoyo seco ventilado)	Con arrastre hidraulico (tanque septico mejorado)					
Costa	60	90					
Sierra	50	80					
Selva	70	100					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

	Dotación de agua para Instituciones Educativas en Zona Rural						
Cantidad	Descripción	Nº de alumnos	Horas de consumo	Dotación (l/alum x d)	Formula	Q. Consumo l/s	
1	LE nivel primaria y secundaria	20	7	20	$\frac{20 \cdot 7 \cdot 20}{86400 \cdot 24} =$	0.001350	
1		Consumo total (Qnd)	_			0.001350	

	<u>Dotación de agua para iglesias</u>						
Cantidad	Descripción	Consultorios	Horas de consumo	Dotación (l/d.consultorio.d.)	Formula	Q. Consumo l/s	
1	Posta	2	4	500	$\frac{2 \cdot 4 \cdot 500}{86400 \cdot 24} =$	0.001929	
1		Consumo total (Qnd)				0.001929	

Tabla 19. Cálculo del consumo no doméstico

Resumen de Consumo no domestico						
Descripción	Cantidad	Qnd	Q. unitario			
Estatal	1	0.001350	0.00135 l/s			
Social	2	0.001929	0.00096 l/s			

Tabla 20. Cálculo del consumo doméstico

Resumen de Consumo domestico						
Descripción Dato Cantidad						
Densidad poblacional	Den.	5				
Número de viviendas	N° viv.	50				
Población al año "0"	P _a	250				
Población al año "20"	P_{f}	578				
Dotación	Dot	80				
Q.consumo domestico(Po)	QP	0.231 l/s				
Q.consumo domestico(Pf)	QP	0.535 l/s				

Fuente: Elaboración propia – 2021

VARIACIONES DE CONSUMO

$$FORMULA \ DEL \ CALCULO \ DEL$$

$$CAUDAL \ PROMEDIO$$

$$QP. = \frac{Población \cdot Dotación}{86400 \ s/dia}$$

$$Qm = \frac{Pf \cdot Dot}{86400 \ s/dia}$$

Cuadro 16. Datos para el cálculo de las variaciones de consumo "k1 y k2"

Descripción	Unidad	Cantidad	Unida	Fuente
Tasa de crecimiento	r	6.543	%	Calculada
Densidad poblacional	D	5	hab/ viv.	Inei/Calculada
Nº de personas	viv.	250	viv.	Catastro

Cuadro 17. Parámetros de diseño para el cálculo de las variaciones de consumo "k1 y k2"

Descripción	Unidad	Cantidad	Unida	Fuente
Dotación	r	6.543	% RM.	192 2018 VIVIENDA
Coeficiente de variación diaria	k1	1.3	RM.	192 2018 VIVIENDA
Coeficiente de variación horaria	k2	2	RM.	192 2018 VIVIENDA

Cuadro 18. Criterios técnicos para el cálculo de las variaciones de consumo "k1 y k2"

Descripción	Unidad	Cantidad	Unida	Fuente
Crecimiento Estatal	Ce	1.00%	%	Criterio Propio
Crecimiento Social	Cs	0.50%	%	Criterio Propio
Crecimiento comercial	Cc	1.50%	%	Criterio Propio
% Perdida al año "0"	Per "0"	0.00%	%	Criterio Propio
% Perdida al año "20"	Per "20"	0.00	%	Criterio Propio

Tabla 21. Cálculo de las variaciones de consumo

Año		Pf (Met. Arimetic	Conex.	Conex. Estatal	Conex. Social	Domestico	No Dor	nestico	Cons.	% de	Qp.	Qmd. (l/s)	Qmh. (l/s)
Allo		o)	Dome.	ce: 1%	Cs 0.5%	Cons. D. (l/s)	Cons. Est.	Cons. Soc.	Total (l/s)	perdida	(l/s)	k1: 1.3	k2: 2.0
2021	0	250	50	0.00	0.00	0.23148	0.00000	0.00000	0.231	0.00%	0.231	0.143	0.193
2022	1	267	53	0.00	0.00	0.24722	0.00000	0.00000	0.247	0.00%	0.247	0.321	0.224
2023	2	283	57	0.00	0.00	0.26204	0.00000	0.00000	0.262	0.00%	0.262	0.341	0.254
2024	3	300	60	0.00	0.00	0.27778	0.00000	0.00000	0.278	0.00%	0.278	0.361	0.286
2025	4	316	63	0.00	0.00	0.29259	0.00000	0.00000	0.293	0.00%	0.293	0.380	0.315
2026	5	332	66	0.00	0.00	0.30741	0.00000	0.00000	0.307	0.00%	0.307	0.400	0.345
2027	6	349	70	0.00	0.00	0.32315	0.00000	0.00000	0.323	0.00%	0.323	0.420	0.376
2028	7	365	73	0.00	0.00	0.33796	0.00000	0.00000	0.338	0.00%	0.338	0.439	0.406
2029	8	381	76	0.00	0.00	0.35278	0.00000	0.00000	0.353	0.00%	0.353	0.459	0.436
2030	9	398	80	0.00	0.00	0.36852	0.00000	0.00000	0.369	0.00%	0.369	0.479	0.467
2031	10	414	83	0.00	0.00	0.38333	0.00000	0.00000	0.383	0.00%	0.383	0.498	0.497
2032	11	430	86	0.00	0.00	0.39815	0.00000	0.00000	0.398	0.00%	0.398	0.518	0.526
2033	12	447	89	0.00	0.00	0.41389	0.00000	0.00000	0.414	0.00%	0.414	0.538	0.558
2034	13	463	93	0.00	0.00	0.42870	0.00000	0.00000	0.429	0.00%	0.429	0.557	0.587
2035	14	479	96	0.00	0.00	0.44352	0.00000	0.00000	0.444	0.00%	0.444	0.577	0.617
2036	15	496	99	0.00	0.00	0.45926	0.00000	0.00000	0.459	0.00%	0.459	0.597	0.649
2037	16	512	102	0.00	0.00	0.47407	0.00000	0.00000	0.474	0.00%	0.474	0.616	0.678
2038	17	529	106	0.00	0.00	0.48981	0.00000	0.00000	0.490	0.00%	0.490	0.637	0.710
2039	18	545	109	0.00	0.00	0.50463	0.00000	0.00000	0.505	0.00%	0.505	0.656	0.739
2040	19	561	112	0.00	0.00	0.51944	0.00000	0.00000	0.519	0.00%	0.519	0.675	0.769
2041	20	578	116	0.00	0.00	0.53519	0.00000	0.00000	0.535	0.00%	0.535	0.700	0.800

Cuadro 19. Criterios para los caudales hallados según las variaciones de consumo

Rango	Q. md real	Se diseña con
1	< de 0.50 l/s	0.50 l/s
2	0.50 l/s hasta 1.00 l/s	1.00 l/s
3	> de 1.00 l/s	1.50 l/s

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 20. Resumen del cálculo de los caudales de diseño

Resumen de calculo de caudales de diseño							
Descripción Simbologia Resultado							
P. futura	Pf	578 hab.					
Q. max. diario	Qmd	0.700 l/s					
Q. max. Horario	Qmh	0.800 l/s					
Q. unitario	Qu	0.016 l/s					

CÁLCULO DE LA CÁMARA DE CAPTACIÓN

Cuadro 21. Periodo de diseño para el cálculo de la cámara de captación

Periodo de diseño en estructuras						
Componente Peridod de diseño						
Obras de captación	20 años					
Conduccion	10 a 20 años					
Reservorio	20 años					
Red principal	20 años					
Red secundaria	10 años					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 22. Dotación para el cálculo de la cámara de captación

	Dotación según el tipo de opció	ón tecnológica (l/hab x d)	
Región	Sin arrastre hidráulico (compostera y hoyo seco ventilado)	Con arrastre hidráulico (tanque septico mejorado)	
Costa	60	90	
Sierra	50	80	
Selva	70	100	

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 23. Coeficiente de rugosidad y coeficiente de descarga en orificios

Coeficiente de rugosidad ''Hanzen-Williams''									
Tipo de Material "C"									
Pvc	Pvc 150								

Coeficiente de descarga en orificios						
Tipo de orificio Cd						
Total. Sumergido	0.8					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 24. Coeficiente de variación diaria

Coeficiente de Variación diaria				
Dia Hor k1				
diaria	1.30			

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 25. Datos para el diseño hidráulico de la cámara de captación

1. Datos para el diseño:	Simbolo	Fórmula	Cálculo	Resultado
Caudal máximo época de lluvia	Qrm			2.810 l/s
Caudal mínimo época de estiaje	Qre			2.500 l/s
Población Actual	P _a			250 hab
Dotación	Dot			80.00 l/hab/dia
Tiempo de diseño	t			20 años
Coeficiente de crecimiento	r			6.54%
Población futura	$\mathbf{P_f}$	$Pf = Pa \cdot \left(1 + \frac{r \cdot t}{1000}\right)$	$Pf = 250 \text{ hab} \cdot \left(1 + \frac{6.54\% \cdot 20}{100}\right)$	578.00 hab
Caudal máximo	Qp			0.535 <i>V</i> s
Coeficiente de varia. diaria	K1			1.30
Caudal Maximo diario	Qmd	$Qmd = k1 \cdot Qm$	$Qmd = 1.30 \cdot 0.535$	0.7000 l/s
Coeficiente de descarga en orificios sumergidos	Cd			0.80
Perdida de carga para tuberia de rebose y limpia	Hf			1 %
Cota del afloramiento	C1			2822.1762 m.s.n.m

Tabla 22. Cálculo de la cota número 2

2 . Calculo de C2	Simbolo	Fórmula	Calculo	Resultado
Por consideraciones en diseños de sistemas de abastecimiento de agua potable en zonas rurales se considera una la altura de la camara humeda "Ht" de 0.5 a 2 mts por seguridad contra accidentes y facilidad de mantenimiento	Ht	se cons	idera una "Ht" de1.00 m	1.00 m
C2	C2	C2 = C1 - Ht	C2 = 2822.1762 - 1.00	2821.1762 m.s.n.m

Tabla 23. Cálculo de la distancia de afloramiento y la cámara húmeda

3 . Cálculo del la distancia del afloramiento y la cámara humedad	Simbolo	Fórmula	Cálculo	Resultado
Altura del afloramiento al orificio de entrada debe cumplir los siguientes parametros " $0.40 > H > 0.50$ "	Н	Se asume un H de 0.4	0 cumpliendo los parametros	0.40 m
Velocidad de paso del orificio	V	$V = \left(\frac{2g \cdot H}{1.56}\right)^{1/2}$	$V = \left(\frac{2(9.81) \cdot 0.40}{1.56}\right)^{1/2}$	2.243 m/s
La velocidad de paso del orificio debe cumplir los siguientes parametros cuando $V < 0.6 m/s$ se asume una velocidad de paso de $V = 0.50 m/s$				
Perdida de Carga en el orificio	hi	$hi = \frac{1.56 \cdot V^2}{2g}$	$hi = \frac{1.56 \cdot 0.50^{-2}}{2 \cdot 9.81}$	0.020 m
Pérdida de carga entre el afloramiento y el orifio de entrada	hf	hf = H - hi	hf = 0.40 -0.02	0.380 m
Distancia entre el punto de afloramiento y la cámara húmeda	L	$L = \frac{hf}{0.30}$	$L = \frac{0.38}{0.30}$	1.270 m

Tabla 24. Cálculo del ancho de la pantalla

4 . Cálculo del ancho de la pantalla	Simbolo	Fórmula	Cálculo	Resultado	
Tomando el mismo " $L=1.27$ m" del punto de afloramiento y de la pantalla húmeda, se calculara las velcidades de entrada "V3" y de salida "V2" teniendo en cuenta que la velocidad de entrada tiene " L " calculado = 1.27 m que cumplirel siguiente parametr' $\delta V2 < 0.60$ m/s" de noser haci se aumentara " L "					
Velocidad de salida	V3	$V_3 = \left(\frac{2g \cdot hi}{1.56}\right)^{1/2}$	$V_3 = \left(\frac{2(9.81) \cdot 0.020}{1.56}\right)^{1/2}$	0.502 m/s	
Velocidad de entrada	V2	$V_2 = \frac{V_3}{Cd}$	$V_2 = \frac{0.502}{0.80}$	0.627 m/s	
Evaluamos si cumple la condición "	0.627 <	2 0.60 m/s "No Cumple!	Se recalculara los datos anteriores asumiendo un "L" "L" =	1.30 m	
Pérdida de carga entre el afloramiento y el orifio de entrada	hf	$hf = L \cdot 0.3$	$hf = 1.30 \cdot 0.3$	0.390 m	
Pérdida de carga en el orificio	hi	hi = H - hf	hi = 0.40 - 0.39	0.010 m	
Velocidad de salida	V3	$V_3 = \left(\frac{2g \cdot hi}{1.56}\right)^{1/2}$	$V_3 = \left(\frac{2(9.81) \cdot 0.010}{1.56}\right)^{1/2}$	0.355 m	
Velocidad de entrada	V2	$V_2 = \frac{V_3}{Cd}$	$V_2 = \frac{0.35}{0.80}$	0.443 m	
Evaluamos si cumple la condición " 0.443 < 0.60 m/s" Cumple! Cumpliendo la condiciendo se pasara a cálcular los siguiendes datos					

Area del orificio	A2	$A_2 = \frac{\left(\frac{Q_{max}}{1000}\right)}{cd \cdot V_2}$	$A_2 = \frac{\left(\frac{2.81}{1000}\right)}{0.80 \cdot 0.443}$	0.0079 m2
Diametro del orificio	D	$D = \left(\frac{4 \cdot A}{\pi}\right)^{0.5}$	$D = \left(\frac{4 \cdot 0.0079}{\pi}\right)^{0.5}$	0.1004 m
Convertimos a pulgadas	1 m=	$= 39.37 \text{ pulg}$ $\frac{39.37p}{1m}$	oulg . 0.1004 m	3.399 pulg
			se redondea "D"	4 pulg
			diametro asumido ''D2''	2 pulg
Numero de orificios	NA	$NA = \left(\frac{D}{D_2}\right)^2 + 1$	$NA = \left(\frac{4}{2}\right)^2 + 1$	4.00 orificios
Ancho de la Pantalla	b	$b = 2(6 \cdot D) + NA \cdot D + 3D \cdot (NA - 1)$	$b = 2(6 \cdot 2) + 4 \cdot 2 + 3 \cdot 2 \cdot (4 - 1)$	50.00 pulg
Convertimos a metros	1 pul	$= 0.0254 \text{ mts}$ $\frac{0.0254}{1pulg}$	$\frac{m}{g}$ · 50.00 pulg	1.270 m
			se redondea "b"	\rightarrow b = 2.00 m

Tabla 25. Cálculo del cono de rebose

5 . Cálculo del cono de rebose	Simbolo	Fórmula	Cálculo	Resultado
Se considera una longitud "L" para tuberías de rebose en zonas rurales de 10 mts a 20 mts "L" asumido sera = 20.00 mts				
Cota de la altura de rebose	C_3	$C_3 = C_1 - H$	$C_3 = 2822.176 - 0.40$	2821.7762 m.s.n.m
Para poblaciones rurales el espesor de porque el recubrimiento para cimentaci ambos laterales				0.20 mts
Espesor de afirmado en el fondo de captación (solado)	e_{Af}			0.10 mts
Rugosidad del malterial "Pvc"	С			150
Cota de la tuberia de rebose	C_4	$C_4 = C_2 - (e_{C^0} - e_{AF})$	$C_4 = 2821.176 - (0.20 - 0.1)$	2821.0762 m.s.n.m
Pendiente de la tuberia de rebose	S			0.035
Diámetro del rebose	D	0.71 * Qmax ^{0.38} hf ^{0.21}	$\frac{0.71 * Qmax^{0.38}}{hf^{0.21}}$	1.97 pulg
se redondea "D" 2 pulg El cono de rebose sera 2 veces mayor al diámetro de la tubería de rebose $D = 4.00$ pu				

Tabla 26. Cálculo de la tubería de limpieza

6 . Cálculo de la tubería de limpieza	Simbolo	Fórmula	Cálculo	Resultado
Diámetro de la tubería de limpieza	D	$\frac{0.71 * Qmax^{0.38}}{hf^{0.21}}$	$\frac{0.71 * Qmax^{0.38}}{hf^{0.21}}$	2.77 pulg
			se asume un ''D''	2 pulg

Tabla 27. Cálculo de la tubería de conducción

7 . Cálculo de la tubería de conducción	Simbolo	Fórmula	Cálculo	Resultado
Para hallar el diámetro de la tubería de se calcula con la formula de Hazen y V		$Q = 0,2786 * C * D^0$		$\frac{\left(\frac{Qmd}{1000}\right)}{1786 * C * S^{0.54}}$
Diámetro de la tubería de conducción	D	$D = \left(\frac{\left(\frac{Qmd}{1000}\right)}{0.2786 * C * S^{0.54}}\right)^{0.38}$	$D = \left(\frac{\left(\frac{0.700}{1000}\right)}{0.2786 \cdot 150 \cdot 0.035^{0.54}}\right)^{0.38}$	0.0305 m
Convertimos a pulgadas	1 m=	$\begin{array}{c} 39.37 \text{ pulg} & \frac{39.37p}{1m} \end{array}$	-· ().().3().	1.200 pulg
			se redondea "D" Convertimos a cm	2 pulg D = 5.08 cm

Tabla 28. Cálculo de la canastilla

8. Cálculo de la canastilla	Simbolo	Fórmula	Cá	lculo	Resultado
Para el calculo del diámetro de la canastilla se cosiderara el doble del diámetro de la tuberia de conducción D_{can} asumido sera $2 \cdot D_{con}$ $D_{can} = 2 \cdot 2$ pulg 4.00 pulg					
Se recomienda que la Longitud de la canastilla "L" cumpla esta condición "3 $Dcon < L < 6 Dcon$ " $L = 3 \cdot D_{con}$ $L = 3 \cdot 2$ pulg \leftarrow 6.00 pulg					
		$L=6\cdot D_c$	$L = 6 \cdot 1$	2 pulg \Longrightarrow	12.00 pulg
		6.00 pulg < L <	(12.00 pulg '' L	. " asumido sera =	12.00 pulg
Convertimos a centimetros 1 pul = 2.54 cm $\frac{2.54 \text{ cm}}{1 \text{pulg}}$. 12.00					
Área de la Ranura					
Para el calculo del area de la ranura el $MINSA$ se considera el ancho " A_m " 7 mm y de largo " L_m " 5 mm					
DETALLE DE LA	RANURA 7 mm	Área de la Ran	ura	Ranura = 5.00 mm $7.00 \cdot 5.00 = 35.0$	0 mm2
5 mm	_	Convertimos a m^2	·	$A_{\rm r} = 0.0000350$	

Área de la canastilla	A_{c}	$A_c = 2 \cdot \frac{\pi \cdot D_{con}^2}{4}$	$A_c = \frac{\pi \cdot 0.0508^{\ 2}}{4}$	0.0020268 m
Área total de ranuras	A _t	$A_t = 2 \cdot A_C$	$A_t = 2 \cdot 0.002026$	0.00405 m
El valor de At no debe ser mayor al 50% del area lateral de la granada "Ag" Debe cumplir el siguiente parametro ► 1				
Asuimiendo el diametro de la granada "Dg" de 2 pulgadas hallamos el area $A_g = 0.5 \cdot D_g \cdot L \implies A_g = 0.5 \cdot 5.08 \cdot 30.0 \implies \text{Ag} = 76.20 \text{ cm} 2$				
$37.54 \text{ cm}2 \leq 38.10 \text{ cm}2$ Cumple!				
Número de Ranuras	Nr	$N_r = \frac{A_t}{A_r} + 1$	$N_r = \frac{0.00405 \text{ m}}{0.000035} + 1$	117.00 Und.

Tabla 29. Cálculo de la cámara húmeda

9 . Altura de la cámara húmeda	Simbolo	Fórmula		Cálculo		Resultado	
Para el cálculo del diámetro de la cámara húmeda se especifica las siguientes condiciones:							
Sedimentación de la arena	A					0.1000 m +	
Diámetro de la conducción	В					0.0508 m	
Altura de agua	H	altura de agua como minir	no es 30 cn	H asumido de	=	0.4000 m	
Borde linbe	E	se considera "E" de 20 cm	n a 30 cm	E asumido de	=	0.3000 m	
Desnivel minimo del ingreso de agua y afloramiento	D	se considera como minim	o 3 cm	D asumido de	=	0.0600 m	
				Total	=	0.91 m	
Altura de la cámara húmeda	Ht					1.00 m	

Tabla 30. Cálculo de la cota de conducción

10. Cálculo de la cota de conducción	Simbolo	Fórmula	Cálculo	Resultado
Cota de la tuberia de conducción	C6	C6 = C2 - A - B	C6 = 2821.176 - 0.10 - 0.0508	2821.0000 m.s.n.m

CÁLCULO HIDRÁULICO DE LA LÍNEA DE CONDUCCIÓN

Cuadro 26. Coeficiente de rugosidad "Hazen Williams" según el tipo de material de tubería

Coeficiente de Rugozidad de Hanzen-Williams:					
Material "C"					
Fierro fundido	100				
Concreto	110				
Acero	120				
Asbesto, cemento	140				
PVC 140 - 150					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 27. Presiones máximas en tuberías tipo PVC

Presiones máximas en tuberias PVC								
Tipo	po P. max de prueba P. max de trabajo							
5	50	35						
7.5	75	50						
10	105	70						
15	150	100						

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 28. Diámetros comerciales para tuberías de clase 10 de tipo PVC

Diámetros comerciales de clase 10 "PVC"							
diámetros exterior Espesor diámetro							
pulg	mm	mm	interior mm				
1	33	1.8	38.4				
1 1/2	48	2.0	44.4				
2	60	2.9	55.6				
2 1/2	73	3.5	67.8				
3	88.5	4.2	82.1				

Fuente: NTP 399.002: 2009 "Tuberías para agua fría con Presión"

Cuadro 29. Descripción de los datos que tendrá la línea de conducción

TRAMO	LONGITUD	COTAS		DIFERENCIA DE
		INICIAL	FINAL	COTAS
CAP CRP(01)	349	2,821.00	2,778.00	43.00
CRP(01) CRP(02)	881	2,778.00	2,728.00	50.00
CRP(02) CRP(03)	930	2,728.00	2,678.00	50.00
CRP(03) CRP(04)	231	2,678.00	2,628.00	50.00
CRP(04) RESERV	1048	2,628.00	2,553.00	75.00

Tabla 31. Cálculo hidráulico de la línea de conducción

TRAMO	Caudal Qmd (1/s g)	Longitud L (m) 3	COTA DI inic ia l (ms nm) 4	EL TERRENO Final (msnm) 5	Des nivel del terre no (m) 6	Pérdida Carga Unit dis po nible hf (m/m) 7	Diámetro D (Pulg.) 8	Ve lo c idad V (m/s g) 9	Perdida Carga Unitaria hf (m/m) 10	Perdida carga Tramo Hf (m) 11	COTA PI inicial (ms nm) 12	EZOMETRICA Final (ms nm) 13	P resión Final (m) 14
CAPCRP(01)	2.81	349.00	2,821.00	2,778.00	43.00	0.123	2.000	1.827	0.043	14.95	2,821.00	2,806.05	28.05
CRP (01) CRP (02)	2.81	881.00	2,778.00	2,728.00	50.00	0.057	2.000	1.827	0.043	37.74	2,778.00	2,740.26	12.26
CRP (02) CRP (03)	2.81	930.00	2,728.00	2,678.00	50.00	0.054	2.000	1.827	0.043	39.84	2,728.00	2,688.16	10.16
CRP (03) CRP (04)	2.81	231.00	2,678.00	2,628.00	50.00	0.216	2.000	1.869	0.043	9.90	2,678.00	2,668.10	40.10
CRP (04) RESER V	2.81	1,048.00	2,628.00	2,553.00	75.00	0.072	2.000	1.897	0.043	44.89	2,628.00	2,583.11	30.11

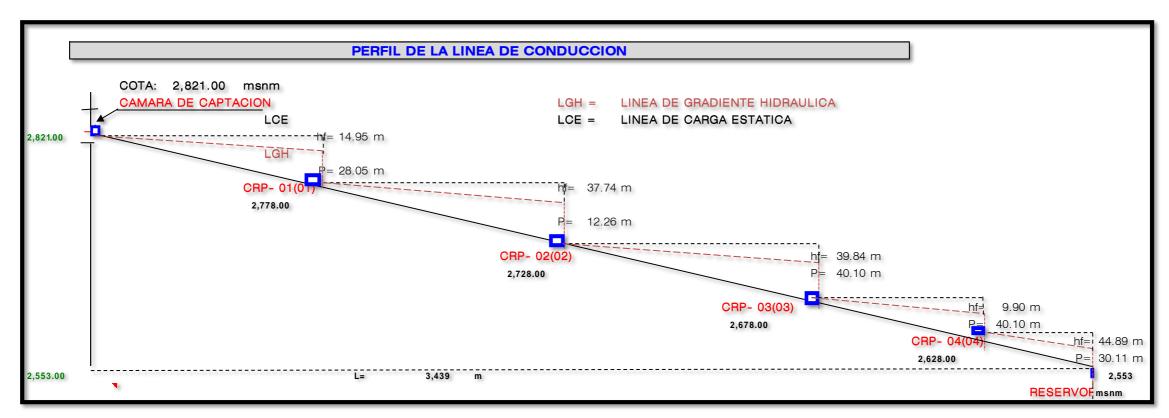


Gráfico 25. Esquema del diseño de la línea de conducción

Cuadro 30. Formular para el cálculo en la línea de conducción

Cuuro 30. Por murar para el carcuro en la rinea de conducción							
FORMULAS PARA LA LÍNEA DE CONDUCCIÓN							
NOMBRES DE FÓRMULAS	FÓRMULA ESTABLECIDAD	DESCRIPCIÓN DE FÓRMULA					
FÓRMULA DEL DIÁMETRO	$\mathbf{Q} = 0.2785 \cdot C^{2.63} \cdot \text{hf}^{0.54} \longrightarrow \text{Despejamos D}$ $\mathbf{D} = \left(\frac{Q}{0.2785 \cdot C \cdot \text{hf}^{0.54}}\right)^{\frac{1}{2.63}}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). hf = Pérdida unitaria. C = Coeficiente de rugosidad.					
FÓRMULA DEL CAUDAL	$\mathbf{Q} = 0.2785 \cdot \mathbf{C}^{2.63} \cdot \mathbf{hf}^{0.54}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). hf = Pérdida unitaria. C = Coeficiente de rugosidad.					
FÓRMULA PARA LA VELOCIDAD	$\mathbf{V} = \frac{\mathbf{Q}}{\mathbf{A}} \longrightarrow \mathbf{V} = \frac{\mathbf{Q}}{\frac{\mathbf{\pi} \cdot \mathbf{D}^2}{4}} \longrightarrow \mathbf{V} = \frac{4 \cdot \mathbf{Q}}{\mathbf{\pi} \cdot \mathbf{D}^2}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). V = Velocidad (m/s).					
FÓRMULA PARA LA PÉRDIDA UNITARIA	$\mathbf{Q} = 0.2785 \cdot \mathbf{C}^{2.63} \cdot \mathbf{hf}^{0.54} \longrightarrow \text{Despejamos hf}$ $\mathbf{hf} = \left(\frac{\mathbf{Q}}{0.2785 \cdot \mathbf{C} \cdot \mathbf{D}^{2.63}}\right)^{\frac{1}{0.54}}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). hf = Pérdida unitaria. C = Coeficiente de rugosidad.					
FÓRMULA PARA LA DISTANCIA X	$\mathbf{Hf} = \mathrm{hf1} \cdot (\mathrm{L} - \mathrm{X}) + \mathrm{hf2} \cdot \mathrm{X} \longrightarrow \mathrm{Despejamos} \ \mathrm{Hf}$ $\mathbf{X} = \frac{\mathrm{H_f} \cdot (\mathrm{hf_1} \cdot \mathrm{L})}{\mathrm{h_{f2}} - \mathrm{h_{f1}}}$	Donde: Hf = Pérdida por tramo (m). L = Longitud por tramo (m). hf1 = Pérdida unitaria 1 hf2 = Pérdida unitaria 2					
FÓRMULA PARA LA PÉRDIDA DE CARGA DE TRAMO	$\mathbf{Hf} = \mathrm{hf} \cdot \mathbf{L}$	Donde: Hf = Pérdida por tramo (m). L = Longitud por tramo (m)					

CÁLCULO HIDRÁULICO DEL RESERVORIO DE ALMACENAMIENTO

Cuadro 31. Periodo de diseño para el cálculo del reservorio

Periodo de diseño de estructuras						
Estructura "t"						
Reservorio 20 años						

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 32. Coeficiente de variación para el cálculo del reservorio

Coeficiente de Variación						
Complemento	''k''					
Horaria "k2"	2.00					
Diaria "k1"	1.30					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 33. Datos para el diseño hidráulico del reservorio de almacenamiento

1 . Datos para el diseño:	Simbolo	Fórmula	Cálculo	Resultado
Caudal máximo época de Iluvia	Qmax			2.810 l/s
Caudal máximo época de estiaje	Qmin			2.500 l/s
Población actual	Pa			250.00 hab
Población futura	Pf			578.00 hab
Caudal promedio anual	Qm			0.5352 l/s
Coeficiente de varia. diaria	K1			1.30
Coeficiente de varia. horaria	K2			2.00
Caudal Máximo diario	Qmd	$Qmd = k1 \cdot Qm$		0.700 l/s
Caudal Máximo horario	Qmh	$Qmh = k2 \cdot Qm$		0.800 l/s

Tabla 32. Cálculo del volumen del reservorio

2 . Cálculo del volumen del reservorio	Simbolo	Fórmula	Cálculo	Resultado				
La RM - 192 - 2018 VIVIENDA nos dice para el volumen de almacenamiento del reservorio debe ser el 25% de la demanda promedio diaria anual (Qprom). formula del volumen de regulación $V_{reg} = 25 \cdot Q_{prom} \cdot 86400 \cdot n/24$								
Volumen de regulación	Vrog	$V_{reg} = 0.25 * Q_{prom} * 86400 * n/24$	$V_{reg} = 0.25 \cdot 0.535 \cdot 86400 \cdot 24/24$	11560.00 litros				
n=Horas del suministro (n= 24h)	Vreg	Se convierte a m 3 V_{re}	$g = 11560.0 \ litros \cdot \frac{1m^3}{1000 \ litros}$	11.56 m3				
Volumen contra incendios	$\mathbf{V_i}$	Solo se considera a zonas co poblacional de mas de 2000 l	merciales e industriales con una demanda nabitantes	0.00 litros 0.00 m3				
Volumen de reserva el volumen de reserva es el 20% mas		$V_r = 0.2 \cdot V_{reg}$	$V_r = 0.2 \cdot 11560.0$	2312.00 litros				
del volumen de regulación para casos de emergencias o mantenimiento	Vr		Se convierte a m ³	2.31 m3				
		t reg t r	= 11560.00+ 0.00 + 2312.0	13872.00 litros				
Volumen total del reservorio	$\mathbf{V_t}$	en casos de emergencia, suspension ten fuente de abastecimiento y/o paralizacio lo cual asumiremos Volumen de almacen reserva de 5m	n parcial por	20.00 m3				

Tabla 33. Dimensionamiento del reservorio rectangular

3 . Dimensionamiento del reservorio rectangular	Simbolo	Fórmula	Cálculo	Resultado	
Ancho interno	b			3.00 m	
Largo interno	l			3.00 m	
Altura útil de agua	h	$h = \frac{V_t}{(b \cdot l)}$	$h = \frac{20.00 \text{ m}^3}{(3.00 \text{ m} \cdot 3.00 \text{ m})}$	2.25 m	
Distancia vertical eje salida y fondo reservorio	hi			0.30 m	
Altura total del agua	ha	ha = h + hi	ha = 2.25 + 0.30	2.55 m	
Relación del ancho de la base y la altura (b/h)	j	$j = \frac{b}{ha}$	$j = \frac{3.00 \text{ m}}{2.55 \text{ m}}$	1.18 m	
Distancia vertical techo reservorio y eje tubo de ingreso de agua	k			0.20 m	
Distancia vertical entre eje tubo de rebose y eje ingreso de agua	1			0.15 m	
Distancia vertical entre eje tubo de rebose y nivel maximo de agua	m			0.10 m	
Altura total interna	h	h = ha + (k + l + m)	h = 2.55 + (0.20 + 0.15 + 0.10)	3.00 m	

Tabla 34. Cálculo de los diámetros de las tuberías

4 . Cálculo de los diámetros de las tuberías	Simbolo	Fórmula	Resultado								
Tubería de entrada	Den	La tubería de entrada es igual a	2 pulg								
Tubería de salidad - Linea de Aducción''											
Para hallar el diámetro de la tubería de aducción se calcula con la formula de Hazen y Williams tomando el coeficiente máximo horario											
Pendiente	S	$S = \frac{Alt.agua}{Longitud}$	$S = \frac{2.55 \text{ m}}{3.00 \text{ m}}$	0.850740741							
Diámetro de la tuberia de salidad	$\mathbf{D}_{\mathrm{adu}}$	$D = \left(\frac{\left(\frac{Qmh}{1000}\right)}{0.2786 * C * S^{0.54}}\right)^{0.38}$	$D = \left(\frac{\left(\frac{0.800}{1000}\right)}{0.2786 \cdot 150 \cdot 0.850^{0.54}}\right)^{0.38}$	0.0167 m							
			1								
Tubería de rebose y cono de re	bose										
Como la tubería de entrada esR	esultado , p	para el rebose de considera un m	ayor diámetro así que asumimos D =	2.00 pulg							
Tubería de limpieza											
Diámetro de la tubería de limpieza	D	$\frac{0.71 * \text{Qmax}^{0.38}}{\text{hf}^{0.21}} \qquad \frac{0.71 * \text{Qm}d^{0.38}}{\text{hf}^{0.21}}$		1.63 pulg							
	se redondea "D" 2.00 pulg										

Diámetro de la tubería de rebose Dr Se considera el mismo diámetro que la tubería de limpieza												
El cono de rebose sera 2 veces mayor al diámetro de la tubería de rebose												
Tubería de desagüe	Tubería de desagüe											
Se considera el mismo diámetro de la tubería de limpieza $\mathbf{D_{de}} =$												
Tubería de Ventilación												
Según RNE en la OS 0.30 (5.2), el sis	stema de v	rentilación deberá permitir la circulación del aire en el reservo el caudal máximo de entrada o salida de agua	rio con una capa	cidad mayor que								
De acuerdo a lo qu	e nos esp	ecifica el reglamento, tomamos como referencia al $Q_{\it mh}$		0.800 l/s								
Ahora determinamos los números de o	orificios par	ra la ventilación asumiendo un diámetro de la tubería de ventilación	de $\mathbf{D}_{\mathrm{ve}} =$	2.00 pulg								
Número de orificios $N = \left(\frac{D_{adu}}{D_{ve}}\right)^2 \qquad N = \left(\frac{2.00}{0.800}\right)^2$												
Eso indica que se colocará 1 orificio de ventilación de 2.00 pulg de diámetro.												

Tabla 35. Cálculo del llenado y vaciado del reservorio

5 . Cálculo del llenado y vaciado del reservorio	Simbolo	Fórmula Cálculo		Resultado					
Tiempo de llenado del	T_{LL}	$T_{LL} = V_t \cdot 1000/Q_{md}$	$T_{LL} = 20.00 \cdot 1000 / 0.700$	28571.43 seg					
reservorio	I LL		Convirtiendo a horas el T_{LL}	7.9 horas					
Según RNE en la OS 0.30 (5.2) el diámetro de la tubería de desagüe deberá permitir un tiempo de vaciado 2h.									
Velocidad de defogue	$V_{ m df}$	es la misma veloc	idad de la tuberia de limpieza	0.95 m/s					
Caudal de defogue	$Q_{ m df}$	$Qdf = \frac{\pi \cdot D_{de}^{2} \cdot V_{df}}{4}$	$Qdf = \frac{\pi \cdot D_{de}^{2} \cdot V_{df}}{4}$	1.930 <i>V</i> s					
Tiempo de vaciado del reservorio T _{va}		$T_{va} = \frac{Vt}{Q_{df}}$	$T_{va} = \frac{Vt}{Q_{df}}$	7187.56 s					
			Convirtiendo a horas el T_{va}	2.0 horas					

Tabla 36. Cálculo de la canastilla en el reservorio

6 . Cálculo de la canastilla	Simbolo	Fórmula	Cálculo	Resultado
Para el cálculo del diámetro de la ca el doble del diámetro de la tubería d		cosiderara "D _{can} " sera 2 · D	D_{con} $D_{can} = 2 \cdot 1$	2.00 pulg
Se recomienda que la longitud de l esta condición "3 Dadue	a canastilla ' c. < L < 6 I	$I = 3 \cdot D$	$L = 3 \cdot 2.00 \text{ pulg}$ $L = 6 \cdot 2.00 \text{ pulg}$	3.00 pulg 6.00 pulg
		3.00 pulg < L < 1.00 pulg	< 6.00 pulg "L" asumido sera =	5.00 pulg
Convertimos a centimetros	1 pul = 2	$\frac{0.0254 \text{ cm}}{1 \text{pulg}}.$	5.00	13.000 cm
Área de la Ranura				
Para el cálculo del área de la ranu se considera el ancho "A _m " 7 mm		SA .	Ancho de la ranura = 7.00 mm	
"L _m " 5 mm	LA RANURA	Área de la Raur	Largo de la Ranura = 5.00 mm	
5 mm	7 mm	$A_r = a_r$ Convertimos a m ²	$A_r = 7.00 \cdot 5.00 = 35.00$ $A_r = 0.0000350$	0 mm2

Área de la canastilla	$\mathbf{A_c}$	$A_c = 2 \cdot \frac{\pi \cdot D_{adu}^2}{4}$	$A_c = \frac{\pi \cdot 0.0254^2}{4}$	0.00051 m						
Área total de ranuras	$\mathbf{A_t}$	$A_t = 2 \cdot A_C$	$A_t = 2 \cdot 0.00051$	0.001013 m						
El valor de At no debe ser mayor al 50% del area lateral de la granada "Ag" Debe cumplir el siguiente parametro At ≤ 50% del área late granada "Ag"										
Asuimiendo el diametro de la granada 2 pulgadas hallamos el area		$A_g = 0.5 \cdot D_g \cdot L$	$A_g = 0.5 \cdot 5.08 \cdot 13.00$ $Ag =$	33.02 cm2						
10.13 cm2 ≤ 16.51 cm2 Cumple!										
Número de Ranuras	Nr	$N_r = \frac{A_t}{A_r} + 1$	$N_r = \frac{0.001013}{0.000035} + 1$	30.00 Und.						

CÁLCULO HIDRÁULICO DE LA LÍNEA DE ADUCCIÓN Y RED DE DISTRIBUCIÓN

Para el cálculo de las tuberías que están trabajando a presión, se utilizará a Fórmula establecida por HAZEN y WILLIAMS, el cual se presenta a continuación:

$$Q = 0.0004264(C)(D^{2.63})(h_f^{0.54})$$

Donde:

C = Coeficiente de rugosidad

D = Diametro de la tuberia "pulg"

hf = Perdida de carga unitaria

 $Q = Caudal \ de \ conducci\'on$

Se realizará un análisis general de toda la línea (tramo por tramo) ya que se trata de una red de distribución siendo de esta forma poder verificar las presiones existentes en cada punto, de acuerdo a los criterios establecidos por Hazen y Williams, presentados en el siguiente cuadro:

Cuadro 34. Descripción de datos en la línea de aducción y red de distribución

TRAMO	No. HABITANTES POB. FUTURA POR TRAMOS	GASTOS POR TRAMO (I/sg)
A - B	18	0.025
B - C	18	0.025
C - D	18	0.025
D - E	12	0.017
E-F	18	0.025
E-G	24	0.033
D - H	0	0.000
H - I	12	0.017
I - J	18	0.025
I - K	42	0.058
C - L	0	0.000
L - M	54	0.075
A - N	_ 18	0.025
N - O	24	0.033
O - P	18	0.025
TO TAL	294	0.408

Tabla 37. Cálculo hidráulico de la línea de aducción y red de distribución

TRAMO	GA	STO	LONGITUD	DIAMEIRO	VELOC.	PER.DE	CARGA	COTA PIEZ	ZOMETRICA	COTA DE	L TERRENO	P	RESIO N
		/sg)				Unit.	Tramo	<u> </u>	snm)		snm)		(m)
	TRAMO	DISEÑO				hf	Hf	INICIAL	FINAL	INICIAL	FINAL	INICIAL	FINAL
(m)			(m)	(Pulg.)	(m/sg)	(0/00)	(m)						CUMPLE LA PRESION DE TUBERIA Y RNE
1	2	3	4	5	6	7	8	9	10	11	12	13	14
RESA	-	0.802	54.72	1	0.808	0.006	0.303	2,551.55	2551.25	2,551.55	2,549.00	0.00	1.55
A - B	0.025	0.233	443.02	1.00	0.614	0.019	8.385	2551.25	2542.86	2,549.00	2,524.00	2.25	18.86
В - С	0.025	0.208	200.80	1.00	0.411	0.026	5.260	2542.86	2537.60	2,524.00	2,485.00	18.86	52.60
C - CRP01	0.000	0.083	117.00	1.00	0.439	0.005	0.563	2,537.60	2537.04	2,485.00	2,474.00	52.60	63.04
CRP01 - D	0.025	0.142	265.15	1.00	0.497	0.013	3.403	2,474.00	2470.60	2,474.00	2,428.00	0.00	42.60
D - CRP02	0.000	0.017	30.00	0.75	0.800	0.015	0.437	2,470.60	2470.16	2,428.00	2,420.00	42.60	50.16
CRP02 - CRP03	0.008	0.017	149.00	0.75	0.700	0.000	0.057	2,420.00	2419.94	2,420.00	2,376.00	0.00	43.94
CRP03 - E	0.008	0.008	259.00	0.75	0.760	0.000	0.028	2,376.00	2375.97	2,376.00	2,356.00	0.00	19.97
D - H	0.000	0.100	131.59	0.75	1.200	0.027	3.595	2,470.60	2467.00	2,428.00	2,420.00	42.60	47.00
H - CRP04	0.000	0.100	20.00	0.75	1.600	0.027	0.546	2,467.00	2466.46	2,420.00	2,416.00	47.00	50.46
CRP04 - I	0.017	0.100	293.33	0.75	0.890	0.011	3.102	2,416.00	2412.90	2,416.00	2,401.00	0.00	11.90
I - J	0.025	0.025	148.49	0.75	0.760	0.001	0.121	2,412.90	2412.78	2,401.00	2,378.00	11.90	34.78
I - K	0.058	0.058	150.90	0.75	0.670	0.004	0.589	2,412.90	2412.31	2,401.00	2,376.00	11.90	36.31
C - L	0.000	0.075	141.93	0.75	0.677	0.001	0.204	2,537.60	2537.40	2,485.00	2,484.00	52.60	53.40
L - CRP05	0.042	0.075	116.16	0.75	0.750	0.006	0.721	2,537.40	2536.68	2,484.00	2,474.00	53.40	62.68
CRP05 - M	0.033	0.033	263.64	0.75	0.870	0.001	0.365	2,474.00	2473.63	2,474.00	2,440.00	0.00	33.63
A - N	0.025	0.083	370.70	0.75	1.300	0.008	2.798	2,551.25	2548.45	2,549.00	2,516.00	2.25	32.45
N - CRP06	0.033	0.058	253.00	0.75	1.400	0.004	0.987	2,548.45	2547.46	2,516.00	2,496.00	32.45	51.46
CRP06 - O	0.000	0.025	266.00	0.75	1.400	0.001	0.216	2,496.00	2495.78	2,496.00	2,476.00	0.00	19.78
O - CRP07	0.000	0.025	230.60	0.75	1.500	0.001	0.188	2,495.78	2495.60	2,476.00	2,450.00	19.78	45.60
CRP07 - P	0.025	0.025	118.45	0.75	1.700	0.001	0.096	2,450.00	2449.90	2,450.00	2,410.00	0.00	39.90

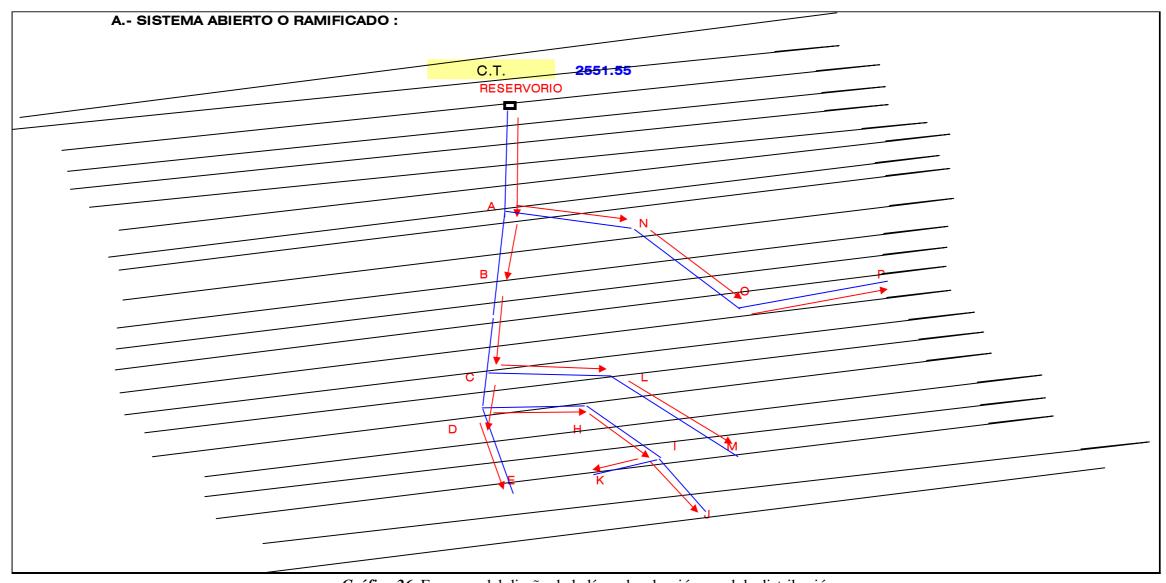


Gráfico 26. Esquema del diseño de la línea de aducción y red de distribución

CÁLCULO HIDRÁULICO DE LA CÁMARA ROMPE PRESIÓN TIPO 6

Tabla 38. Cálculo hidráulico de la cámara rompe presión tipo 6

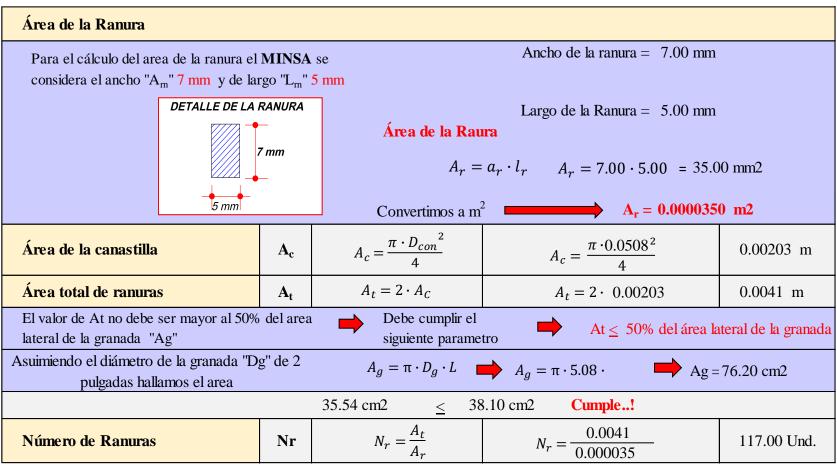

1 . Diseño de la CRP 6	Simbolo	Fórmula	Cálculo	Resultado
Caudal maximo diario	Qmd			0.7000 l/s
Diámetro de salida	Ds		Obtenido	2.00 pulg.
Velocidad de salida	V	$V_2 = 1.9735 \cdot \left(\frac{Qmd}{Ds^2}\right)$	$V_2 = 1.9735 \cdot \left(\frac{0.70}{2.00} \right)$	1.38 m/s
Gravedad	g			9.81 m/s^2
Altura de nivel de agua	Н	$h = 1.56 \cdot \frac{V^2}{2 \cdot g}$	$h = 1.56 \cdot \frac{1.38^{2}}{2 \cdot 9.81}$	0.15 m
Por porceso constructivo H sera				0.50 m
Altura mínima de salida	ra mínima de salida A		0.10 m	
Borde libre			0.40 m	
Altura total de camara húmeda			1.00 m	

Tabla 39. Cálculo de la tubería de rebose en la CRP6

2. Diseño del rebose	Simbolo	Fórmula	Cálculo	Resultado				
Perdida de carga unitaria (1 a 1.5 %)	hf			1.00 %				
Diámetro de tubería de rebose	Dr	$Dr = \frac{0.71 \cdot Qmd^{0.38}}{hf^{0.21}}$	$Dr = \frac{0.71 \cdot 0.70^{-0.38}}{1.00^{-0.21}}$	1.44 pulg				
Consideramos un diametro de la tubería de rebose de								
Diámetro del cono de rebose	Dcr	$Dr = 2 \cdot Dr$	$Dr = 2 \cdot 2.00$	4.00 pulg				

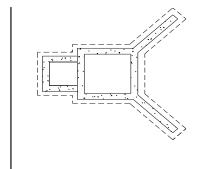
Tabla 40. Cálculo de la canastilla en la CRP6

3 . Cálculo de la canastilla	Simbolo	Fó	órmula	Cálculo	Cálculo	
Para el cálculo del diámetro de la canast doble del diámetro de la tuberia de condu	4.00 pulg					
Se recomienda que la Longitud de la ca esta condición "3 Dcon <	$L = 3 \cdot D_c$ $L = 6 \cdot D_c$	1 &	→	6.00 pulg 12.00 pulg		
			> L >	> "L" asumi	do sera =	12.00 pulg
Convertimos a centimetros	1 pul	= 2.54 cm	$\frac{0.0254\ cm}{1pulg}$	<u>.</u>		30.000 cm

Anexo 08: Metrados del sistema de abastecimiento de agua potable

Tabla 41. Metrado de la cámara de captación

Partida: 01.00.00	OBRAS PROVISIONALES								
Partida: 01.01.00	ALMACÉN OFICINA Y CASETA DE GUARDIANÍA	ALMACÉN OFICINA Y CASETA DE GUARDIANÍA Uni							
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial			
_	Habilitación de ambiente y/o alquiler para almacen y guardianía de								
	obra, se deberá habilitar un ambiente para almacén y supervisión de	1.00				1.00			
	obra.								
				M	letrado Total	1.00			
Partida: 01.02.00	TRANSPORTE DE EQUIPOS Y HERRAMIENTAS				Unidad	GLB.			
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial			
	L necesarias para la ejecución de las partidas dentro del Proceso constructivo de la Capatación.	1.00				1.00			
				M	letrado Total	1.00			
Partida: 01.03.00	CARTEL DE OBRA DE 3.60 X 2.40M.				Unidad	UND			
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial			
Cartel de obra	Cartel de obra con marco de madera tornillo y parantes de 4" x 4" - H = 5m, panel de gigantografia. El texto y ubicación se deberá coordinar con la supervisión.	1.00				1.00			
				M	letrado Total	1.00			


Partida: 02.00.0	CAPTACIÓN TIPO LADERA					
	TRABAJOS PRELIMINARES					
Partida: 02.01.0	I ELIMINACIÓN DE MALEZA				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
CAPATACION	AREA DEL LUGAR DE LA CAPTACION	1.00	6.85	6.70		45.90
		Į.		Met	rado Total	45.90
Partida: 02.01.0	2 LIMPIEZA DE TERRENO MANUAL				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
CAPATACION	AREA DEL LUGAR DE LA CAPTACION	1.00	6.85	6.70		45.90
				Met	rado Total	45.90
Partida: 02.01.0	TRAZO, NIVELACIÓN Y REPLANTEO				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
CAPATACION	AREA DEL LUGAR DE LA CAPTACION	1.00	6.85	6.70		45.90

Metrado Total

45.90

Partida: 02.02.00	MOVIMIENTO DE TIERRAS					
Partida: 02.02.01	CORTE MANUAL EN TERRENO NORMAL H=0,30M				Unidad	M2
	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
CAPATACION	Corresponde al corte manual de la proyección del área neta de la captación	1.00	6.85	6.70		45.90
		•		Met	rado Total	45.90
Partida: 02.02.02	EXCAVACION MANUAL P/ESTRUCTURAS EN TERRENO NORMAL				Unidad	M3
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	El metrado se computara el area en planta de la cimentacion mas 30cm en cada lado de la estructura para la olgura de los trabajos Cimientos de aletas de Captacion Cámara de Captación Cámara de valvulas uña de camara (viga VA) uña de camara (viga VA) uña de camara (viga VA) Área de filtro de grava solado	2.00 1.00 1.00 1.00 1.00 2.00		1.00 2.10 1.15 0.50 0.35 0.35 REA 3.64	0.95 0.65 0.65 0.35 0.20 0.20	2.72 1.98 0.82 0.30 0.12 0.21
	Sold o	1	0.75	1.10	0.10	0.08
	<u> </u>	_			trado Total	10.05
Partida: 02.02.03	RELLENO COMPACTADO C/EQUIPO MATERIAL DE PRESTAMO				Unidad	M3
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	Costado de cimientos de aletas costado de Cámara de Captación Costado Cámara de valvulas Frente Cámara de valvulas Relleno interior de cámara (debajo)	2.00 2.00 2.00 1.00 1.00	1.43 1.22 0.75 0.90 1.00	0.30 0.30 0.30 0.30 1.00	1.00 0.85 0.60 0.60 0.20	0.86 0.62 0.27 0.16 0.20
· · · · · · · · · · · · · · · · · · ·	1	•		Met	rado Total	2.11

Partida: 02.02.04	ACARREO Y ELIMINACIÓN MANUAL DE MAT. EXCEDENTE				Unidad	M3
Gráfico	Descripción	Cantidad	Largo	Ancho	Esp.	Metrado Parcial
	CORTE MANUAL EN TERRENO NORMAL H=0,30M	13.77				
	EXCAVACION MANUAL P/ESTRUCTURAS EN TERRENO NORMAL	10.05				
	D. D. W. V.	22.02		Esponj.		20.05
	PARCIAL (ESPONJAMIENTO 30%)	23.82		1.30		30.97
	(ESPONJAIMIENTO 50%)					
				Met	rado Total	30.97
Partida: 02.03.00	CONCRETO SIMPLE					
Partida: 02.03.01	SOLADOS e = 4"				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	Cámara de Captación	1.00	1.50	1.55		2.33
	Cámara de valvulas	1.00	1.10	0.75		0.83
	uña de camara (viga VA)	1.00	0.75	1.50		1.13
				Met	rado Total	4.28
Partida: 02.03.02	CONCRETO CICLOPEO 1:10 +30% P.G. PARA CIMIENTOS CORRIL	oos		Met	rado Total Unidad	4.28 M3
Partida: 02.03.02 Gráfico	CONCRETO CICLOPEO 1:10 +30% P.G. PARA CIMIENTOS CORRIL Descripción	OOS Cantidad	Largo	Met		
			Largo		Unidad	М3
			Largo		Unidad	М3
	Descripción	Cantidad		Ancho	Unidad Alto	M3 Metrado Parcial
	Descripción	Cantidad		Ancho	Unidad Alto	M3 Metrado Parcial
	Descripción	Cantidad		Ancho 0.40	Unidad Alto	M3 Metrado Parcial 0.57
Cráfico	Descripción Base de aletas	Cantidad		Ancho 0.40	Unidad Alto	M3 Metrado Parcial
Gráfico Partida: 02.04.00	Descripción Base de aletas CONCRETO ARMADO EN MUROS Y LOSAS	Cantidad		Ancho 0.40	Unidad Alto	M3 Metrado Parcial 0.57
Gráfico Partida: 02.04.00	Descripción Base de aletas	Cantidad		Ancho 0.40	Unidad Alto 0.50	M3 Metrado Parcial 0.57 0.57
Cráfico Partida: 02.04.00 Partida: 02.04.01	Descripción Base de aletas CONCRETO ARMADO EN MUROS Y LOSAS CONCRETO EN MUROS Y LOSAS F C= 210 KG/CM2	Cantidad 2.00	1.43	Ancho 0.40 Met	Unidad Alto 0.50 rado Total Unidad	M3 Metrado Parcial 0.57 0.57 M3
Cráfico Partida: 02.04.00 Partida: 02.04.01	Descripción Base de aletas CONCRETO ARMADO EN MUROS Y LOSAS CONCRETO EN MUROS Y LOSAS F C= 210 KG/CM2	Cantidad 2.00	1.43	Ancho 0.40 Met	Unidad Alto 0.50 rado Total Unidad	M3 Metrado Parcial 0.57 0.57 M3
Cráfico Partida: 02.04.00 Partida: 02.04.01	Descripción Base de aletas CONCRETO ARMADO EN MUROS Y LOSAS CONCRETO EN MUROS Y LOSAS F C= 210 KG/CM2 Descripción	Cantidad 2.00	1.43	Ancho 0.40 Met	Unidad Alto 0.50 rado Total Unidad Alto	M3 Metrado Parcial 0.57 0.57 M3
Cráfico Partida: 02.04.00 Partida: 02.04.01	Descripción Base de aletas CONCRETO ARMADO EN MUROS Y LOSAS CONCRETO EN MUROS Y LOSAS F C= 210 KG/CM2 Descripción MUROS VERTICALES ALETAS (forma trapezoidal)	Cantidad 2.00 Cantidad 2.00	1.43 Largo	Ancho 0.40 Met Ancho 0.15	Unidad Alto 0.50 rado Total Unidad Alto hprom. 1.33	M3 Metrado Parcial 0.57 0.57 M3 Metrado Parcial
Cráfico Partida: 02.04.00 Partida: 02.04.01	Descripción Base de aletas CONCRETO ARMADO EN MUROS Y LOSAS CONCRETO EN MUROS Y LOSAS F'C= 210 KG/CM2 Descripción MUROS VERTICALES	Cantidad 2.00 Cantidad	1.43	Ancho 0.40 Met	Unidad Alto 0.50 rado Total Unidad Alto hprom.	M3 Metrado Parcial 0.57 0.57 M3 Metrado Parcial

PAREDES-CAJA DE VALVULA	2.00	0.60	0.15	0.70	0.13
	1.00	0.90	0.15	0.70	0.09
LOSAS DE FONDO					
LOSA CAJA DE AGUA	1.00	1.50	1.45	0.15	0.33
LOSA-CAJA DE VALVULA	1.00	1.10	0.85	0.15	0.14
FONDO CIMIENTO CAJA DE AGUA					
uña	1.00	1.50	0.15	0.20	0.05
viga VA	1.00	1.50	0.30	0.50	0.23
LOSAS DE TECHO					
ZONA DE FILTRACION	1.00	2.71		0.15	0.41
LOSA CAJA DE AGUA	1.00	().64	0.10	0.06
LOSA-CAJA DE VALVULA 1.00		0.20		0.10	0.02
	ı		I		

				Met	rado Total	2.76
Partida: 02.04.02	ENCOFRADO Y DESENCOF MUROS Y LOSAS				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
•						
	MUROS VERTICALES				hprom.	
	ALETAS	4.00	1.30		1.33	6.89
		2.00	0.15		1.33	0.40
CAPATACION						
	PAREDES-CAJA DE AGUA					
	Exterior	2.00	1.30		1.15	2.99
	Exterior	2.00	1.20		1.15	2.76
	interior	4.00	1.00		1.15	4.60
	PAREDES-CAJA DE VALVULA					
	Exterior	1.00	0.90		0.70	0.63
		2.00	0.95		0.70	1.33
<u>~</u>	interior	3.00	0.60		0.70	1.26
	LOSAS DE FONDO					
	LOSA CAJA DE AGUA	2.00	1.50		0.15	0.45
		2.00	1.22		0.15	0.37
	LOSA-CAJA DE VALVULA	2.00	0.75		0.15	0.23
		1.00	1.10		0.15	0.17
	FONDO DE CIMIENTOS					

	cimiento de aletas	4.00	1.43		0.50	2.86
	viga VA	2.00 4.00	0.40 1.50		0.50 0.50	0.40 3.00
		4.00	1.55		0.35	2.17
	LOSAS DE TECHO					
	ZONA DE FILTRACION	1.00	,	 2.71		2.71
	LOSA CAJA DE AGUA	1.00		2.71).64		0.64
	LOSA-CAJA DE VALVULA	1.00		0.20		0.20
		ļ.		Met	rado Total	34.05
Partida: 02.04.03	ACERO FY= 4200 KG/CM2				Unidad	KG
Gráfico	Descripción	Cantidad	Largo	Ancho	Peso	Metrado Parcial
	VER PLANILLA DE METRADO DE ACERO	266.66				266.66
				Met	rado Total	266.66
	REVOQUES ENLUCIDOS Y MOLDURAS					2.52
Partida: 02.05.01	TARRAJEO CON IMPERMEABILIZANTE EN MUROS Y LOSAS		_		Unidad	M2
	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	MUROS VERTICALES				hprom.	
	ALETAS	2.00	1.30		1.33	3.45
		2.00	0.15		1.50	0.45
	PAREDES INTERIORES-CAJA DE AGUA	4.00	1.20		1.05	5.04
	(EN ZONA DE FILTRACION)	1.00	1.27		0.80	1.02
	(= - =	1.00	2.40		0.08	0.19
	DA DEDEC DIEDVODES CA LA DE VALLEY	4.00	0.60		0.70	1.60
1	PAREDES INTERIORES-CAJA DE VALVULA	4.00	0.60		0.70	1.68
		1 100	1.60		1 ()()()	0.12
CONTRACT CON	LOSAS DE FONDO	1.00	1.60		0.08	0.13
	LOSAS DE FONDO LOSA CAJA DE AGUA	1.00	1.60	1.20	0.08	0.13

LOSA-CAJA DE VALVULA	1.00	(0.30		0.30	
ZONA DE FILTRACION LOSA CAJA DE AGUA	1.00 1.00	1	3.64 1.44		3.64 1.44	
FONDO CIMIENTO CAJA DE AGUA viga VA LOSAS DE TECHO	1.00	1.70		0.65	1.11	

				Met	rado Total	20.24
Partida: 02.05	02 TARRAJEO EN EXTERIORES CON CEMENTO-ARENA				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	MUROS VERTICALES ALETAS	2.00	1.30		hprom. 1.33	3.45
TARRAJEO EXTERIOR	PAREDES EXTERIORES -CAJA DE AGUA	2.00 1.00 2.00	1.40 1.50 3.00		1.15 0.53 0.08	3.22 0.80 0.48
	PAREDES EXTERIORES -CAJA DE VALVULA	2.00 1.00 1.00	0.75 0.90 1.60		0.70 0.70 0.08	1.05 0.63 0.13
	LOSAS DE TECHO					
·	ZONA DE FILTRACION LOSA CAJA DE AGUA LOSA-CAJA DE VALVULA	1.00 1.00 1.00	2	1 3.64 2.25 0.30		3.64 2.25 0.30
	-			Met	rado Total	15.94

Partida: 0	02.06.00	PINTURA					
Partida: 0	02.06.01	PINTURA EN MUROS EXTERIORES CON ESMALTE				Unidad	M2
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
		MUROS VERTICALES ALETAS	2.00	1.30		hprom. 1.33	3.45
PINTURA CON ESMALTE		PAREDES EXTERIORES -CAJA DE AGUA	2.00 1.00 2.00	1.40 1.50 3.00		1.15 0.53 0.08	3.22 0.80 0.48
	PAREDES EXTERIORES -CAJA DE VALVULA	2.00 1.00 1.00	0.75 0.90 1.60		0.70 0.70 0.08	1.05 0.63 0.13	
		LOSAS DE TECHO					
		ZONA DE FILTRACION LOSA CAJA DE AGUA LOSA-CAJA DE VALVULA	1.00 1.00 1.00	2	 3.64 2.25 3.0 		3.64 2.25 0.30
					Met	rado Total	15.94
		TAPAS SANITARIAS					
	02.07.01	SUMINISTRO Y COLOC. DE TAPA SANITARIA METALICA DE (0.60				Unidad	UND
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Tapa metalica sanita (0.60x0.60 mts	aria)]	Corresponde a tapa sanitaria metalica .60x.60 mts con su respectivo dispositivo de seguridad	1				1.00
					Met	rado Total	1.00

Partida: 02.07.02	SUMINISTRO Y COLOC. DE TAPA SANITARIA METALICA DE (0.40	Unidad	UND			
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Tapa metalica sanitaria de (0.40x0.40 mts)	Corresponde a tapa sanitaria metalica de .40x.40 mts con su respectivo dispositivo de seguridad	1				1.00
<u> </u>						1.00

Partida: 02.08.00	FILTRO					
Partida: 02.08.01	FILTRO DE GRAVA				Unidad	М3
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Filtro de grava granulado Clasificado		1		.rea 2.71	1.50	4.07
Partida: 02.09.00	VÁLVULAS Y ACCESORIOS			Met	rado Total	4.07
	VALVULAS I ACCESORIOS VALVULA DEBRONCE 2" - ACCESORIOS				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Valvula de Compuerta	VALVULA DE BRONCE 2" - ACCESORIOS	1				1.00
				Met	rado Total	1.00
	CANASTILLA DE 4"				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Canastilla de salida D= 4"x40cm	CANASTILLA DE 4"	1				1.00
				Met	rado Total	1.00
	ACCESORIOS VARIOS					
	SISTEMA DE REBOSE Y LIMPIA				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
SISTEMA DE RESORE	SISTEMA DE REBOSE Y LIMPIA	1				1.00
				Met	rado Total	1.00

Tabla 42. Metrado de la línea de conducción

	LÍNEA DE CONDUCCIÓN					
	TRABAJOS PRELIMINARES					
Partida: 03.01.01	TRAZO Y REPLANTEO DE OBRA					M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
8	TRAZO DE TUBERÍA D=63MM DESDE LA CAPTACION HASTA RESERVORIO	1.00	3439.00			3439.00
				N	Metrado Total	3439.00
Partida: 03.01.02	NIVELACION DURANTE LA OBRA, PARA LINEAS DE CONDUCCION				Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	NIVELACION DURANTE LA OBRA, PARA LINEAS DE CONDUCCION DESDE LA CAPTACION HASTA RESERVORIO	1.00	3439.00			3439.00
				N	Aetrado Total	3439.00
Partida: 03.02.00	MOVIMIENTO DE TIERRAS					
Partida: 03.02.01	EXCAVACIÓN MANUAL DE ZANJA EN T/NORMAL(0.50x0.70)				Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	EXCA VACIÓN MANUAL DE ZANJA EN T/NORMAL(0.50x0.70) EN TERRENOS DE CULTIVO TUB. PVC - C10, D=2 PULG	1.00	3439.00			3439.00
				N	Aetrado Total	3439.00

Partida: 03.02.02	REFINE, NIVELACION DE FONDO DE ZANJA					M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
\$ f	REFINE,NIVELACION DE FONDO DE ZANJA EN TERRENOS DE CULTIVO TUB. PVC - C10, D=2 PULG	1.00	3439.00			3439.00
		ļ		N	Metrado Total	3439.00
Partida: 03.02.03	CAMA DE APOYO E=4" C/MAT. PROPIO ZARANDEADO				Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	CAMA DE APOYO E=4" C/MAT. PROPIO ZARANDEADO EN TERRENOS DE CULTIVO TUB. PVC - C10, D=2 PULG	1.00	3439.00			3439.00
				N	Aetrado Total	3439.00
	PRIMER RELLENO COMPACTADO DE ZANJA CON MAT. PROPIO ZARAN				Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
RIME	R RELLENO COMPACTADO DE ZANJA CON MAT. PROPIO ZARANDEADO 6 EN TERRENOS DE CULTIVO TUB. PVC - C10, D=2 PULG	e=0.30 m	3439.00			3439.00
					letrado Total	3439.00
	SEGUNDO RELLENO COMPACTADO DE ZANJA CON MAT. PROPIO ZAR				Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
SECUNI	OO RELLENO COMPACTADO DE ZANJA CON MAT. PROPIO ZARANDEADO EN TERRENOS DE CULTIVO TUB. PVC - C10, D=2 PULG	e=0.30 m	3439.00			3439.00
70				N	Aetrado Total	3439.00

Partida: 03.03.02	SUMINISTRO E INSTALACION DE TUBERIA PPR POLIPROPILENO C-10 2	Unidad	M			
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	SUMINISTRO E INSTALACION DE TUBERIA PPR POLIPROPILENO C-102 PULO	G. 1.00	3439.00			3439.00
~	<u> </u>			N	Metrado Total	3439.00
Partida: 03.04.00	ACCESORIOS					
Partida: 03.04.01	CODO DEPVC UF DE 22.5° - 2 PULG				Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	CODO DE PVC UF DE 22.5° - 2 PULG	7.00				7.00
	letrado Total	7.00				
	CODO DEPVC UF DE45° D=2PULG.				Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	CODO DE PVC UF DE 45° D= 2PULG.	7.00				7.00
				N	Aetrado Total	7.00

Partida: 03.04.02	CODO DEPVC UF DE90° - D=2PULG.					M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	CODO DE PVC UF DE 90° - D= 2PULG.	2.00				2.00
					letrado Total	2.00
Partida: 03.05.00 PRUEBAS HIDRAILICAS						
Partida: 03.05.01	PRUEBA HIDRAULICA Y DESINFECCION EN REDES DE AGUA				Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	PRUEBA HIDRAULICA Y DESINFECCION EN REDES DE AGUA	1.00	3439.00			3439.00
				N	letrado Total	3439.00

Tabla 43. Metrado de la cámara rompe presión tipo 6

Partida: 04.00.00 CAMARA ROMPE PRESION - LINEA CONDUCCION						
Partida: 04.01	TRABAJOS PRELIMINARES					
Partida: 04.01.01	TRAZO, NIVELACIÓN Y REPLANTEO					M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	CAMARA ROMPE PRESION SUB TOTAL NUMERO DE CAMARAS	1.00	1.50	1.50		2.25
				ľ	Metrado Total	9.00
Partida: 04.02	MOVIMIENTO DE TIERRAS					2100
Partida: 04.02.01	EXCAVACIÓN MANUAL EN TERRENO NORMAL				Unidad	МЗ
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
211	CAMARA SUB TOTAL NUMERO DE CAMARAS	1.00	1.50	1.50	1.35	3.04 3.04
				ľ	Metrado Total	12.15
Partida: 04.02.02	RELLENO MANUAL CON MATERIAL PROPIO				Unidad	M3
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
a.10	CAMARA ROMPE PRESION costado de camara sobre borde de losa costado de camara sobre borde de losa SUB TOTAL NUMERO DE CAMARAS	2.00 2.00 2.00 2.00 2.00	1.50 1.50 1.50 1.30	0.30 0.10 0.30 0.10	0.60 0.35 0.60 0.35	0.54 0.11 0.54 0.09 1.28
				I	Metrado Total	5.10

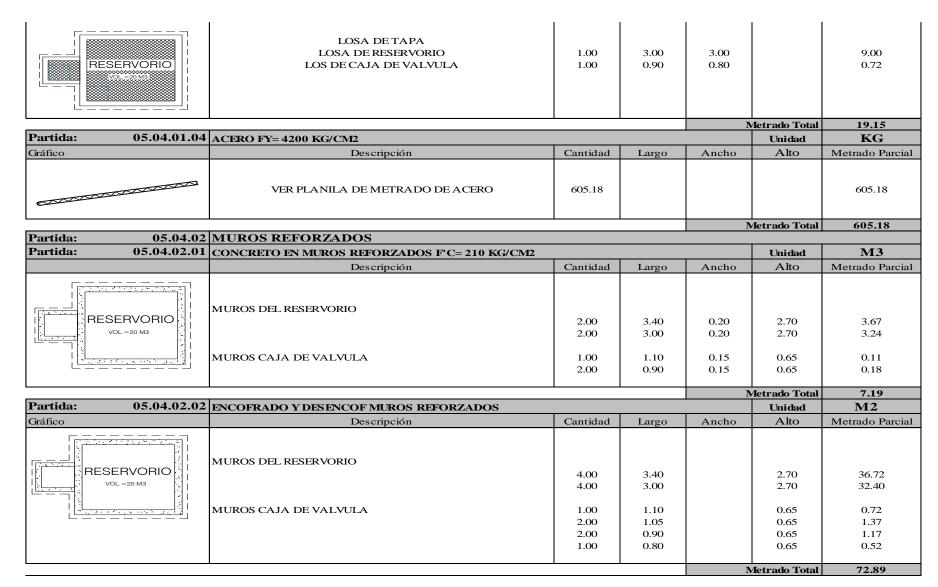
Partida: 04.02.03	ACARREO Y ELIMINACIÓN MANUAL DE MAT. EXCEDENTE					МЗ
Gráfico	Descripción	Cantidad	Largo	Ancho	Esp.	Metrado Parcial
E.	EXCA VACION MANUAL RELLENO MANUAL CON MATERIAL PROPIO SUB TOTAL (ESPONJAMIENTO 30%)					9.16
					Metrado Total	9.16
Partida: 04.03	CONCRETO SIMPLE					
Partida: 04.03.01	SOLADOS e = 4"				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Nivel agua	CAMARA ROMPE PRESION SUB TOTAL	1.00	1.30	1.30		1.69 1.69
	NUMERO DE CAMARAS	4.00				
					Metrado Total	6.76
Partida: 04.04					T	3.50
	CONCRETO FC=175 KG/CM2 - LOSA Y MURO	G (1.1.1	т	l A 1	Unidad	M3
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	MUROS CAMARA	2.00 2.00	1.30 1.30	0.15 0.15	1.10 1.10	0.43 0.43
1.10	LOSA DE FONDO CAMARA LOSA DE TECHO	1.00	1.30	1.30	0.15	0.25
.15 .10 .10 .10 .15	CAMARA SUB TOTAL	1.00	0.	 64 	0.15	0.10 1.21
	NUMERO DE CAMARAS	4.00				
					Metrado Total	4.83

Partida: 04.04.02	ENCOFRADO Y DESENCOFRADO MUROS Y LOSAS				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	MUROS					
	CAMARA	4.00	1.30		1.05	5.46
		4.00	1.30		1.05	5.46
1.10	LOSA DE FONDO					
	CAMARA	4.00	1.30		0.15	0.78
	LOSA DE TECHO					
.15 .10	CAMARA	1.00	0.	64 I		0.64
1.00 .15 10	SUB TOTAL					12.34
	NUMERO DE CAMARAS	4.00				
	NUIVIERO DE CAIVIARAS	4.00				
L					Metrado Total	49.36
Partida: 04.04.03	ACERO FY= 4200 KG/CM2				Unidad	KG
Gráfico	Descripción	Cantidad	Largo	Ancho	Peso	Metrado Parcial
	•					
	VER PLANILLA DE METRADO DE ACERO	122.80				122.80
	SUB TOTAL					122.80
	NUMERO DE CAMARAS	4.00				
					<u> </u>	407.20
D==# d=	DEVIOLUE ENLLICIDOS VIMOLDUDAS				Metrado Total	491.20
	REVOQUES ENLUCIDOS Y MOLDURAS TARRAJEO CON IMPERMEABILIZANTE EN MUROS Y LOSAS	S _ INTEDIOR			Unidad	M2
Gráfico 04.05.01	Descripción	Cantidad	Largo	Ancho	Alto	Mtz Metrado Parcial
Granco	Descripcion	Cantidad	Largo	Allello	Alto	Metrado Parcial
	MUROS					
.55	CAMARA					
		4.00	1.30		1.10	5.72
1,10	LOSA DE FONDO					
	CAMARA	1.00	1.30	1.30		1.69
	LOSA DE TECHO					
.15 .15	CAMARA	1.00	0.	64		0.64
1.00 1.5 1.00	SUB TOTAL					8.05
	NUMERO DE CAMARAS	4.00				
					1.0	
					Metrado Total	32.20

Partida: 0.05.0	TARRAJEO EN EXTERIORES CON CEMENTO-ARENA				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	MUROS CAMARA LOSA DE FONDO CAMARA LOSA DE TECHO CAMARA SUB TOTAL NUMERO DE CAMARAS		1.30	1.30	1.10	5.72 6.76 0.64 13.12
Metr						52.48

Partida: 04.06	ACCES ORIOS PARA CAMARAS ROMPE PRESION					
Partida: 04.06.01	SUMINISTRO E INST. ACCESORIOS CRP - LINEA DE CONDU	CCION			Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
TUB. REBOSE ENTRADA SALIDA B TUB. REBOSE	SUB TOTAL NUMERO DE CAMARAS					1.00
				N	Metrado Total	4.00

Tabla 44. Metrado del reservorio de almacenamiento


Partida:	05.00.00	RESERVORIO DE 20 M3					
Partida:	05.01.00	TRABAJOS PRELIMINARES					
Partida:	05.01.01	ELIMINACIÓN DE MALEZA				Unidad	M2
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
MEET-CHILD IK V-BIM NO		se calcula el area del reservorio en planta mas 50 cm para cada lado, con el objetivo a realizar los trabajos sin obstaculos	1	4.70	5.70		26.79
						Metrado Total	26.79
	05.01.02	LIMPIEZA DE TERRENO MANUAL			1	Unidad	M2
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
KIKPONO K V-NIO 40	<u>.</u>	se calcula el area del reservorio en planta mas 50 cm para cada lado, con el objetivo a realizar los trabajos sin obstaculos	1	4.70	5.70		26.79
					N	Aetrado Total	26.79
	05.01.03	TRAZO, NIVELACIÓN Y REPLANTEO				Unidad	M2
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
RESERVATION OF VISIGN NO		se calcula el area del reservorio en planta mas 50 cm para cada lado, con el objetivo a realizar los trabajos sin obstaculos	1	4.70	5.70		26.79
					N	Metrado Total	26.79

Caráfico Descripción Cantidad Largo Ancho Alto Metrado Parcial	Partida: 05.02.00	MOVIMIENTO DE TIERRAS					
See calcula el area del reservorio en planta mas 50 cm para cada lado, con el objetivo a realizar los trabajos sin obstaculos 1	Partida: 05.02.01	CORTE MANUAL EN TERRENO NORMAL H=0,30M				Unidad	M2
Indo, con el objetivo a realizar los trabajos sin obstaculos Metrado Total 26.79	Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Partida:	ESCENTRID BE V-6000 HD		1	4.70	5.70		26.79
Partida:			ļ			Metrado Total	26 79
Corresponde al area proyectada del Reservorio de 20 m3 3.70x3.70m, y de la caja de valvulas de 1.00x1.30m con una extención en los bordes de 0.50m para los trabajos de encofrados Volumen del reservorio 1 4.7 4.7 0.7 15.463 1.725							
Archo Corresponde al relleno con material de prestamo en los bordes de 20m3 Corresponde al relleno con material de prestamo en los bordes de 1.00x1.30m con una extención en los bordes de 0.50m para los trabajos de encofrados 1	Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Partida:	RESERVORIO	3.70x3.70m, y de la caja de valvulas de 1.00x1.30m con una extención en los bordes de 0.50m para los trabajos de encofrados Volumen del reservorio					
Corresponde al relleno con material de prestamo en los bordes del reservorio de 20m3 2.00 4.70 0.50 0.70 3.29			1		N	Metrado Total	17.19
Corresponde al relleno con material de prestamo en los bordes del reservorio de 20m3 Volumen del reservorio 2.00 4.70 0.50 0.70 3.29 1.00 3.70 0.50 0.70 1.30 1.00 2.40 0.50 0.70 0.84 camara de valvula 1.00 2.30 0.50 0.50 0.50 0.58 1.00 1.00 0.50 0.50 0.25	Partida: 05.02.03	RELLENO COMPACTADO C/EQUIPO MATERIAL DE PRESTA	AMO			Unidad	M3
RESERVORIO Volumen del reservorio 2.00 4.70 0.50 0.70 3.29	Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Matrodo Total 6.25	RESERVORIO	en los bordes del reservorio de 20m3 Volumen del reservorio	1.00 1.00 1.00	3.70 2.40 2.30	0.50 0.50 0.50	0.70 0.70 0.50	1.30 0.84 0.58
						Metrado Total	6.25

Partida:	05.02.04	ACARREO Y ELIMINACIÓN MANUAL DE MAT. EXCEDENTE				Unidad	M3
Gráfico		Descripción	Cantidad	Largo	Ancho	Esp.	Metrado Parcial
		CORTE MANUAL EN TERRENO NORMAL H=0,30M EXCAVACION MANUAL P/ESTRUCTURAS EN TERRENO NOR			Esponj.		22.50
		PARCIAL (ESPONJAMIENTO 30%)	25.23		1.30		32.79
					N	letrado Total	32.79
Partida:	05.02.05	ELIMINACION MATERIAL EXCEDENTE EN CARRETILLA (501				Unidad	M3
Gráfico		Descripción	Cantidad	Largo	Ancho	Esp.	Metrado Parcial
De la	Š.	SIMILAR A: ACARREO Y ELIMINACIÓN MANUAL DE MAT. EXCEDENTE	32.79				32.79
			letrado Total	32.79			
Partida:	05.02.06	BASE GRANULAR E=0.15M PISOS Y LOSAS				Unidad	M3
Gráfico		Descripción	Cantidad	Largo	Ancho	Esp.	Metrado Parcial
		AREA PROYECTADA DE LOSA DE RESERVORIO AREA PROYECTADA DE LOSA DE CAJA DE VALVULA	1 1	3.90 1.30	3.90 1.10		15.21 1.43
			•		N	letrado Total	16.64
Partida:		CONCRETO SIMPLE					
Partida:		SOLADOS					
Partida:	05.03.01.01	SOLADOS e = 4"				Unidad	M2
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	Sager .	AREA PROYECTADA DE LOSA DE RESERVORIO AREA PROYECTADA DE LOSA DE CAJA DE VALVULA	1 1	3.90 1.30	3.90 1.10		15.21 1.43
					N	letrado Total	16.64

Partida: 05.04.0	CONCRETO ARMADO					
Partida: 05.04.0	LOSAS MACIZAS					
Partida: 05.04.01.0	CONCRETO EN LOSAS DE FONDO F'C=210 KG/CM2				Unidad	M3
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
RESERVORIO	LOSA DE RESERVORIO UÑAS DE CIMENTACION LOS DE CAJA DE VALVULA	1.00 2.00 2.00 1.00	3.70 3.70 2.25	3.70 0.75 0.75 1.30	0.20 0.20 0.20 0.20	2.74 1.11 0.68 0.20
				N	Ietrado Total	4.72

Partida: 05.04.01.02	CONCRETO EN LOSA DE TAPA FC = 210 KG/CM2				Unidad	M3
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
RESERVORIO VOL. = 20 M3	LOSA DE RESERVORIO LOS DE CAJA DE VALVULA	1.00	3.00 1.10	3.00 1.05	0.15 0.15	1.35 0.17
				N	letrado Total	1.52
Partida: 05.04.01.03	ENCOFRADO Y DESENC. NORMAL DE LOSAS MACIZAS				Unidad	M2
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
RESERVORIO VOL=20 MS	LOSA DE FONDO LOSA DE RESERVORIO LOS DE CAJA DE VALVULA	4.00 2.00 2.00 1.00	3.70 1.20 1.00 1.30		0.50 0.50 0.25 0.25	7.40 1.20 0.50 0.33

Partida: 05.04.02.03	ACERO FY= 4200 KG/CM2				Unidad	KG		
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial		
	VER PLANILA DE METRADO DE ACERO	802.74				802.74		
				N	letrado Total	802.74		
Partida: 05.05.00 REVOQUES ENLUCIDOS Y MOLDURAS								
Partida: 05.05.01	TARRAJEO CON IMPERMEABILIZANTE EN MUROS Y LOSA				Unidad	M2		
	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial		
RESERVORIO	INTERIOR EN MUROS RESERVORIO INTERIOR EN LOSA Y TECHO RESERVORIO INTERIOR EN MUROS CAJA DE VÁLVULA INTERIOR EN LOSA Y TECHO CAJA DE VÁLVULA	4.00 2.00 2.00 1.00 2.00	3.00 3.00 0.90 0.80 0.80	3.00	2.70 0.65 0.65	32.40 18.00 1.17 0.52 1.44		
Partida: 05.05.02	TARRANDO EN ENTENDADES CON CERTIFICA A DENTA			N	Ietrado Total	53.53 M2		
1 at tida. 05.05.02	TARRAJEO EN EXTERIORES CON CEMENTO-ARENA Descripción	Cantidad	Largo	Ancho	Unidad Alto	Metrado Parcial		
RESERVORIO	EXTERIOR EN MUROS EXTERIOR EN LOSA DE TECHO EXTERIOR EN CAJA DE VÁLVULA EXTERIOR EN LOSA DE TECHO	4.00 1.00 2.00 1.00 1.00	3.40 3.40 1.05 1.10 1.10	3.40 1.05	2.70 0.65 0.65	36.72 11.56 1.37 0.72 1.16		
	<u> </u>	ı		N	Aetrado Total	51.52		

Partida: 05.06	00 TAPAS SANITARIAS					
	01 SUMINISTRO Y COLOC. DE TAPA METALICA SANITARI	A (0.60 x 0.60)	C/DISP. SEC	GURIDAD	Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Tapa metalica sanitaria (0.60x0.60 mts)		2				2.00
Partida: 05.07	ON WALVILLAG ACCESODIO V SISTEMA DE CLO	DACION		l N	Metrado Total	2.00
	00 VALVULAS, ACCESORIO Y SISTEMA DE CLO 01 VALVULA COMPUERTA DE BRONCEROS CADA DE 2'' +				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Zalyuja des	Descripcion	3	Largo	rmeno	7120	3.00
						3.00
Partida: 05.07	02 VALVULA BRONCE 1"				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Valvula dea		1				1.00
				N	Metrado Total	1.00
	O3 CANASTILLA DE 11/2"				Unidad	UND
Gráfico Canastilla	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Te 2"x40cm		1				1.00
						1.00
	04 ACCESORIOS PVC				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
		1				1.00
				N	Metrado Total	1.00

Partida: 05.07.05	SISTEMA DE REBOSE Y LIMPIA				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
SISTEMA DE REBOSE		1				1.00
				N	Metrado Total	1.00
Partida: 05.07.06	SISTEMA DE CLORACION				Unidad	GLB
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial

1.00

1.00

Metrado Total

el sistema de cloracion esta compuesto por un tanque de 250lts mas su caseta de proteccion compuesto de malla olimpica Nº.10

sostenido por tubos FN.1/4" y techo de calamina

Partida:	05.08.00	PINTURA					
Partida:	05.08.01	PINTURA EN MUROS EXTERIORES CON ESMALTE				Unidad	M2
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
RESERV	/ORIO	SIMILAR A : TARRAJEO EN EXTERIORES CON CEMENTO-ARENA	51.52				51.52
					N	Metrado Total	51.52

Tabla 45. Metrado de la línea de aducción y red de distribución

Partida:		ADUCCIÓN Y RED DE DISTRIBUCION - AG	UA				
Partida:	06.01.00	TRABAJOS PRELIMINARES					
Partida:	06.01.01	TRAZO, NIVELACION Y REPLANTEO DE REDES DE A	GUA			Unidad	M
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	16						
	/://	TUBERÍA PVC, C-10 D=1"	1.00	54.72			54.72
	///		1.00	310.27			310.27
			1.00	187.47			187.47
			1.00	200.80			200.80
///			1.00	68.87			68.87
8/			1.00	151.43			151.43
			1.00	104.96			104.96
			1.00	39.93			39.93
				1,025.97			
		RED DE DISTRIBUCION					
		TUB. PVC, C-10 D=3/4",	1.00	101.20			101.20
			1.00	53.98			53.98
			1.00	138.24			138.24
			1.00	66.26			66.26
			1.00	404.21			404.21
			1.00	116.82			116.82
			1.00	117.08			117.08
			1.00	62.58			62.58
			1.00	31.31			31.31
			1.00	48.04			48.04
			1.00	344.41			344.41
			1.00	35.39			35.39
			1.00	131.59			131.59

		1.00 1.00 1.00 1.00 1.00	88.61 41.27 50.11 280.90 150.90			88.61 41.27 50.11 280.90 150.90
		1.00	231.12			231.12
		1.00	92.35			92.35
		1.00	86.62			86.62
<i>*</i>		1.00	53.50			53.50
			2 225 54			
			2,327.74	7	Metrado Total	3,353.71
Partida: 06.01.02	NINTEL A CHON DUD ANTEEL A ODDA DADA DED DE DICTDID	LICION		I I	Unidad	3,353.71 M
Gráfico 06.01.02	NIVELACION DURANTE LA OBRA, PARA RED DE DISTRIB Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
Graneo	Descripcion	Cuirtidad	Largo	Tineno	TIRO	Weilado Fareiai
	SIMILAR A					
	TRAZO, NIVELACION Y REPLANTEO DE REDES DE AGUA					
	TUBERÍA PVC, C-10 D=1"	1.00	1025.97			1025.97
	TUB. PVC, C-10 D=3/4",	1.00	2327.74			2327.74
I					Metrado Total	3353.71
Partida: 06.02.00	MOVIMIENTO DE TIERRAS			1	Acti ado Total	3333.71
	EXCAVACIÓN MANUAL DE ZANJA EN T/NORMAL(0.50x0.	70)			Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	TUBERÍA PVC, C-10 D=1"	1.00	1025.97			1025.97
	RED DE DISTRIBUCION TUB. PVC, C-10 D=3/4",	1.00	2327.74			2327.74
1	ı		'	Ŋ	Metrado Total	3353.71

Gráfico	Descripción	Cantidad	Largo	A1	A 14	
			Luigo	Ancho	Alto	Metrado Parcial
	TUBERÍA PVC, C-10 D=1" RED DE DISTRIBUCION TUB. PVC, C-10 D=3/4",	1.00	1025.97 2327.74		Metrado Total	1025.97 2327.74 3353.71

Partida: 06.02.03	CAMA DE APOYO E=4" C/MAT. PROPIO ZARANDEADO				Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	TUBERIA PVC, C-10 D=1" RED DE DISTRIBUCION TUB. PVC, C-10 D=3/4"	1.00	1025.97 2327.74			1025.97 2327.74
				N	Metrado Total	3353.71
Partida: 06.02.04	PRIMER RELLENO COMPACTADO DE ZANJA CON MAT. I	PROPIO ZAR	ANDEADO e=	=0.30 m	Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
135	TUBERIA PVC, C-10 D=1"	1.00	1025.97			1025.97
	RED DE DISTRIBUCION TUB. PVC, C-10 D=3/4"	1.00	2327.74			2327.74

Metrado Total

3353.71

Partida:	06.02.05	SEGUNDO RELLENO COMPACTADO DE ZANJA CON MAT	. PROPIO ZA	RANDEADO	e=0.30 m	Unidad	M
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
		TUBERIA PVC, C-10 D=1"	1.00	1025.97			1025.97
		RED DE DISTRIBUCION TUB. PVC, C-10 D=3/4"	1.00	2327.74			2327.74
		,			I	Metrado Total	3353.71
Partida:		SUMINISTRO E INSTALACIÓN DE TUBERIAS					
Partida:	06.03.01	TUBERIA PVC SAP CLASE 10 -DN= 33MM + 2% DESPERDI	CIOS			Unidad	M
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
		TUBERIA PVC SAP CLASE 10 -DN= 33MM + 2% DESPERDICIOS	1.00	1025.97			1025.97
			•	•	ľ	Metrado Total	1025.97
Partida:	06.03.02	TUBERIA PVC SAP CLASE 10 - 3/4" + 2% DESPERDICIOS				Unidad	M
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	<u> </u>	TUBERIA PVC SAP CLASE 10 - 3/4" + 2% DESPERDICIOS	1.00	2327.74			2327.74
		•	-		I	Metrado Total	2327.74
Partida:	06.04.00	INSTALACIONES DE ACCESORIOS					
Partida:	06.04.01	CODO PVC SAP C-10, 1" X 22.5°				Unidad	UND
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
		CODO PVC SAP C-10, 1" X 22.5°	4				4.00
					I I	Metrado Total	4.00

Partida:	06.04.02	CODO PVC SAP C-10, 1" X 45°				Unidad	UND
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
		CODO PVC SAP C-10, 1" X 45°	2				2.00
	L				1	Metrado Total	2.00
Partida:	06.04.03	CODO PVC SAP C-10, 3/4" X 45°			<u>'</u>	Unidad	UND
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
		CODO PVC SAP C-10, 3/4" X 45°	7				7.00
					1	Metrado Total	7.00
Partida:	06.04.04	CODO PVC SAP C-10, 3/4" X 22.5°				Unidad	UND
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
		CODO PVC SAP C-10, 3/4" X 22.5°	12				12.00
]	Metrado Total	12.00
Partida:	06.04.05	YEE PVC SAP C-10, 3/4"				Unidad	UND
Gráfico		Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
		YEE PVC SAP C-10, 3/4"	1				1.00
]	Metrado Total	1.00

Partida: 06.04.06	5 TEE PVC SAP C-10, 1" X 1"				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	TEE PVC SAP C-10, 1" X 1"	10				10.00
				N	Metrado Total	10.00

Partida: 06.04.07	TEEPVC SAP C-10, 3/4" X 3/4"				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	TEE PVC SAP C-10, 3/4" X 3/4"	21				21.00
				N	Metrado Total	21.00
Partida: 06.04.08	REDUCCION PVC SAP C-10 DE 1" A 3/4"				Unidad	UND
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	REDUCCION PVC SAP C-10 DE 1" A 3/4"	4				4.00
				N	Metrado Total	4.00
Partida: 06.05.00	PRUEBAS HIDRAULICAS					
Partida: 06.05.01	PRUEBA HIDRAULICA Y DESINFECCION EN REDES DE AGU	J A			Unidad	M
Gráfico	Descripción	Cantidad	Largo	Ancho	Alto	Metrado Parcial
	LONGITUD DE TUBERIAS FUBERIA PVC SAP CLASE 10 - DN= 33MM + 2% DESPERDICIOS TUBERIA PVC SAP CLASE 10 - 3/4" + 2% DESPERDICIOS	1.00 1.00	1025.97 2327.74			1025.97 2327.74
	-			N	Metrado Total	3353.71

Anexo 09: Costos y presupuestos

Tabla 46. Costos y presupuestos

Presupuesto	13 0 10 0 6	DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE DISTRITO DE CABANA, PROVINCIA DE PALLAS EN LA CONDICIÓN SANITARIA DE LA POBLACIÓ	CA, REG	JIÓN ANCASH		
Subpresupue	001	S IS TEMA DE AGUA POTABLE DEL CASERIO LA	FLORID	A		
Cliente Lugar	ANCASH	- PALLASCA - CABANA			Costo al	14/06/2021
It e m	Descripcio		Und.	Metrado	Precio S/	Parcial S/
01	_					
01.01		ROVISIONALES	CLD	1.00	2 000 00	5,962.08
01.01		OFICINA Y CASETA DE GUARDIANÍA RTE DE EQUIPOS Y HERRAMIENTAS	GLB GLB	1.00	2,000.00 3,000.00	2,000.00 3,000.00
01.02		E OBRA DE 3.60 X 2.40 M.	UND	1.00	962.08	962.08
			UND	1.00	902.08	902.08
02		ÓN TIPO LADERA				9,271.55
02.01		OS PRELIMINARES				147.34
02.01.01		ON DE MALEZA	m2	45.90	103	47.28
02.01.02		DE TERRENO MANUAL VELACIÓN Y REPLANTEO	m2	45.90	0.69	31.67
02.0103		NTO DE TIERRAS	m 2	45.90	1.49	68.39 776.80
02.02		NUALEN TERRENO NORMALH=0.30M	m2	45.90	5.15	236.39
02.02.01		ON MANUAL P / ESTRUCTURAS EN TERRENO NORMAL	m3	10.05	13.73	137.99
02.02.02		COMPACTADO C/EQUIPO MATERIAL DE PRESTAMO	m3	2.11	87.98	185.64
02.02.03		Y ELIMINACIÓN MANUAL DE MAT. EXCEDENTE	m3	30.97	7.00	216.79
02.02.04		TO SIMPLE	111.5	30.97	7.00	329.78
02.03	SOLADOS		m2	4.28	39.72	170.00
02.03.01		O 1:10 +30% P.G. PARA CIMIENTOS CORRIDOS	m3	0.57	280.32	159.78
02.03.02		TO ARMADO EN MUROS Y LOSAS	111.5	0.57	280.32	4,181.45
02.04.01		DEN MUROS YLOSAS F'C=210 KG/CM2	m3	2.76	461.14	1,272.75
02.04.02		DO Y DESENCOF MUROS Y LOSAS	m2	34.05	49.40	1,682.07
02.04.03		= 4200 KG/CM2	kg	266.66	4.60	1,226.64
02.05		ES ENLUCIDOS Y MOLDURAS		200.00	1.50	985.24
02.05.01		O CON IMPERMEABILIZANTE EN MUROS Y LOSAS	m2	20.24	30.69	621.17
02.05.02		EN EXTERIORES CON CEMENTO-ARENA	m2	15.94	22.84	364.07
02.06	PINTURA					129.75
02.06.01		N MUROS EXTERIORES CON ESMALTE	m2	15.94	8.14	129.75
02.07		ANITARIAS				380.00
02.07.01	TAPASAN	ITARIA MET. (0.60 x 0.60) C/DISP. SEGURIDAD	und	1.00	200.00	200.00
02.07.02	TAPASAN	ITARIA MET. (0.40 x 0.40) C/DISP. SEGURIDAD	und	1.00	180.00	180.00
02.08	FILTRO					546.36
02.08.01	FILTRO DE	GRAVA	m3	4.07	134.24	546.36
02.09	VA LVULA	S Y ACCESORIOS				249.22
02.09.01	VALVULA D	E BRONCE 2" Y ACCESORIOS	und	1.00	213.04	213.04
02.09.02	CANASTILI	LA DE 4"	und	1.00	36.18	36.18
02.10	ACCESOI	RIOS VARIOS				51.22
02.10.01	SISTEMAD	DE REBOSE Y LIMP IA	und	1.00	51.22	51.22
02.11	CERCO P	ERIMETRICO DE SEGURIDAD				1,494.39
02.11.01	EXCAVACI	ON MANUALEN TERRENO NORMAL	m3	1.13	13.73	15.51
02.11.02	DADO DE C	CONCRETO F'C= 140 Kg/cm ² P/AP OYO	und	9.00	72.81	655.29
02.11.03	CERCO DE	ALAMBRE PUAS GALVANIS ADO.NO.16 CON POSTES F°N°	m	25.10	20.86	523.59
02.11.04	SUMINISTR	O E INST.P UERTA METALICA DE 0.9 x 1.95 SEGUN DISEÑO	und	1.00	300.00	300.00
03	LINEA DE	CONDUCCION				174,664.06
03.01	TRABAJO	OS PRELIMINARES				4,573.87
03.01.01	TRAZO YR	EP LANTEO DE OBRA	m	3,439.00	1.04	3,576.56
03.01.02	NIVELACIÓ	N DURANTE LA OBRA, PARA LINEAS DE CONDUCCIÓN	m	3,439.00	0.29	997.31
03.02	MOVIMIE	NTO DE TIERRAS				118,198.43
03.02.01	EXCAVACI	ÓN MANUAL DE ZANJ A EN T/NORMAL(0.50x0.70)	m	3,439.00	13.50	46,426.50
03.02.02	REFINE, NI	VELACION DE FONDO DE ZANJA	m	3,439.00	2.10	7,221.90
03.02.03	CAMA DE	APOYO E=4" C/MAT. PROPIO ZARANDEADO	ML	3,439.00	5.06	17,401.34
03.02.04		ELLENO COMP ACTADO DE ZANJA CON MAT. PROPIO ADO e=0.30 m	m	3,439.00	7.64	26,273.96
03.02.05		RELLENO COMP ACTADO DE ZANJ A CON MAT. PROPIO ADO e=0.30 m	m	3,439.00	6.07	20,874.73
03.03 03.03.01		CRO E INSTALACIÓN DE TUBERIAS DE PVC-D=2PULG+2% DESPERDICIOS	ML	3,507.78	7.46	26,168.04 26,168.04
03.04	PRUEBAS	S HID RAULICAS				25,723.72
03.04.01	PRUEBA H	IDRAULICA Y DES INFECCION EN REDES DE AGUA	m	3,439.00	7.48	25,723.72

04	CÁMRA ROMPE PRESIÓN - CONDUCCIÓN				11,975.13
04.01	TRABAJOS PRELIMINARES				14.40
04.01.01	TRAZO, NIVELACIÓN Y REPLANTEO	m2	9.00	1.60	14.40
04.02	MOVIMIENTO DE TIERRAS				579.44
04.02.02	${\tt EXCAVACIONMANUALP/ESTRUCTURASENTERRENONORMAL}$	m3	12.15	30.01	364.62
04.02.03	RELLENO MANUAL CON MATERIAL PROPIO	m3	5.10	17.86	91.16
04.02.04	ACARREO YELIMNACION DE MATERIAL EXCEDENTE	m3	9.16	13.50	123.66
4.03	SOLADOS				268.51
04.03.01	SOLADOS e = 4"	m2	6.76	39.72	268.51
4.04	CONCRETO ARMADO				6,708.35
04.04.01	CONCRETO FC=210 KG/CM2 LOS AS YMUROS	m3	4.83	437.28	2,112.06
04.04.02	ENCOFRADO Y DESENCOFRADO NORMAL	m2	49.36	45.55	2,248.35
04.04.03	ACERO FY= 4200 KG/CM2	kg	491.20	4.78	2,347.94
04.05.	REVOQUES ENLUCIDOS Y MOLDURAS				2,943.84
04.05.01	TARRAJEO CON IMPERMEABILIZANTE EN MUROS Y LOSAS-	m2	32.20	42.79	1,377.84
04.05.02	TARRAJEO EN EXTERIORES CON CEMENTO-ARENA	m2	52.48	29.84	1,566.00
4.06	SUMINISTRO E INSTALACIÓN DE TUBERIAS				1,475.00
04.06.01	SUMINISTRO E INT. ACCESORIOS CRP - LINEA DE CONDUCCIÓN	Und	4.00	368.75	1,475.00
5	RESERVORIO DE 15.00 M3				17 260 62
5.01	TRABAJOS PRELIMINARES				17,369.62 160.47
05.01.01	ELIMINACION DE MALEZA	2	26.70	2.70	72.33
05.01.01		m2	26.79		
	LIMP IEZA DE TERRENO MANUAL	m2	26.79	169	45.28
05.01.03	TRAZO, NIVELACIÓN Y REPLANTEO	m2	26.79	160	42.86
5.02	MOVIMENTO DE TIERRAS	2	27.70	16.00	2,743.29
05.02.01	CORTE MANUALEN TERRENO NORMALH=0.30M	m2	26.79	16.88	452.22
05.02.02	EXCAVACION MANUAL P / ESTRUCTURAS EN TERRENO NORMAL	m3	17.19	38.58	663.19
05.02.03	RELLENO COMPACTADO C/EQUIPO MATERIAL DE PRESTAMO	m3	6.25	71.29	445.56
05.02.04	ACARREO Y ELIMNACION DE MATERIAL EXCEDENTE DINAX=30m	m3	32.79	17.21	564.32
05.02.05 05.02.06	ELMINACIÓN DE MATERIAL EXCEDENTE EN CARRETILLA (50 M) BASE GRANULAR E=0.15m. PISOS Y LOSAS	m3 m2	32.79 16.64	9.18 19.05	301.01 316.99
		1112	10.04	19.03	
5.03	CONCRETO SIMPLE			45.00	798.25
05.03.01	SOLADOS e = 4"	m2	16.64	45.08	798.25
5.04	CONCRETO ARMADO				17,369.62
05.04.01	LOS AS MACIZAS	_			6,876.22
05.04.01.01	CONCRETO EN LOSAS DE FONDO F'C=210 KG/CM2	m3	4.72	464.00	2,190.08
05.04.01.02	CONCRETO EN LOSA DE TAPA FC = 210 KG/CM2	m3	1.52	464.00	705.28
05.04.01.03	ENCOFRADO Y DESENC. NORMAL DE LOSAS MACIZAS	m2	19.15	56.82	1,088.10
05.04.01.04	ACEROFY = 4200 KG/CM2	kg	605.18	4.78	2,892.76
05.04.02	MUROS REFORZADOS				10,493.40
05.04.02.01	CONCRETO EN MUROS REFORZADOS F'C=210 KG/CM2	m3	7.19	464.00	3,336.16
05.04.02.02	ENCOFRADO Y DESENCOF MUROS REFORZADOS	m2	72.89	45.55	3,320.14
05.04.02.03	ACERO FY= 4200 KG/CM2	kg	802.74	4.78	3,837.10
5.05	REVOQUES ENLUCIDOS Y MOLDURAS				3,827.91
05.05.01	TARRAJEO CON IMPERMEABILIZANTE EN MUROS Y LOSAS- INTERIOR	m2	53.53	42.79	2,290.55
05.05.02	TARRAJEO EN EXTERIORES CON CEMENTO-ARENA	2	51.52	29.84	1527.26
5.06	TAPAS SANITARIAS	m2	31.32	29.04	1,537.36 500.00
05.06.01	TAP A SANITARIAS TAP A SANITARIA MET. (0.60 x 0.60) C/DISP. SEGURIDAD		2.00	250.00	
		und	2.00	250.00	500.00
5.07	VALVULAS, ACCESORIO Y SISTEMA DE CLORACION		2.00	100 45	4,260.12
05.07.01	VALVULA DE BRONCE 2" Y ACCESORIOS	und	3.00	128.65	385.95
05.07.02	VALVULA BRONCE 3" Y ACCESORIOS	und	1.00	85.65	85.65
05.07.03	CANASTILLA DE 4"	und	1.00	41.54	41.54
05.07.04	ACCESORIOS P VC	und	1.00	50.11	50.11
05.07.05	SISTEMA DE REBOSE Y LIMP IA	und	1.00	196.87	196.87
05.07.06	SISTEMA DE CLORACION	GLB	1.00	3,500.00	3,500.00
5.08	P IN TUR A				662.03
05.08.01	PINTURA EN MUROS EXTERIORES CON ESMALTE	m2	51.52	12.85	662.03
06	RED DE DISTRIBUCION - A GUA				83,894.098
06.01	TRABAJOS PRELIMINARES				4,460.43
	TRAZO , NIVELACIÓN Y REPLANTEO DE REDES DE AGUA	ML	3,353.71	1.04	3,487.86
06.01.01	TRILLO ,TRILLE IGEN TREI EMPLEO DE REDEU DE TIGOT				-,

06.02	MOVIMIENTO DE TIERRAS				62,010.10
06.02.01	EXCAVACIÓN MANUAL DE ZANJA EN T/NORMAL(0.50x0.70)	m	3,353.71	6.87	23,039.99
06.02.02	REFINE, NIVELACION DE FONDO DE ZANJ A	m	3,353.71	0.72	2,414.67
06.02.03	CAMA DE APOYO E=4" C/MAT. PROPIO ZARANDEADO	ML	3,353.71	2.08	6,975.72
06.02.04	PRIMER RELLENO COMPACTADO DE ZANJA CON MAT. PROPIO ZARANDEADO e=0.30 m	m	3,353.71	3.61	12,106.89
06.02.05		m	3,353.71	5.21	17,472.83
06.03	S UMINIS TRO E INSTALACIÓN DE TUBERIAS				9,707.04
06.03.05	TUBERIA P VC SAP,NTP ISO 399.002:2015, P N 10,D=1" +2%	ML	1046 40	3.15	
			1,046.49		3,296.44
06.03.06	TUBERIA P VC SAP,NTP ISO 399.002:2015, P N 10, D=3/4" +2%	m	2,374.29	2.70	6,410.60
06.04 06.04.01	INSTALACIONES DE ACCESORIOS CODO P VC SAP C-10, 1" X22.5°	und	4.00	8.46	405.44 33.84
06.04.02	CODO P VC SAP C-10, 1" X 45°	und	2.00	8.46	16.92
06.04.03	CODO P VC SAP C-10, 3/4" X 45°	und	7.00	7.96	55.72
06.04.04	CODO P VC SAP C-10, 3/4" X 22.5°	und	12.00	7.96	95.52
06.04.05	YEE P VC SAP C-10,3/4"	und	1.00	8.26	8.20
06.04.06 06.04.07	TEE P VC SAP C-10, 1" X 1" TEE P VC SAP C-10, 3/4" X 3/4"	und und	10.00 11.00	8.46 8.46	84.60 93.00
06.04.07	REDUCCION PVC SAP C-10, DE 1" A 3/4"	und	2.00	8.76	17.52
	P RUEBAS HIDRAILICAS				
06.05					7,311.09
06.05.01	P R UEB A HIDRAULICA Y DES INFECCION EN REDES DE AGUA	m	3,353.71	2.18	7,311.09
07	S E GURIDAD Y SALUD				11,395.26
07.01	EQUIP OS DE PROTECCIÓN INDIVIDUAL	und	1.00	10,946.90	10,946.90
07.02	SEÑALIZACIÓN TEMPORAL DE SEGURIDAD	und	1.00	761.28	761.2
07.03	RECURSOS PARA RESPUESTAS ANTE EMERGENCIAS EN SEGURIDA Y SALUD DURANTE EL TRABAJO	und	1.00	645.00	645.00
08	IMPLEMENTACIÓN DEL PLAN PARA PREVENCIÓN DE LA SALUD EN OBRAS ANTI COVID - 19				11,395.26
08.01	A CTIVIDAD DE PREVENCIÓN DEL COVI				18,033.36
	ELABORACIÓN DEL PLAN PARA VIGILANCIA, PREVENCIÓN DEL	GLB	1.00	1,200.00	1,200.00
8.01.01	COVID 19				
8.01.02	LIMP IEZA Y DES INFECCIÓN EN OBRA	mes	3.00	2,851.00	8,553.00
8.01.03	EVALUACIÓN DE LA CONDICIÓN DE SALUD DEL TRABAJ ADOR	PER	30.00	17.95	538.50
8.01.04	LAVADO Y DES INFIECCIÓN DE MANOS	mes	3.00	266.40	799.20
3.01.05	SENS BILIZACIÓN DE LA PREVENCIÓN DEL CONTAGIO COVID-19 EN OBRA	mes	1.00	464.24	464.24
3.01.06	MEDIDAS PREVENTIBAS COLECTIVAS	GLB	1.00	4,394.92	4,394.93
8.01.07	MEDIDAS DE PROTECCIÓN PERSONAL	mes	3.00	505.00	1,5 15 .00
3.01.08	DENTIFICACIÓN DE SISTEMATOLOGIA COVID - 19 AL INGRESAR A LA OBRA	und	30.00	17.95	538.50
3.01.09	VIGILANCIA DE LA SALUD DEL TRABAJADOR EN EL CONTEXTO DEL COVID - 19	und	30.00	1.00	30.00
08.02	EQUIPAMIENTO DE SEGURIDAD Y SALUD EN EL TRABAJO				14,649.25
3.02.01	EQUIP AMIENTO PARA VIGILANCIA DE SALUD	GLB	1.00	3,132.94	3,132.9
3.02.02	PROFESIONALES DE SEGURIDA Y SALUD	mes	3.00	3,838.77	11,5 16.3
09	FLETE TERRESTRE Y RURAL				57,320.60
09.01	FLETE TERRESTRE DE CHIMBOTE A PUNTA DE CARRETERRA	GLB	1.00	10,934.30	10,934.3
09.02	FLETE RURAL DE MATERIALES DE PUNTA DE CARRETERA - OBRA		1.00	18,451.30	18,451.3
09.03	FLETE RURAL DE AGREGADOS DE PUNTA DE CARRETERA-OBRA	LAT	5,587.00	5.00	27,935.0
10	CAPACITACION Y EDUCACION SANITARIA				5,509.00
10.01	CAP ACITACIÓN EN OPERACIÓN Y MANTENIMEINTO DE SISTEMA DE AGUA POTABLE	GLB	1.00	3,000.00	3,000.0
10.02	CAP ACITACION EN EDUCACION SANITARIA	GLB	1.00	2,509.00	2,509.00
	COSTO DIRECTO				388,756.60
	GASTOS GENERALES (15 %) UTILIDADES (10 %)				58,313.50 38,875.67
	PRESUPUESTO TOTAL DE OBRA CIVIL				485,945.82
	S UP ER VIS ION				23,000.00
	SUB TOTAL			=======	508,945.82
	IMP UES TO IGV (18%)				91,610.25

Anexo 10: Panel fotográfico

Imagen 1. Vista panorámica del caserío de Aija, distrito de Cabana, provincia de Pallasca, región Ancash.

Imagen 2. Fuente de captación en el caserío de Aija, distrito de Cabana, provincia de Pallasca, región Ancash.

Imagen 3. Recolección del suministro de agua potable por medio de una acequia, en el caserío Aija

Imagen 4. Pobladores del caserío Aija, realizando coordinaciones para la recolección del suministro de agua

Imagen 18. Realizando encuesta a los pobladores del caserío de Aija

Imagen 19. Levantamiento topográfico en la línea de conducción del caserío de Aija.

Anexo 11: Reglamentos aplicados en el diseño del sistema de abastecimiento de agua potable

MINISTERIO DE VIVIENDA CONSTRUCCIÓN Y SANEAMIENTO DIRECCIÓN DE SANEAMIENTO

DIRECCIÓN GENERAL DE POLÍTICAS Y REGULACIÓN EN CONSTRUCCIÓN Y SANEAMIENTO

NORMA TÉCNICA DE DISEÑO: OPCIONES TECNOLÓGICAS PARA SISTEMAS DE SANEAMIENTO EN EL ÁMBITO RURAL

Abril de 2018

PERIODO DE DISEÑO

1. CRITERIOS DE DISEÑO PARA SISTEMAS DE AGUA PARA CONSUMO HUMANO

1.1. Parámetros de diseño

a. Período de diseño

El período de diseño se determina considerando los siguientes factores:

- · Vida útil de las estructuras y equipos.
- Vulnerabilidad de la infraestructura sanitaria
- Crecimiento poblacional.
- Economía de escala

Como año cero del proyecto se considera la fecha de inicio de la recolección de información e inicio del proyecto, los períodos de diseño máximos para los sistemas de saneamiento deben ser los siguientes:

Tabla Nº 03.01. Periodos de diseño de infraestructura sanitaria

ESTRUCTURA	PERIODO DE DISEÑO
✓ Fuente de abastecimiento	20 años
✓ Obra de captación	20 años
✓ Pozos	20 años
✓ Planta de tratamiento de agua para consumo humano (PTAP)	20 años
Reservorio	20 años
✓ Líneas de conducción, aducción, impulsión y distribución	20 años
✓ Estación de bombeo	20 años
✓ Equipos de bombeo	10 años
√ Unidad Básica de Saneamiento (arrastre hidráulico, compostera y para zona Inundable	10 años
✓ Unidad Básica de Saneamiento (hoyo seco ventilado)	5 años

Fuente: Elaboración propia

POBLACIÓN FUTURA

b. Población de diseño

Para estimar la población futura o de diseño, se debe aplicar el método aritmético, según la siguiente formula:

$$P_d = P_i * (1 + \frac{r * t}{100})$$

Donde:

P_I: Población inicial (habitantes)

P_d : Población futura o de diseño (habitantes)

r : Tasa de crecimiento anual (%) t : Período de diseño (años)

Es importante indicar:

- ✓ La tasa de crecimiento anual debe corresponder a los períodos intercensales, de la localidad específica.
- ✓ En caso de no existir, se debe adoptar la tasa de otra población con características similares, o en su defecto, la tasa de crecimiento distrital rural.
- ✓ En caso, la tasa de crecimiento anual presente un valor negativo, se debe adoptar una población de diseño, similar a la actual (r = 0), caso contrario, se debe solicitar opinión al INEI.

DOTACIÓN

c. <u>Dotación</u>

La dotación es la cantidad de agua que satisface las necesidades diarias de consumo de cada integrante de una vivienda, su selección depende del tipo de opción tecnológica para la disposición sanitaria de excretas sea seleccionada y aprobada bajo los criterios establecidos en el Capítulo IV del presente documento, las dotaciones de agua según la opción tecnológica para la disposición sanitaria de excretas y la región en la cual se implemente son:

Tabla Nº 03.02. Dotación de agua según opción tecnológica y región (l/hab.d)

	DOTACIÓN SEGÚN TIPO DE OPCION TECNOLÓGICA (I/hab.d)		
REGIÓN	SIN ARRASTRE HIDRÁULICO (COMPOSTERA Y HOYO SECO VENTILADO)	CON ARRASTRE HIDRÁULICO (TANQUE SÉPTICO MEJORADO)	
COSTA	60	90	
SIERRA	50	80	
SELVA	70	100	

Fuente: Elaboración propia

Para el caso de piletas públicas se asume 30 l/hab.d. Para las instituciones educativas en zona rural debe emplearse la siguiente dotación:

Tabla Nº 03.03. Dotación de agua para centros educativos

DESCRIPCIÓN	DOTACIÓN (I/alumno.d)
Educación primaria e inferior (sin residencia)	20
Educación secundaria y superior (sin residencia)	25
Educación en general (con residencia)	50

Fuente: Elaboración propia

Dotación de agua para locales de salud			
Tipo de establecimiento	Dotación		
Hospitales y clínicas de hospitalización	600 lt/d x cama		
Consultorios medicos	500 lt/d x consultorio		
Clinicas dentales	100 lt/d x und. dental		

La dotación de agua para áreas verdes será de 2 L/d por m2. No se requerirá incluir áreas pavimentadas, enripiadas u otras no sembradas para los fines de esta dotación.

VARIACIONES DE CONSUMO

d. Variaciones de consumo

d.1. Consumo máximo diario (Q_{md})

Se debe considerar un valor de 1,3 del consumo promedio diario anual, \mathbf{Q}_{p} de este

modo:

$$Q_p = \frac{\text{Dot} \times P_d}{86400}$$

$$Q_{md} = 1.3 \times Q_p$$

Donde:

Q_p : Caudal promedio diario anual en l/s Q_{md} : Caudal máximo diario en l/s

Q_{md} : Caudal máximo diario Dot : Dotación en l/hab.d

P_d : Población de diseño en habitantes (hab)

d.2. Consumo máximo horario (Q_{mh})

Se debe considerar un valor de 2,0 del consumo promedio diario anual, Qp de este

$$\begin{aligned} Q_p &= \frac{Dot \times P_d}{86400} \\ Q_{mh} &= 2 \times Q_p \end{aligned}$$

Donde:

Q_p : Caudal promedio diario anual en l/s Q_{mh} : Caudal máximo horario en l/s

Dot : Dotación en l/hab.d

P_d : Población de diseño en habitantes (hab)

CÁMARA DE CAPTACIÓN

Determinación del ancho de la pantalla

Para determinar el ancho de la pantalla es necesario conocer el diámetro y el número de orificios que permitirán fluir el agua desde la zona de afloramiento hacia la cámara húmeda.

$$Q_{max} = V_2 \times C_d \times A$$

$$A = \frac{Q_{max}}{V_2 \times C_d}$$

Q_{max} : gasto máximo de la fuente (l/s)

C_d : coeficiente de descarga (valores entre 0.6 a 0.8)

g : aceleración de la gravedad (9.81 m/s²)

H : carga sobre el centro del orificio (valor entre 0.40m a 0.50m)

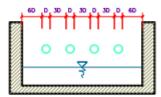
Cálculo de la velocidad de paso teórica (m/s):

$$V_{2t} = C_d \times \sqrt{2gH}$$

Velocidad de paso asumida: v_2 = 0.60 m/s (el valor máximo es 0.60m/s, en la entrada a la tubería)

Por otro lado:

$$D = \sqrt{\frac{4A}{\pi}}$$


Donde:

D : diámetro de la tubería de ingreso (m)

· Cálculo del número de orificios en la pantalla:

$$\begin{split} N_{ORIF} &= \frac{\dot{A}rea~del~diámetro~teórico}{\dot{A}rea~del~diámetro~asumido} + 1 \\ N_{ORIF} &= \left(\frac{Dt}{Da}\right)^2 + 1 \end{split}$$

Ilustración Nº 03.21. Determinación de ancho de la pantalla

Conocido el número de orificios y el diámetro de la tubería de entrada se calcula el ancho de la pantalla (b), mediante la siguiente ecuación:

$$b = 2 \times (6D) + N_{ORIF} \times D + 3D \times (N_{ORIF} - 1)$$

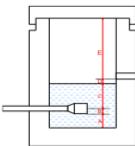
· Cálculo de la distancia entre el punto de afloramiento y la cámara húmeda

$$H_f = H - h_o$$

H : carga sobre el centro del orificio (m)
 h_o : pérdida de carga en el orificio (m)

Hf : pérdida de carga afloramiento en la captación (m)

Determinamos la distancia entre el afloramiento y la captación:


$$L = \frac{H_f}{0.30}$$

Donde:

L : distancia afloramiento - captación (m)

 Cálculo de la altura de la cámara
 Para determinar la altura total de la cámara húmeda (Ht), se considera los elementos identificados que se muestran en la siguiente figura:

Ilustración Nº 03.22. Cálculo de la cámara húmeda

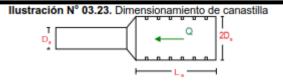
 $H_t = A + B + C + D + E$

Donde:

 A : altura mínima para permitir la sedimentación de arenas, se considera una altura mínima de 10 cm

B : se considera la mitad del diámetro de la canastilla de salida.

D : desnivel mínimo entre el nivel de ingreso del agua de afloramiento y el nivel de agua de la cámara húmeda (mínimo de 5 cm).


E : borde libre (se recomienda mínimo 30 cm).

 C : altura de agua para que el gasto de salida de la captación pueda fluir por la tubería de conducción (se recomienda una altura mínima de 30 cm).

$$C = 1.56 \frac{v^2}{2g} = 1.56 \frac{{Q_{md}}^2}{2g \times A^2}$$

Donde:

Q_{md}: caudal máximo diario (m³/s) A : área de la tubería de salida (m²)

Diámetro de la Canastilla

El diámetro de la canastilla debe ser dos veces el diámetro de la línea de conducción

Longitud de la Canastilla

Se recomienda que la longitud de la canastilla sea mayor a 3Da y menor que 6Da:

$$3D_a < L_a < 6D_a$$

Debemos determinar el área total de las ranuras (A_{TOTAL}):

$$A_{TOTAL} = 2A$$

El valor de Atotal debe ser menor que el 50% del área lateral de la granada (Ag)

$$A_g = 0.5 \times D_g \times L$$

Determinar el número de ranuras:

$$N_{ranuras}^{o} = \frac{\dot{A}rea\ total\ de\ ranura}{\dot{A}rea\ de\ ranura}$$

<u>Dimensionamiento de la tubería de rebose y limpia</u> En la tubería de rebose y de limpia se recomienda pendientes de 1 a 1,5%

Cálculo de la tubería de rebose y limpia tienen el mismo diámetro:

$$D_{r} = \frac{0.71 \times Q^{0.38}}{{h_{f}^{~0.21}}}$$

Tubería de rebose

Donde:

Qmax : gasto máximo de la fuente (l/s)

: perdida de carga unitaria en (m/m) - (valor recomendado: 0.015 m/m)

Dr : diámetro de la tubería de rebose (pulg)

LÍNEA DE CONDUCCIÓN

Es la estructura que permite conducir el agua desde la captación hasta la siguiente estructura, que puede ser un reservorio o planta de tratamiento de agua potable. Este componente se diseña con el caudal máximo diario de agua; y debe considerar: anclajes, válvulas de purga, válvulas de aire, cámaras rompe presión, cruces aéreos, sifones. El material a emplear debe ser PVC; sin embargo, bajo condiciones expuestas, es necesario que la tubería sea de otro material resistente.

Ilustración Nº 03.31. Línea de Conducción

✓ Caudales de Diseño

La Línea de Conducción debe tener la capacidad para conducir como mínimo, el caudal máximo diario (Q_{md}), si el suministro fuera discontinuo, se debe diseñar para el caudal máximo horario (Q_{mh}).

La Línea de Aducción debe tener la capacidad para conducir como mínimo, el caudal máximo horario (Q_{mh}).

✓ <u>Velocidades admisibles</u>

Para la línea de conducción se debe cumplir lo siguiente:

- La velocidad mínima no debe ser inferior a 0,60 m/s.
- La velocidad máxima admisible debe ser de 3 m/s, pudiendo alcanzar los 5 m/s si se justifica razonadamente.

✓ Criterios de Diseño

Para las tuberías que trabajan sin presión o como canal, se aplicará la fórmula de Manning, con los coeficientes de rugosidad en función del material de la tubería.

$$v = \frac{1}{n} * R_h^{2/3} * i^{1/2}$$

Donde:

V : velocidad del fluido en m/s

n : coeficiente de rugosidad en función del tipo de material

Hierro fundido dúctil 0,015
 Cloruro de polivinilo (PVC) 0,010
 Polietileno de Alta Densidad (PEAD) 0,010

R_h: radio hidráulico

: pendiente en tanto por uno

Cálculo de diámetro de la tubería:

Para tuberías de diámetro superior a 50 mm, Hazen-Williams:

$$H_f = 10,674 * [Q^{1.852}/(C^{1,852} * D^{4.86})] * L$$

Donde:

H_f: pérdida de carga continua, en m.

Q : Caudal en m³/s D : diámetro interior en m

C : Coeficiente de Hazen Williams (adimensional)

 Acero sin costura C=100 Acero soldado en espiral Hierro fundido dúctil con revestimiento C=140 Hierro galvanizado C=100 Polietileno C=140 PVC C=150

: Longitud del tramo, en m.

Para tuberías de diámetro igual o menor a 50 mm, Fair - Whipple:

$$H_f = 676,745 * [Q^{1,751}/(D^{4,753})] * L$$

Donde:

H_f : pérdida de carga continua, en m.

: Caudal en I/min

: diámetro interior en mm

Salvo casos fortuitos debe cumplirse lo siguiente:

- La velocidad mínima no será menor de 0,60 m/s.
- La velocidad máxima admisible será de 3 m/s, pudiendo alcanzar los 5 m/s si se iustifica razonadamente.
- · Cálculo de la línea de gradiente hidráulica (LGH), ecuación de Bernoulli

$$Z_1 + {P_1 \over \gamma} + {V_1^2 \over 2} + g = Z_2 + {P_2 \over \gamma} + {V_2^2 \over 2} + H_f$$

Donde:

Z : cota altimétrica respecto a un nivel de referencia en m

 $P/_{\gamma}$: Altura de carga de presión, en m, P es la presión y γ el peso específico del fluido

: Velocidad del fluido en m/s

H_f: Pérdida de carga, incluyendo tanto las pérdidas lineales (o longitudinales) como las locales.

Si como es habitual, V_1 = V_2 y P1 está a la presión atmosférica, la expresión se reduce a: $\frac{P_2}{\gamma} = Z_1 - Z_2 - H_f$

$$P_2/v = Z_1 - Z_2 - H$$

La presión estática máxima de la tubería no debe ser mayor al 75% de la presión de trabajo especificada por el fabricante, debiendo ser compatibles con las presiones de servicio de los accesorios y válvulas a utilizarse.

Se deben calcular las pérdidas de carga localizadas ΔH_i en las piezas especiales y en las válvulas, las cuales se evaluarán mediante la siguiente expresión:

$$\Delta H_i = K_i \frac{V^2}{2g}$$

ΔH_i: Pérdida de carga localizada en las piezas especiales y en las válvulas, en m.

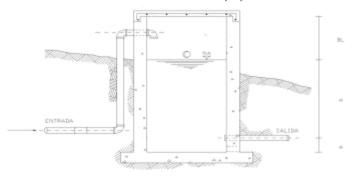
: Coeficiente que depende del tipo de pieza especial o válvula (ver Tabla Nº 03.14)

: Máxima velocidad de paso del agua a través de la pieza especial o de la válvula

: aceleración de la gravedad (9,81 m/s2)

RANGO DE DISEÑO

RANGO	Qmd REAL	SE DISEÑA CON:		
1	< de 0.50 l/s	0.50 l/s		
2).50 l/s hasta 1.00 l/	1.00 l/s		
3	> de 1.00 l/s	1.50 l/s		
Fuente: RM - 192 - 2018 VIVIENDA				


CÁMARA ROMPE PRESIÓN PARA CONDUCCIÓN

La diferencia de nivel entre la captación y uno o más puntos en la línea de conducción, genera presiones superiores a la presión máxima que puede soportar la tubería a instalar. Es en estos casos, que se sugiere la instalación de cámaras rompe-presión cada 50 m de desnivel.

Para ello, se recomienda:

- ✓ Una sección interior mínima de 0,60 x 0,60 m, tanto por facilidad constructiva como para permitir el alojamiento de los elementos.
- ✓ La altura de la cámara rompe presión se calcula mediante la suma de tres conceptos:
 - Altura mínima de salida, mínimo 10 cm
 - Resguardo a borde libre, mínimo 40 cm
 - Carga de agua requerida, calculada aplicando la ecuación de Bernoulli para que el caudal de salida pueda fluir.
- ✓ La tubería de entrada a la cámara estará por encima de nivel del agua.
- ✓ La tubería de salida debe incluir una canastilla de salida, que impida la entrada de objetos en la tubería.
- ✓ La cámara dispondrá de un aliviadero o rebose.
- ✓ El cierre de la cámara rompe presión será estanco y removible, para facilitar las operaciones de mantenimiento.

Ilustración Nº 03.36. Cámara rompe presión

✓ Cálculo de la Cámara Rompe Presión

Del gráfico:

A : altura mínima (0.10 m)

H : altura de carga requerida para que el caudal de salida pueda fluir

BL: borde libre (0.40 m)

Ht : altura total de la Cámara Rompe Presión

$$H_t = A + H + B_L$$

✓ Para el cálculo de carga requerida (H)

$$H=1,\!56\times\frac{V^2}{2g}$$

Con menor caudal se necesitan menor dimensión de la cámara rompe presión, por lo tanto, la sección de la base debe dar facilidad del proceso constructivo y por la instalación de accesorios, por lo que se debe considerar una sección interna de 0,60 x 0,60 m.

√ Cálculo de la Canastilla

Se recomienda que el diámetro de la canastilla sea 2 veces el diámetro de la tubería de salida.

$$D_c = 2D$$

La longitud de la canastilla (L) debe ser mayor 3D y menor que 6D

Área de ranuras:

$$A_s = \frac{\pi D_s^2}{4}$$

Área de At no debe ser mayor al 50% del área lateral de la granada (Ag)

$$A_g = 0.5 \times D_g \times L$$

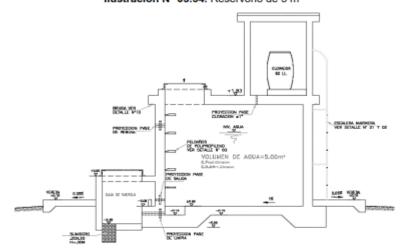
El número de ranuras resulta:

✓ Rebose

La tubería de rebose se calcula mediante la ecuación de Hazen y Williams (C= 150)

$$D = 4,\!63 \times \! \frac{{Q_{md}}^{0,38}}{C^{0,38} \times S^{0,21}}$$

Donde:


D : diámetro (pulg)

Qmd : caudal máximo diario (l/s) S : pérdida de carga unitaria (m/m)

RESERVORIO DE ALMACENAMIENTO

El reservorio debe ubicarse lo más próximo a la población y en una cota topográfica que garantice la presión mínima en el punto más desfavorable del sistema.

Ilustración Nº 03.54. Reservorio de 5 m3

Aspectos generales

El reservorio se debe diseñar para que funcione exclusivamente como reservorio de cabecera. El reservorio se debe ubicar lo más próximo a la población, en la medida de lo posible, y se debe ubicar en una cota topográfica que garantice la presión mínima en el punto más desfavorable del sistema.

Debe ser construido de tal manera que se garantice la calidad sanitaria del agua y la total estanqueidad. El material por utilizar es el concreto, su diseño se basa en un criterio de estandarización, por lo que el volumen final a construir será múltiplo de 5 m³. El reservorio debe ser cubierto, de tipo enterrado, semi enterrado, apoyado o elevado. Se debe proteger el perímetro mediante cerco perimetral. El reservorio debe disponer de una tapa sanitaria para acceso de personal y herramientas.

Criterios de diseño

El volumen de almacenamiento debe ser del 25% de la demanda diaria promedio anual (Qp), siempre que el suministro de agua de la fuente sea continuo. Si el suministro es discontinuo, la capacidad debe ser como mínimo del 30% de Qp.

Se deben aplicar los siguientes criterios:

- Disponer de una tubería de entrada, una tubería de salida una tubería de rebose, así
 como una tubería de limpia. Todas ellas deben ser independientes y estar provistas de
 los dispositivos de interrupción necesarios.
 - La tubería de entrada debe disponer de un mecanismo de regulación del llenado, generalmente una válvula de flotador.
 - La tubería de salida debe disponer de una canastilla y el punto de toma se debe situar
 10 cm por encima de la solera para evitar la entrada de sedimentos.
 - La embocadura de las tuberías de entrada y salida deben estar en posición opuesta para forzar la circulación del agua dentro del mismo.
 - El diámetro de la tubería de limpia debe permitir el vaciado en 2 horas.
- Disponer de una tubería de rebose, conectada a la tubería de limpia, para la libre descarga del exceso de caudal en cualquier momento. Tener capacidad para evacuar el máximo caudal entrante.
- Se debe instalar una tubería o bypass, con dispositivo de interrupción, que conecte las tuberías de entrada y salida, pero en el diseño debe preverse sistemas de reducción de presión antes o después del reservorio con el fin de evitar sobre presiones en la distribución. No se debe conectar el bypass por períodos largos de tiempo, dado que el agua que se suministra no está clorada.
- La losa de fondo del reservorio se debe situar a cota superior a la tubería de limpia y siempre con una pendiente mínima del 1% hacia esta o punto dispuesto.
- Los materiales de construcción e impermeabilización interior deben cumplir los requerimientos de productos en contacto con el agua para consumo humano. Deben contar con certificación NSF 61 o similar en país de origen.
- Se debe garantizar la absoluta estanqueidad del reservorio.
- El reservorio se debe proyectar cerrado. Los accesos al interior del reservorio y a la cámara de válvulas deben disponer de puertas o tapas con cerradura.
- Las tuberías de ventilación del reservorio deben ser de dimensiones reducidas para impedir el acceso a hombres y animales y se debe proteger mediante rejillas que dificulten la introducción de sustancias en el interior del reservorio.
- Para que la renovación del aire sea lo más completa posible, conviene que la distancia del nivel máximo de agua a la parte inferior de la cubierta sea la menor posible, pero no inferior a 30 cm a efectos de la concentración de cloro.
- Se debe proteger el perímetro del reservorio mediante cerramiento de fábrica o de valla metálica hasta una altura mínima de 2,20 m, con puerta de acceso con cerradura.
- Es necesario disponer una entrada practicable al reservorio, con posibilidad de acceso de materiales y herramientas. El acceso al interior debe realizarse mediante escalera de peldaños anclados al muro de recinto (inoxidables o de polipropileno con fijación mecánica reforzada con epoxi).
- Los dispositivos de interrupción, derivación y control se deben centralizar en cajas o casetas, o cámaras de válvulas, adosadas al reservorio y fácilmente accesibles.
- La cámara de válvulas debe tener un desagüe para evacuar el agua que pueda verterse.
- Salvo justificación razonada, la desinfección se debe realizar obligatoriamente en el reservorio, debiendo el proyectista adoptar el sistema más apropiado conforme a la ubicación, accesibilidad y capacitación de la población.

Recomendaciones

- Solo se debe usar el bypass para operaciones de mantenimiento de corta duración, porque al no pasar el agua por el reservorio no se desinfecta.
- En las tuberías que atraviesen las paredes del reservorio se recomienda la instalación de una brida rompe-aguas empotrado en el muro y sellado mediante una impermeabilización que asegure la estanquidad del agua con el exterior, en el caso de que el reservorio sea construido en concreto.
- Para el caso de que el reservorio sea de otro material, ya sea metálico o plástico, las tuberías deben fijarse a accesorios roscados de un material resistente a la humedad y la exposición a la intemperie.
- La tubería de entrada debe disponer de un grifo que permita la extracción de muestras para el análisis de la calidad del agua.
- Se recomienda la instalación de dispositivos medidores de volumen (contadores) para el registro de los caudales de entrada y de salida, así como dispositivos eléctricos de control del nivel del agua. Como en zonas rurales es probable que no se cuente con

suministro de energía eléctrica, los medidores en la medida de lo posible deben llevar baterías de larga duración, como mínimo para 5 años.

CASETA DE VÁLVULAS EN RESERVORIO

La caseta de válvulas es una estructura de concreto y/o mampostería que alberga el sistema hidráulico del reservorio, en el caso reservorios el ambiente es de paredes planas, salvo el reservorio de 70 m³, en este caso el reservorio es de forma cilíndrica, en este caso, una de las paredes de la caseta de válvulas es la pared curva del reservorio.

La puerta de acceso es metálica y debe incluir ventanas laterales con rejas de protección.

En el caso del reservorio de 70 m³, desde el interior de la caseta de válvulas nace una escalera tipo marinera que accede al techo mediante una ventana de inspección y de allí se puede ingresar al reservorio por su respectiva ventana de inspección de 0,60 x 0,60 m con tapa metálica y dispositivo de seguridad.

Las consideraciones por tener en cuenta son las siguientes:

Techos

Los techos serán en concreto armado, pulido en su superficie superior para evitar filtración de agua en caso se presenten lluvias, en el caso de reservorios de gran tamaño, el techo acabara con ladrillo pastelero asentados en torta de barro y tendrán junta de dilatación según el esquema de techos.

Paredes

Los cerramientos laterales serán de concreto armado en el caso de los reservorios de menor tamaño, en el caso del reservorio de 70 m³, la pared estará compuesto por ladrillo K.K. de 18 huecos y cubrirán la abertura entre las columnas estructurales del edificio. Éstos estarán unidos con mortero 1:4 (cemento: arena gruesa) y se prevé el tarrajeo frotachado interior y exterior con revoque fino 1:4 (cemento: arena fina).

Las paredes exteriores serán posteriormente pintadas con dos manos de pintura látex para exteriores, cuyo color será consensuado entre el Residente y la Supervisión. El acabado de las paredes de la caseta será de tarrajeo frotachado pintado en látex y el piso de cemento pulido bruñado a cada 2 m.

Pisos

Los pisos interiores de la caseta serán de cemento pulido y tendrán un bruñado a cada 2 m en el caso de reservorios grandes.

· Pisos en Veredas Perimetrales

En vereda el piso será de cemento pulido de 1 m de ancho, bruñado cada 1 m y, tendrá una junta de dilatación cada 5 m.

El contrazócalo estará a una altura de 0,30 m del nivel del piso acabado y sobresaldrá 1 cm al plomo de la pared. Estos irán colocados tanto en el interior como en el exterior de la caseta de válvulas.

Escaleras

En el caso sea necesario, la salida de la caseta hacia el reservorio, se debe colocar escaleras marineras de hierro pintadas con pintura epóxica anticorrosivas con pasos espaciados a cada 0.30 m.

Escaleras de Acceso

Las escaleras de acceso a los reservorios (cuando sean necesarias), serán concebidas para una circulación cómoda y segura de los operadores, previendo un paso aproximado

a los 0,18 m. Se han previsto descansos intermedios cada 17 pasos como máximo, cantidad de escalones máximos según reglamento.

Veredas Perimetrales

Las veredas exteriores serán de cemento pulido, bruñado cada 1 m y junta de dilatación cada 5 m.

Aberturas

Las ventanas serán metálicas, tanto las barras como el marco y no deben incluir vidrios para así asegurar una buena ventilación dentro del ambiente, sólo deben llevar una malla de alambre N°12 con cocada de 1".

La puerta de acceso a la caseta (en caso sea necesaria) debe ser metálica con plancha de hierro soldada espesor 3/32" con perfiles de acero de 1.%" x 1.%" y por 6 mm de espesor.

LÍNEA DE ADUCCIÓN

Diseño de la línea de aducción


Caudal de diseño

La Línea de Aducción tendrá capacidad para conducir como mínimo, el caudal máximo horario (Qmh).

Carga estática y dinámica

La carga estática máxima aceptable será de 50 m y la carga dinámica mínima será de

Ilustración Nº 03.60. Línea gradiente hidráulica de la aducción a presión.

El diámetro se diseñará para velocidades mínima de 0,6 m/s y máxima de 3,0 m/s. El diámetro mínimo de la línea de aducción es de 25 mm (1") para el caso de sistemas

Dimensionamiento

Para el dimensionamiento de la tubería, se tendrán en cuenta las siguientes condiciones:

✓ La línea gradiente hidráulica (L.G.H.)

La línea gradiente hidráulica estará siempre por encima del terreno. En los puntos críticos se podrá cambiar el diámetro para mejorar la pendiente.

✓ Pérdida de carga unitaria (h₁)

Para el propósito de diseño se consideran:

- Ecuaciones de Hazen y Williams para diámetros mayores a 2", y Ecuaciones de Fair Whipple para diámetros menores a 2".

Cálculo de diámetro de la tubería podrá realizarse utilizando las siguientes fórmulas:

Para tuberías de diámetro superior a 50 mm, Hazen-Williams:

$$H_f = 10,\!674 \times \frac{Q^{1,852}}{C^{1,852} \times D^{4,86}} \times L$$

Donde:

H_f: pérdida de carga continua (m) Q: caudal en (m³/s)

: diámetro interior en m (ID)

: coeficiente de Hazen Williams (adimensional)

-	Acero sin costura	C=120
-	Acero soldado en espiral	C=100
-	Hierro fundido dúctil con revestimiento	C=140
-	Hierro galvanizado	C=100
-	Polietileno	C=140
-	PVC	C=150

L : longitud del tramo (m)

· Para tuberías de diámetro igual o inferior a 50 mm, Fair-Whipple:

$$H_f = 676,745 \times \frac{Q^{1,751}}{D^{4,753} \times L}$$

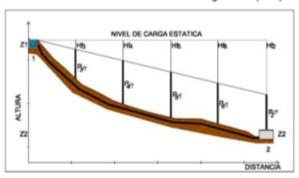
Donde:

: pérdida de carga continua (m)

: caudal en (l/min) D : diámetro interior (mm)

: longitud (m)

Salvo casos excepcionales que deberán ser justificados, la velocidad de circulación del agua establecida para los caudales de diseño deberá cumplir lo siguiente:


- La velocidad mínima no será menor de 0,60 m/s.
- La velocidad máxima admisible será de 3 m/s, pudiendo alcanzar los 5 m/s si se justifica razonadamente.

En la línea de aducción, la presión representa la cantidad de energía gravitacional contenida en el agua.

Para el cálculo de la línea de gradiente hidráulica (LGH), se aplicará la ecuación de Bernoulli.

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2 * g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2 * g} + H_f$$

Ilustración Nº 03.61. Cálculo de la línea de gradiente (LGH)

Donde:

: cota altimétrica respecto a un nivel de referencia en m.

: altura de carga de presión, en m, P es la presión y γ el peso específico del Pή fluido.

: velocidad del fluido en m/s.

pérdida de carga de 1 a 2, incluyendo tanto las pérdidas lineales (o longitudinales) como las locales.

Si como es habitual, V₁=V₂ y P₁ está a la presión atmosférica, la expresión se

$$P_2/\gamma = Z_1 - Z_2 - H_f$$

La presión estática máxima de la tubería no debe ser mayor al 75% de la presión de trabajo específicada por el fabricante, debiendo ser compatibles con las presiones de servicio de los accesorios y válvulas a utilizarse.

Se calcularán las pérdidas de carga localizadas ΔHi en las piezas especiales y en las válvulas, las cuales se evaluarán mediante la siguiente expresión:

$$\Delta H_i = K_i \frac{V^2}{2g}$$

Dónde:

: pérdida de carga localizada en las piezas especiales y en las válvulas (m) : coeficiente que depende del tipo de pieza especial o válvula (ver Tabla). : máxima velocidad de paso del agua a través de la pieza especial o de la ΔH_{i} K

válvula (m/s)

: aceleración de la gravedad (m/s²)

CÁMARA ROMPE PRESIÓN PARA ADUCCIÓN Y REDES DE DISTRIBUCIÓN

- ✓ En caso exista un fuerte desnivel entre el reservorio y algunos sectores o puntos de la red de distribución, pueden generarse presiones superiores a la presión máxima que puede soportar la tubería. Es por ello que se sugiere la instalación de cámaras rompe presión (CRP) cada 50 m de desnivel.
- ✓ Se recomienda una sección interior mínima de 0,60 x 0,60 m, tanto por facilidad constructiva como para permitir el alojamiento de los elementos.
- ✓ La altura de la cámara se calculará mediante la suma de tres conceptos:
 - Altura mínima de salida, mínimo 10 cm.
 - Resguardo a borde libre, mínimo 40 cm.
 - Carga de agua requerida, calculada aplicando la ecuación de Bernoulli para que el caudal de salida pueda fluir.
- ✓ La tubería de entrada a la cámara estará por encima de nivel del agua y debe preverse de un flotador o regulador de nivel de aguas para el cierre automático una vez que se encuentre llena la cámara y para periodos de ausencia de flujo.
- ✓ La tubería de salida dispondrá de una canastilla de salida, que impida la entrada de objetos en la tubería.
- ✓ La cámara debe incluir un aliviadero o rebose.
- ✓ El cierre de la c\u00e1mara debe ser estanco y removible, para facilitar las operaciones de mantenimiento.
- Cálculo de la altura de la Cámara Rompe Presión (H_t)

$$H_t = A + H + BL$$

$$H = 1.56 \times \frac{Q_{mh}^2}{2g \times A^2}$$

Donde:

g : aceleración de la gravedad (9,81 m/s²)

A : altura hasta la canastilla (se recomienda como mínimo 10 cm)

BL : borde libre (se recomienda 40 cm)

Q_{mh}: caudal máximo horario (l/s)

$$A_o = \pi \frac{{D_c}^2}{4}$$

Donde:

D_c : diámetro de la tubería de salida a la red de distribución (pulg)

A_o : área de la tubería de salida a la red de distribución (m²)

- · Dimensionamiento de la sección de la base de la cámara rompe presión
 - El tiempo de descarga por el orificio; el orificio es el diámetro calculado de la red de distribución que descarga una altura de agua desde el nivel de la tubería de rebose hasta el nivel de la altura del orificio.
 - El volumen de almacenamiento máximo de la CRP es calculado multiplicando el valor del área de la base por la altura total de agua (m³).
- Cálculo de la altura total de agua almacenado en la CRP hasta la tubería de rebose (H_t)

$$H_t = A + H$$

Donde:

A : altura de la canastilla (cm)

H : altura de agua para facilitar el paso de todo el caudal a la línea de conducción (cm)

Ht : altura total de agua almacenado en la CRP hasta el nivel de la tubería de rebose (cm)

 Cálculo del tiempo de descarga a la red de distribución, es el tiempo que se demora en descargar la altura H

$$t = \frac{2A_b \times H^{0,5}}{C_d \times A_o \times \sqrt{2g}}$$

Donde:

H : altura de agua para facilitar el paso de todo el caudal a la línea de conducción (cm)

C_d: coeficiente de distribución o de descarga de orificios circulares (0,8)
 A_o: área del orificio de salida (área de la tubería de la línea de conducción

g : aceleración de la gravedad (m/s²)
 Ab : área de la sección interna de la base (m²)

$$A_b = a \times b$$

Donde:

a : lado de la sección interna de la base (m) b : lado de la sección interna de la base (m) Cálculo del volumen

$$V_{max} = A_b \times H$$

$$V_{\text{max}} = L \times A \times H$$

Dimensionamiento de la canastilla Debe considerarse lo siguiente:

 $D_{canastilla} = 2 \times D_c$

 $3D_c < L_{diseño} < 6D_c$

Donde:

D_{canastilla}: diámetro de la canastilla (pulg)

: diámetro de la tubería de salida a la red de distribución (pulg) : longitud de diseño de la canastilla (cm), 3Dc y 6Dc (cm)

 $A_{\rm t}=2\times A_{\rm c}$

$$A_c = \pi \times \frac{{D_c}^2}{4}$$

Donde:

At : área total de las ranuras (m²)
 Ac : área de la tubería de salida a la línea de distribución (m²)

 $A_r = AR \times LR$

Donde:

AR : área de la ranura (mm²) AR : ancho de la ranura (mm) LR : largo de la ranura (mm)

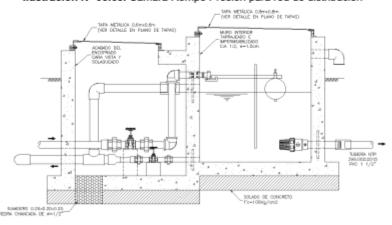
 $A_g = 0.5\pi \times D_c \times L_{diseño}$

A_g: área lateral de la canastilla (m²)

NR : número de ranuras de la canastilla (und)

Cálculo del diámetro de tubería del cono de rebose y limpieza El rebose se instala directamente a la tubería de limpia que realizar la limpieza y evacuación del agua de la cámara húmeda. La tubería de rebose y limpia tienen el mismo diámetro y se calcula mediante la siguiente ecuación:

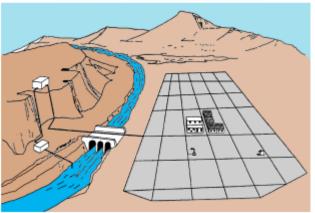
$$D = 0.71 \times \frac{{Q_{mh}}^{0.38}}{{h_f}^{0.21}}$$


Donde:

D : diámetro del tubo de rebose y limpia (pulg)

Q_{mh} : caudal de la salida de la red de distribución (caudal máximo horario) (l/s)

hr : pérdida de carga unitaria (m/m)


Ilustración Nº 03.63. Cámara Rompe Presión para red de distribución

REDES DE DISTRIBUCIÓN

Es un componente del sistema de agua potable, el mismo que permite llevar el agua tratada hasta cada vivienda a través de tuberías, accesorios y conexiones domiciliarias.

Ilustración Nº 03.62. Redes de distribución

Aspectos Generales

Para la red de distribución se debe cumplir lo siguiente:

- Las redes de distribución se deben diseñar para el caudal máximo horario (Q_{mh}).
- Los diámetros mínimos de las tuberías principales para redes cerradas deben ser de 25 mm (1"), y en redes abiertas, se admite un diámetro de 20 mm (¾") para ramales.
- En los cruces de tuberías no se debe permitir la instalación de accesorios en forma de cruz y se deben realizar siempre mediante piezas en tee de modo que forme el tramo recto la tubería de mayor diámetro. Los diámetros de los accesorios en tee, siempre que existan comercialmente, se debe corresponder con los de las tuberías que unen, de forma que no sea necesario intercalar reducciones.
- La red de tuberías de abastecimiento de agua para consumo humano debe ubicarse siempre en una cota superior sobre otras redes que pudieran existir de aguas grises.

Velocidades admisibles

Para la red de distribución se debe cumplir lo siguiente:

- La velocidad mínima no debe ser menor de 0,60 m/s. En ningún caso puede ser inferior a 0.30 m/s
- La velocidad máxima admisible debe ser de 3 m/s.

Trazado

El trazado de la red se debe ubicar preferentemente en terrenos públicos siempre que sea posible y se deben evitar terrenos vulnerables.

Materiales

El material de la tubería que conforma la red de distribución debe ser de PVC y compatible con los accesorios que se instale para las conexiones prediales.

Presiones de servicio.

Para la red de distribución se deberá cumplir lo siguiente:

- La presión mínima de servicio en cualquier punto de la red o línea de alimentación de agua no debe ser menor de 5 m.c.a. y
- La presión estática no debe ser mayor de 60 m.c.a.

De ser necesario, a fin de conseguir las presiones señaladas se debe considerar el uso de cámaras distribuidora de caudal y reservorios de cabecera, a fin de sectorizar las zonas de presión.

Criterios de Diseño

Existen dos tipos de redes:

a. Redes malladas

Son aquellas redes constituidas por tuberías interconectadas formando circuitos cerrados o mallas. Cada tubería que reúna dos nudos debe tener la posibilidad de ser seccionada y desaguada independientemente, de forma que se pueda proceder a realizar una reparación en ella sin afectar al resto de la malla. Para ello se debe disponer a la salida de los dos nudos válvulas de corte.

El diámetro de la red o línea de alimentación debe ser aquél que satisfaga las condiciones hidráulicas que garanticen las presiones mínimas de servicio en la red.

Para la determinación de los caudales en redes malladas se debe aplicar el método de la densidad poblacional, en el que se distribuye el caudal total de la población entre los "i" nudos proyectados.

El caudal en el nudo es:

$$Q_i = Q_p * P_i$$

Donde:

Q_i: Caudal en el nudo "i" en l/s.

Q_p : Caudal unitario poblacional en l/s.hab.

$$Q_p = \frac{Q_p}{P_p}$$

Donde:

Qt : Caudal máximo horario en l/s.

Pt : Población total del proyecto en hab.

P_I : Población de área de influencia del nudo "i" en hab.

Para el análisis hidráulico del sistema de distribución, puede utilizarse el método de Hardy Cross o cualquier otro equivalente.

El dimensionamiento de redes cerradas debe estar controlado por dos condiciones:

- El flujo total que llega a un nudo es igual al que sale.
- La pérdida de carga entre dos puntos a lo largo de cualquier camino es siempre la misma.

Estas condiciones junto con las relaciones de flujo y pérdida de carga nos dan sistemas de ecuaciones, los cuales pueden ser resueltos por cualquiera de los métodos matemáticos de balanceo.

En sistemas anillados se deben admitir errores máximos de cierre:

- De 0,10 mca de pérdida de presión como máximo en cada malla y/o simultáneamente debe cumplirse en todas las mallas.
- De 0,01 l/s como máximo en cada malla y/o simultáneamente en todas las mallas.

Se recomienda el uso de un caudal mínimo de 0,10 l/s para el diseño de los ramales. La presión de funcionamiento (OP) en cualquier punto de la red no debe descender por debajo del 75% de la presión de diseño (DP) en ese punto.

Tanto en este caso como en las redes ramificadas, se debe adjuntar memoria de cálculo, donde se detallen los diversos escenarios calculados:

- Para caudal mínimo.
- Caudal máximo.
- Presión mínima.
- Presión máxima.

b. Redes ramificadas

Constituida por tuberías que tienen la forma ramificada a partir de una línea principal; aplicable a sistemas de menos de 30 conexiones domiciliarias

En redes ramificadas se debe determinar el caudal por ramal a partir del método de probabilidad, que se basa en el número de puntos de suministro y en el coeficiente de simultaneidad. El caudal por ramal es:

$$Q_{ramal} = K * \sum Q_g$$

Donde:

Q_{ramal}: Caudal de cada ramal en l/s.

K : Coeficiente de simultaneidad, entre 0,2 y 1.

$$K = \frac{1}{\sqrt{(x-1)}}$$

Donde:

x : número total de grifos en el área que abastece cada ramal.

Q_g : Caudal por grifo (l/s) > 0,10 l/s.

Si se optara por una red de distribución para piletas públicas, el caudal se debe calcular con la siguiente expresión:

$$Q_{pp} = N * \frac{D_c}{24} * C_p * F_u \frac{1}{E_f}$$

Donde:

Ν

Qpp : Caudal máximo probable por pileta pública en I/h.

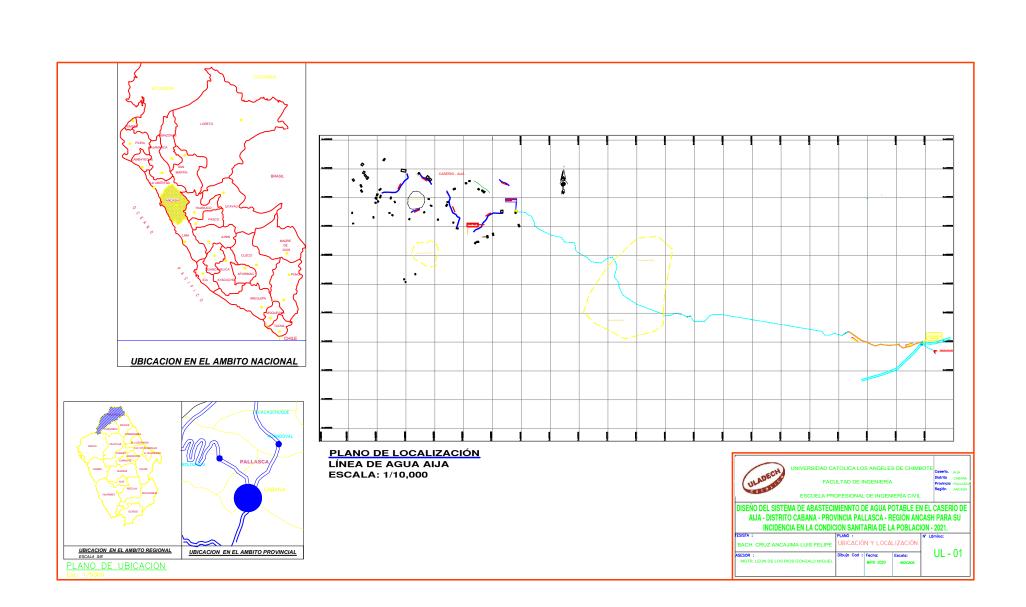
 Población a servir por pileta. Un grifo debe abastecer a un número máximo de 25 personas).

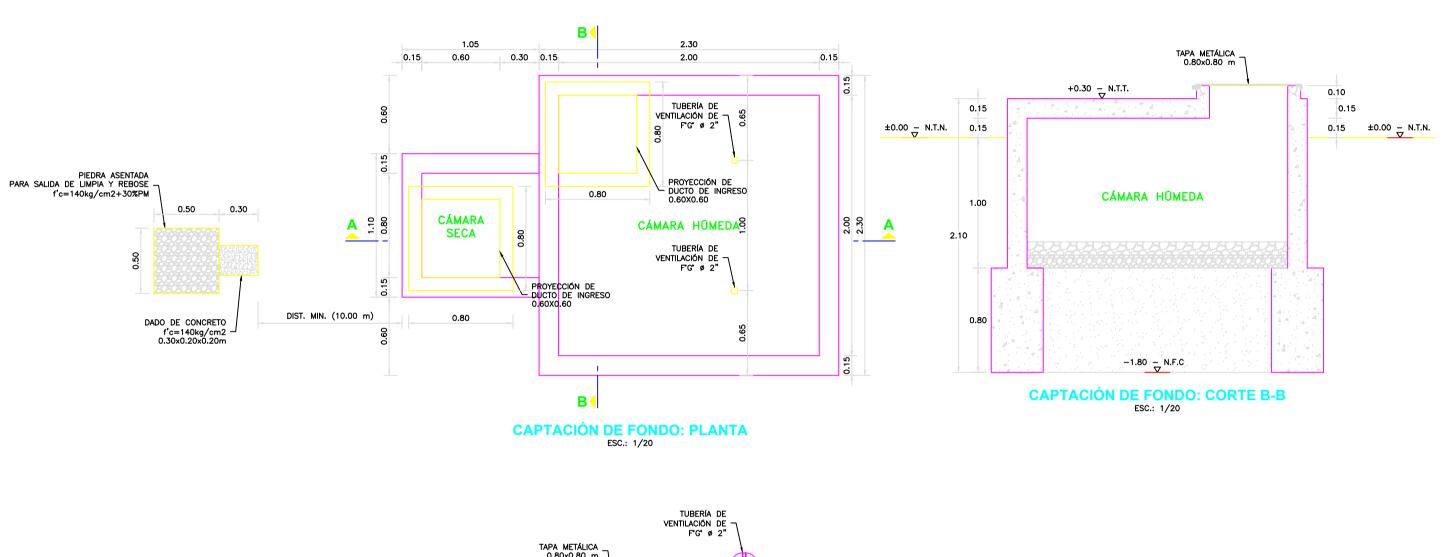
D_c : Dotación promedio por habitante en l/hab.d.

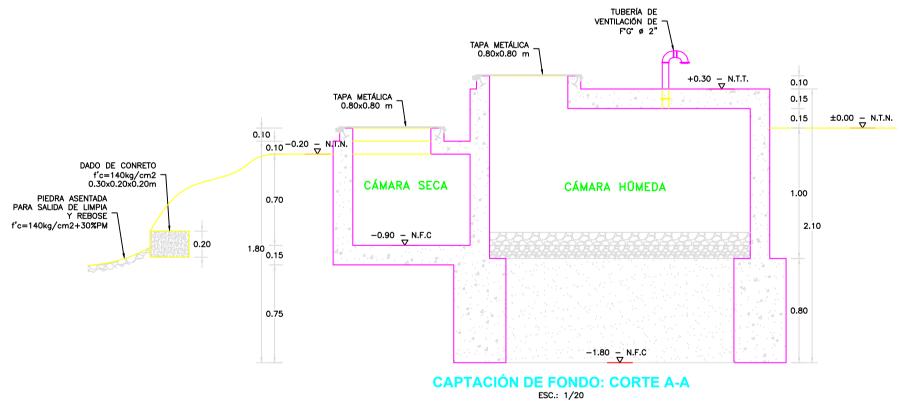
C_p : Porcentaje de pérdidas por desperdicio, varía entre 1,10 y 1,40.

E. : Eficiencia del sistema considerando la calidad de los materiales y accesorios. Varía entre 0,7 y 0,9.

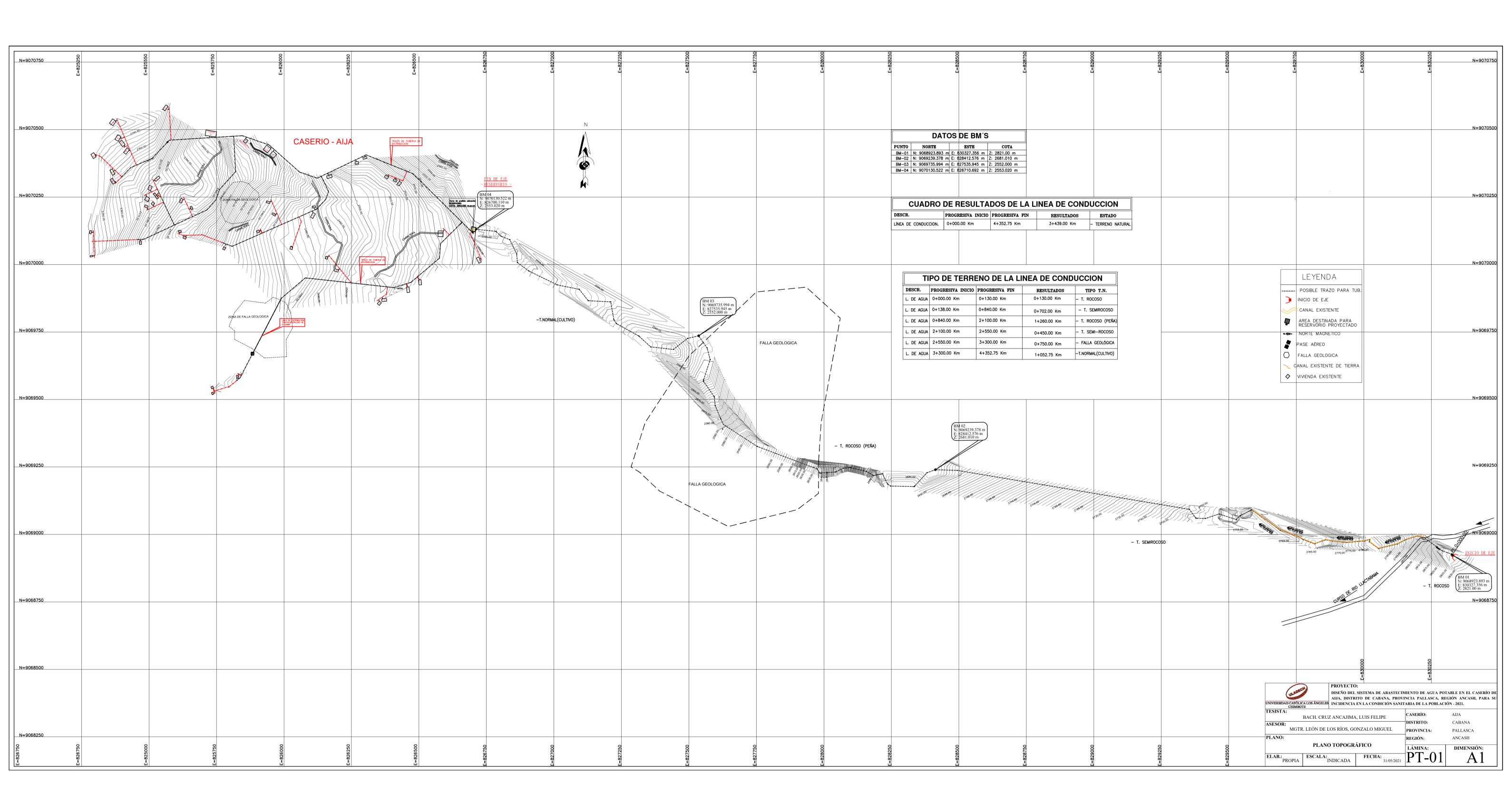
Fu : Factor de uso, definido como F_u = 24/t. Depende de las costumbres locales, horas de trabajo, condiciones climatológicas, etc. Se evalúa en función al tiempo real de horas de servicio (t) y puede variar entre 2 a 12 horas.

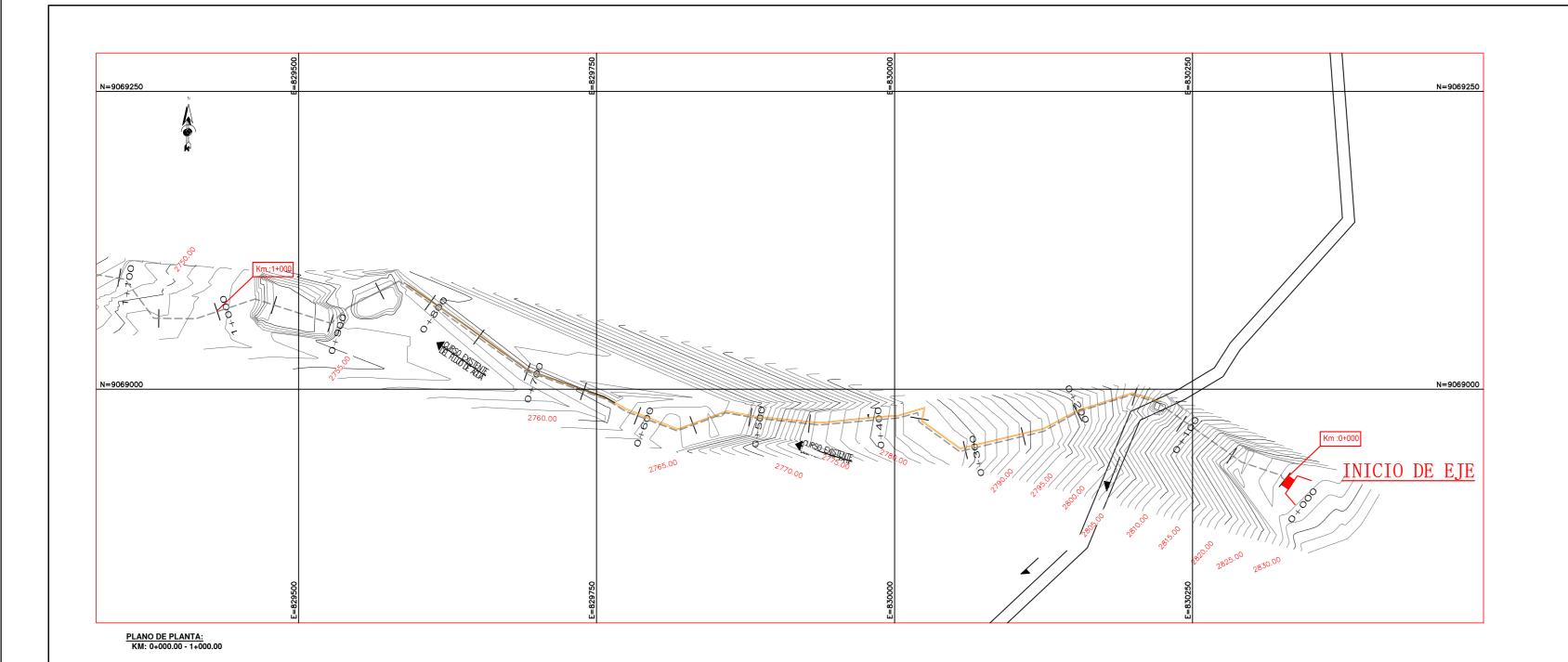

En ningún caso, el caudal por pileta pública debe ser menor a 0,10 l/s.

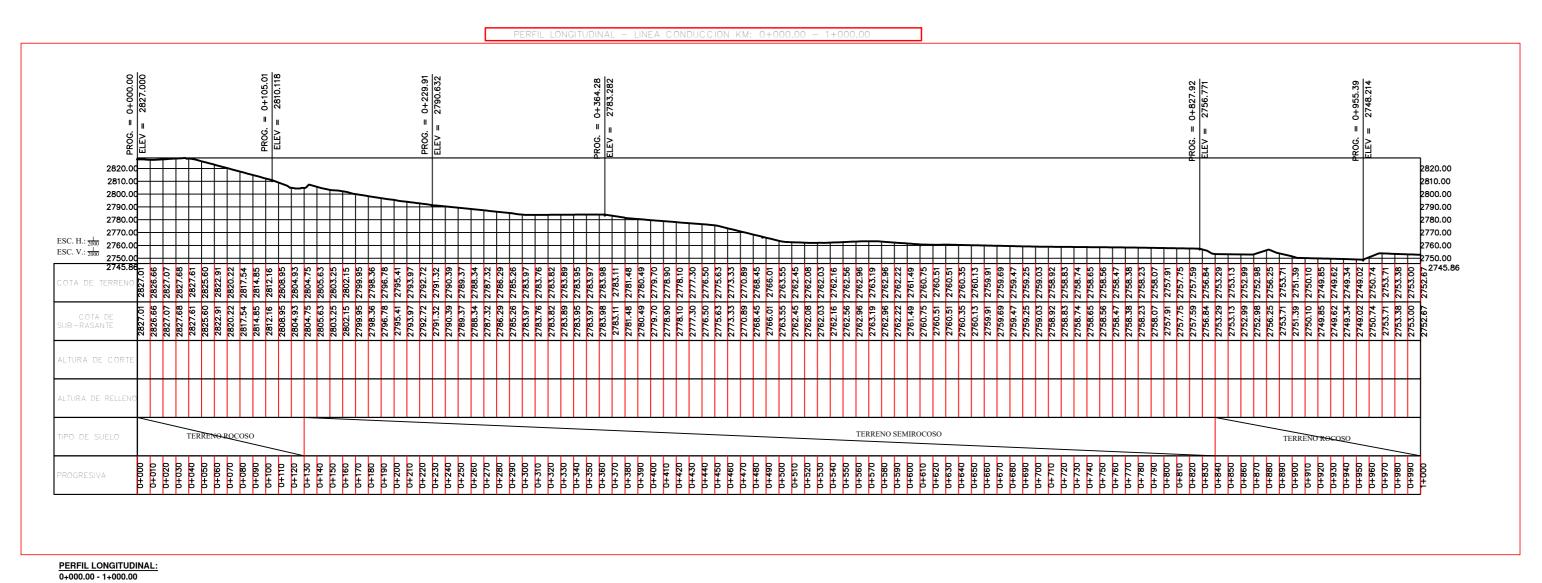

El Dimensionamiento de las redes abiertas o ramificadas se debe realizar según las fórmulas del ítem 2.4 Línea de Conducción (Criterios de Diseño) del presente Capítulo, de acuerdo con los siguientes criterios:

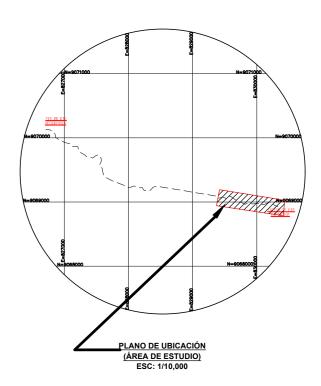

- Se puede admitir que la distribución del caudal sea uniforme a lo largo de la longitud de cada tramo.
- La pérdida de carga en el ramal puede ser determinada para un caudal igual al que se verifica en su extremo.
- Cuando por las características de la población se produzca algún gasto significativo en la longitud de la tubería, éste debe ser considerado como un nudo más.

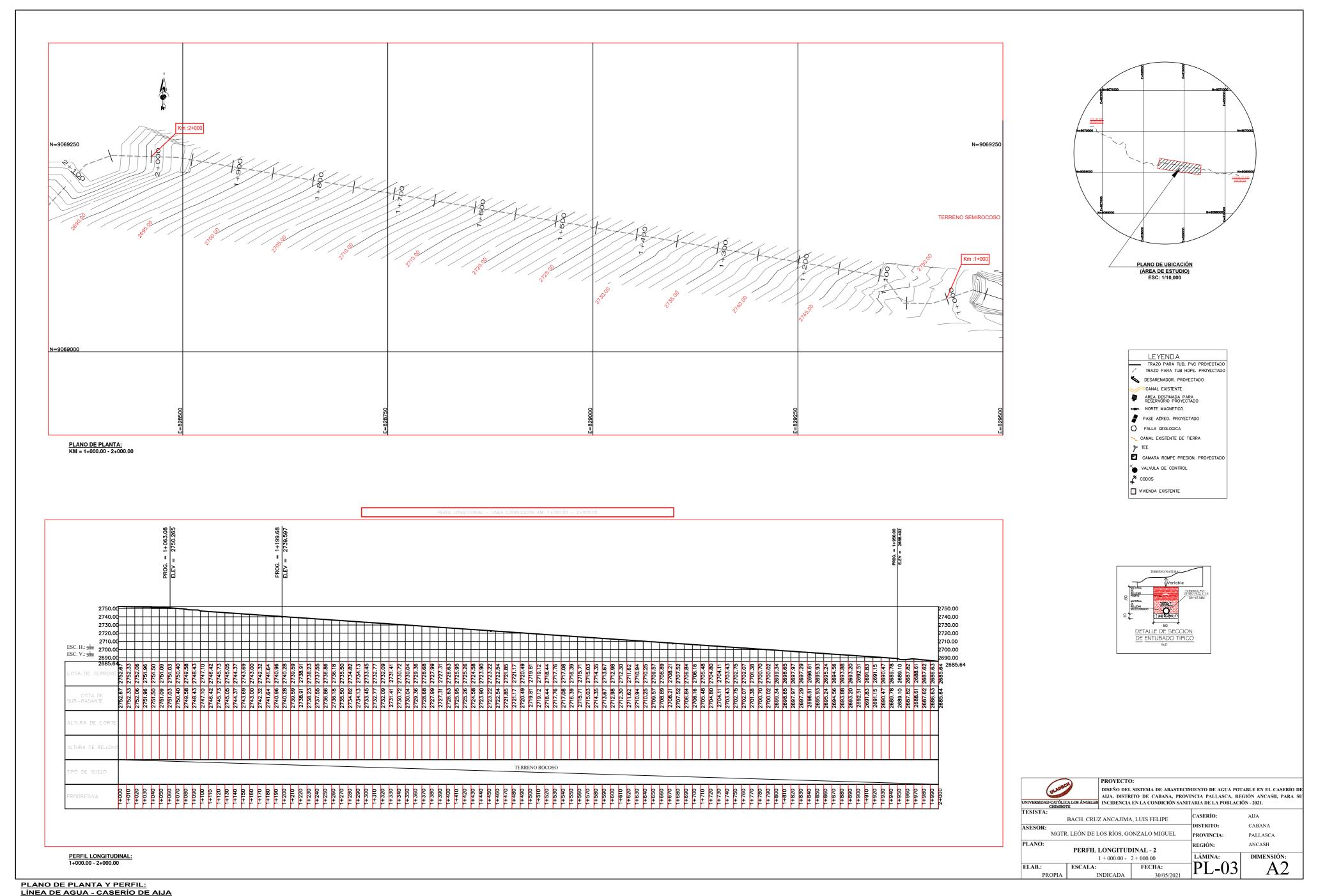
Se recomienda el uso de un caudal mínimo de 0,10 l/s para el diseño de los ramales.

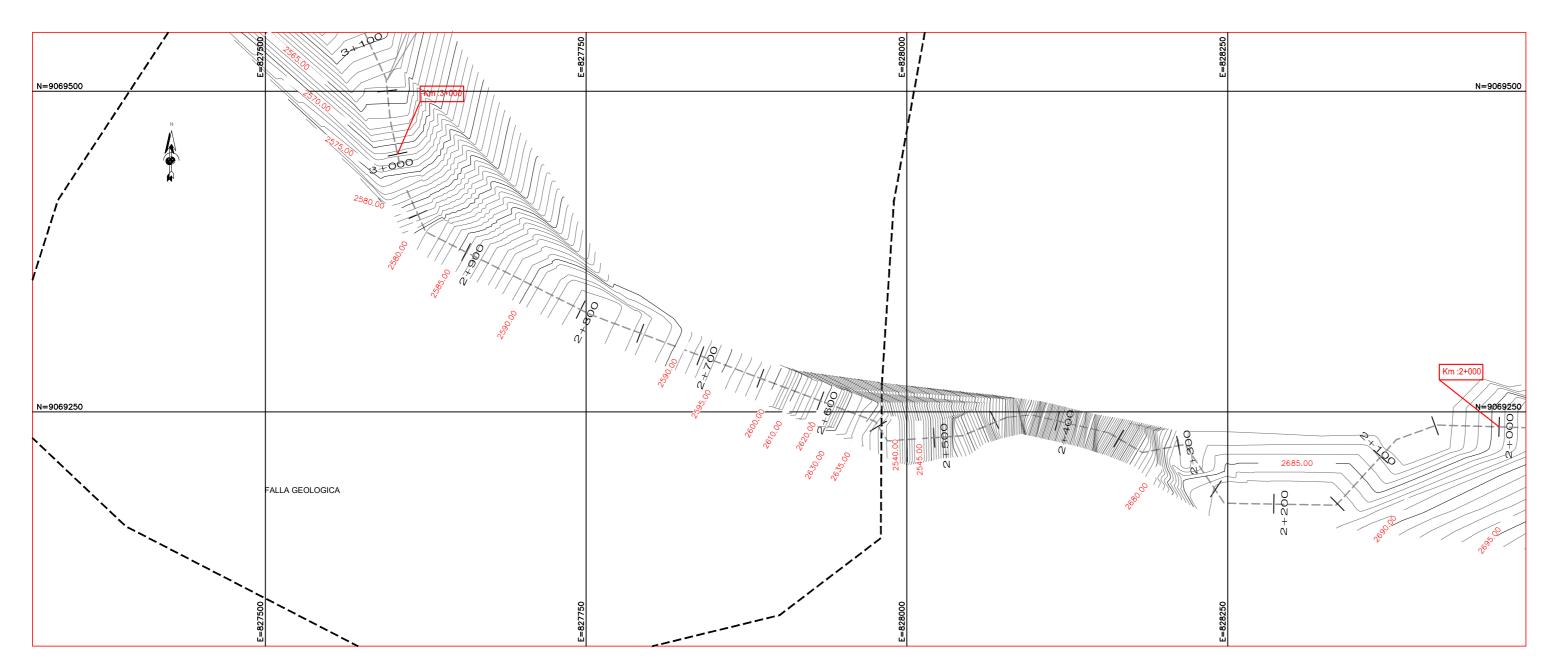

Anexo 12: PLANOS

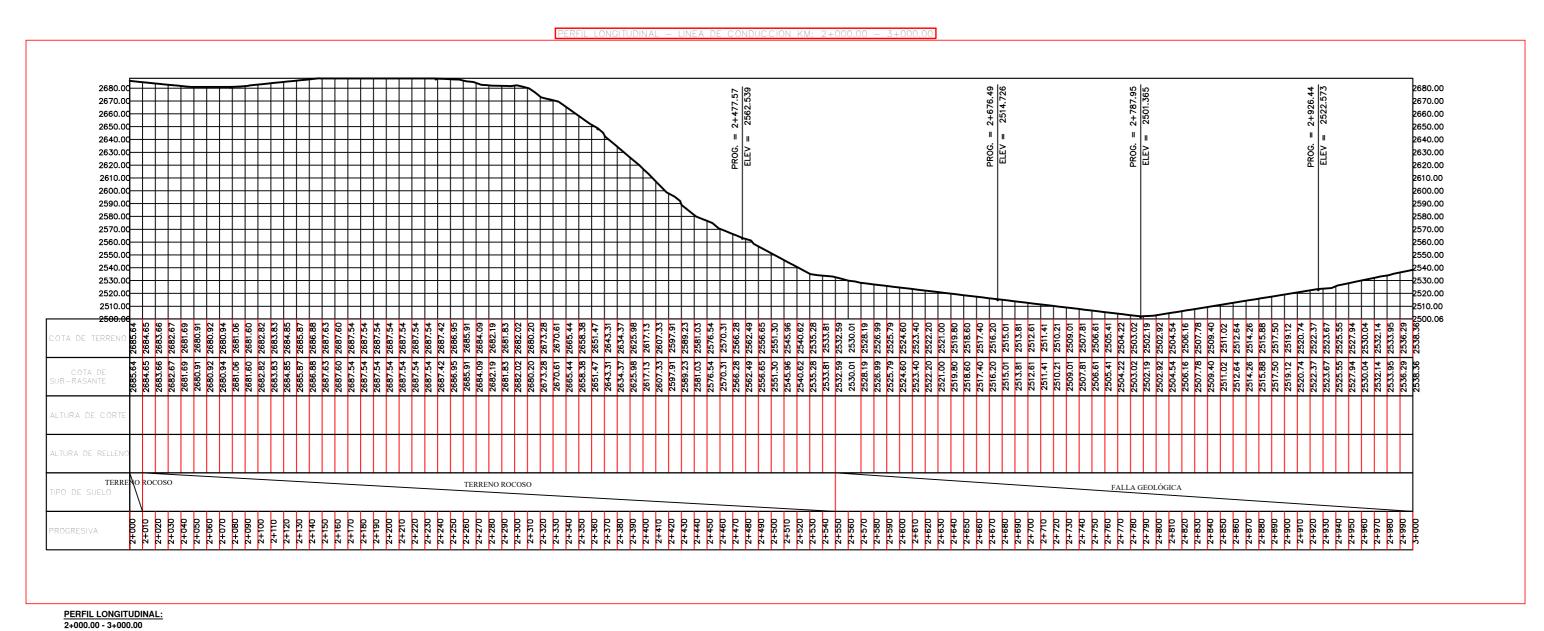


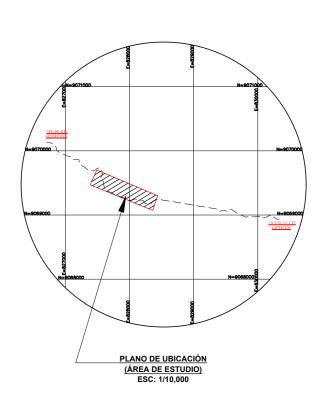











UNIVERSIDAD CATÓLIO CHIMBO	AIJA, DISTE CA LOS ÁNGELES INCIDENCIA	MIENTO DE AGUA POTABLE EN EL CASERÍO DE /INCIA PALLASCA, REGIÓN ANCASH, PARA SU TARIA DE LA POBLACIÓN - 2021.		
ΓESISTA:	BACH. CRUZ ANCAJIMA	CASERÍO:	AIJA	
ASESOR: MGTR. LEÓN DE LOS RÍOS, GONZALO MIGUEL			DISTRITO: PROVINCIA:	CABANA PALLASCA
PLANO:	PERFIL LONGITUI	REGIÓN: LÁMINA:	ANCASH DIMENSIÓN:	
ELAB.:	0 + 000.00 - 1 + 000 ESCALA:	0.00 FECHA:	DI 02	A 7
PROPIA	INDICADA	INDICADA		AL

PLANO DE PLANTA: KM: 2+000.00 - 3+000.00

LEYENDA

TRAZO PARA TUB. PVC PROYECTADO
TRAZO PARA TUB HDPE. PROYECTADO
DESARENADOR. PROYECTADO

CANAL EXISTENTE

AREA DESTINADA PARA
RESERVORIO PROYECTADO

NORTE MAGNETICO

PASE AEREO. PROYECTADO

FALLA GEOLOGICA

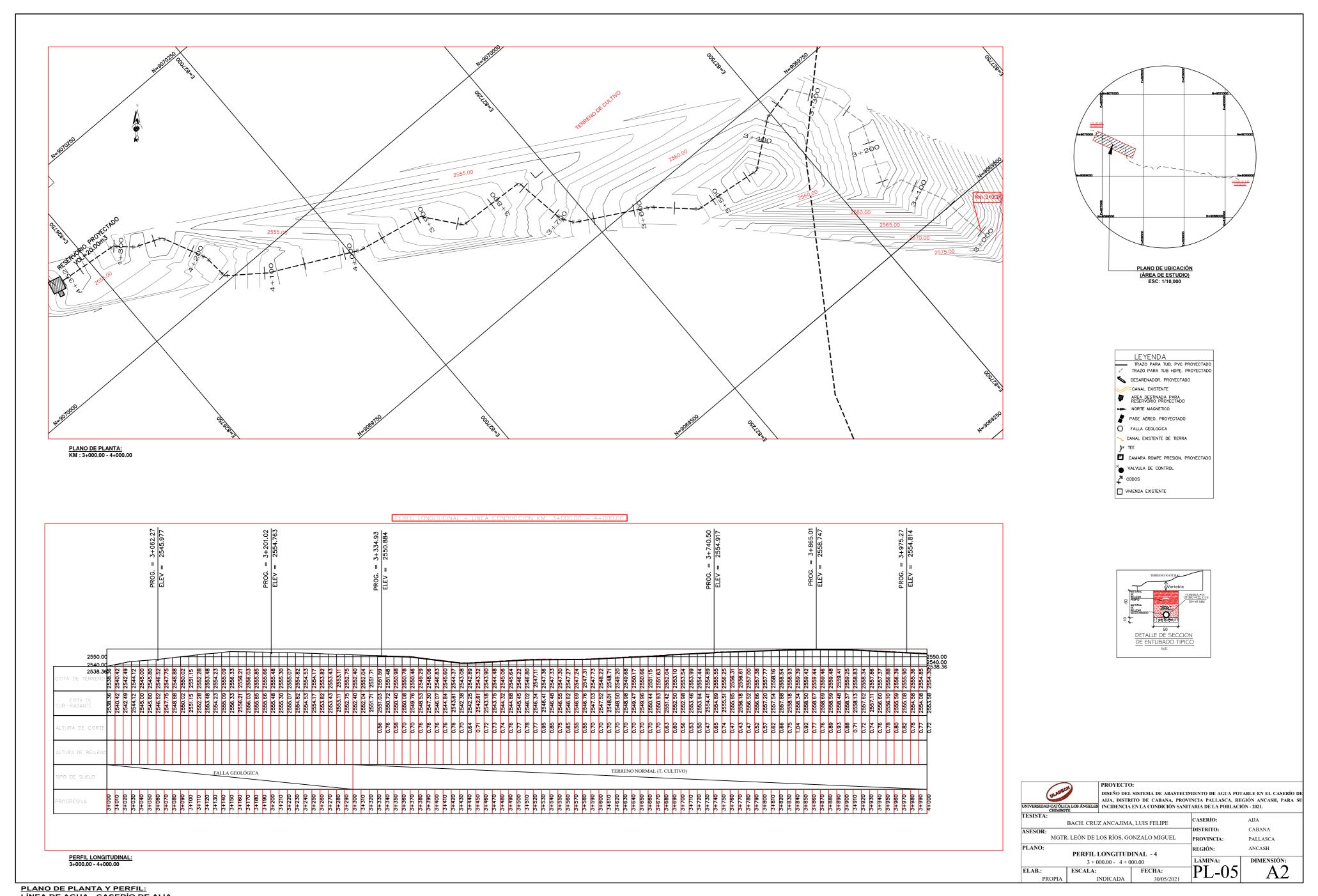
CANAL EXISTENTE DE TIERRA

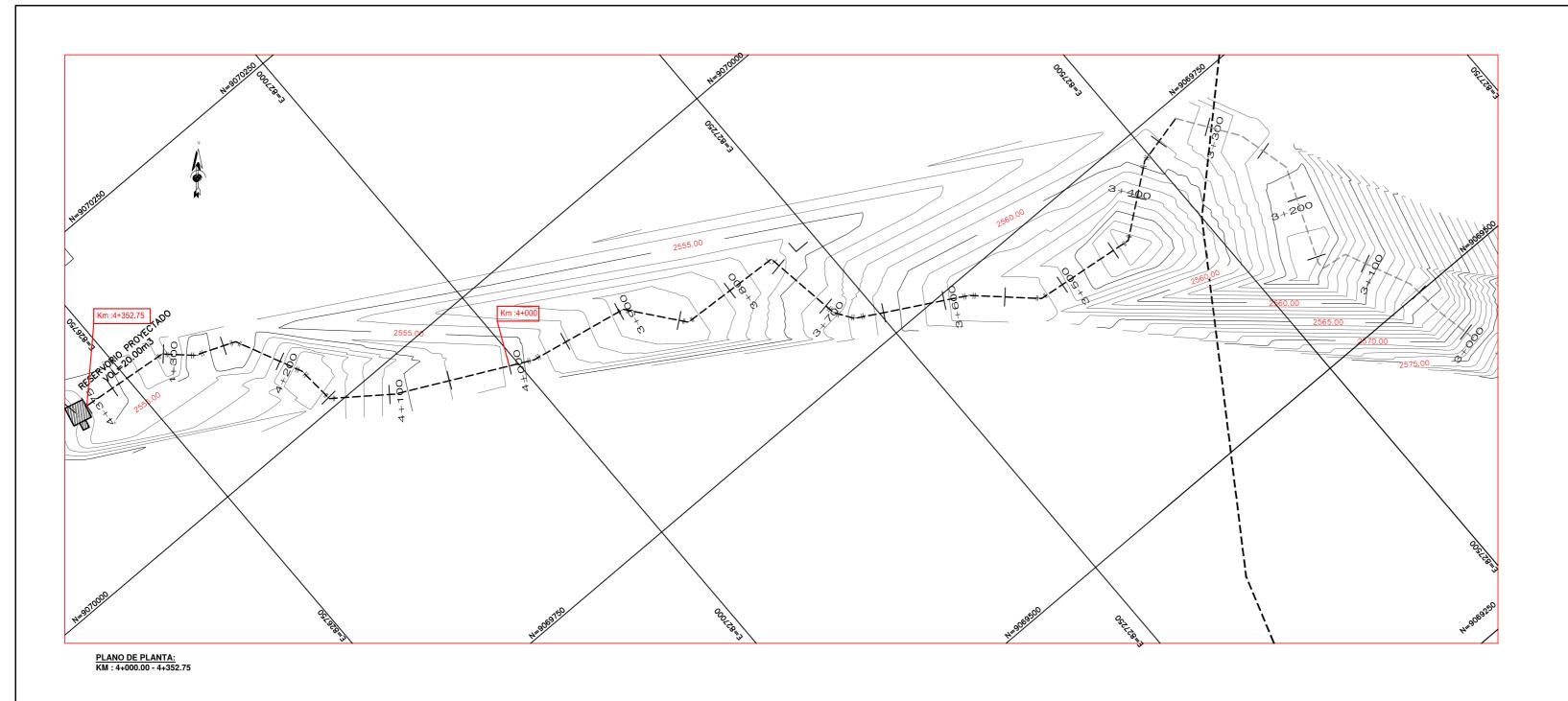
TEE

CAMARA ROMPE PRESION. PROYECTADO

VALVULA DE CONTROL

CODOS


VIVIENDA EXISTENTE



PROYECTO: DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DI UNIVERSIDAD CATÓLICA LOS ÁNGELES

CHIMBOTE

DE ASSI EMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021. TESISTA: CASERÍO: BACH. CRUZ ANCAJIMA, LUIS FELIPE DISTRITO: CABANA ASESOR: MGTR. LEÓN DE LOS RÍOS, GONZALO MIGUEL PROVINCIA: PALLASCA PLANO: REGIÓN: ANCASH PERFIL LONGITUDINAL - 3 LÁMINA: 2 + 000.00 - 3 + 000.00 DIMENSIÓN: PL-04 A2ELAB.: ESCALA: PROPIA INDICADA 30/05/2021

PLANO DE UBICACIÓN

(ÁREA DE ESTUDIO)

ESC: 1/10,000

LEYENDA

TRAZO PARA TUB. PVC PROYECTADO

TRAZO PARA TUB HDPE. PROYECTADO

DESARENADOR. PROYECTADO

CANAL EXISTENTE

ARE DESTINADA PARA
RESERVORIO PROYECTADO

NORTE MAGNETICO

PASE AÉREO. PROYECTADO

FALLA GEOLOGICA

CODOS

CANAL EXISTENTE DE TIERRA

■ VIVIENDA EXISTENTE

WATERA TURBELLA PLC
OF THE STATE OF THE STAT

DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE AIJA, DISTRITO DE CABANA, PROVINCIA PALLASCA, REGIÓN ANCASH, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.

TESISTA: BACH. CRUZ ANCAJIMA, LUIS FELIPE DISTRITO: CABANA ASESOR: MGTR. LEÓN DE LOS RÍOS, GONZALO MIGUEL PROVINCIA: PALLASCA REGIÓN: ANCASH **PERFIL LONGITUDINAL - 5** 4+000.00 - 4+370.00 LÁMINA: DIMENSIÓN: PL-06 A2ESCALA: ELAB.: FECHA: PROPIA INDICADA 30/05/2021

29560773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

295607773

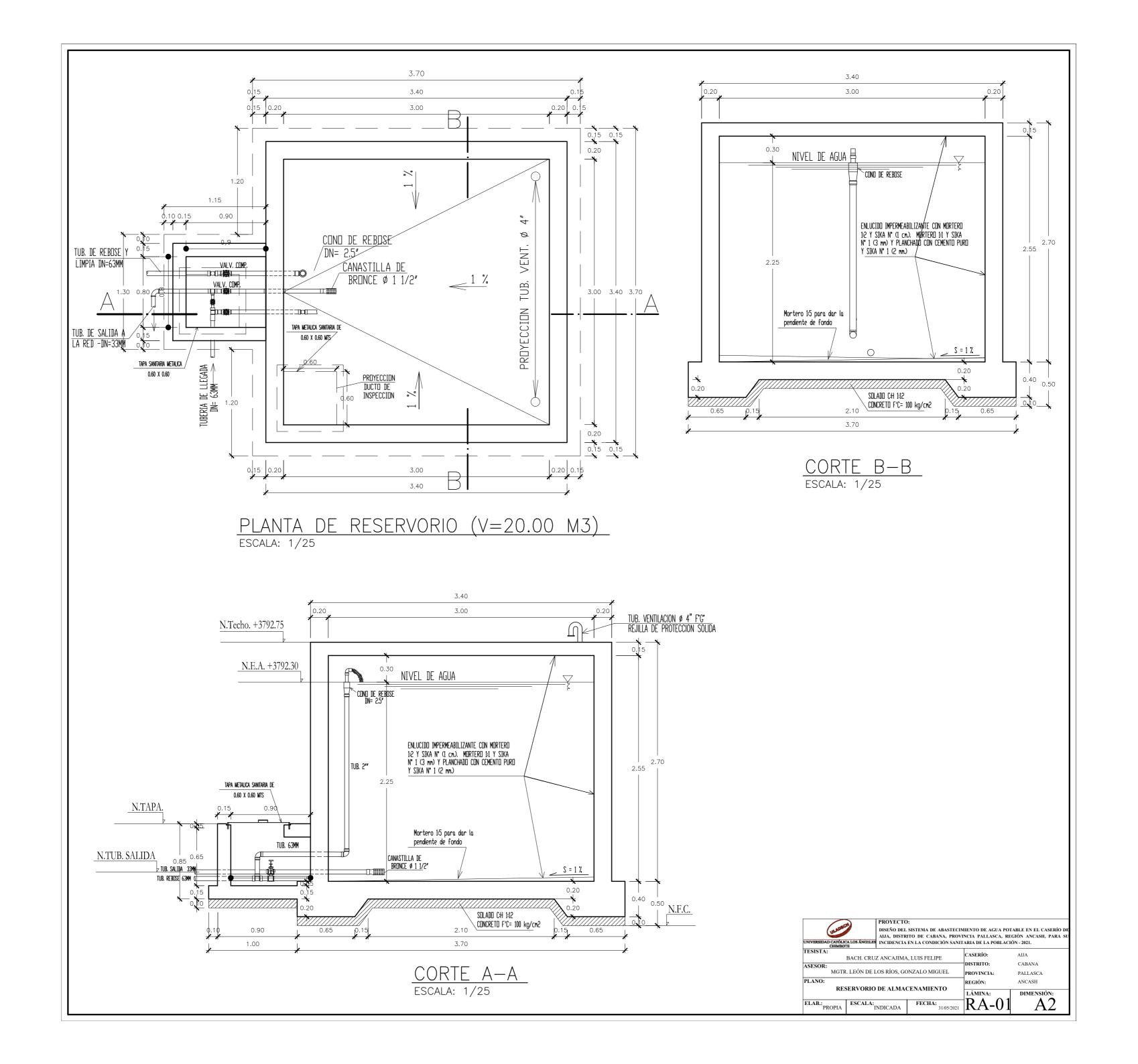
295607773

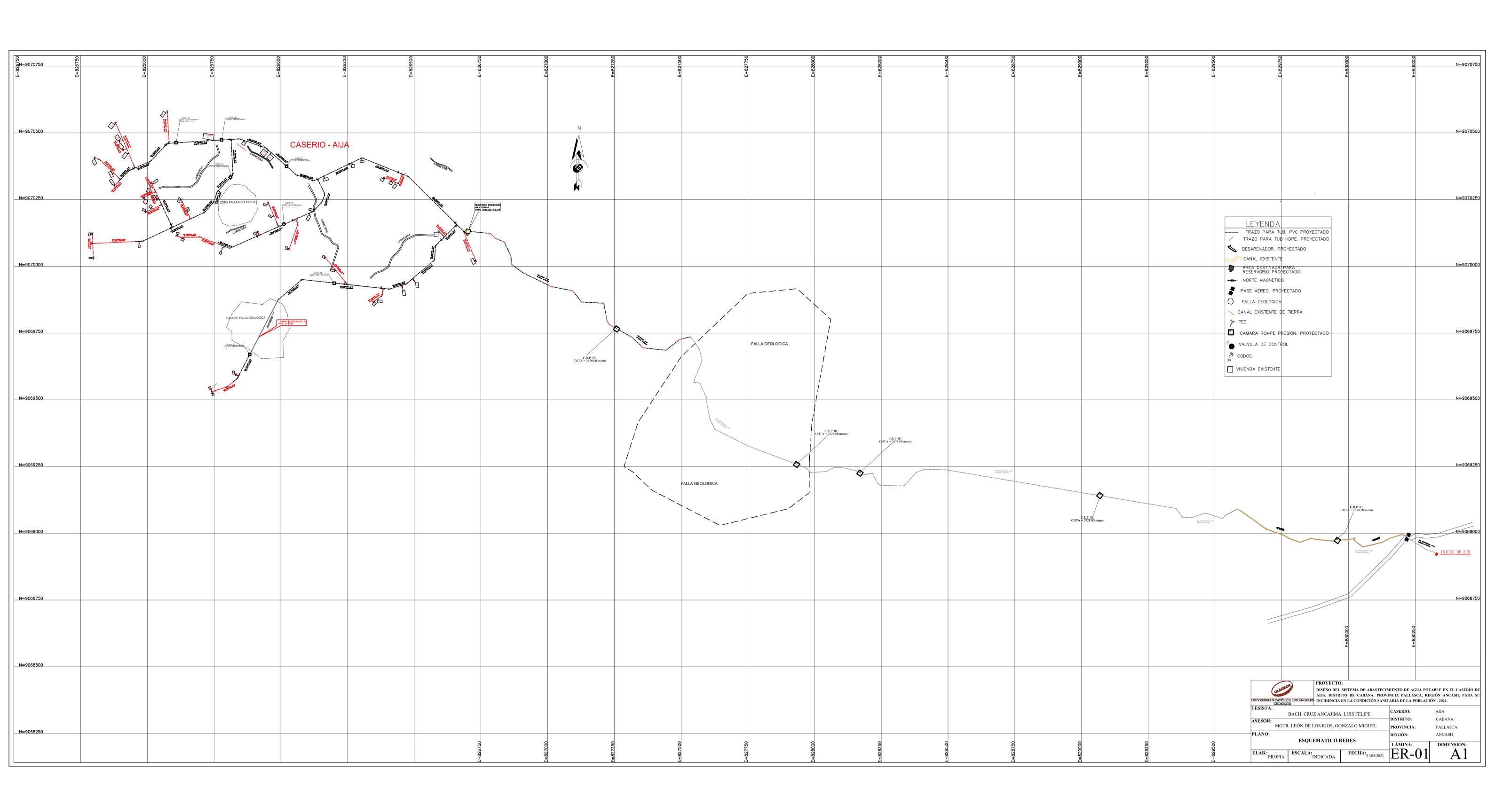
295607773

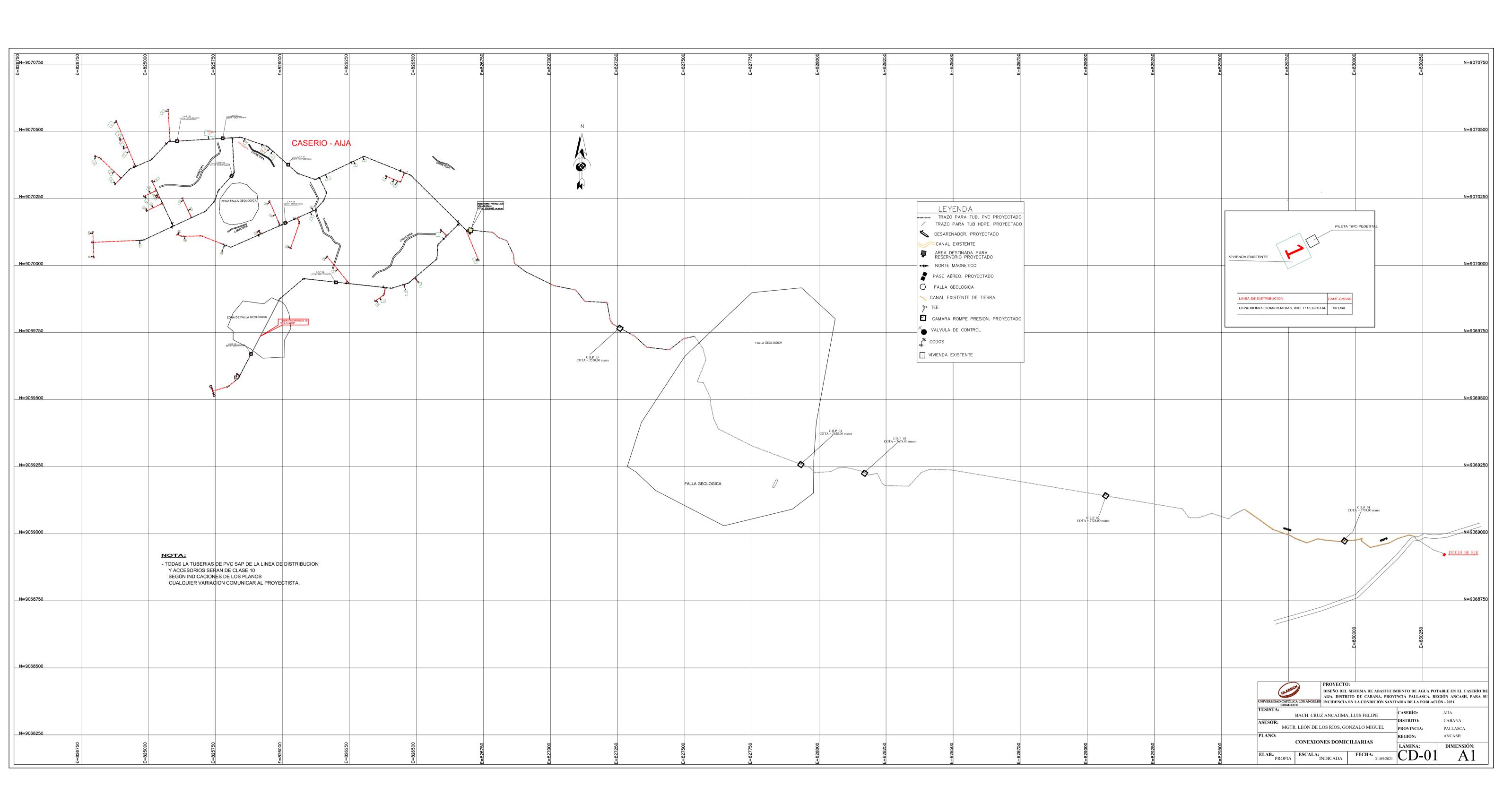
295607773

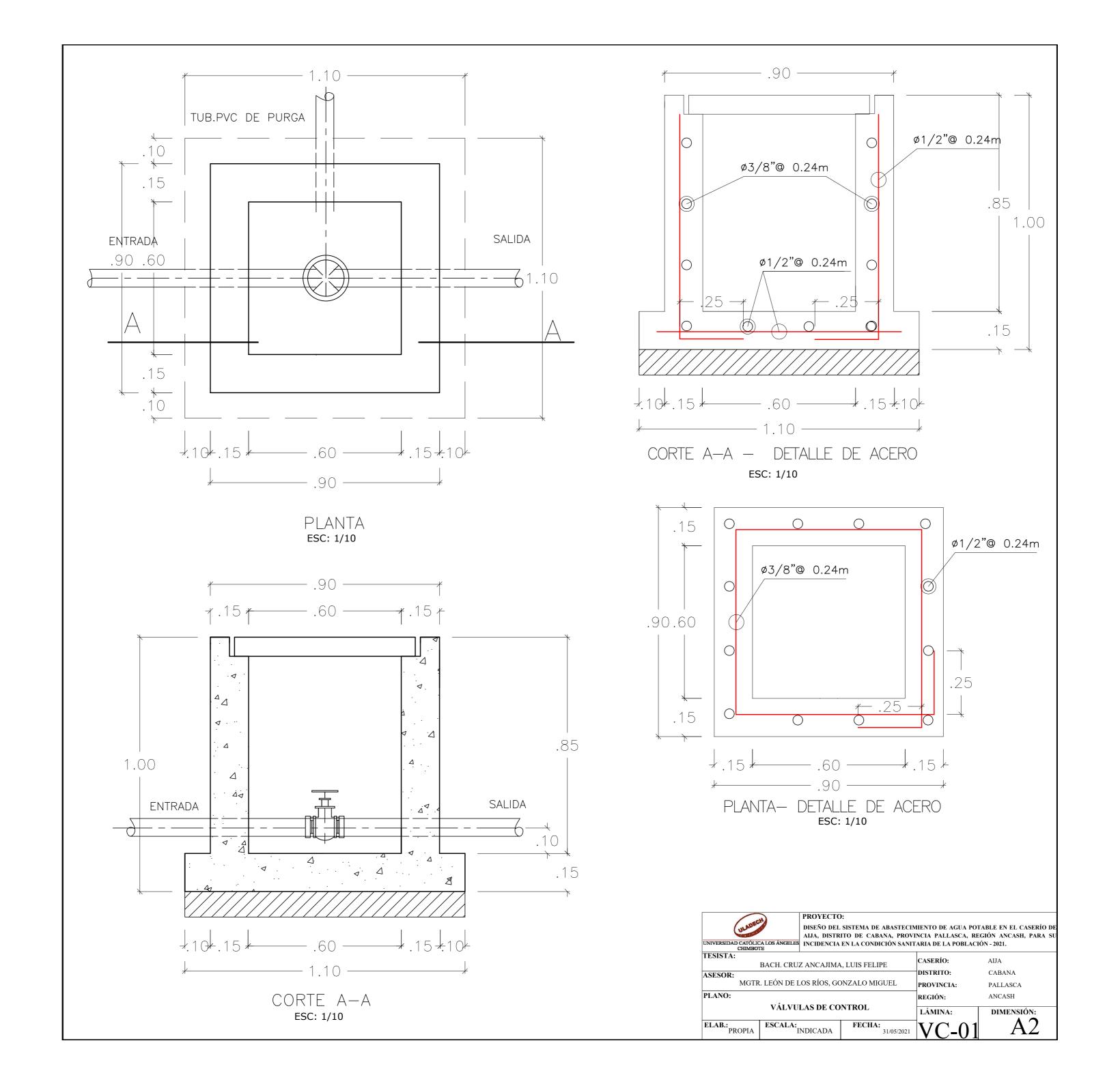
295607773

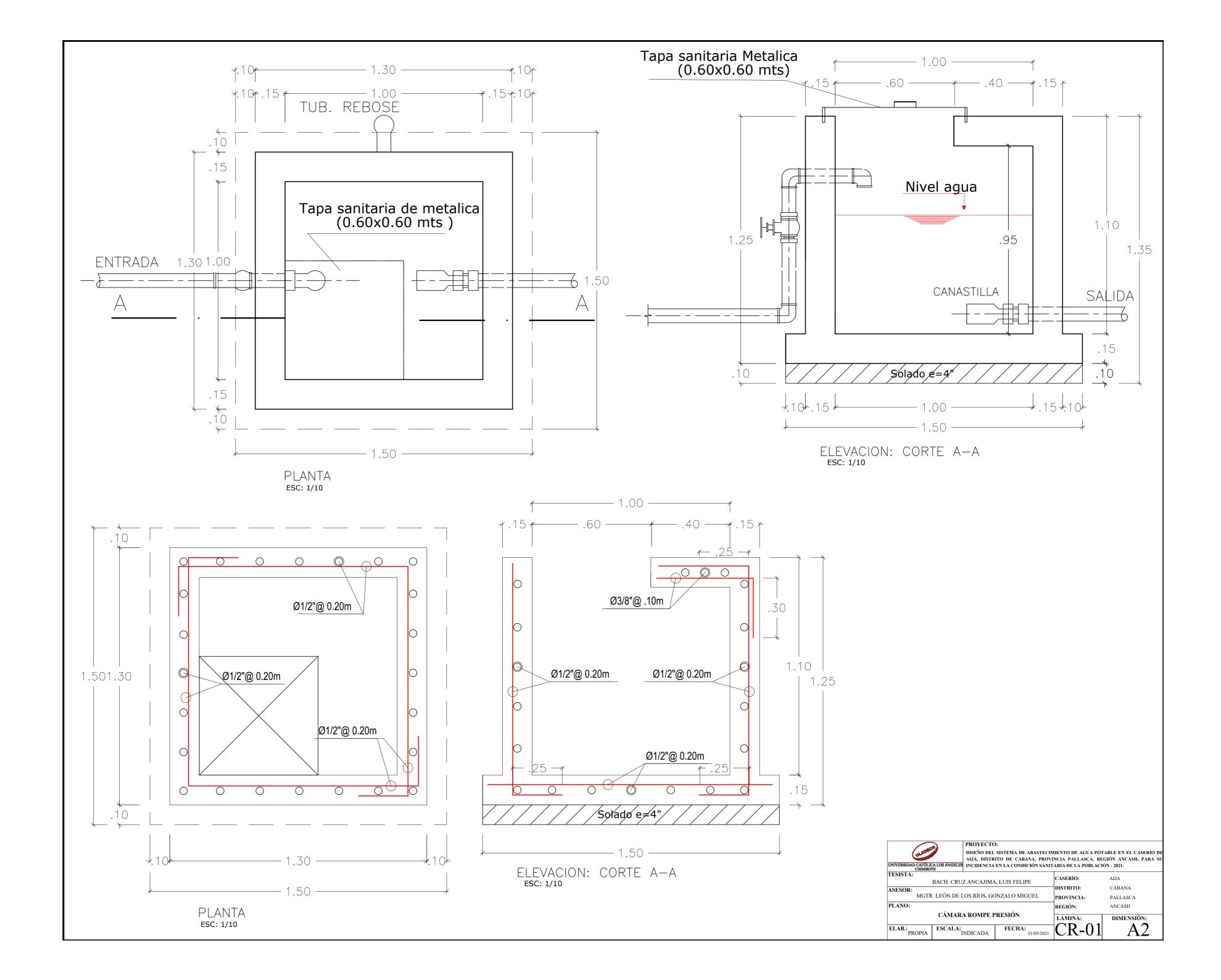
295607773


295607773


295607773


2


PERFIL LONGITUDINAL - LINEA DE CONDUCCION KM: 4+000.00


PERFIL LONGITUDINAL: 4+000.00 - 4+352.75

