

UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN – 2021.

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIER**A** CIVIL

AUTOR:

BARRIONUEVO FLORES, JOSSELY ADDERLY

ORCID: 0000-0002-0723-2870

ASESOR:

LEÓN DE LOS RÍOS, GONZALO MIGUEL

ORCID: 0000-0002-1666-830X

CHIMBOTE – PERÚ

2021

1. Título de tesis

Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca, para su incidencia en la condición sanitaria de la población – 2021.

2. Equipo de Trabajo

AUTOR

Barrionuevo Flores, Jossely Adderly

Orcid: 0000-0002-0723-2870

Universidad Católica Los Ángeles de Chimbote, Estudiante de pregrado, Chimbote, Perú.

ASESOR

Mgtr. León De los Ríos, Gonzalo Miguel

Orcid: 0000-0002-1666-830X

Universidad Católica Los Ángeles de Chimbote, Facultad de Ingeniería, Escuela Profesional de Ingeniería Civil, Chimbote, Perú.

JURADO

Mgtr. Sotelo Urbano, Johanna del Carmen

Orcid: 0000-0001-9298-4059

Presidenta

Dr. Cerna Chávez, Rigoberto

Orcid: 0000-0003-4245-5938

Miembro

Mgtr. Quevedo Haro, Elena Charo

Orcid: 0000-0003-4367-1480

Miembro

3. Hoja de firma del jurado y asesor

Mgtr. Sotelo Urbano, Johanna del Carmen Presidente

Dr. Cerna Chávez, Rigoberto Miembro

Mgtr. Quevedo Haro, Elena Charo Miembro

Mgtr. León De los Ríos, Gonzalo Miguel Asesor 4. Hoja de agradecimiento y/o dedicatoria

Agradecimiento

Le agradezco a Dios por guiarme y no dejarme solo a lo largo de toda mi formación profesional, fue mi fortaleza en los momentos más difíciles brindándome una vida llena de aprendizajes mutuos y experiencia que recalcaron felicidad en toda mi carrera.

A mi familia por ser mi apoyo mutuo y constante a lo largo de mi formación académica, en todos estos duros años que pasaron.

A mis maestros por brindarme una enseñanza de calidad y aprendizaje, impulsándome a ser cada día mejor.

Son diversas cosas que agradecer a las personas que formaron parte a lo largo de mi formación académica, agradeciéndoles su amistad, consejos, apoyo y animo en los momentos más difíciles.

Dedicatoria

A Dios, por mostrarme el camino correcto brindándome sabiduría y conocimiento para lograr ser profesional.

A mi familia por el apoyo y confianza que me brindaron constantemente en todos mis duros años de formación profesional. 5. Resumen y Abstract

Resumen

Esta tesis se desarrolló bajo la línea de investigación: Sistema de saneamiento básico en zonas rurales, de la escuela profesional de Ingeniería civil de la Universidad Católica los Ángeles de Chimbote. Dicha investigación tuvo como objetivo general Realizar la evaluación y mejoramiento del sistema de agua potable del caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca; para su incidencia en la condición sanitaria de la población, tuvo como problemática lo siguiente ¿La evaluación y mejoramiento del sistema de abastecimiento de agua potable en el caserío de Santa María, distrito San Miguel, provincia San Miguel, región Cajamarca; mejorará la condición sanitaria de la población?, Se usó una metodología con las siguientes características: de tipo correlacional, de nivel cuantitativo y cualitativo, de diseño no experimental de corte transversal. La evaluación del sistema de agua potable en el caserío Santa María se determinó en un estado no sostenible e ineficiente requiriendo su mejoramiento. El mejoramiento de la captación parte desde sus dimensiones en la cámara húmeda y seca con los parámetros reglamentados, en la línea de conducción y aducción, tuvieron un diámetro de 1.00 pulg. de tipo PVC y de clase 10, el reservorio obtuvo una capacidad de 10m³, en la red de distribución el sistema fue ramificado de diámetro de 1.00 pulga y ¾ pulg. conectando a 30 viviendas y 3 lugares públicos, dicho mejoramiento incide de manera positiva en a la condición sanitaria de la población cumpliendo con cobertura, calidad, cantidad y continuidad del servicio.

Palabras clave: Evaluación y mejoramiento del sistema de agua potable, sistema de abastecimiento de agua potable, incidencia en la condición sanitaria de la población.

Abstract

This thesis was developed under the line of research: Basic sanitation system in rural areas, of the professional school of Civil Engineering of the Los Ángeles de Chimbote Catholic University. The general objective of said research was to carry out the evaluation and improvement of the drinking water system of the village of Santa Maria, district of San Miguel, province of Miguel, Cajamarca region; For its impact on the health condition of the population, it had as a problem the following: The evaluation and improvement of the drinking water supply system in the hamlet of Santa María, San Miguel district, San Miguel province, Cajamarca region; Will the health condition of the population improve? A methodology with the following characteristics was used: correlational, quantitative and qualitative, and nonexperimental cross-sectional design. The evaluation of the drinking water system in the Santa María village was determined to be unsustainable and inefficient, requiring its improvement. The improvement of the catchment starts from its dimensions in the humid and dry chamber with the regulated parameters, in the conduction and adduction line, they had a diameter of 1.00 in. PVC type and class 10, the reservoir obtained a capacity of 10m3, in the distribution network the system was branched with a diameter of 1.00 inch and 34 inch. By connecting 30 homes and 3 public places, said improvement has a positive impact on the health condition of the population, complying with coverage, quality, quantity and continuity of the service.

Keywords: Evaluation and improvement of the drinking water system, drinking water supply system, impact on the sanitary condition of the population.

6. Contenido

1.	. Título de tesis	ii
2.	. Equipo de Trabajo	iii
3.	. Hoja de firma del jurado y asesor	V
4.	. Hoja de agradecimiento y/o dedicatoria	vii
5.	. Resumen y Abstract	X
6.		
	. Índice de gráficos, tablas y cuadros	
Ι.		
11.	I. Revisión de Literatura	
	2.1. Antecedentes	
	2.1.1. Antecedentes internacionales	3
	2.1.2. Antecedentes nacionales	4
	2.1.3. Antecedentes locales	8
	2.2. Bases Teóricas de investigación	12
	2.2.1. Agua	12
	2.2.1.1. Ciclo hidrológico del agua	12
	A. Evaporación:	13
	B. Condensación:	13
	C. Precipitación	13
	D. Infiltración:	13
	E. Escorrentía:	13
	2.2.2. Tipos de fuentes naturales de agua	14
	2.2.2.1. Fuentes Pluviales	14
	2.2.2.2. Fuentes Superficiales	14
	2.2.2.3. Fuentes subterráneas	15
	2.2.3 Caudal	15

	2.2.3.1. Método Volumétrico	15
	2.2.3.2. Método por área- velocidad	16
2.2.4.	Manantial	17
2.2.5.	Agua Potable	17
	2.2.5.1. Calidad de agua	17
	A. Características físicas	18
	B. Características Químicas	18
	C. Características Biológicas	18
	2.2.5.2. Cantidad de agua	18
2.2.6.	Evaluación	19
	2.2.6.1. Sistema sostenible	19
	2.2.6.2. Sistema medianamente sostenible	19
	2.2.6.3. Sistema no sostenible	19
	2.2.6.4. Sistema colapsado	20
2.2.7.	Mejoramiento	20
2.2.8.	Sistema de abastecimiento de agua potable	20
2.2.9.	Levantamiento topográfico	21
2.2.10	. Estudio de suelo	21
2.2.11.	. Parámetros de diseño de un sistema de Agua Potable	22
	2.2.11.1.Periodo de diseño de un sistema de agua potable	22
	2.2.11.2.Población	22
	A. Población actual	22
	B. Población futura	22
	2.2.11.3.Demanda de agua	23
	A. Dotación	23
	B. Variaciones de Consumo	24
2.2.12.	. Estructuras de un sistema de agua potable	25
	2.2.12.1.Captación	25

1	A. Tipos de Captación	25
]	B. Cantidad de agua	27
2.2.12.2.1	Línea de Conducción	27
1	A. Tipos de línea de conducción	28
]	B. Tipos de tubería	29
(C. Clase de tubería	29
]	D. Caudal	30
]	E. Diámetro	30
]	F. Velocidad	31
(G. Presión	31
]	H. Válvula de aire	32
]	I. Válvula de purga	32
J	J. Cámara rompe presión	32
2.2.12.3.1	Reservorio de almacenamiento	33
1	A. Tipos de reservorio de almacenamiento	33
]	B. Volumen de regulación	35
(C. Volumen de reserva	35
]	D. Volumen contra incendio	36
]	E. Desinfección	36
]	F. Caseta de válvulas	36
(G. Ubicación del reservorio	36
2.2.12.4.1	Línea de Aducción	37
1	A. Caudal	37
]	B. Diámetro	37
(C. Velocidad	38
]	D. Presión	38
2.2.12.5.1	Red de distribución	38

		A. Tipos de Red de distribución	39
		B. Caudal	41
		C. Tipo de tubería	41
		D. Clase de tubería	41
		E. Diámetro	41
		F. Velocidad	42
		G. Presión	42
	2.2.13.	Condición Sanitaria	42
		2.2.13.1.Cobertura de servicio de agua potable	42
		2.2.13.2.Cantidad de servicio de agua potable	43
		2.2.13.3.Continuidad de servicio de agua potable	44
		2.2.13.4.Calidad de servicio de agua potable	45
	2.3. Hipótes	sis	46
	2.4. Variabl	les	47
	2.4.1.	Variable independiente	47
	2.4.2.	Variable dependiente	47
III.	Metodologi	ía	48
	3.1. Tipo y	nivel de la investigación	48
	3.1.1.	Tipo de investigación	48
	3.1.2.	Nivel de investigación	48
	3.2. Diseño	de la investigación	48
	3.3. Poblaci	ión y muestra	49
	3.3.1.	Población	49
	3.3.2.	Muestra	49
	3.4. Definic	ción y operacionalización de variables e investigadores.	50
	3.5. Técnica	as e instrumentos	53
	351	Técnicas	53

	3.5.2.	Instrumentos	53
		3.5.2.1. Encuestas	53
		3.5.2.2. Fichas Técnicas	53
		3.5.2.3. Protocolos	54
	3.6. Plan d	le análisis	54
	3.7. Matriz	z de consistencia	55
	3.8. Princi	pios éticos	56
	3.8.1.	Ética para el inicio de la evaluación	56
	3.8.2.	Ética en la recolección de datos	56
	3.8.3.	Ética en el mejoramiento del sistema de agua potable	56
IV	Resultado)S	57
	4.1. Result	tados	58
	4.2. Anális	sis de Resultados	105
	4.2.1.	Evaluación del sistema de agua potable existente	105
	4.2.2.	Propuesta de mejoramiento del sistema de agua potable	110
	4.2.3.	Determinación en la incidencia de la condición sanitaria	116
V.	Conclusion	nes y recomendaciones	121
	5.1. Concl	usiones	121
	5.2. Recon	nendaciones	125
Re	ferencias bi	ibliográficas	129
A ==	OWOG		124

7. Índice de gráficos, tablas y cuadros

Índice de gráficos

Gráfico 1. Cobertura de servicio de agua potable en el Perú	. 43
Gráfico 2. Cantidad de agua potable en el Perú	. 44
Gráfico 3. Precipitación anual en Cajamarca	. 44
Gráfico 4. Evaluación del estado de los componentes de la captación actual	. 61
Gráfico 5: Evaluación final de la captación actual	. 62
Gráfico 6. Evaluación de la línea de conducción actual	. 65
Gráfico 7: Evaluación de los componentes del reservorio de almacenamiento actual	69
Gráfico 8. Evaluación del reservorio de almacenamiento actual	. 70
Gráfico 9. Evaluación línea de aducción actual	. 73
Gráfico 10. Evaluación de la red de distribución actual	. 76
Gráfico 11. Evaluación de los componentes de la cámara rompe presión actual – CRP 6	79
Gráfico 12. Evaluación de la cámara rompe presión actual – CRP 6	. 80
Gráfico 13. Estado actual de las estructuras del sistema de agua potable	. 82
Gráfico 14. Estado actual del sistema de abastecimiento de agua potable	. 83
Gráfico 15. Cobertura del servicio	. 95
Gráfico 16. Cantidad del servicio	. 97
Gráfico 17. Continuidad del servicio	. 99
Gráfico 18. Calidad del servicio	101
Gráfico 19. Estado de los componentes de la condición sanitaria	103
Gráfico 20. Estado de la condición sanitaria	104
Gráfico 21. Persona encontrada en la vivienda	211
Gráfico 22. Edad del encuestado	211

Gráfico 23.	¿Cuántos integrantes habitan en su vivienda?	212
Gráfico 24.	¿Cuál es el tipo de fuente de donde captan el agua?	212
Gráfico 25.	¿La cantidad de agua tiene suficiente volumen de agua para abastecer a su caserío?	213
Gráfico 26.	¿El afloramiento del agua en la fuente tiene una pendiente adecuada?	213
Gráfico 27.	¿Cada cuánto tiempo se hace mantenimiento a su sistema de agua potable?	214
Gráfico 28.	¿El sistema de abastecimiento de agua potable llega abastecer a su vivienda?	214
Gráfico 29.	¿Con que frecuencia dispone de agua potable?	215
Gráfico 30.	¿En qué actividades emplea el agua potable?	215
Gráfico 31.	¿Cómo calificarías la continuidad del agua que llega a tu vivienda?	216
Gráfico 32.	¿El sistema de abastecimiento de agua potable abastece a todo el caserío?	216
Gráfico 33.	¿Cómo calificas la cobertura del sistema de agua potable?	217
Gráfico 34.	¿Qué características tiene el agua que llega a su vivienda?	217
Gráfico 35.	¿Según sus características el sabor, color y olor del agua es aceptable?	218
Gráfico 36.	¿En su reservorio existe algún sistema de cloración?	218
Gráfico 37.	¿En la línea de conducción existen fugas perjudicando la calidad de agua?	219
Gráfico 38.	¿En la línea de aducción existen fugas, perjudicando la calidad de agua?	219
Gráfico 39.	¿En la red de distribución existen fugas, perjudicando la calidad de agua?	220

Gráfico 40. ¿Cómo calificas la calidad del agua de tu sistema de agua	
potable?	. 220
Gráfico 41. ¿Qué enfermedades son las más comunes en su caserío?	. 221
Gráfico 42. ¿Crees que se debe mejorar el sistema de abastecimiento de agua potable?	. 221
Gráfico 43. ¿Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la cobertura del servicio?	. 222
Gráfico 44. ¿Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la cantidad del servicio?	. 222
Gráfico 45. ¿Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la continuidad del servicio?	. 223
Gráfico 46. ¿Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la calidad del servicio?	. 223
Gráfico 47. Análisis bacteriológico del agua	. 224
Gráfico 48. Análisis físico y químico del agua - 1	. 225
Gráfico 49. Análisis físico y químico del agua - 2	. 226
Gráfico 50. Análisis físico y químico del agua - 3	. 227

Índice de tablas

Tabla 1. Diseño hidráulico de la captación de manantial de ladera	84
Tabla 2. Diseño hidráulico de la línea de conducción	86
Tabla 3. Diseño hidráulico del reservorio de almacenamiento	88
Tabla 4. Diseño hidráulico de la línea de aducción	90
Tabla 5. Diseño hidráulico de la red de distribución	91
Tabla 6. Diseño hidráulico de la cámara rompe presión tipo 6	93
Tabla 7. Ficha 07 "Cobertura del servicio"	94
Tabla 8. Ficha 08 "Cantidad del servicio"	96
Tabla 9. Ficha 09 "Continuidad del servicio"	98
Tabla 10. Ficha 10 "Calidad del servicio"	100
Tabla 11. Estado de la condición sanitaria	102
Tabla 12. Coordenadas del levantamiento topográfico	139
Tabla 13. Cálculo del caudal de la fuente en época de estiaje	244
Tabla 14. Cálculo del caudal de la fuente en época de lluvia	244
Tabla 15. Cálculo de la densidad poblacional	245
Tabla 16. Datos censales de la población	245
Tabla 17. Cálculo del coeficiente de crecimiento poblacional	246
Tabla 18. Cálculo de la población futura	246
Tabla 19. Cálculo del consumo no doméstico	249
Tabla 20. Cálculo del consumo doméstico	249
Tabla 21. Cálculo de las variaciones de consumo	251
Tabla 22. Cálculo de la cota número 2	255
Tabla 23. Cálculo de la distancia de afloramiento y la cámara húmeda	256
Tabla 24. Cálculo del ancho de la pantalla	257
Tabla 25. Cálculo del cono de rebose	259

Tabla 26. Cálculo de la tubería de limpieza	260
Tabla 27. Cálculo de la tubería de conducción	260
Tabla 28. Cálculo de la canastilla	261
Tabla 29. Cálculo de la cámara húmeda	263
Tabla 30. Cálculo de la cota de conducción	263
Tabla 31. Cálculo hidráulico de la línea de conducción	266
Tabla 32. Cálculo del volumen del reservorio	270
Tabla 33. Dimensionamiento del reservorio rectangular	271
Tabla 34. Cálculo de los diámetros de las tuberías	272
Tabla 35. Cálculo del llenado y vaciado del reservorio	274
Tabla 36. Cálculo de la canastilla en el reservorio	275
Tabla 37. Cálculo del sistema de cloración por goteo	277
Tabla 38. Cálculo hidráulico de la línea de aducción	279
Tabla 39. Cálculo hidráulico de la tubería principal y secundaria en la	
red de distribución	281
Tabla 40. Cálculo de las presiones en los nodos de la red de distribución	282
Tabla 41. Cálculo de las presiones en las viviendas	283
Tabla 42. Cálculo hidráulico de la cámara rompe presión tipo 6	285
Tabla 43. Cálculo de la tubería de rebose en la CRP6	286
Tabla 44. Cálculo de la canastilla en la CRP6	286
Tabla 44. Calculo de la Callastilla eli la CNFO	200
Tabla 45. Metrado de la cámara de captación	
	290
Tabla 45. Metrado de la cámara de captación	290 298
Tabla 45. Metrado de la cámara de captación Tabla 46. Metrado de la línea de conducción	290 298 299
Tabla 45. Metrado de la cámara de captación Tabla 46. Metrado de la línea de conducción Tabla 47. Metrado de la cámara rompe presión tipo 6	290 298 299 304

Tabla 51. Metrado de caseta de cloración del reservorio	. 315
Tabla 52. Metrado de cerco perimétrico de reservorio	. 318
Tabla 53. Metrado de la línea de aducción	. 321
Tabla 54. Metrado de la red de distribución	. 322
Tabla 55. Costos y presupuestos	. 325
Índice de cuadros	
Cuadro 1. Índices de sostenibilidad	20
Cuadro 2. Periodo de diseño en estructuras	22
Cuadro 3. Dotación de agua según la opción tecnológica y región	24
Cuadro 4. Coeficiente de rugosidad de Hazen-Williams	29
Cuadro 5. Clases de tuberías	30
Cuadro 6. Diámetros Comerciales	31
Cuadro 7. Presiones máximas en tuberías PVC	32
Cuadro 8. Definición y operacionalización de variables e investigadores	50
Cuadro 9. Matriz de consistencia	55
Cuadro 10. Evaluación de la cámara de captación actual	58
Cuadro 11. Evaluación de la línea de aducción actual	63
Cuadro 12. Evaluación del reservorio de almacenamiento actual	66
Cuadro 13. Evaluación de la línea de aducción actual	71
Cuadro 14. Evaluación de la red de distribución actual	74
Cuadro 15. Evaluación de la cámara rompe presión actual	77
Cuadro 16. Estado actual de las estructuras del sistema de abastecimiento	
de agua potable	81
Cuadro 17. Dotación de agua para centros educativos	. 247
Cuadro 18. Dotación de agua para establecimientos	. 247

Cuadro 19.	Dotación según la opción tecnológica	247
Cuadro 20.	Datos para el cálculo de las variaciones de consumo "k1 y k2".	250
Cuadro 21.	Parámetros de diseño para el cálculo de las variaciones de consumo "k1 y k2"	250
Cuadro 22.	Criterios técnicos para el cálculo de las variaciones de consumo "k1 y k2"	250
Cuadro 23.	Criterios para los caudales hallados según las variaciones de consumo	252
Cuadro 24.	Resumen del cálculo de los caudales de diseño	252
Cuadro 25.	Periodo de diseño para el cálculo de la cámara de captación	253
Cuadro 26.	Dotación para el cálculo de la cámara de captación	253
	Coeficiente de rugosidad "Hazen Williams" y coeficiente de descarga en orificios	253
Cuadro 28.	Coeficiente de variación diaria	253
Cuadro 29.	Datos para el diseño hidráulico de la cámara de captación	254
Cuadro 30.	Periodo de diseño para el cálculo de la línea de conducción	264
Cuadro 31.	Coeficiente de rugosidad "Hazen Williams" según el tipo de material de tubería	264
Cuadro 32.	Presiones máximas en tuberías tipo PVC	264
Cuadro 33.	Diámetros comerciales para tuberías de clase 10 de tipo PVC	265
Cuadro 34.	Descripción, cotas, distancias y otros datos en la línea de conducción	266
Cuadro 35.	Fórmulas para el cálculo en la línea de conducción	267
Cuadro 36.	Periodo de diseño para el cálculo del reservorio	268
Cuadro 37.	Coeficiente de variación para el cálculo del reservorio	268
Cuadro 38.	Datos para el diseño hidráulico del reservorio de	260
	aimacenamiento	hu

Cuadro 39.	Datos para el cálculo hidráulico del sistema de cloración por	
	goteo	277
Cuadro 40.	Periodo de diseño para el cálculo de la línea de aducción	278
Cuadro 41.	Descripción, cotas, distancias y otros datos en la línea de	
	aducción	279
Cuadro 42.	Fórmulas para el cálculo en la línea de aducción	280

I. Introducción

Esta investigación especificó la evaluación del sistema de agua potable actual en el caserío Santa Maria que se encuentra ubicado en las coordenadas UTM, E 735958.13, N 9223348.50 zona 17L con altitud de 2263.957 m.s.n.m, esta investigación estuvo basada en la evaluación y mejoramiento del sistema de abastecimiento de agua potable, donde se encontró deficiencias en los componentes que tiene actualmente dicho sistema, estos no cumplen los estándares de condición sanitaria, los cuales parten desde cobertura, continuidad, cantidad y calidad, tuvo como problema de investigación la siguiente pregunta, ¿La evaluación y mejoramiento del sistema de abastecimiento de agua potable en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca, mejorará la condición sanitaria de la población – 2021?, como objetivo general se obtuvo lo siguiente, Realizar la evaluación y mejoramiento del sistema de abastecimiento de agua potable en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca, para su incidencia en la condición sanitaria de la población – 2021, como **objetivos específicos**; Evaluar el sistema de abastecimiento de agua potable actual en el caserío de Santa Maria, distrito de San Miguel, provincia de San Miguel, región Cajamarca – 2021; Proponer el mejoramiento del sistema de abastecimiento de agua potable en el caserío de Santa Maria, distrito de San Miguel, provincia de San Miguel, región Cajamarca - 2021; Determinar la incidencia en la condición sanitaria de la población en el caserío de Santa Maria, distrito de San Miguel, provincia de San Miguel, región Cajamarca – 2021. Se **justificó** en base a la necesidad de cada poblador en el caserío de Santa Maria en tener un agua potable apta para el consumo humano, esta investigación será un beneficio para el desarrollo sostenible de 30 viviendas y 3 lugares públicos ubicados en el caserío de Santa Maria.

La **metodología** usada fue de características: de **tipo** correlacional, de **nivel** cuantitativo y cualitativo, de diseño no experimental y de corte transversal, la **población** se constituyó por el sistema de abastecimiento de agua potable en zonas rurales y la **muestra** por el sistema de abastecimiento de agua potable en el caserío de Santa Maria, distrito de San Miguel, provincia de San Miguel, región Cajamarca, la **delimitación espacial** constituye el caserío de Santa Maria, distrito de San Miguel, provincia de San Miguel, región Cajamarca, comprendida con un periodo desde abril 2021 – julio 2021, para la recolección de datos se usó la técnica de observación directa por medio de visitas a la zona de estudio, como **instrumento** se utilizaron, cuestionarios (encuentras), y fichas técnicas, como **resultado** se especificó todas las deficiencias y el estado en que los componentes del sistema de agua potable actual se encuentran, dicha evaluación llevó a la ejecución de un mejoramiento para cada uno de los componentes y un resultado a la condición sanitaria de la población por medio de un puntaje basándose en el rango o estado en que se encuentra actualmente dicha condición, por último se dio la **conclusión** que el sistema de agua potable actual en el caserío de Santa Maria, se encuentra en malas condiciones, ya que según la evaluación del sistema de agua potable requiere un mejoramiento, partiendo desde la captación, que comprende accesorios y estructura, en la línea de aducción, línea de conducción y red de distribución se mejoró los diámetros, clase y tipo de tubería, al contar con una CRP6 también realizó también la mejora, por ultimo para el reservorio de almacenamiento se mejoró sus accesorios que a dicha estructura le faltaron, se implementara una caseta de cloración y un cerco perimétrico, dicho mejoramiento fue de beneficio para todo el caserío brindando agua de calidad y mejorando su condición sanitaria de la población.

II. Revisión de la literatura

2.1. Antecedentes

2.1.1. Antecedentes internacionales

Según Montalvo, et al¹, en su **tesis** titulada: Rediseño del sistema de agua potable del barrio Cashapamba desde el tanque de reserva Cashapamba hasta el tanque de reserva Dolores Vega, ubicado en la parroquia Sangolquí, cantón Rumiñahui, provincia de Pichincha, se tuvo como objetivo rediseñar el sistema de agua potable del barrio Cashapamba desde el tanque de reserva Cashapamba hasta el tanque de reserva Dolores Vega, se aplicó una metodología cualitativa y cuantitativa obteniendo como resultado resultados se realizaron sobre el esquema de la red mediante códigos de colores, estableciendo rangos por intervalos iguales o por porcentajes equivalentes, que facilitan la codificación, es decir que, en un mapa de la red, se da colores a las tuberías o nudos dependiendo del valor del parámetro analizado; llegaron a conclusiones tales como que las fuentes de abastecimiento de agua con las que cuenta el barrio Cashapamba del sistema actual tiene un déficit de 0.88 l/s y al final del periodo de diseño de 20 años este será de 22. 64 l/s, también se determinó que la hora de mayor demanda que presenta el barrio Cashapamba es a las 08:00 am. se concluyó que la Sangolquí, no cuentan con un servicio óptimo para el consumo humano, es por eso que se hizo el mejoramiento de todo el sistema de abastecimiento de agua potable cumpliendo con las condiciones sanitarias adecuadas durante el uso del sistema.

Según Zambrano² en su tesis titulada: Sistema de abastecimiento de agua potable para la comunidad de Mapasingue, parroquia colon, Cantón Portoviejo – 2017, tuvo como objetivo elaborar el diseño del sistema de abastecimiento de agua para la comunidad de Mapasingue, parroquia Colón del Cantón Portoviejo, provincia Manabí – 2017, el investigador uso una **metodología** de tipo no experimental dando como resultado una población futura de 1080 habitantes para un periodo de diseño de 20 años, se calculó un caudal promedio de 1.18 l/s, un caudal máximo diario de 1.50 l/s y un caudal máximo horario de 3.60 l/s, con un reservorio de almacenamiento de 52 m³, el diámetro de la línea de conducción será de 46.2 mm con una velocidad de 0.984, en la línea de aducción se obtuvo un diámetro de 46..2 mm con una velocidad en el tramo de 0.87 m/s, las velocidades en la red de distribución se encuentran en un rango de 0. 40 m/s con una longitud total de 3021.85 ml de tubería a presión con velocidades y presiones superiores a 7 m.c.a e inferiores a 30 m.c.a, en conclusión, el sistema planteado para el mejoramiento del sistema de agua potable actual de la comunidad de Mapasingue cumple con la normativa ecuatoriana.

2.1.2. Antecedentes nacionales

Según Clemente³, en su **tesis** titulada: Evaluación y mejoramiento del sistema de saneamiento básico en la comunidad de Palcas, distrito de Angaraes, departamento de Huancavelica y su incidencia en la condición sanitaria de la población, tuvo como **objetivo** desarrollar la evaluación y mejoramiento del sistema de saneamiento básico en la

comunidad de Palcas, distrito de Angaraes, departamento de Huancavelica para la mejora de la condición sanitaria de la población, la **metodología** que aplicó es de tipo exploratorio y de nivel cualitativo, obteniendo como **resultado** un caudal promedio de 0.25 l/s para una población futura de 430 habitantes en 20 años, un caudal máximo diario (Qmd) de 0.325 l/s y un caudal máximo horario (Qmh) 0.50 l/s, se diseñó una captación de ladera con dimensiones de 1.00 mts de ancho y 1.00 de altura de cámara húmeda, la línea de conducción es de PVC de 1 ½ pulg. de diámetro y una longitud de 1300 mts, el reservorio de almacenamiento es de 10 m³, la línea de aducción es de PVC de 1.00 pulg. de diámetro con una longitud de 350 mts. y la red de distribución está compuesta por tubería PVC de 1.00 pulg. de diámetro para la red principal y tubería PVC de ¾ pulg. para los ramales, el investigador llego a la conclusión que existían deficiencias en todo el sistema de abastecimiento básico (agua potable) durante la evaluación, es por eso que los cálculos propuestos de todo el sistema de saneamiento básico en la comunidad de Palcas cumplen al 100% tanto en su condición sanitaria del sistema como el abastecimiento total de agua potable a todo el pueblo.

Según Moreno⁴ en su **tesis** titulada, Mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del caserío Pampa Hermosa Alta, distrito de Usquil – Otuzco – La Libertad - 2018, tuvo como **objetivo**, Realizar el diseño del mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del caserío Pampa

Hermosa alta, distrito de Usquil – Otuzco – La Libertad, la **metodología** que aplicó el investigador es de diseño no experimental, de tipo descriptivo el cual dio como resultado, una población futura de 508 habitantes en 20 años, una dotación de 80 lt/hab./día, un caudal promedio de 2.08 l/s, también se halló los coeficientes de consumo; 1.3 y 2, obteniendo que el Qmd: 0.764 l/s y Qmh: 1.176 l/s, se trabajó con una captación de ladera, con dimensiones de 1.05 mts. De ancho y 1 mt. de altura de cámara húmeda, 115 ranuras, diámetro de tubería de rebose y limpieza de 2 pulg., la línea de conducción es de 1 pulg. de diámetro tipo PVC y clase 10, se cuenta con un reservorio de 15 m³ y una red de distribución de 1 pulg. de diámetro, se llegó a la siguiente conclusión, se diseñó el sistema de agua potable de acuerdo a las normas vigentes y al Reglamento Nacional de Edificaciones, con un periodo de diseño de 20 años, una población de 415 habitantes distribuidos en 83 viviendas proyectando una captación de manantial de ladera, una línea de conducción, un reservorio, una línea de aducción y una red de distribución que cumplen los parámetros necesarios según el Reglamento nacional de Edificaciones y las condiciones sanitaria optimas durante el tiempo de uso.

Según Ledesma⁵, en su **tesis** titulada: Diseño del mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del sector Parva del Cerro, caserío el Espino, distrito de Chugay, provincia de Sánchez Carrión, departamento La Libertad – 2018, se tuvo como

objetivo Realizar el diseño del mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del sector Parva del Cerro, caserío el Espino, distrito de Chugay, provincia de Sánchez Carrión, departamento La Libertad – 2018, el investigador aplico la metodología no experimental transversal, descriptivo teniendo como resultado una población futura de 336 habitantes con 82 viviendas en un periodo de diseño de 20 años, el caudal promedio es de 0.41 l/s, el caudal máximo diario de 0.73 l/s y el caudal máximo horario de 1.13 l/s, se obtuvo una captación de ladera con dimensiones de 1.00 mts de ancho y 0.90 mts de altura de cámara húmeda, el área de la ranura es de 75 mm2, en las tubería de rebose y limpieza se obtuvo un diámetro de 2", en la línea de conducción se utilizó tubería PVC 2" de diámetro, el reservorio de almacenamiento es de 15 m3 de forma circular con un diámetro de 3.40 mts y una altura 2.10 mts; el investigador llego a la conclusión de que se logró diseñar el sistema de agua potable para un total de 336 personas proyectadas en un periodo de diseño de 20 años, con un caudal máximo diario de 0.73 l/s se diseñó una captación de ladera y con un caudal de 1.30 l/s, una línea de conducción de 2", se diseñó un reservorio circular de 15 m3 de capacidad, y una red de distribución de 5286m el cual beneficiará a 67 viviendas domiciliarias, 2 Instituciones educativas, 3 locales sociales.

2.1.3. Antecedentes locales

Según Melgarejo⁶, en su **tesis** titulada: Evaluación y Mejoramiento del Sistema de Abastecimiento de Agua Potable y Alcantarillado del Centro Poblado Nuevo Moro, Distrito de Moro, Ancash - 2018, tuvo como **objetivos:** Evaluar el sistema de abastecimiento de agua potable y alcantarillado del centro poblado Nuevo Moro, Ancash – 2018; Proponer el mejoramiento del sistema de abastecimiento de agua potable y alcantarillado del centro poblado Nuevo Moro, Ancash -2018. El investigador aplica una metodología descriptiva, no experimental, obteniendo como resultado un caudal máximo de 3.00 1/s y mínimo de 2.50 1/s, una captación de ladera con dimensiones de 1.00 mts de ancho y 0.85 cm de altura de cámara húmeda, 116 ranuras, y tuberías de rebose y limpieza de 3 pulg, la línea de conducción se trabajó con la clase de tubería PVC de 2.00 pulg. de diámetro, cuenta con 3 válvulas de purga y 2 válvulas de aire, el reservorio de almacenamiento de tipo apoyado rectangular con un volumen de 20 m³, su línea de aducción y red de distribución se trabajó con tubería de clase PVC de 3.00 y 4.00 pulg., llegando a la siguiente conclusión que la captación no cumple con los accesorios y parámetros respectivos de acuerdo al reglamento, en la línea de conducción no se pudo evaluar muy bien por el motivo de que se encontraba enterrada, la condición del reservorio es estable cumpliendo con la demanda de agua que se necesita para abastecer a la población, para la evaluación de la red de

distribución se realizó el levantamiento topográfico y el estudio de mecánica de suelos.

Según Herrera⁷, en su **tesis** titulada: Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay. Provincia de Recuay, región de Áncash, agosto - 2019 tuvo como objetivo Desarrollar la evaluación y mejoramiento del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del centro poblado Huancapampa, distrito de Recuay, provincia de Recuay, región de Ancash, agosto - 2019, el investigador aplicó una metodología de diseño no experimental de tipo correlacional y nivel de investigación cualitativa y cuantitativo obteniendo como resultado una caudal promedio de 0.2407 l/s para una población futura de 416 en 20 años, se obtuvo un caudal máximo diario (Qmd) de 0.313 l/s y un caudal máximo horario (Qmh) de 0.4814 l/s, se diseñó una captación de tipo ladera con dimensiones de 0.90 mts de ancho y 1.00 mt de altura de cámara húmeda, la tubería de conducción es de PVC de 1.00 pulg. de diámetro y una longitud de 1016 mts, el reservorio de almacenamiento es de 10 m³, la tubería de aducción es de PVC de 1.00 pulg de diámetro con una longitud de 54.00 mts y la red de distribución es de PVC con una longitud 420 mts, el investigador llego a la conclusión que mediante el diseño de los componentes del sistema de abastecimiento de agua potable cumplen con las exigencias del Ministerio de vivienda Construcción y Saneamiento, además que la cobertura de los servicios y la calidad de agua cumplen con el óptimo permisible, contribuyendo a la condición sanitaria que necesita el caserío.

Según Verde⁸, en su tesis titulada: Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío Canchas, distrito Cáceres del Perú, provincia del santa, región Ancash - 2019, tuvo como objetivo Desarrollar la evaluación y mejoramiento del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del caserío de Canchas, distrito de Recuay, provincia de Recuay, región de Ancash, agosto - 2019, el investigador aplicó una metodología de tipo correlacional y nivel de investigación cualitativa y cuantitativo obteniendo un **resultado** de un caudal máximo diario (Qmd) de 0.49 l/s y un caudal máximo horario (Qmh) de 0.76 l/s para una población futura de 308 hab., se trabajó con una captación de ladera, obteniendo como dimensiones 0.90 mt. de ancho y 1.00 m de altura de cámara húmeda, 115 ranuras, rebose y limpieza de 2.00 pulg., la línea de conducción se trabajó con tubería PVC con una longitud de 540 mts. Con diámetros de ¾ pulg., 1 pulg., 1 ½ pulg., cuenta con un reservorio de 10 m³, su línea de aducción y red de distribución se trabajó con diámetros de ¾ pulg., 1 pulg., 1 ½ pulg., llegando a la **conclusión** que el tipo de captación que se empleó es de tipo ladera y concentrado, tiene un caudal máximo de 1.14 l/s y un mínimo de 0.93 l/s, la línea de conducción y aducción es de tipo PVC, el tipo de reservorio de almacenamiento que se empleó en el sistema de rectangular y se calculó a base del volumen de regulación y reserva, la red de distribución se optó por una red de tipo ramificada o abierta, por la dispersión de las viviendas con una separación superior a los 50 mts.

2.2. Bases Teóricas de investigación

2.2.1. Agua

"El agua es una sustancia liquida que esta formada por dos átomos de hidrógeno y uno de oxígeno H2O, es esencial para la supervivencia de todas las formas conocidas de vida, también podemos encontrarla en su forma sólida llamada hielo, y en su forma gaseosa denominada vapor. Esta cubre el 71% de la superficie de la corteza terrestre".

2.2.1.1. Ciclo hidrológico del agua

"El ciclo hidrológico del agua se define como el proceso permanente del movimiento de transferencias de las masas de agua que existen en nuestro planeta, es un proceso continuo en que las moléculas del agua pasan por 3 tipos de estados los cuales son sólido, líquido y gaseoso" 10.

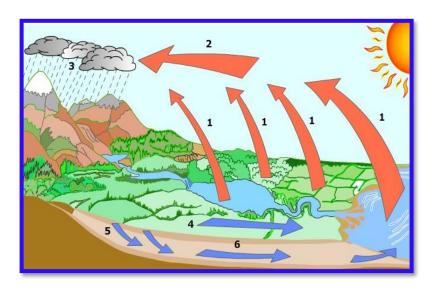


Figura 1. El ciclo hidrológico del agua.

Fuente: GWP PERÚ

Existen 4 procesos durante el ciclo hidrológico del agua los cuales son:

A. Evaporación:

Es el inicio del proceso del ciclo hidrológico que realiza el agua, donde pasa de su líquido a gaseoso.

B. Condensación:

Es el proceso donde el agua al cambiar su estado líquido se enfría y se condensa en conjunto con sus partículas produciendo la formación de nubes.

C. Precipitación

Es el proceso donde las nubes ya formadas chocan y caen por medio de lluvias a la corteza terrestre.

D. Infiltración:

Proceso donde el agua de la lluvia que cae a la corteza terrestre penetra y se filtra debajo del terreno.

E. Escorrentía:

Es el flujo de agua que circula a través de su propio caudal sobre la superficie terrestre denominándose manantiales, ríos etc.

2.2.2. Tipos de fuentes naturales de agua

2.2.2.1. Fuentes Pluviales

Se le denomina a la precipitación que cae a la corteza terrestre y es almacenada.

Figura 2. Captación de agua pluvial en vivienda

Fuente: Fuentes naturales de agua

2.2.2.2. Fuentes Superficiales

Son fuentes que se encuentran por encima del sub suelo radicando y formado rios, o lagos.

Figura 3. Captación una fuente superficial (río).

Fuente: Fuentes naturales de agua

2.2.2.3. Fuentes subterráneas

Son fuentes de agua que se encuentran por debajo del terreno natural, se producen a través de acuíferos o manantiales.

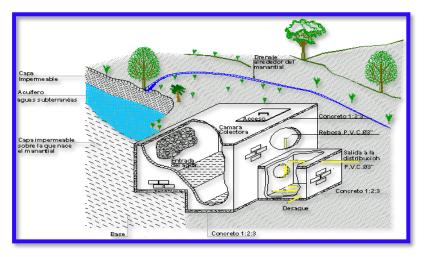


Figura 4. Captación de una fuente subterránea (manantial).

Fuente: CBS Ingeniería

2.2.3. Caudal

"El caudal es el flujo de agua que pasa por una fuente de natural de agua, esta se calcula dependiendo de un área o volumen y el tiempo. Existen métodos para determinar la medición del caudal de una fuente" 11.

2.2.3.1. Método Volumétrico

"El método volumétrico consiste el calcular una caída de agua hacia un recipiente llenándolo totalmente en un determinado tiempo" 11. Su fórmula es:

$$Q = \frac{V}{t} \qquad \dots (1)$$

Donde:

Q: Caudal de la fuente

V : Volumen del recipiente

t : Tiempo de llenado

Figura 5. Medición del caudal por el método volumétrico

Fuente: Mediciones de caudales – Métodos

2.2.3.2. Método por área- velocidad

"El método por área velocidad consiste en calcular el recorrido del agua en un área determinada y en un determinado tiempo" 11. Se calcula:

$$V = \frac{D}{T} \cdot A \tag{2}$$

Donde:

V : Velocidad de recorrido

D: Distancia

T: Tiempo de recorrido

A : Área dependiendo del tipo de figura geométrica de la fuente

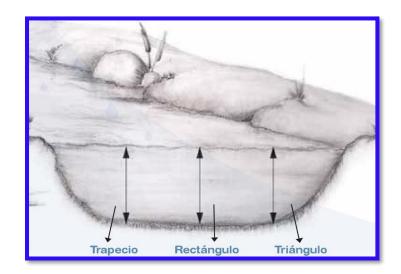


Figura 6. Medición del caudal por el método área - velocidad

Fuente: Mediciones de caudales – Método

2.2.4. Manantial

Se le denomina a la filtración del agua dentro del subsuelo formada por pequeñas corrientes de agua, esta agua es natural por lo que se usa para sistemas de agua potable, dicho caudal recorre kilómetros hasta terminar el riachuelos o lago, el caudal que empuja a dichas corrientes de agua dependerá de las épocas que se pueda encontrar.

2.2.5. Agua Potable

"Se entiende por agua potable al líquido que es apta para beber, esta debe ser limpia, fresca y agradable, lo más importante que debe contener todas las características optimas cumpliendo ciertos parámetros para que esta pueda ser de consumo humano" 12.

2.2.5.1. Calidad de agua

Para que el agua sea de una buena calidad debe cumplir las siguientes características:

A. Características físicas

"Las características físicas principales de cómo se identifica el agua son los sabores y olores ocasionado por la presencia de sustancias químicas, el color del agua dependiendo de la presencia de minerales, la turbidez dependiendo de agente patógenos adheridos a las partículas del agua, el PH y la temepratura."

13.

B. Características Químicas

"Las partículas del agua contienen características químicas que producen alcalinidad, dureza y salinidad las cuales se dividen en 4 grupos que son: grupo que solo produce alcalinidad, grupo que produce dureza carbonatada y alcalinidad, grupo que produce salinidad - dureza y grupo que produce salinidad - no dureza".

C. Características Biológicas

"Las características biológicas del agua dependen de la constitución de los microorganismos provenientes muchas veces de las contaminaciones industriales o de la propia naturaleza, siendo estos los hongos, algas mohos, bacterias y levaduras".

2.2.5.2. Cantidad de agua

"La cantidad de agua es el volumen que nos da una fuente natural de agua estas pueden varias en épocas de estiaje y épocas de lluvias, ya que dependiendo de su volumen se podrá saber el caudal de la fuente"¹³.

2.2.6. Evaluación

Evaluación significa comprender analizar y señalar, aplicando herramientas que dependerán de objetivos planteados para determinar el valor de algo y así tener resultados positivos o negativos.

Uno de los métodos de evaluación nos enseña el Sistema de Información Regional en Agua y Saneamiento (SIRA) el cual nos define índices de sostenibilidad que se empleara al ejecutar un estudio o investigación.

2.2.6.1. Sistema sostenible

"Se define como sistema sostenible a un servicio que se encuentra en óptimas condiciones de calidad, cantidad y continuidad, con una cobertura amplia y creciente (mantenimiento)".14.

2.2.6.2. Sistema medianamente sostenible

"Este sistema nos explica que el servicio no se encuentra en óptimas condiciones por varias razones, ejemplo: deterioro del sistema, fallas en el servicio, disminución de la cobertura o deficiencias en el manejo económico" ¹⁴.

2.2.6.3. Sistema no sostenible

"Son los sistemas que se encuentran con fallas significativas volviendo el servicio muy deficiente tanto en calidad, cantidad

y continuidad, llegando a la cobertura de disminuir y reducir la gestión que está cumpliendo el sistema"¹⁴.

2.2.6.4. Sistema colapsado

"Son sistemas que estas totalmente deteriorados que no cumple el servicio y que no poseen una gestión o una junta directiva para poder respaldarse necesitan de realizar totalmente un nuevo sistema" ¹⁴.

Cuadro 1. Índices de sostenibilidad

Indicies de sostenibilidad					
Bueno	Sostenible	3.5	-	4	
Regular	Medianamente sostenible	2.5	-	3.5	
Malo	No sostenible	1.5	-	2.5	
Muy malo	Colapsado	1	-	1.5	

Fuente: Sistema de Información Regional en Agua y Saneamiento (SIRAS).

2.2.7. Mejoramiento

Según la Real Academia Española¹⁵, es el resultado de mejora de cualquier o tipo de sistema, dicho mejoramiento requiere de un proceso, con el objetivo de busa solución o mejora a una problemática.

2.2.8. Sistema de abastecimiento de agua potable

Como dice Guerrero¹⁶, es una obra de ingeniera que constituye una variedad de componentes que cumplen la función de abastecer agua potable a una población, está compuesta por tubería, accesorios e instalaciones.

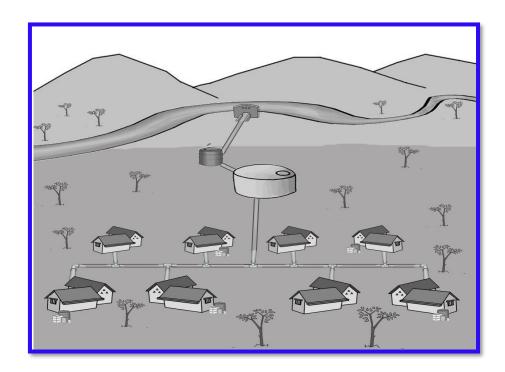


Figura 7. Sistema de abastecimiento de agua potable.

Fuente: Sistema de abastecimiento rural

2.2.9. Levantamiento topográfico

Es el estudio que especifica el tipo de terreno que tiene nuestro lugar de estudio, parte desde una recolección de puntos tomados con una estación total para luego exportarlo en gabinete y determinar las partes físicas de geoide, este proceso debe realizarlo un ingeniero conocedor para que dicho levantamiento sea confiable.

2.2.10. Estudio de suelo

Es el estudio que nos muestra como resultado las propiedades y estratigrafía que tiene el terreno de nuestro lugar de estudio, gracias a dichos resultados se puede saber el terreno en donde ira enterrada la tubería en un sistema de agua potable.

2.2.11. Parámetros de diseño de un sistema de Agua Potable.

2.2.11.1.Periodo de diseño de un sistema de agua potable

"El periodo de diseño de un sistema de agua depende del proyectista porque depende de él tener un diseño adecuado con la responsabilidad de un buen funcionamiento, los cuales tienen valores asignados de vida útil en cada componente" ¹⁷.

Cuadro 2. Periodo de diseño en estructuras

Periodo de diseño en estructuras		
Componente	Peridod de diseño	
Obras de captación	20 años	
Conduccion	10 a 20 años	
Reservorio	20 años	
Red principal	20 años	
Red secundaria	10 años	

Fuente: Resolución Ministerial. Nº 192 – 2018 – Vivienda

2.2.11.2.Población

A. Población actual

"La población actual son los números de habitantes que se encuentran actualmente viviendo en un pueblo, caserío o ciudad donde se realizará un diseño de un sistema de agua potable, se puede recaudar el número de habitantes mediante un empadronamiento" 18.

B. Población futura

"Para el cálculo de la población futura es recomendable por su exactitud el uso del método aritmético o racional para el cálculo de la población futura. Para el método racional se utiliza los censos de la población, de no tener esa información se realizará con el método arimetico"¹⁸.

La fórmula del método aritmético es la siguiente:

$$P_f = P_0(1 + r.t)$$
(3)

Donde:

Pf : Población futura

Po : Poblacional actual

r : Coeficiente de crecimiento

t : Periodo de diseño

El coeficiente de crecimiento se obtiene por medio de censos el cual nos sirve para obtener nuestra tasa de crecimiento aplicando la formula siguiente:

$$r = \frac{\frac{P_f}{P_0} - 1}{t} \qquad (4)$$

2.2.11.3.Demanda de agua

"Una demanda se refiere a la cantidad de agua que cada persona, institución o lugar público necesita para poder abastecerse, en general se refiere a las dotaciones y variaciones de consumo de agua"¹⁹.

A. Dotación

"La dotación es la cantidad de agua asignada a cada habitante para satisfacer sus necesidades en un día medio anual. (Es el coeficiente de la demanda entre la población de proyecto)" 19.

La Resolución Ministerial. N° 192-2018 – Vivienda nos brinda un cuadro de dotación dependiendo del tipo de uso:

Cuadro 3. Dotación de agua según la opción tecnológica y región

	Dotación según el tipo de opción tecnológica (l/ha		
Región	Sin arrastre hidráulico (compostera y hoyo seco ventilado)	Con arrastre hidráulico (tanque septico mejorado)	
Costa	60	90	
Sierra	50	80	
Selva	70	100	

Fuente: Resolución Ministerial. Nº 192 – 2018 –

Vivienda

B. Variaciones de Consumo

a. Consumo promedio diario anual (Qp)

Es el consumo máximo que se gasta en un día dentro de un año en una población.

$$Qp = \frac{Pf \cdot Dot}{86400 \, s/dia} \qquad \dots (5)$$

Donde:

Qp: Consumo promedio diario l/s

Pf : Población futura

D : Dotación1/hab./día

b. Consumo máximo diario (Qmd)

Es el máximo consumo en un día durante todo un año, se tiene como coeficiente de variación diaria (K1) con un valor de 1.3.

Donde:

Qmd: Consumo máximo diario

Qp : Consumo promedio diario l/s

K1 : Coeficiente de variación diaria

c. Consumo máximo horario (Qmh)

Es el consumo máximo en una hora durante 1 día, se tiene como coeficiente de variación diaria (K2) con un valor de 2.

$$\boxed{Qmh = k2 \cdot Qp} \quad \dots \qquad (7)$$

Donde:

Qmh: Consumo máximo horario

Qp : Consumo promedio diario l/s

K1 : Coeficiente de variación diaria

2.2.12. Estructuras de un sistema de abastecimiento de agua potable

2.2.12.1. Captación

Es el primer componente para el inicio de un sistema de agua potable que se encarga de recolectar el agua que desciende de un manantial.

A. Tipos de Captación

a. Captación de manantial de ladera

"La captación de manantial de ladera es el afloramiento de agua que brota de la tierra o entre las rocas, puede ser permanente o temporal"²⁰.

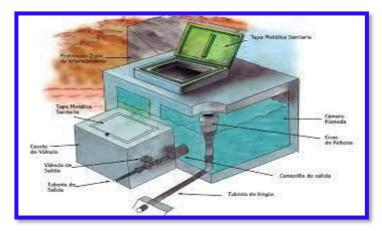


Figura 8. Captación Manantial de Ladera.

Fuente: Guía de orientación y saneamiento

b. Captación de manantial de fondo

"La captación de manantial de fondo es el afloramiento de agua que brota verticalmente de la superficie de la tierra a través de una formación de estratos con grava, arena o roca fisurada"²⁰.

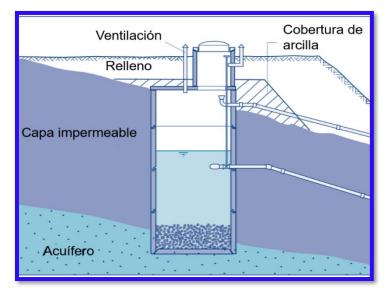


Figura 9. Captación Manantial de fondo

Fuente: Guía de orientación y saneamiento

c. Velocidad de pase

La velocidad de pase debe tener el siguiente criterio: $Velocidad \leq 0.6m/seg.$

d. Diámetro y pendiente

"El cálculo de diámetros de tuberías y pendiente, cálculos necesarios para el diseño hidráulico de una captación dependerán mucho de la siguiente fórmula general de Hazen y Williams"²⁰.

$$Q = 0.2786 * C * D^{0.63} * S^{0.54} \qquad \dots (8)$$

Donde:

Q : Caudal

C : Coeficiente de rugosidad del material

D: Diámetro

S : Pendiente (Debe ser mayor al 1%)

B. Cantidad de agua

Porcentaje de agua que brinda una fuente, se puede medir a través del método de volumétrico, su símbolo de medición es el litro por segundo (l/s).

2.2.12.2.Línea de Conducción

"La línea de conducción es una tubería que parte desde una fuente de captación hacia un reservorio de almacenamiento transportando agua potable en perfectas condiciones sin contaminación y no expuesta a la intemperie"²¹.

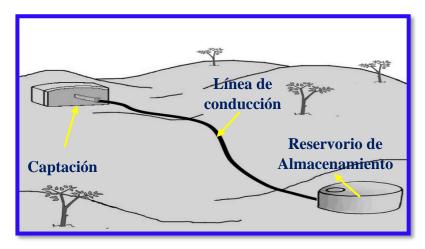


Figura 10. Captación Manantial de fondo

Fuente: Elaboración Propia

A. Tipos de línea de conducción

a. Conducción por bombeo o impulsión

"Se dice conducción por bombeo cuando una fuente de agua potable se encuentra debajo del nivel de un reservorio de almacenamiento y dicho sistema necesita de una impulsión de energía para que pueda funcionar el sistema de agua potable"²².

b. Conducción por gravedad

"Se dice conducción por gravedad al sistema de agua potable que no necesita de una energía para que funcione si no que transporta el agua naturalmente (gravedad), esto ocurre cuando la fuente se encuentra en un nivel alto del reservorio de almacenamiento"²².

B. Tipos de tubería

"Para el cálculo de las tuberías que trabajan con flujo a presión, se utilizarán los coeficientes de fricción según el tipo de tubería que se establecen en el siguiente cuadro"²².

Cuadro 4. Coeficiente de rugosidad de Hazen-Williams

Coeficiente de Rugosidad de Hazen-Williams		
Tipo de Tubería	"C"	
Acero sin costura	120	
Acero soldado en espiral	100	
Cobre sin costura	150	
Concreto	110	
Fibra de vidrio	150	
Hierro fundido	110	
Hierro fundido con revestimiento	140	
Hierro galvanizado	100	
Polietileno, Asbesto Cemento	140	
Poli (cloruro de vinilo) (PVC)	150	

Fuente: Norma OS. 010.

C. Clase de tubería

"La clase de tubería depende de la presión que ejercerá nuestra línea de conducción hasta llegar al reservorio"²².

Cuadro 5. Clases de tuberías

Clases de tuberías		
PVC clase 5		
PVC clase 7.5		
PVC clase 10		
PVC clase 15		

Fuente: Norma OS. 010.

D. Caudal

El caudal de diseño depende del consumo promedio anual de la población el cual ayudara con el coeficiente de variación diaria (k1) teniendo como resultado un caudal máximo diario.

E. Diámetro

El diámetro va de la mano con el caudal máximo diario, teniendo en cuenta que a más caudal mayor diámetro. Se expresa con la siguiente formula:

$$D = \left(\frac{\left(\frac{Qmd}{1000}\right)}{0.2786 * C * S^{0.54}}\right)^{0.38} \qquad (9)$$

Donde:

D : Diámetro Interno Tubería (mm).

Qmd: Caudal máximo diario

C : Coeficiente de rugosidad

S : Pendiente en el tramo

Cuadro 6. Diámetros Comerciales

Diámetros comerciales – Tubería clase 10			
Diámetro	exterior	Espesor mm	diámetro interior mm
1	33	1.8	29.4
1 1/2	48	1.8	44.4
2	60	2.2	55.6
2 1/2	73	2.6	67.8
3	88.5	3.2	82.1

Fuente: NTP 399.002: 2009 "Tuberías para agua

fría con presión

F. Velocidad

La velocidad máxima para una línea de conducción es de 3,0 m/s y una velocidad mínima de 0,60 m/s.

$$V = 1.9735 \frac{Q}{D^2}$$
(10)

Donde:

V : Velocidad del agua (m/s)

D : Diámetro Interno Tubería (mm).

Q : Caudal

G. Presión

Es la energía que se encuentra sobre el área de la tubería que es producida por las grandes pendientes que se ejercen en los tramos de la tubería.

Cuadro 7. Presiones máximas en tuberías PVC

Presiones máximas en tuberías PVC			
Tipo	P. máx. de prueba	P. máx. de trabajo	
5	50	35	
7.5	75	50	
10	100	70	
15	150	100	

Fuente: Ministerio de salud.

H. Válvula de aire

"Es una estructura que no permite el ingreso de aire a una tubería, elimina las bolsas de aire que perturban el paso del flujo del agua en una tubería"²³.

I. Válvula de purga

"Es una estructura que no permite la sedimentación de arena en una tubería, dándole un libre paso del flujo del agua, también evita las patologías que se puedan presentar en la tubería como la erosión "23".

J. Cámara rompe presión

"Son estructuras que ayudan a disipar la energía provocada por una presión hidrostática emergente del agua, dejando la presión en 0 y evitando que la tubería colapse, se le conocen como CRP tipo 6".23".

2.2.12.3. Reservorio de almacenamiento

"Es una estructura de concreto que tiene como objetivo almacenar agua potable que llega desde una fuente de captación, esta es dirigida a través de la línea de conducción, una vez almacenada esta vuelve a salir por medio de una línea de aducción la cual reparte a un pueblo, para su diseño se requerirá la variación de consumo promedio diario anual"²⁴.

A. Tipos de reservorio de almacenamiento

a. Reservorio elevado

"Es una estructura de almacenamiento de agua potable que se encuentra por encima del nivel del terreno natural, son soportados por columnas y pilotes el cual se encargan de sostener las cargas que ejerce dicha estructura, son usados en sistema de agua potable por bombeo"²⁴.

Figura 11. Reservorio elevado

Fuente: Reservorios en el sistema de agua potable

c. Reservorio apoyado

"Son estructuras de almacenamiento de agua potable que generalmente tienen forma circular y rectangular, estos son construidos sobre la superficie del terreno natural, se utilizan para capacidades mediana y pequeñas, son usados en sistemas de agua potable por gravedad"²⁴.

Figura 12. Reservorio apoyado

Fuente: Reservorios en el sistema de agua potable.

d. Reservorio enterrado

"Se les conoces mayormente como cisternas, sirve para el almacenamiento de agua potable, se encuentran construidos por debajo del terreno natural, este tipo de almacenamiento tiene como ventaja resistir presiones interiores"²⁴.

Figura 13. Reservorio Enterrado

Fuente: Universidad nacional de Cajamarca

B. Volumen de regulación

"Se calcula con el diagrama de masa correspondiente a las variaciones horarias de la demanda, cuando se comprueba la no disponibilidad de esta información, se considera del 15 al 25% del caudal promedio anual de la demanda, este porcentaje se aplica en sistemas de agua potable por gravedad."²⁴

C. Volumen de reserva

"El volumen de reserva se considera el 20% del volumen de regulación, este volumen sirve como sustento en casos que el reservorio presente un caso de emergencia o tenga que realizarse algún mantenimiento".²⁵.

D. Volumen contra incendio

"Este volumen solamente aplica cuando nos encontramos en zonas industriales, comerciales y poblaciones que tengan más de 1000 habitantes, en zonas rurales no aplica".

E. Desinfección

Es mucha importancia para mantener el agua en óptimas condiciones para el consumo de una población.

F. Caseta de válvulas

Conjunto de válvulas y tubería que controlan el reservorio de almacenamiento.

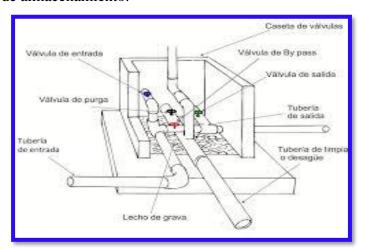


Figura 14. Caseta de válvulas

Fuente: Saneamiento básico

G. Ubicación del reservorio

"La ubicación del reservorio está determinada principalmente por la necesidad y conveniencia de mantener la presión en la red de distribución garantizando presiones mínimas en viviendas más elevadas y presiones máximas en viviendas bajas"²⁵.

2.2.12.4.Línea de Aducción

"Es un conjunto de tubería, que traslada el agua desde un reservorio de almacenamiento hasta el inicio de la red de distribución, la clase de tubería se elige de acuerdo con la presión que existe en la línea de aducción la cual soporta presiones"²⁶.

Figura 15. Esquema de una línea de aducción

Fuente: Saneamiento básico

A. Caudal

El caudal de diseño depende del consumo promedio anual de la población el cual ayudara con el coeficiente de variación horaria (k2) teniendo como resultado un caudal máximo horario.

B. Diámetro

El diámetro va de la mano con el caudal máximo horario, teniendo en cuenta que a más caudal mayor diámetro como nos menciona la formula líneas arriba.

C. Velocidad

La velocidad máxima para una línea de aducción es de 3,0 m/s y una velocidad mínima de 0,60 m/s.

D. Presión

Es la energía que se encuentra sobre el área de la tubería que es producida por las grandes pendientes que se ejercen en los tramos de la tubería.

2.2.12.5.Red de distribución

"La red de distribución es aquella que está constituida por un conjunto de tubería, accesorios y estructuras, esta deberá proporcionar un servicio constante en cantidad y calidad de agua adecuada a una población"²⁷.

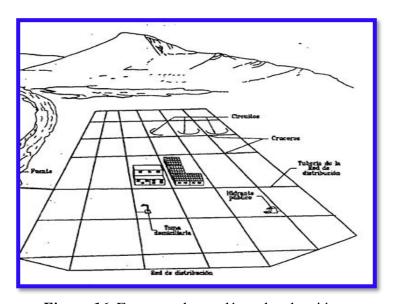


Figura 16. Esquema de una línea de aducción

Fuente: Saneamiento básico.

A. Tipos de Red de distribución

a. Sistema abierto o ramificado:

"Este sistema consiste básicamente en una tubería principal que se instala en la zona de mayor consumo y reparte agua potable a viviendas que se encuentran dispersas"²⁷.

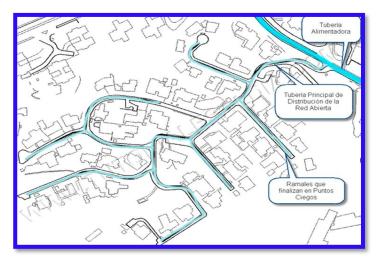


Figura 17. Sistema de una red de distribución abierta

Fuente: Taller de mantenimiento básico rural.

b. Sistema cerrado

"Es un sistema interconectado de tuberías mediante un circuito cerrado, se dice que estos sistemas son estables, es eficaz ya que tiene la ventaja de que la red no sufra estancamiento de agua"²⁷.

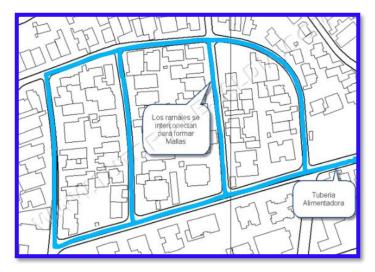


Figura 18. Sistema de una red de distribución cerrada

Fuente: Taller de mantenimiento básico rural.

c. Sistema Mixto

"Son la combinación de un sistema abierto y un sistema cerrado, en la que ayuda a una población que tiene viviendas encerradas en un manzaneo y a la vez dispersas"²⁷.

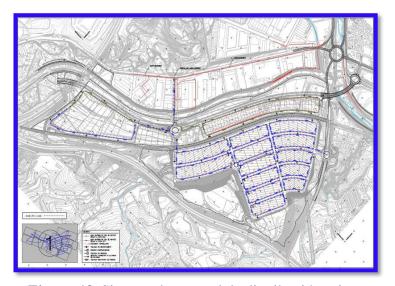


Figura 19. Sistema de una red de distribución mixta

Fuente: Taller de mantenimiento básico rural.

B. Caudal

"La estructura deberá tener capacidad para conducir como mínimo, el caudal máximo diario (Qmh), desde el reservorio hasta la red principal, el caudal de diseño será el caudal unitario (Qunit.)"²⁷.

$$Qunit = \frac{Qmh}{N^{\circ}viviendas}$$
(11)

Donde:

Qunit. : Caudal unitario/caudal de diseño

Qmh : Caudal máximo horario

N°viviendas : Número de Viviendas

C. Tipo de tubería

"Existen varios tipos el cual se aprecia en el cuadro 7 líneas arriba, el tipo de tubería recomendable para redes de distribución son de PVC"²⁷.

D. Clase de tubería

Se recomienda trabajar con la clase de tubería 10.

E. Diámetro

"Para tubería en la red principal debe ser un diámetro mínimo a 1 pulg., si son redes secundarias el diámetro mínimo será de ¾ y si es para conexiones domiciliarias será como mínimo ½ pulg"²⁷.

41

F. Velocidad

"La velocidad máxima será de 2 m/s. y la velocidad mínima será de 0.5 m/s, todo esto depende del diámetro y caudal con la que se está calculando nuestra red"²⁷.

G. Presión

"La presión máxima no será mayor de 50 mts. en cualquier punto de la red mientras que la presión mínima no debe ser menor de 10 mts"²⁷.

2.2.13. Condición Sanitaria

"Se entiende por condición sanitaria al conjunto de características relacionadas a las infraestructuras de saneamiento básico como los sistemas de abastecimiento de agua potable que permiten protección frente a diversas patologías o enfermedades que se puedan ocacionar"²⁸. "También son un conjunto de acciones, técnicas y medidas de intervención que tienen por objetivo alcanzar niveles adecuados de salubridad en el manejo del agua potable"²⁹.

2.2.13.1. Cobertura de servicio de agua potable

"Es la proporción suministrada de agua potable hacia una población, esta tendrá que facilitar el abastecimiento del agua potable a toda la población, si esto falla se dice que nuestra cobertura de servicio no es sostenible"²⁹.

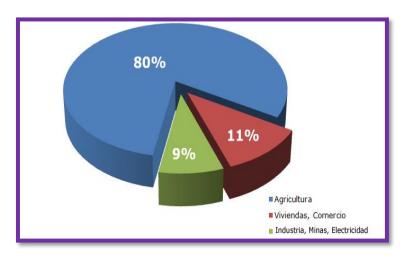


Gráfico 1. Cobertura de servicio de agua potable en el Perú

Fuente: Saneamiento básico en Perú.

2.2.13.2. Cantidad de servicio de agua potable

"La cantidad de agua que se provee y que se usa en sistemas de abastecimiento de agua potable es de aspecto importante ya que influye en la higiene y, por lo tanto, en la salud pública, esta cantidad depende de donde la tomemos o captemos para sistemas rurales se usa mayormente desde una fuente de manantial el cual se calculara el caudal para saber si cumple con los niveles de servicio de una población."²⁹.

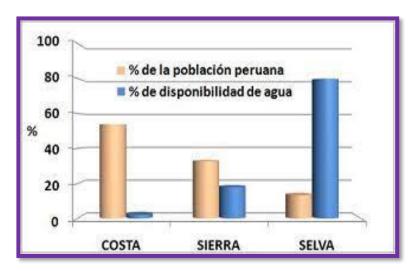


Gráfico 2. Cantidad de agua potable en el Perú

Fuente: MINAGRI

2.2.13.3. Continuidad de servicio de agua potable

"La continuidad del servicio comprende a las precipitaciones que se presenten a lo largo de todo el año dependiendo del lugar donde estas realizando el proyecto o investigación, se hace la evaluación mediante el tiempo donde no presente precipitaciones ya que se calculara un caudal mínimo en la fuente de captación"³⁰.

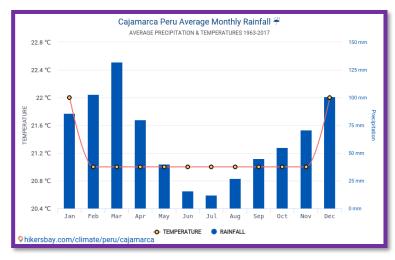


Gráfico 3. Precipitación anual en Cajamarca

Fuente: DIPRE - SIERD

2.2.13.4. Calidad de servicio de agua potable

"La calidad del servicio es la evaluación, si dicho servicio cumple con los fines que tiene previsto y que puede verse modificado en futuras transacciones por futuras experiencias, la calidad de del agua potable que suministra a una población es una cuestión que preocupa en países de todo el mundo"³⁰.

Figura 20. Estudio químico, físico y bacteriológico del agua

Fuente: Laboratorio de calidad de agua (ICA)

2.3. Hipótesis

No aplica.

2.4. Variables

2.4.1. Variable independiente

Evaluación y mejoramiento del sistema de abastecimiento de agua potable.

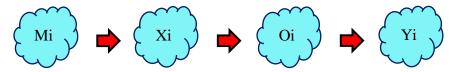
2.4.2. Variable dependiente

Incidencia en la condición sanitaria

III. Metodología

3.1. Tipo y nivel de la investigación

3.1.1. Tipo de investigación


El tipo de investigación fue correlacional, comprendiendo la descripción de la relación entre una variable independiente y dependiente, en otras palabras, la condición sanitaria (variable dependiente) depende del mejoramiento del sistema de agua potable (variable independiente), esto se especificó a través de la respuesta de los objetivos y conclusiones en la investigación.

3.1.2. Nivel de investigación

El nivel de la investigación fue de carácter cualitativo y cuantitativo, teniendo como objetivo la descripción de todas las cualidades que se puedan presentar en las variables a investigar, para luego dichos datos expresarlo de manera numérica o estadística.

3.2. Diseño de la investigación

El diseño de la investigación fue no experimental de corte transversal, porque solamente se desarrollará la descripción de todos los fenómenos tal y como se encuentran en su contexto natural, aplicando herramientas y técnicas para luego analizarlas e identificar las variables.

Leyenda de diseño:

Mi: Sistema de abastecimiento de agua potable en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca. Xi: Evaluación y mejoramiento del sistema de abastecimiento de agua potable

Oi: Resultados

Yi: Incidencia en la condición sanitaria de la población.

3.3. Población y muestra

3.3.1. Población

La población estuvo conformada por el sistema de abastecimiento de agua potable en zonas rurales.

3.3.2. Muestra

La muestra en esta investigación estará constituida por el sistema de abastecimiento de agua potable en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca.

3.4. Definición y operacionalización de variables e investigadores

Cuadro 8. Definición y operacionalización de variables e investigadores

VARIABLE TIPO DE VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	INDICADORES	SUBDIMEN- SIONES	INDICAD	ORES	LA DE ICIÓN
EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE VARIABLE INDEPENDIENTE	Tiene como objetivo especificar si los componentes que conforman el sistema de agua potable actual cumplen perfectamente cada función, esto estará basado en los parámetros y lineamientos de los reglamentos y normas vigentes."25	Se realizará la evaluación y mejoramiento del sistema de abastecimiento de agua actual, empezando por el primer componente que es la captación llegando hasta la red de distribución, dicha evaluación y ejecutara en base a fichas técnicas guiadas por reglamentos y normas vigentes.	Evaluación del sistema de abastecimiento de agua potable	 Captación Línea de conducción Reservorio Línea de aducción Red de distribución Cámara rompe presión 	 Tipo de captación Caudal máximo de la fuente Antigüedad Clase de tubería Cerco Perimétrico Cámara húmeda Tipo de línea de conducción Tipo de tubería Diámetro de tubería Tipo de reservorio Material de construcción Accesorios Tipo de tubería Diámetro de tubería Cerco Perimétrico Antigüedad Tipo de sistema de red Clase de tubería Diámetro de tubería Tipo de sistema do red Clase de tubería Tipo de cámara rompe presión Material de construcción 	 Material de construcción Caudal máximo diario Tipo de tubería Diámetro de tubería Cámara seca Accesorios Antigüedad Clase de tubería Válvulas Forma de reservorio Antigüedad Volumen Clase de tubería Caseta de cloración Caseta de válvulas Clase de tubería Diámetro de tubería Tipo de tubería Tipo de tubería Antigüedad Cámara seca Cámara húmeda Accesorios 	 Ordinal Intervalo Nominal Nominal Nominal Intervalo Nominal Nominal Nominal Nominal Ordinal Nominal

PRED LA PRODUCTION DE LA PRESIÓN PERSIÓN PERSIÓN CONDICIÓN CONDICION DE LA CONTINUIDA DE LA		Mejoramiento del sistema de abastecimiento de agua potable	 Captación Línea de conducción Reservorio Línea de aducción 	 Tipo de tubería Clase de tubería Cerco Perimétrico Accesorios Clase de tubería Diámetro de tubería Presión Caudal máximo diario Tipo de tubería Accesorios Caseta de cloración Clase de tubería Diámetro de tubería Presión Caudal máximo horario 	 Diámetro de tubería Caseta de válvulas Cámara humedad Tipo de tubería Velocidad Perdida de carga Válvulas Clase de tubería Cerco Perimétrico Diámetro de tubería Tipo de tubería Velocidad Perdida de carga 	 Nominal Nominal Nominal Nominal Ordinal Intervalo Intervalo Nominal Nominal Nominal Ordinal Intervalo Intervalo 	 Ordinal Nominal Nominal Intervalo Intervalo Nominal Nominal Nominal Ordinal Nominal Intervalo Intervalo
• Cobertura • Cobertura • Cobertura • Cobertura • Coudal máximo • Caudal máximo • Caudal mínimo de la fuente • Conexión domiciliaria • Condición • Conexión domiciliaria • Conexión domiciliaria • Conexión domiciliaria • Conexión domiciliaria				Diámetro de tuberíaPresiónCaudal máximo horario	VelocidadPerdida de carga	 Ordinal Intervalo Intervalo	IntervaloIntervalo
· Cantilada	N LA TARIA DIENTE		• Cobertura	 Dotación 		• Nor	ninal
· Cantilada	CIA EI N SANI EPENI			• Caudal mínimo	de la fuente	• Inte	ervalo
• Determinación del estado de la fuente • Nominal	= v · · · ·	•	• Cantidad		ciliaria		
con la condición o • Continuidad	INC ONDI RIAB		a		del estado de la fuente		

calidad de vida de la Se realizará fichas población, todas técnicas guiadas por el basadas al saneamiento Sistema de Información básico rural Regional en Agua y permitiendo una Saneamiento (SIRAS), protección frente a para la evaluación de la diversas patologías o satisfacción de la enfermedades que se condición sanitaria de la puedan ocasionar. 27 población en el caserío de Santa María.	• Calidad del agua	 Colocación de cloro Nivel de cloro residual Enfermedades Análisis químico y bacteriológico del agua Supervisión del agua 	IntervaloIntervaloNominalIntervaloNominal
---	-----------------------	--	---

3.5. Técnicas e instrumentos

3.5.1. Técnicas

Se realizó la técnica de observación directa a través de encuestas, protocolos y fichas técnicas, permitiendo la obtención de información del estado actual del sistema de agua potable y la incidencia de la condición sanitaria en el caserío de Santa María.

Se realizó la técnica de análisis, en base a muestras que se obtendrán in situ, los cuales son muestreo de agua y estrato de suelo en puntos específico a través de calicatas.

3.5.2. Instrumentos

3.5.2.1. Encuestas

Conjunto de preguntas que ayudara a la recolección de información sobre la evaluación del sistema de agua potable actual y la condición sanitaria de la población, obteniendo también la satisfacción de los pobladores con su sistema de agua potable y quien son los encargados de gestionar y darle mantenimiento a dicho sistema.

3.5.2.2. Fichas Técnicas

Formato guiado por norma o reglamentos vigentes que ayudara a darle un puntaje a nuestra evaluación al sistema de agua potable en el caserío de Santa María y la condición sanitarita confiable.

3.5.2.3. Protocolos

Documento formal que certifica los resultados obtenidos del muestreo in situ, estos documentos se basan en el análisis físico químico y bacteriológico del agua y el estudio de mecánica de suelos en puntos estratégicos como la captación, reservorio y red de distribución.

3.6. Plan de análisis

Se determinó el caudal en la fuente de captación en dos épocas, en época de sequía y lluvia mediante el método volumétrico, se realizara el censo a los pobladores del caserío para obtener la cantidad de viviendas y número de personas que habitan en el caserío, se realizó el muestreo para obtener las características de la fuente, luego se realizara el levantamiento topográfico para ver el tipo de terreno que tiene el lugar a investigar, después se aplicó la técnica de observación directa para el desarrollo de las fichas técnicas guiadas por el SIRAS, determinando así el estado de los componentes que conforman el sistema y la condición sanitaria de la población, respondieron a mi primer objetivo los cuadros de evaluación de los componentes del sistema, las tablas respondieron a mi segundo objetivo el cual especificara el cálculo hidráulico del sistema de agua potable, los gráficos respondieron el estado situacional del sistema el cual estará conformada por la condición sanitaria de la población, los cuadros de operacionalización ayudaron a conocer las dimensiones, indicadores y escala de medición que tendrá mi investigación, se obtendrá resultados y conclusiones que será fundamental para una propuesta de solución para el problema planteado al inicio de la investigación.

Cuadro 9. Matriz de consistencia

Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca, para su incidencia en la condición sanitaria de la población – 2021.					
Problema	Objetivos	Marco Teórico y Conceptual	Metodología	eferencias Bibliográficas	
En el planeta el agua se divide de la siguiente manera, ¾ partes de agua salada y ¼ parte de agua dulce, ese ¼ se encuentra divida en las reservas subterráneas, glaciales, ríos, laguna, etc. La falta de agua potable en el Perú viene generando que ciertas regiones se declaren en emergencia por la escasez de dicho suministro, a pesar de que nuestro país es el octavo país que tiene mayor cantidad de agua dulce, el gobierno declaro que las regiones de Amazonas, Cajamarca, Huánuco, Ancash y Junín estén en emergencia a causa de los desastres naturales. El sistema de abastecimiento de agua potable en el caserío de Santa María ubicado en el distrito de San Miguel, provincia de San Miguel, departamento de Cajamarca se vio afectado por los desastres causados por el fenómeno del niño costero perjudicando los componentes que tiene el sistema presentando variedad de daños y patologías dando como resultado un agua de mala calidad, por otra parte el tiempo de construcción de algunas estructuras del sistema de abastecimiento de agua potable no cumplen los estándares que dicta la Resolución Ministerial. N° 192 – 2018. Enunciado del problema: ¿La evaluación y mejoramiento del sistema de abastecimiento de agua potable en el caserío de Santa Maria, distrito de San Miguel, provincia de San Miguel, región Cajamarca; mejorará la condición sanitaria de la población - 2021?	Miguel, región Cajamarca – 2021. Determinar la incidencia en la condición sanitaria de la población en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca –	Antecedente Se necesitó de la ayuda de buscadores en internet, de los cuales ayudaron a obtener: Antecedentes Internacionales Antecedentes Nacionales Antecedentes Locales Bases Teóricas: Agua Tipos de fuente de agua Caudal Manantial Agua potable Calidad del agua Cantidad de agua Evaluación Mejoramiento Sistema de abastecimiento de agua potable Levantamiento topográfico Estudio de suelos Parámetros de diseño del sistema de agua potable Componentes de un sistema de abastecimiento de agua potable Componentes de un sistema de abastecimiento de agua potable Condición sanitaria	El tipo de investigación fue correlacional, teniendo como objetivo la relación de las dos variables dependiente e independiente obteniendo resultados que llevara a obtener una conclusión a nuestra investigación. El nivel de investigación fue de carácter cualitativo y cuantitativo, teniendo como objetivo la descripción de las cualidades de las variables a desde un inicio y fin, llevándolos a un cálculo matemático y estadístico. El diseño de la investigación fue no experimental de tipo transversal, porque se describe todos los fenómenos tal y como están en su contexto natural. El universo estará conformado por el sistema de abastecimiento de agua potable en zonas rurales y la muestra por el sistema de abastecimiento de agua potable en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca. Definición y operacionalización de las variables Técnicas e instrumentos Plan de análisis Matriz de consistencia Principios éticos	(1) Montalvo C, et al. Rediseño del sistema de agua potable del Barrio Cashapamba desde el tanque de reserva Cashapamba hasta el tanque de reserva Dolores Vega, ubicado en la parroquia Sangolquí, cantón Rumiñahui, provincia de Pichincha. [Tesis para optar el título de Ingeniero Civil], pg. [329; 1-54-77-78-82-128-130]. Ecuador: Universidad Central del Ecuador: 2018. (2) Zambrano C. Sistema de abastecimiento de agua potable para la comunidad de Mapasingue, parroquia colon, Cantón Portoviejo [Tesis para optar título], pg. [106: 01-10-53-59-113]. Samborondón, Ecuador: Universidad de Especialidades Espíritu Santo: 2017. (3) Clemente B. Evaluación y mejoramiento del sistema de saneamiento básico en la comunidad de Palcas, distrito de Ccochaccasa, provincia de Angares, departamento de Huancavelica y su incidencia en la condición sanitaria de la población [Tesis para el título profesional], pg. [149; 1-14-16-80-122]. Ayacucho, Perú: Universidad Católica los Ángeles de Chimbote; 2019.	

de la población - 2021? **Fuente:** Elaboración propia – 2021.

3.8. Principios éticos

Al realizar una investigación se debe tener en cuenta el respeto a la dignidad humana, diversidad, confidencialidad, identidad y privacidad al lugar donde realizará una investigación.

3.8.1. Ética para el inicio de la evaluación

Lo principal y primordial que se debe saber ates de dar inicio a una evaluación es realizar un documento pidiendo permiso a las autoridades del lugar a investigar, detallarles de manera específica lo que se realizara en la investigación para poder tener la aprobación y punto de vista de ellos, luego ser responsable y ordenado con todos los implementos o materiales que se usaran para la evaluación.

3.8.2. Ética en la recolección de datos

Al momento de la recolección de datos se debe aplicar la honestidad y responsabilidad para que nuestros resultaos sean confiables y auténticos tal y como se encuentra en el lugar de estudio.

3.8.3. Ética en el mejoramiento del sistema de agua potable

Durante el cálculo hidráulico del mejoramiento del sistema de agua potable, leer y analizar los criterios dictaos por los reglamentos para que los resultaos obtenidos en gabinete sean igual a lo que se encuentra en el sistema de agua potable.

IV. Resultados

4.1. Resultados

1.-**Dando respuesta a mi primer objetivo específico:** Evaluar el sistema de abastecimiento de agua potable actual en el caserío de Santa María, distrito de San Miguel, provincia de Miguel, región Cajamarca – 2021.

Cuadro 10. Evaluación de la cámara de captación actual

Componente	Indicadores	Datos Recolectados	Descripción
	Tipo de captación	Captación de manantial de ladera	Compuesta por una caja de concreto con dimensiones de 1.00 mt x 1.00 mt, actualmente con condiciones inestables para su función.
	Material de construcción	Concreto de 180 KG/CM2	Dato otorgado por el representante del caserío.
Captación Santa María	Caudal máximo de la fuente	0.756 lt/s	Caudal máximo que abastece la fuente en épocas de lluvia. Se calculó mediante el método volumétrico.
	Caudal mínimo de la fuente	0.740 lt/s	Caudal máximo que abastece la fuente en épocas de lluvia. Se calculó mediante el método volumétrico.
	Caudal promedio	0.230 lt/s	Caudal que se necesitara durante un año, ayuda a comparar el caudal que de la fuente con el que se necesita.
	Caudal máximo diario	0.50	Caudal máximo diario que se necesita para abastecer a la población.

Antigüedad	21 años	La Resolución Ministerial N° 192 menciona el tiempo de vida de dicha estructura es 20 años el cual este componente no cumple.
Tipo de tubería	PVC	El tipo de tubería es la recomendada, pero algunos accesorios y tuberías están en mal estado.
Clase de tubería	7.5	Se recomienda para zonas rurales la clase de tubería 10.
Diámetro de tubería	2.00 pulg	Se ara el cálculo en el mejoramiento de la estructura.
Cerco perimétrico	No tiene	Se ara el cálculo en el mejoramiento de la estructura.
Cámara seca	Mal estado	Se ara el cálculo en el mejoramiento de la estructura.
Cámara húmeda	Mal estado	Se ara el cálculo en el mejoramiento de la estructura.
Accesorios	Falta de accesorios	Se ara el cálculo en el mejoramiento de la estructura.

Imagen 01. Captación actual en el caserío de Santa María en malas condiciones y sin cerco perimétrico.

Imagen 02. Ancho de la pantalla de la captación en malas condiciones.

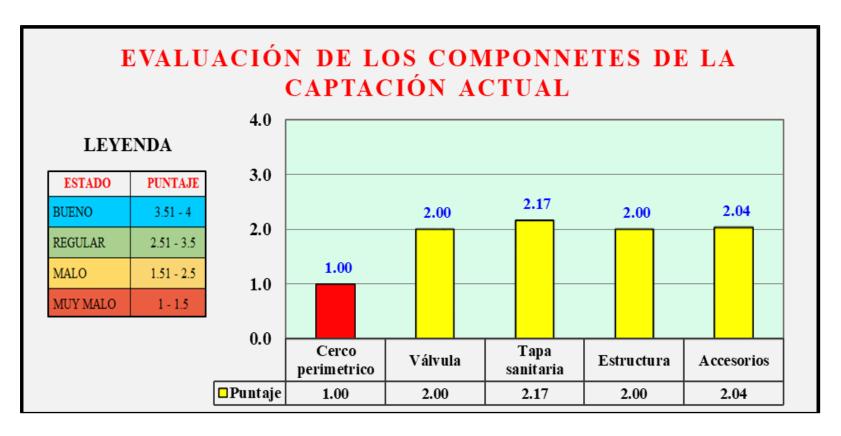


Gráfico 4. Evaluación del estado de los componentes de la captación actual

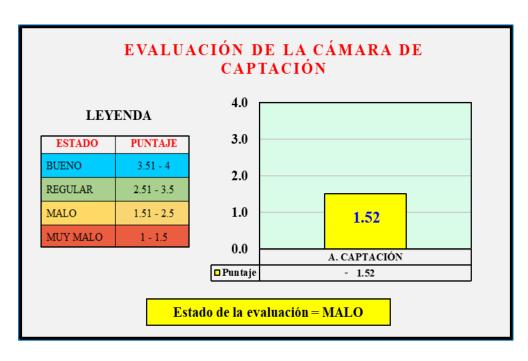


Gráfico 5: Evaluación final de la captación actual

Interpretación: La evaluación de la captación actual del caserío de Santa María estuvo interpretada por 5 evaluaciones (grafico 4) iniciando desde el cerco perimétrico, válvulas, tapa sanitaria, estructura y accesorios, obteniendo como resultado un puntaje de 1 en el cerco perimétrico, un puntaje de 2.00 en las válvulas, un puntaje de 2.00 en las tapas sanitarias, un puntaje de 2.000 en su estructura y en los accesorios se obtuvo un puntaje de 2.04, promediando todos los resultados de la evaluación de sus componentes se obtuvo un resultado final de 1.52 puntos (grafico 5), obtenido un estado de evaluación "malo" y de categoría "No sostenible", ver el cuadro Nº 10 llamado "Evaluación de la cámara de captación actual", para más detalles recurrir al anexo 6.

Cuadro 11. Evaluación de la línea de aducción actual

Componente	Indicadores	Datos Recolectados	Descripción
	Tipo de línea de conducción	Por gravedad	La fuente en donde captan el agua se encuentra en un nivel más alto que el reservorio.
	Antigüedad	10 años	Cumple con el periodo de diseño que nos dice la Resolución Ministerial N° 192 – 2018.
Línea de conducción	Tipo de tubería	PVC	El tipo de tubería encontrado es PVC como se recomienda, pero se encuentra expuesta.
	Clase de tubería	7.5	Se recomienda para zonas rurales la clase de tubería 10.
	Diámetro de tubería	1.5 pulg.	Se determinará en el cálculo del mejoramiento de la línea de conducción.
	Válvulas	No cuenta	No cuenta con válvulas de purga, ni válvulas de aire, por lo que si se necesita agregarlas.

Imagen 03. Línea de conducción tramo 1 expuesta a la intemperie

Imagen 04. Línea de conducción tramo 2 expuesta a la intemperie

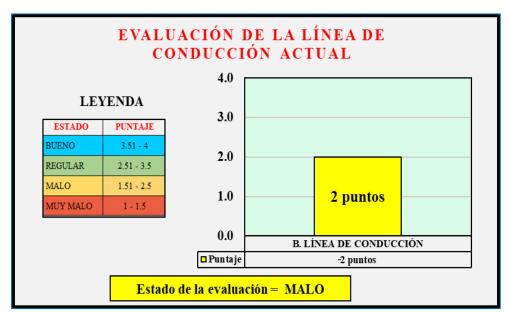


Gráfico 6. Evaluación de la línea de conducción actual

Interpretación: La evaluación de la línea de conducción actual en el caserío de Santa María estuvo compuesta por 3 preguntas, iniciando con el estado de la condición en que la tubería actual se encuentra, también si cuenta o necesita pases aéreos y la necesidad o estado de las válvulas de aire o de purga, recolectando información se interpretó los resultados como que la tubería esta encima del terreno natural estando expuesta a contaminación (imagen 3 y 4), la tubería actual de la línea de conducción no cuenta con pases aéreos y no necesita, por ultimo no cuenta con válvulas de aire y de purga por lo que se requiere de inmediato debido a que el terreno es accidentado, promediando todas las respuestas se obtuvo un puntaje de 2.00 tal y como muestra el grafico 6, teniendo como estado de evaluación "mala" y categoría "No sostenible", ver el cuadro Nº 11 llamado "Evaluación de la línea de conducción actual" y el anexo 6.

Cuadro 12. Evaluación del reservorio de almacenamiento actual

Componente	Indicadores	Datos Recolectados	Descripción
	Tipo de reservorio	Apoyado	Tiene dimensiones de 2.00 mts. de ancho, 2.00 mts. de largo y 1.00 mts de altura de agua.
	Forma de reservorio	Rectangular	Es de forma rectangular debido a la capacidad de agua que brinda.
	Material de construcción	Concreto armado 210 KG/CM2	Dato brindado por el representante del caserío.
	Antigüedad	10 años	Cumple con el periodo de diseño que nos dice la Resolución Ministerial N° 192
Reservorio de almacenamiento	Accesorios	Falta de accesorios	Le hace falta accesorios que se determinaran en el cálculo del mejoramiento del reservorio.
	Volumen	10 m3	Se comparará con el cálculo hidráulico del reservorio.
	Tipo de tubería	PVC	El tipo de tubería de la estructura es la recomendada.
	Clase de tubería	7.5	La clase de tubería que se recomienda es 10.
	Diámetro de tubería	1.5 pulg. a 2 pulg.	Las dimensiones se detallarán en el cálculo del mejoramiento de la estructura.

Cerco perimétrico	No cuenta	No cuenta con un cerco perimétrico que proteja la estructura.
Caseta de cloración	No cuenta	No cuenta con un sistema de cloración que mantenga el agua de calidad.

Imagen 05. Reservorio de almacenamiento actual sin cerco perimétrico que proteja la estructura.

Imagen 06. Accesorios de la caseta de válvulas den malas condiciones

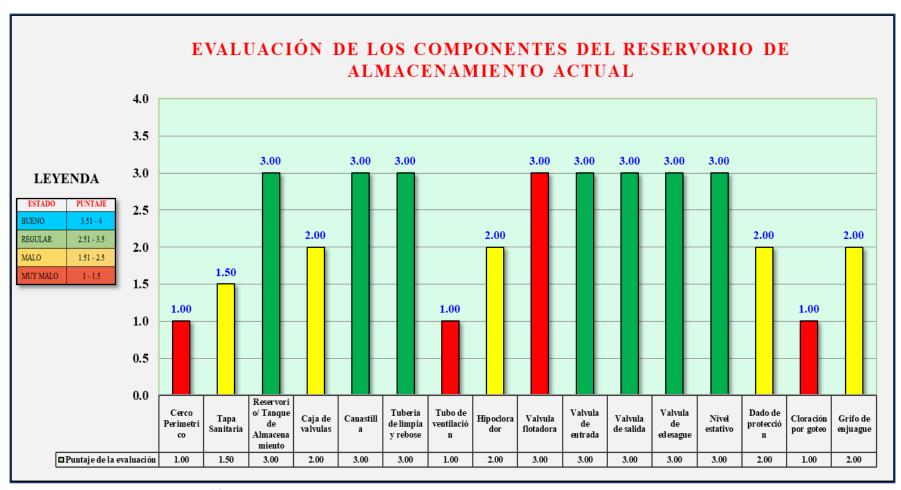


Gráfico 7: Evaluación de los componentes del reservorio de almacenamiento actual

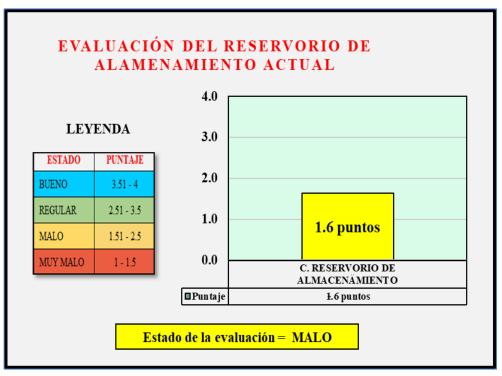


Gráfico 8. Evaluación del reservorio de almacenamiento actual

Interpretación: La evaluación del reservorio de almacenamiento actual en el caserío de Santa María, se realizó en base a 15 preguntas abarcando todas las partes de dicha estructura tal y como muestra el grafico 7, comenzando desde un cerco perimétrico, tapas sanitarias, tanque de almacenamiento, caja de válvulas, canastilla, tubería de limpia y rebose, ventilación, hipoclorador, válvula flotadora, válvula de entrada, válvula de salida, válvula de desagüe, nivel estático, dado de protección, cloración y el grifo de enjuague, dichas respuestas tienen un resultado el cual se promedió y se llegó a un puntaje de 1.6 puntos (gráfico 8), teniendo un estado de evaluación "malo" y de categoría "no sostenible", para más detalles ver el cuadro Nº 12 llamado "Evaluación del reservorio de almacenamiento actual" y el anexo 6.

Cuadro 13. Evaluación de la línea de aducción actual

Componente	Indicadores	Datos Recolectados	Descripción
	Tipo de línea de aducción	Por gravedad	El tipo de aducción que se presento fue por gravedad, debido a que el reservorio se encuentra en un nivel más alto que la población.
	Antigüedad	10 años	Cumple el tiempo de vida o uso según la Resolución Ministerial N° 192 - 2018
Línea de	Tipo de tubería	PVC	El tipo de tubería es la adecuada, pero en distintos tramos esta se encuentra expuesta a la intemperie.
aducción	Clase de tubería	7.5	Se recomienda trabajar en zonas rurales con una clase de tubería 10
	Diámetro de tubería	1.5 pulg.	Se determinará en el cálculo del mejoramiento de la línea de aducción
	Válvulas	No tiene	No cuenta con válvulas de aire y de purga, necesitando con urgencia ya que el terreno es accidentado el cual se puede estar generando patologías en la tubería.

Imagen 07. Tubería de la línea de aducción expuesta a la intemperie.

Imagen 08. Línea de aducción expuesta a peligros de la zona presentando patologías en los empalmes de la tubería.

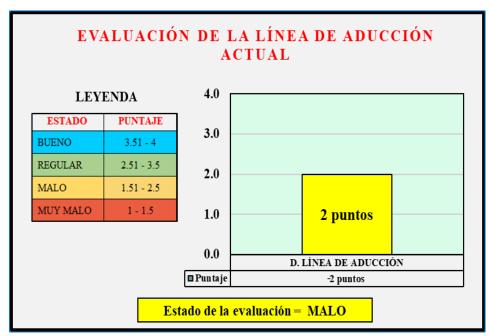


Gráfico 9. Evaluación línea de aducción actual

Interpretación: La evaluación de la línea de aducción actual en el caserío de Santa María estuvo compuesta por 3 preguntas, iniciando con el estado de la condición en que la tubería actual se encuentra, seguidamente si cuenta o necesita pases aéreos y la necesidad o estado de las válvulas de aire o de purga, recolectando información se interpretó los resultados como que la tubería esta encima del terreno natural estando expuesta a contaminación (imagen 7 y 8), la tubería actual de la línea de aducción no cuenta con pases aéreos y no necesita, por ultimo no cuenta con válvulas de aire y de purga por lo que se requiere de inmediato debido a que el terreno es accidentado, promediando todas las respuestas se obtuvo un puntaje de 2.00 tal y como muestra el grafico 9, teniendo como estado de evaluación "mala" y categoría "No sostenible", ver el cuadro Nº 11 llamado "Evaluación de la línea de aducción actual" y el anexo

6.

Cuadro 14. Evaluación de la red de distribución actual

Componente	Indicadores	Datos Recolectados	Descripción
	Clase de red	Red abierta	Se presentó el sistema ramificado debido a que las viviendas se encuentran dispersas en todo el área que delimita al caserío.
	Antigüedad	15 años	Cumple con el periodo de diseño que nos dice la Resolución Ministerial N° 192 – 2018.
Red de distribución	Tipo de tubería	PVC	El tipo de tubería encontrado es PVC, pero los ramales y tuberías principales en ciertos tramos se encuentran por encima del terreno natural.
	Clase de tubería	7.5	Se recomienda trabajar en zonas rurales con una clase de tubería 10 tanto en tuberías secundarias y principales.
	Diámetro de tubería	1.5 a 2.00 pulg.	Se determinará en el cálculo del mejoramiento de la red de distribución del caserío de Santa María.

Imagen 09. Red de distribución expuesta a la intemperie (tubería principal)

Imagen 10. Red de distribución expuesta a la intemperie (tubería secundaria)

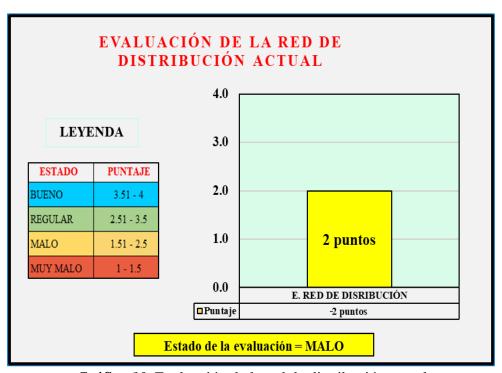


Gráfico 10. Evaluación de la red de distribución actual

Interpretación: La evaluación de la red de distribución actual en el caserío de Santa María estuvo compuesta por medio de 2 preguntas comenzando por el estado de la tubería principal y secundaria que cuenta la red de distribución y si dispones o necesita de válvulas que ayuden en su funcionamiento, como resultados se obtuvo que la tubería principal y la tubería secundaria estan en diversos tramos encima del terreno natural (imagen 9 y 10) y que dicha red no necesita de válvulas de control debido a la mínima de cantidad de viviendas que cuenta, sumando y promediando los puntajes de ambas respuestas se obtuvo 2.00 puntos tal y como muestra el grafico 10, obteniendo un estado de evaluación "malo" y de categoría "No sostenible", observar el cuadro Nº 14 llamado "Evaluación de la red de distribución actual" y el anexo 6.

Cuadro 15. Evaluación de la cámara rompe presión actual

Componente	Indicadores	Datos Recolectados	Descripción
	Tipo de cámara rompe presión	Tipo 6	Se encontró en el trayecto de la tubería de la línea de conducción.
	Material de construcción	Concreto de 210 KG/CM2	Dato obtenido gracias al representante del caserío.
Cámara rompe presión tipo 6	Antigüedad	10 años	Cumple con el periodo de diseño recomendado por la Resolución Ministerial N° 192
	Tapas Sanitarias	No tiene	Son complementos de concreto o metal que ayudan a proteger los accesorios que se encuentran en la CRP
	Accesorios	No tiene	Se determinará en el cálculo del mejoramiento de la cámara rompe presión actual.

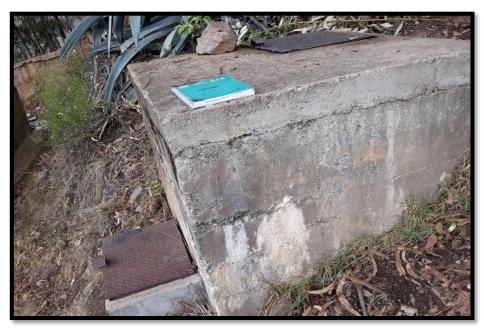


Imagen 11. Estado de la estructura de la cámara rompe presión tipo 6encontrada en la línea de conducción

Imagen 12. Caseta de válvulas de la cámara rompe presión tipo 6.

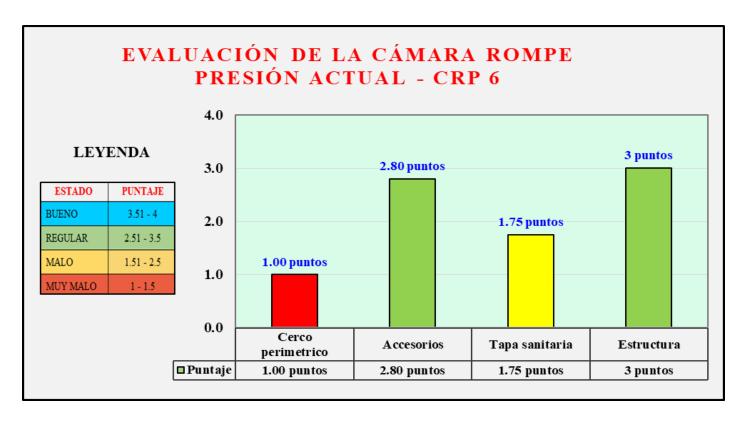
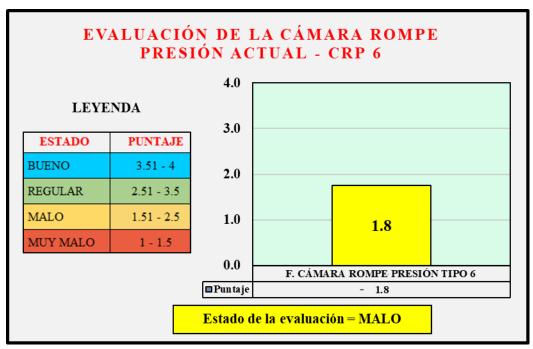
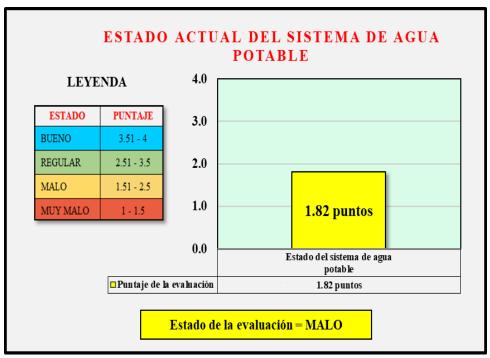



Gráfico 11. Evaluación de los componentes de la cámara rompe presión actual – CRP 6

Gráfico 12. Evaluación de la cámara rompe presión actual – CRP 6


Interpretación: La evaluación de la cámara rompe actual – CRP 6 en el caserío de Santa María estuvo constituida en base a 4 preguntas que contemplan el estado de las partes de la cámara rompe presión tipo 6 (grafico 11), estos fueron, el cerco perimétrico, tapas sanitarias, estructura y accesorios, como resultado se obtuvo un puntaje de 1 para el cerco perimétrico, un puntaje de 1 para el estado de las tapas sanitarias, 3 puntos para el estado de la estructura y 2 puntos en el estado de los accesorios, sumando y promediando los resultados se llegó a un puntaje final de 1.8 (grafico 12), obteniendo como respuesta un estado de evaluación "malo" de categoría "No sostenible", para más detalles ver el cuadro Nº 15 llamado "Evaluación de la cámara rompe presión actual - CRP 6" y el anexo 6.

Cuadro 16. Estado actual de las estructuras del sistema de abastecimiento de agua potable

Componente	Indicadores	Datos Recolectados	Descripción
ESTADO DE ACTUAL DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO SANTA MARÍA	Cámara de captación	1.5 puntos	Necesita mejoramiento
	Línea de conducción	2.00 puntos	Necesita mejoramiento
	Reservorio de Almacenamiento	1.60 puntos	Necesita mejoramiento
	Línea de aducción	2.00 puntos	Necesita mejoramiento
	Red de distribución	2.00 puntos	Necesita mejoramiento
	Cámara rompe presión tipo 6	1.80 puntos	Necesita mejoramiento

Gráfico 13. Estado actual de las estructuras del sistema de agua potable

Gráfico 14. Estado actual del sistema de abastecimiento de agua potable

Interpretación: La evaluación del estado actual de las estructuras del sistema de agua potable, estuvo constituido por la evaluación de las 6 estructuras que se encontraron en el sistema actual de agua potable tal y como nos indica el grafico 13, dicha evaluación empezó desde la cámara de captación, línea de conducción, reservorio de almacenamiento, línea de aducción, red de distribución culminando en la cámara rompe presión tipo 6, cada estructura obtuvo un puntaje de evaluación el cual ayudo a promediar un puntaje final de 1.82 (grafico 14) teniendo como estado de evaluación final "malo" de categoría "No sostenible", para más detalles ver el cuadro Nº 16 llamado "Estado actual de las estructuras del sistema actual de agua potable" y el anexo 6.

2.- Dando respuesta a mi segundo objetivo específico: Proponer el mejoramiento del sistema de abastecimiento de agua potable en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca – 2021

Tabla 1. Diseño hidráulico de la captación de manantial de ladera

DISEÑO HIDRÁULICO DE LA CAMARA DE CAPTACIÓN								
MANANTIAL DE TIPO LADERA CONCENTRADO								
Descripción	Simbologia	Formula	Resultados	Unidad				
Nombre de la captación	N		Santa María					
Altitud	Alt.		2350.840	m.s.n.m				
Caudal máximo de la fuente	Qmax	$Q = \frac{V}{T_t}$	0.756	Lt/seg				
Caudal mínimo de la fuente	Qmin	$Q = \frac{V}{T_t}$ $Q = \frac{V}{T_t}$	0.740	Lt/seg				
Material de construcción	Мс		Concreto armado 210 - 280 KG/CM2					
Cerco perimetrico	Ср		4.00 x 5.5 x 1.8					
Caseta de válvulas	Cv		0.80 x 0.90 x 0.85					
Caudal máximo diario (diseño)	Qmd	$Qmd = k1 \cdot Qm$	0.500	Lt/seg				
Distancia entre el afloramiento y la captación	L	$L = \frac{hf}{0.30}$	1.30	mts				
Diámetro del orificio de la pantalla	D	$D = \left(\frac{4 \cdot A}{\pi}\right)^{0.5}$	1 1/2	pulg				
Ancho de la pantalla	b $b = 2(6 \cdot D) + NA \cdot D + 3D \cdot (NA - 1)$		1.00	mts				
Núnmero de orificios	NA	$NA = \left(\frac{D}{D_2}\right)^2 + 1$	3.00	und.				
Diámetro de la tuberia de rebose	Dr	$Dr = \frac{0.71 \cdot Qmax^{0.38}}{hf^{0.21}}$	2.00	pulg				
Diámetro del cono de rebose	Dcono	Dcono = 2 * D	4.00	pulg				
Diámetro de la tuberia de limpieza	Dr	$Dr = \frac{0.71 \cdot Qmax^{0.38}}{hf^{0.21}}$	2.00	pulg				
Longitud de la canastilla	L		13.00	cm				
Número de ranuras	Nr	$N_r = \frac{A_t}{A_r}$	30.00	ranuras				
Diámetro de la tuberia de salida	D	$D = \left(\frac{\left(\frac{Qmd}{1000}\right)}{0.2786 * C * S^{0.54}}\right)^{0.38}$	1.00	pulg				
Altura de la camara humeda	Н	H = E + D + H + B + A	0.90	mts				

Fuente: Elaboración propia - 2021

Interpretación: Se hizo el mejoramiento de la cámara de captación actual mediante un cálculo hidráulico, obteniendo resultados como, que el tipo de captación a mejorar fue de ladera concentrado, ubicada en las coordenadas 735421.675 E, 9223999.970 N, con una altura de 2350.840 m.s.n.m.

El mejoramiento hidráulico de la captación estuvo basando en los parámetros que nos indica la Resolución Ministerial Nº 192 y acompañado de la fórmula de Hazen Williams, como resultados se obtuvo que el agua fluye de manera horizontal partiendo desde un solo punto (acuífero), se calculó los caudales de la fuente mediante el método volumétrico obteniendo caudal mínimo de 0.40 l/s y máximo 0.756 l/s, el caudal máximo en la fuente ayudo con el cálculo de la tubería de rebose y limpia, cono de rebose, el ancho de la pantalla y sus diámetros de ellos mismo, el caudal mínimo ayudo a la comparación de los caudales de diseño que se necesitan para continuar con el cálculo (diámetro de la tubería de salida), por ultimo contara con un cerco perimétrico que protegerá toda la estructura, en la **tabla 1** se aprecia un resumen de todos los cálculos, en el anexo 7 llamado "memoria de cálculo de la captación" se aprecia con más detalles y en el anexo 12 "plano de captación" se puede observar la distribución de todas las partes de la estructura, con el mejoramiento de la estructura se generó un costo el cual se aprecia en el anexo 9. Esta propuesta ayudara a la condición sanitaria de la población mejorando la calidad del sistema de agua potable y la calidad de vida de cada poblador.

Tabla 2. Diseño hidráulico de la línea de conducción

RÁULICO D	E LA LÍNEA DE CONDUC	CCCIÓN						
SITEMA DE LÍNEA DE CONDUCCIÓN POR GRAVEDAD								
Descripción Formula								
L		563.951	ml					
Tb	Recomendado	PVC						
Ctb	Recomendado	10.000						
Qmd	$Qmd = k1 \cdot Qm$	0.50	Lt/s					
Ср		2350.8400	m.s.n.m					
Cr		2288.780	m.s.n.m					
D	$D = \left(\frac{\left(\frac{Qmd}{1000}\right)}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	1.00	pulg					
Ht	Ht = c.mayor - c.menor	62.060	m.c.a					
L1		415.026	ml					
C.Crp6		2305.030	m.s.n.m					
H1	H1 = c.p - c.crp6	45.810	m.c.a					
V1	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	0.737	m/s					
hf1	$fh1 = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$	9.185	mts					
P1	P1 = H1 - hf1	36.625	mts					
L2		148.925	ml					
Н2	H2 = c.crp6 - c.r	16.250	m.c.a					
V2	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	0.737	m/s					
hf2	$fh2 = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$	3.296	mts					
P2	P1 = H1 - hf1	12.954	mts					
VP		2330.013	m.s.n.m					
			m.s.n.m					
	ÍNEA DE C L Tb Ctb Qmd Cp Cr D Ht L1 C.Crp6 H1 V1 hf1 P1 L2 H2 V2 hf2	ÍNEA DE CONDUCCIÓN POR GRA Formula L Tb Recomendado Ctb Recomendado Qmd Qmd = k1 · Qm Cp Cr D $D = \left(\frac{Qmd}{1000}\right)_{0.2786 * C * hf^{0.54}}\right)^{0.38}$ Ht $Ht = c.mayor - c.menor$ L1 C.Crp6 H1 $H1 = c.p - c.crp6$ V1 $V = \frac{4 \cdot Q}{\pi \cdot D^2}$ hf1 $fh1 = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$ P1 $P1 = H1 - hf1$ L2 H2 $H2 = c.crp6 - c.r$ V2 $V = \frac{4 \cdot Q}{\pi \cdot D^2}$ hf2 $fh2 = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$ P2 $P1 = H1 - hf1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Fuente: Elaboración propia – 2021

Interpretación: Se hizo el mejoramiento hidráulico de la línea de conducción actual utilizando el método directo y el sistema por gravedad ya que la fuente de captación se encuentra en una cota mayor del reservorio, la tubería tendrá una longitud total de 563.951 ml, iniciando desde una captación en la cota 2350.84 m.s.n.m. hasta un reservorio en la cota 2288.78, con la ayuda de la fórmula de Hazen Williams y el caudal máximo diario de 0.50 m/s se calculó el diámetro de tubería, presión y velocidad, la Resolución Ministerial Nº 192 ayudo a tener una tubería de tipo PVC y clase 10, tiene una carga disponible de 62.060 m.c.a, optando anteriormente una CRP6, dicha CRP 6 se ubica en la cota 2305.030, por lo que el mejoramiento estuvo en base a 2 tramos, en el primer tramo se obtuvo una carga disponible de 45.81 m.c.a., una presión de 36.625 mts y una pérdida de carga de 9.185 mts, en el tramo 2 se generó una carga disponible de 16.25 m.c.a., con una presión de 12.954 mts y una pérdida de carga de 3.296 mts, en ambos tramos la tubería tendrá un diámetro 1 pulg. con velocidades de 0.737 m/s, para ayudar a que no se presenten patologías en las tuberías se agregaron 2 válvulas de purga ubicadas en las cotas 2330.013 m.s.n.m. y 2314.452 m.s.n.m. y 1 válvula de aire ubicada en la cota 2320.915, en la **tabla 2** se aprecia un resumen de todo el cálculo, en el **anexo** 7 "memoria de cálculo de la conducción" se aprecia a más detalles y en el anexo 12 "plano de conducción" se observa la estructura en planta y perfil, con el mejoramiento de la estructura se generó un costo el cual se aprecia en el anexo 9. Esta propuesta ayudara a la condición sanitaria de la población mejorando la calidad del sistema de agua potable y la calidad de vida de cada poblador.

Tabla 3. Diseño hidráulico del reservorio de almacenamiento

RESERVORIO DE FORMA RECTANGULAR DE TIPO APOYADO								
Descripción		Formula	Resultados	Unidad				
Altitud	Alt.		2288.780	m.s.n.m				
Volumen total del reservorio	Vt	$V_t = V_{reg} + V_i + V_r$	10.000	m^3				
Material de construcción	Мс		Concreto armado 280 KG/CM2					
Ancho interno	b		3.000	mts				
Largo interno	l		3.000	mts				
Altura de agua	ha		1.21	mts				
Cerco perimétrico	Ср		7.00 x 7.80 x 2.30					
Tubería de entrada	Tc		1.00	pulg				
Diámetro de la tuberia de rebose	Dr	$Dr = \frac{0.71 \cdot Qmd^{0.38}}{hf^{0.21}}$	2.00	pulg				
Diámetro del cono de rebose	Dcono	Dcono = 2 * D	4.00	pulg				
Diámetro de la tuberia de limpieza	Dr	$Dr = \frac{0.71 \cdot Qmd^{0.38}}{hf^{0.21}}$	2.00	pulg				
Orificios de ventilación	Ov		1.00	und				
Diámetro de los orifcios	Do		1.00	pulg.				
Diámetro de la tuberia de salida	D	$D = \left(\frac{\left(\frac{Qmh}{1000}\right)}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	1.00	pulg				
Longitud de la canastilla	L		13.00	cm				
Numero de ranuras	Nr	$N_r = \frac{A_t}{A_r}$	30.00	ranuras				
Caseta de válvulas	Cv		0.80 x 0.90 x 0.85	mts				
Tiempo de llenado	T_{LL}		20000.00	seg.				
Tiempo de vaciado	T _{va}		7156.13	seg.				
Caseta de desinfención	CD		0.85 x 1.22	mts				
Volumen de caseta de desinfección	VCD		60.00	lts				
Cantidad de gotas	qs		12.00	gotas				

Fuente: Elaboración propia - 2021

Interpretación: Se hizo el mejoramiento del reservorio de almacenamiento actual mediante un cálculo hidráulico, obteniendo resultados como, el tipo de reservorio es apoyado de forma rectangular, ubicado en las coordenadas 735708.009 E, 9223574.206 N, con una altitud de 2288.780 m.s.n.m.

El mejoramiento hidráulico del reservorio de almacenamiento estuvo basando en los parámetros que nos indica la Resolución Ministerial Nº 192y la norma OS.030, dicho mejoramiento obtuvo los siguientes resultados como, volúmenes: regulación y reserva, no se consideró un volumen contra incendios ya que el caserío no se encuentra en una zona industrial y comercial, en total tendrá un volumen de 10 m³, con dimensiones de 3 mts. x 3 mts. x 1.21 mts de altura de agua, el diámetro de la tubería de entrada será de 1 pulg., los diámetros de los accesorios se calcularon en base a la fórmula de Hazen Williams y el caudal máximo diario, el reservorio tardara en llenarse en 2000 seg. (5.6 horas) y de vaciado 7367.02 seg. (2 horas), se tendrá un sistema de cloración el cual ayudara a mantener el agua clorada y de calidad, dicho sistema contara con 12 gotas/s, por último la estructura tendrá un cerco perimétrico que ayudara a protegerla de peligros de contaminación, en la tabla 3 se aprecia un resumen de todo el cálculo, en el anexo 7 "memoria de cálculo de reservorio de almacenamiento" se aprecia con más detalles, en el anexo 12 se aprecia el plano nombrado "plano de reservorio de almacenamiento" el cual visualiza a la estructura en planta y elevación, con el mejoramiento de la estructura se generó un costo el cual se aprecia en el anexo 9. Esta propuesta ayudara a la mejora de la condición sanitaria de la población.

Tabla 4. Diseño hidráulico de la línea de aducción

DISEÑO HIDRÁULICO DE LA LÍNEA DE ADUCCCIÓN									
SITEMA DE LÍNEA DE ADUCCIÓN POR GRAVEDAD									
Descripción Formula Resultados Un									
Longitud de la línea de aducción	L		155.034	ml					
Tipo de tubería	Tb	Recomendado	PVC						
Clase de tubería	Ctb	Recomendado	10						
Caudal máximo horario	Qmh	$Qmd = k2 \cdot Qmh$	0.500	Lt/s					
Cota del reservorio	Crd		2288.7800	m.s.n.m					
Cota de la red de distribución	Crd		2271.127	m.s.n.m					
Diámetro de la tuberia de aducción	D	$D = \left(\frac{\left(\frac{Qmh}{1000}\right)}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	1.00	pulg					
Altura de agua	Ht	Ht = c.r - c.rd	17.653	m.c.a					
Velocidad del flujo	v	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	0.737	m/s					
Perdida de carga en la línea de aducción	hf	$hf = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$	3.431	mts					
Presión en la línea de aducción	P	P1 = H - hf	14.220	mts					
Válvula de purga	VP		2278.501	m.s.n.m					
Válvula de aire	VA		2283.862	m.s.n.m					

Fuente: Elaboración propia - 2021

Interpretación: Se hizo el mejoramiento hidráulico de la línea de aducción actual utilizando el método directo y el sistema por gravedad ya que el reservorio se encuentra en una cota mayor que la población, la tubería tendrá una longitud total de 155.034 ml, iniciando desde el reservorio en la cota 2288.78 m.s.n.m. hasta el inicio de la red en la cota 2271.127, con la ayuda de la fórmula de Hazen Williams y el caudal máximo horario de 0.50 m/s se calculó el diámetro de tubería que es de 1 pulg., de tipo PVC y de clase 10, la presión será de 14.22, la velocidad de 0.737 m/s y la perdida de carga 3.431 mts., en la **tabla 4** se aprecia el resumen de todo el cálculo, en el **anexo 7**

"memoria de cálculo de la aducción" se aprecia con más detalles y en el **anexo**12 "plano de aducción" se observa la estructura en planta y perfil, con el mejoramiento de la estructura se generó un costo el cual se aprecia en el **anexo** 9. Esta propuesta ayudara a la mejora de la condición sanitaria de la población.

Tabla 5. Diseño hidráulico de la red de distribución

DISEÑO HIDRÁULICO DE LA RED DE DISTRIBUCIÓN									
SISTEMA DE RED DE DISTRIBUCIÓN ABIERTA									
Descripción		Formula	Resultados	Unidad					
Caudal de diseño	Qmh	$Qmd = k2 \cdot Qmh$	0.500	Lt/s					
Viviendas	viv.		33.00	viviendas					
Caudal unitaro	Qu	$Qu = \frac{Qmh}{viviendas}$	0.0152	Lt/s					
Tipo de tubería	Tb	Recomendado	PVC						
Clase de tuberia	Ctb	Recomendado	10						
Diámetro en la tuberia principal	D	$D = \left(\frac{\frac{Q}{1000}}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	29.40	mm					
Diámetro de la tuberia secundaria	D	$D = \left(\frac{1000}{0.2786 * C * hf^{0.54}}\right)$	22.90	mm					
Presión mínima (nodo)	P	P = H – hf	14.222	mts					
Presión máxima (nodo)	P	r = n ny	27.199	mts					
Presión máxima (viviendas)	P		20.520	mts					
Presión mínima (viviendas)	P	P = H – hf	27.104	mts					
Velocidad mínima (tubería)	V	$V = \frac{4 \cdot Q}{\pi \cdot D^2}$	0.300	m/s					
Velocidad máxima (tubería)	v	π · D ²	0.737	m/s					

Fuente: Elaboración propia – 2021

Interpretación: Se hizo el mejoramiento hidráulico de la red de distribución actual utilizando el Software WaterCAD Connetion el cual cumple con los criterios y formulas mencionados en Resolución Ministerial Nº192, se empleó un sistema, ramificado debido a que las viviendas en el caserío no se encuentran en conjunto, se diseñó con el caudal máximo horario (0.50 m/s), y el caudal unitario 0.0152 l/s, esta estructura beneficiará a 30 viviendas y 3 lugares públicos, el tipo de tubería será de PVC de clase 10, contara con una tubería principal con diámetro de 1 pulg. y una tubería secundaria con diámetro de 3/4 pulg., la presión máxima en los nodos es de 27.199 mts. y mínima de 14.222 mts., la presión máxima en las viviendas fue de 27.104 mts. y mínima 20.52 mts., ambas tuberías tienen una velocidad mínima de 0.3 m/s y máxima de 0.737 m/s, en la **tabla 5** se aprecia un resumen de todo el cálculo, en el anexo 7 llamado "memoria de cálculo de la red de distribución" se aprecia con más detalles y en el anexo 12 "plano de la red de distribución" se observa la distribución de la red, con el mejoramiento de la estructura se generó un costo el cual se aprecia en el anexo 9. Esta propuesta ayudara a la mejora de la condición sanitaria de la población.

Tabla 6. Diseño hidráulico de la cámara rompe presión tipo 6

CAMARA ROMPE PRESIÓN TIPO 6							
Descripción	Resultados	Unidad					
Altitud	Alt.		2305.030	m.s.n.m			
Material de construcción	Mc		Concreto armado 280 KG/CM2				
Diámetro del cono de rebose	Dcono	<i>Dcono</i> = 2 * <i>D</i>	4.00	pulg			
Diámetro de la tuberia de limpieza	Dr	$Dr = \frac{0.71 \cdot Qmd^{0.38}}{hf^{0.21}}$	2.00	pulg			
Altura total de camara humedad	Ht		0.90	mts			
Diámetro de la tuberia de salida	D	$D = \left(\frac{\left(\frac{Qmd}{1000}\right)}{0.2786 * C * hf^{0.54}}\right)^{0.38}$	1.00	pulg			
Longitud de la canastilla	L		13.00	cm			
Número de ranuras	Nr	$N_r = \frac{A_t}{A_r}$	30.00	ranuras			

Fuente: Elaboración propia - 2021

Interpretación: Se hizo el mejoramiento hidráulico a la cámara rompe presión tipo 6 ubicada en las coordenadas 735601.235 E, 9223666.066 N, con una altura de 2305.030 m.s.n.m., en dirección con la tubería de la línea de conducción.

El mejoramiento hidráulico de la cámara rompe presión tipo 6 se calculó con los parámetros dictados por la Resolución Ministerial Nº 192 y el caudal máximo diario, sirviéndonos como base para el cálculo de las tuberías de limpieza y rebose, tendrá dimensiones de 0.90 mts. de altura de cámara húmeda y 13.00 cm. de canastilla con 30 ranuras, en la **tabla 6** se aprecia un resumen todo el cálculo, en el **anexo 7** "memoria de cálculo de la CRP6" se aprecia con más detalles y en el **anexo 12** "plano de la CRP6" se observa un plano con todos sus detalles, con el mejoramiento de la estructura se generó un costo el cual se aprecia en el **anexo 9**.

3.- Dando respuesta a mi tercer objetivo específico: Determinar la incidencia en la condición sanitaria de la población en el caserío de Santa María, distrito de San Miguel, provincia de San Miguel, región Cajamarca – 2021.

Tabla 7. Ficha 07 "Cobertura del servicio"

CASERÍO DE	SANTA MARÍA, D	ISTRITO DESA	AN MIGUEL, PRO	MIENTO DE AGUA POTABLE EN EL OVINCIA DE SAN MIGUEL, REGIÓN ITARIA DE LA POBLACIÓN – 2021.					
NGENIERIA EVI	TESISTA	BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY							
FICHA 07	ASESOR	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RÍOS							
	G.	COBERTUR	RA DEL SERIV	TCIO					
39.Cantidad	<mark>l de familias que</mark>			con el sistema de agua potable					
	Dotooión o		Familias	sias (Mash d)					
Región		n arraste Hidi	opción tecnoló	Con arrastre Hidráulico					
Sierra	SII	50	iaunco	80					
Selva		70		100					
Costa		60		90					
Fuente: Resolución	ı Ministerial. N° 19	2 – 2018 – Vivid	enda	l					
El puntaje	de la cobertura	del servicio d	del sistema con	sta de una sola pregunta (P1)					
Si A > B	= Bueno	= 4	Si A = B	= Regular = 3					
Si $A < B > 0$	= Malo	= 2	$\operatorname{Si} \mathbf{B} = 0$	= Muy malo = 1					
		Date	os a usar						
Caudal míni Promedio de		0.740 lts/s 4 inte./viv.	Dot	tación (D) = 80 l/hab.d					
	Cálculo de la col	ertura del se	rvicio del siste	ma de agua potable					
	e personas atendik $=\frac{Qmin * 86400}{D}$		Calculo:	$\frac{Qmin * 86400}{D} = \boxed{799 \text{ personas.}}$					
	e personas atendib		B = Promed	dio x familias = 120 personas.					
	Resulta	do cobertura	del servicio de	el sistema					
A > F	3	799 p	ersonas. >	120 personas.					
		Cobertura	a = 4.00 puntos						

Fuente: Sistema de información regional en agua y saneamiento

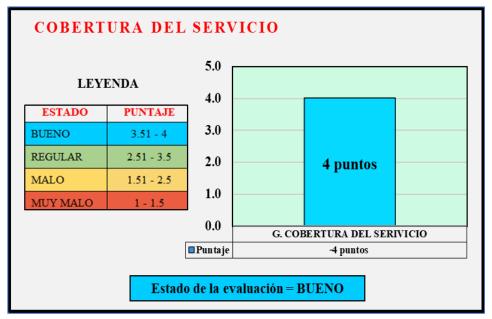


Gráfico 15. Cobertura del servicio

Fuente: Elaboración propia - 2021

Interpretación: La cobertura del servicio se evaluó en base a la cantidad de personas que la fuente natural de agua potable mediante los datos obtenidos en campo y los parámetros, estos son el caudal mínimo de la fuente (0.740 l/s) y la dotación (80 l/hab./día), también se necesitó la cantidad de familias en el caserío (30 familias) y la densidad poblacional que fue 4 hab./viv., mediante la recolección de dicha información se realizó un cálculo para luego realizar una comparación entre el número de personas que la fuente natural de agua puede abastecer vs la cantidad de personas que se necesita abastecer en el caserío de Santa María, teniendo como respuesta que la fuente supera el número de personas que se necesita abastecer y que la cobertura del servicio cumple los estándares al 100 % obteniendo un puntaje de 4 teniendo como estado de evaluación "bueno" de categoría "Sostenible", en la tabla 07 llamada "Ficha 07: Cobertura del servicio." se aprecia a detalle todo lo mencionado.

Tabla 8. Ficha 08 "Cantidad del servicio"

EVALUACIÓN Y MEJ ORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DESANTA MARÍA, DISTRITO DESAN MIGUEL, PROVINCIA DESAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021. **TESISTA** BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY NGENIERIA EN LE FICHA 08 MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RÍOS ASESOR H. CANTIDAD DEL SERIVICIO 40. ¿Cuánto es el resultado del caudal mínimo en la fuente de captación? (epoca de sequía) (l/s) 0.740 lts/s 41.¿Cuántas conexiones domiciliarias cuenta atualmente el sistema de gua potable? Indicar la cantidad 33 conexiones 42. ¿El sistema de agua potable actual cuenta con piletas públicas? Marque con una X. X Pasar a la p.44 43. Indicar la cantidad de pilétas públicas que cuenta el caserío 0 piletas Dotación según tipo de opción tecnológica (l/hab.d) Región Sin arraste Hidráulico Con arrastre Hidráulico Sierra 50 70 100 Selva Costa 90 Fuente: Resolución Ministerial. Nº 192 – 2018 – Vivienda El puntaje de la cantidad del servicio del sistema consta de 4 preguntas (P40 a P43) SiD > CBueno 4 Si D < C >Malo 2 SiD = CSi D = 0Regular 3 Muy malo = 1 Datos a usar Conexiones dom. (P41) Dotación (D) 80 l/hab.d 33 conex. Número de Piletas (P43) = 0 piletas Número de familias (P39) 30 fam. Densidad poblacional 4 inte./viv. Caudal mínimo (lts/s) Cálculo de la cantidad del servicio del sistema de agua potable Formulas: Calculo: C = Volumen demandado 13728 + $3 = conex.prome \cdot D \cdot 1.3 =$ $3 = conex.prome.D \cdot 1.3$ $4 = pile \cdot (fam. -conex.) \cdot prom. \cdot 1.3 = ...$ $4 = pile \cdot (fam. -conex.) \cdot prom \cdot 1.3$ 13728 C = 3 + 4 =D = Volumen ofertado $D = Qmin \times 86400$ $D = Qmin \ x \ 86400$ 63936 Resultado de la variable "cantidad" (V2) 63936 13728 D > C**Cantidad = 4.00 puntos**

Fuente: Sistema de información regional en agua y saneamiento

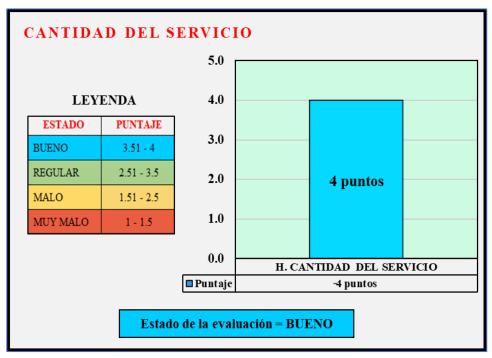


Gráfico 16. Cantidad del servicio

Fuente: Elaboración propia - 2021

Interpretación: La cantidad de servicio fue evaluada en base a la comparación del volumen ofertado y el volumen demandado, para la comparación del ofertado se realizó el cálculo con el caudal mínimo de la fuente y los segundos que tiene 1 día, mientras que para el demandado se utilizó las conexiones domiciliarias actualmente conectadas a la red y la dotación que dependió de la opción tecnológica, una vez calculado se realizó la comparación entre ambos obteniendo el resultado que el volumen ofertado es mayor que el volumen que se necesita para abastecer a nuestra población por lo que se asignó un puntaje de evaluación de 4 ya que cumple al 100%, se calificó como un estado de evaluación "bueno" de categoría "Sostenible", en la tabla 08 llamada, "Ficha 08: Cantidad del servicio." se aprecia a detalle todo lo mencionado.

Tabla 9. Ficha 09 "Continuidad del servicio"

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021. **TESISTA** BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY FICHA 09 **ASESOR** MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RÍOS I. CONTINUIDAD DEL SERIVICIO 44. ¿Cómo se comportan la fuentes de agua en epoca de sequía? Nombre de las fuentes F1: Santa María F2: Descripción Baja cantidad pero no seca Seca totalmente en algunos meses Si el caudal 0 Permanente 45.¿En el ultimo año cada que tiempo a recibido su vivienda el suministro de agua? Todo el dia durante todo el año Por horas todo el año Por horas solo en epoca de sequia Solamente algunos dias po semana El puntaje de la continuidad del servicio del sistema consta de 2 preguntas (P44 a P45) El puntaje en la pregunta 44 sera: Seca totalmente en algunos Permanente 4 puntos 2 puntos meses Baja cantidad pero no seca 3 puntos Si el caudal 0 1 puntos El puntaje en la pregunta 45 sera: Todo el dia durante todo el 4 puntos Por horas todo el año 2 puntos Por horas solo en epoca de 3 puntos Solamente algunos dias po semana 1 puntos sequia Cálculo de la continuidad del servicio del sistema de agua potable Fórmulas: Cálculo: $V3 = \frac{P44 + P45}{2} = \boxed{3.5}$ **Continuidad = 3.50 puntos**

Fuente: Sistema de información regional en agua y saneamiento

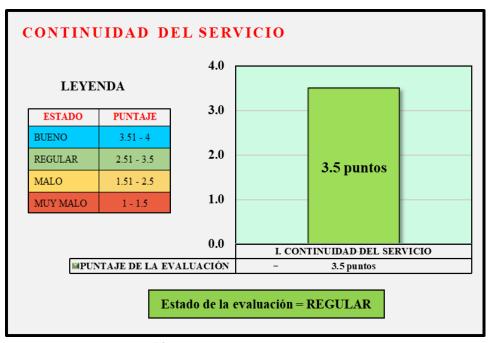


Gráfico 17. Continuidad del servicio

Fuente: Elaboración propia - 2021

Interpretación: La continuidad del servicio fue evaluada en base a las encuetas el cual se refiere al tiempo constante en que el sistema de abastecimiento actual abastece en los últimos 12 meses a todas las viviendas por otro lado también se evaluó si la fuente natural de agua en épocas de sequía sigue abasteciendo o implementan otro método de abastecimiento, se llegó al resultado de que la fuente natural de agua en épocas de sequía llega abastecer a la población en pocas cantidades pero mantiene su función (no se seca), teniendo como puntaje de evaluación regular ya que no mantiene su caudal en todo el año ya que baja su cantidad, dicho puntaje fue 3.5 teniendo como estado de evaluación "bueno" de categoría "Medianamente sostenible", en la tabla 09 llamada, "Ficha 09: Continuidad del servicio." se aprecia a detalle todo lo mencionado.

Tabla 10. Ficha 10 "Calidad del servicio"

EVALUACIÓN CASERÍO DE CAJAMARCA	ESANTA M	IARÍA, D	ISTRITO DE	SAN M	IGUEI	, PRO	OVINCI	A DE	SAN MI	GUEL	, REGI	ÓN
NGENIERIA	TESI	STA	ВАСН. Е	BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY							ERLY	
FICHA 10	ASES	SOR	MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RÍOS							RÍOS		
J. CALIDAD DEL SERIVICIO												
46. ¿Distribuyen una cierta cantidad cloro en el agua de forma periódica?												
	Si		No X pasar a la P48									
	4	17. ¿Esp	ecifique la	cantida	ad de	clor	o resio	dual?				
Dogor	ingión					Ι	D escrip	ción				
Desci	ipción		Parte	Alta			Parte	media	1		Parte b	aja
Baja cloración (0	0 - 0.4 mg	/lt)										
Ideal (0.5 - 0.9 r	n											
Alta cloración (1	.0 - 01.5 1	mg/lt)										
No tiene cloro												
48.	¿Qué ca	racte ris	tics tiene el	agua	que s	se co	nsume	n en	el case	río?		7
Agua clara			Agua turbia			Agua	con e	lemen	itos exti	raños	X	
4	19. ¿Se hi	zo un es	studio físico	, quím	ico y	bacte	ereoló	gico	del agu	ıa?		
	Si No X											
50. ¿Quién	es la enti	idad end	argada de l	naceru	ın ma	ntnir	niento	adeo	cuado a	sus	istem	a?
Municipalidad		MINS	SA		JA	SS	X		Nadie			
El puntaje d	le la cont	inuidad	del servicio	del si	istem	a cor	ısta de	e 5 pr	egunta	s (P4	16 a P	50)
El puntaje o	de la preg	gunta 46	será:		El	punt	aje de	la pr	egunta	149 s	erá:	
SI = 4 puntos		No=	1 punto		SI =	4 pt	ıntos		No=	1 p	unto	
		E	l puntaje de	la pre	gunta	a 47 s	será:					
Baja cloración	=	= 4 pt	intos			Alta	a clora	ción		=	2 pu	intos
Ideal	=	= 3 pu	intos			No	tiene c	loro		=	1 pu	into
		E	l puntaje de	la pre	gunta	a 48 s	será:					
Agua clara	=	= 4 pu	intos		Agu	a son	eleme	ntos e	xtranos	;	2 pu	intos
Agua turbia	=	= 3 pu	intos		=							
-			ıtaje de ''V5	'' en la	a pre	gunta	1 50 se	erá:				
Municipalidad	=		intos			JAS				=	4 pu	intos
MINSA	=	-	intos			Nac	die			=	1 pu	
	Cálculo	de la ca	ılidad del se	rvicio	del s	isten	na de	agua	potable)		
Cálculo de la calidad del servicio del sistema de agua potable Fórmulas: $V3 = \frac{P46 + P47 + P48 + P49 + P50}{5}$ Cálculo: $V3 = \frac{P46 + P47 + P48 + P49 + P50}{5}$ 1.80												
			Calidad	1 – 1 8	A nu	atos						

Fuente: Sistema de información regional de agua y saneamiento.

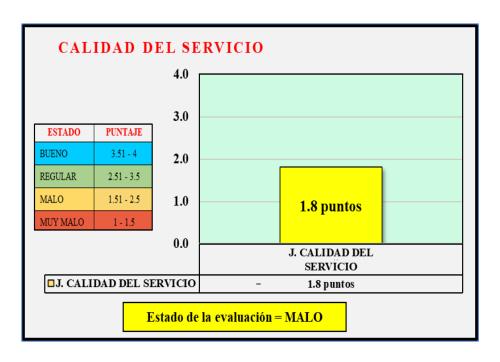


Gráfico 18. Calidad del servicio

Fuente: Elaboración propia - 2021

Interpretación: La calidad del servicio estuvo en base a 5 preguntas que indican la calidad que tiene el sistema de agua potable y las características del agua que llegan hacia las viviendas, estas preguntas iniciaron desde la colocación de cloro periódicamente, el nivel de cloro, las características del agua cuando llegan a las viviendas, la realización de un estudio físico químico bacteriológico del agua y quien se hace responsable del sistema de abastecimiento de agua potable actual, se obtuvo resultados de que no se hecha ninguna cantidad de cloro, a la vez no se realizó un estudio físico químico bacteriológico del agua, el agua llega con características no potables hacia las viviendas y que los encargados del sistema es la JASS, se promedió con un puntaje de 1.8 teniendo como estado de evaluación "mala" de categoría "no sostenible", en la tabla 10 llamada "Ficha 10: Calidad del servicio." se puede apreciar a detalle todo el procedimiento de la evaluación.

Tabla 11. Estado de la condición sanitaria

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021. **TESISTA** BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY MGTR. ING. GONZALO MIGUEL, LEÓN DE LOS RÍOS Asesor: ESTADO DE LA CONDICIÓN SANITARIA Comprende de la P1 a la P50 P39 a P39 4.0 puntos 1) Cobertura del servicio 4.0 puntos P40 a P43 2) Cantidad del servicio 3) Continuidad del servicio 3.5 puntos P44 a P45 4) Calidad del servicio 1.8 puntos P45 a P50 El puntaje de la evaluación de la condición sanitaria sera Puntaje $C.S = \frac{V1 + V2 + V3 + V4}{4} =$ 3.33 Condición Sanitaria = 3.33 puntos

Fuente: Elaboración propia – 2021

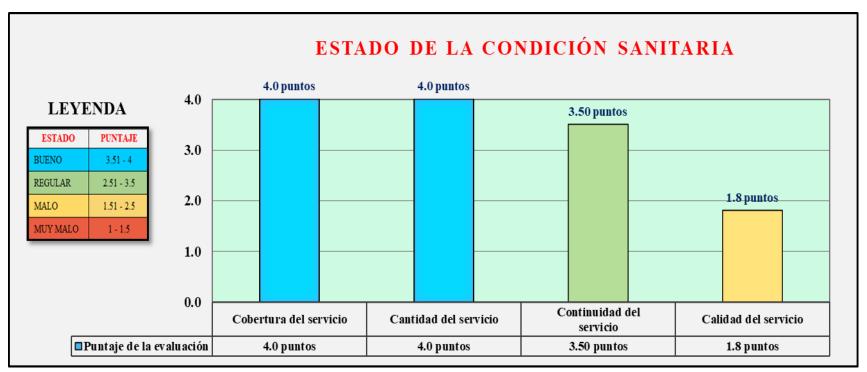


Gráfico 19. Estado de los componentes de la condición sanitaria

Fuente: Elaboración propia – 2021

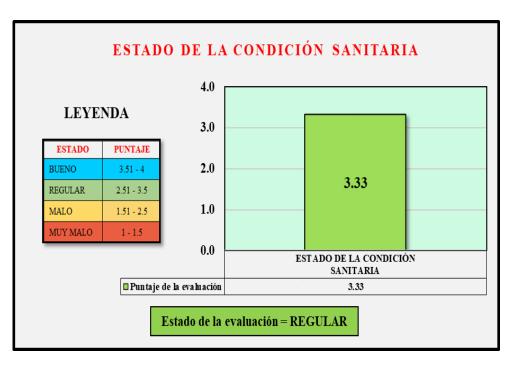


Gráfico 20. Estado de la condición sanitaria

Fuente: Elaboración propia – 2021

Interpretación: La evaluación de la condición sanitaria, se basó en 4 componentes importantes que se debe tener en cuenta en un sistema de agua potable y una población tal y como muestra el grafico 19, dichos componentes comienzan desde la cobertura del servicio, cantidad del servicio, continuidad del servicio y la calidad del servicio, cada componente obtuvo un resultado el cual se sumó y se promedió obteniendo un puntaje de 3.33 (gráfico 20), con un estado de evaluación "regular" de categoría "medianamente sostenible", en la tabla 11 llamada "Estado de la condición sanitaria.", se puede apreciar a detalle todo el procedimiento de la evaluación.

4.2. Análisis de Resultados

4.2.1. Evaluación del sistema de agua potable existente

Se determinó la evaluación de todo el sistema de abastecimiento de agua potable actual en el caserío de Santa María, donde cada estructura encontrada fue evaluada dándole un puntaje a cada una de ellas, promediando todos los puntajes se llegó a un resultado final que la evaluación del sistema actual tiene un puntaje de 1.83 teniendo como estado de evaluación "malo" de categoría "no sostenible", analizando que todo el sistema necesita de un mejoramiento, para haci brindar una mejor función y calidad hacia el caserío, y a la vez mejorando la condición sanitaria de la población. Se detallará a continuación el análisis de la evaluación de los resultados de cada estructura encontrada.

4.2.1.1.Captación

La evaluación de la captación actual obtuvo un puntaje de 1.5 teniendo como estado de evaluación "malo" de categoría "no sostenible", debido a que se pudo encontrar diversas partes de la estructura en mal estado, partiendo desde la falta de un cerco perimétrico que pueda proteger a la estructura, el estado regular de sus tapas sanitarias pero no teniendo ningún seguro que las pueda proteger a la contaminación, el mal estado de sus accesorios y válvulas, y tanto la estructura de la cámara húmeda y seca también encontrándose también en malas condiciones. En la tesis de Clemente titulada: "Evaluación y mejoramiento del sistema de saneamiento básico en la comunidad de Palcas, distrito

de Angaraes, departamento de Huancavelica y su incidencia en la condición sanitaria de la población", el autor realizo la evaluación a la captación encontrada en su caserío teniendo como resultados que las partes encontradas en la estructura se encuentran en malas condiciones ya que por el paso del tiempo desgato dichos componentes y a la vez la presencia del fenómeno del niño costero también perjudico dicha estructura por lo que se requiere un mejoramiento.

4.2.1.2.Línea de conducción

La evaluación de la línea de conducción actual tuvo como resultado un puntaje de 2.00 con un estado de evaluación "malo" de categoría "no sostenible", debido a que se pudo encontrar que la tubería que comprende la línea se encuentra en diversos tramos encima del terreno natural, a la vez no cuenta con válvulas de aire y de purga por lo que se puede generar patologías en la tubería debido a que el terreno es accidentado, la clase de tubería encontrada fue de 7.5 el cual no es la recomendada en zonas rurales, toda la evaluación nos dio el análisis de que la estructura actual necesita de un mejoramiento para brindar un sistema optimo hacia el caserío. En la tesis de Verde titulada: "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío Canchas, distrito Cáceres del Perú, provincia del santa, región Ancash — 2019", el autor evaluó la línea de conducción presentando

deficiencias y fugas en todo el tramo de la tubería, a la vez encontró que la clase de tubería tampoco era la recomendada ya que presento una clase 7.5 el cual no se recomienda en sistema de agua potable para zonas rurales.

4.2.1.3. Reservorio de almacenamiento

La evaluación del reservorio de almacenamiento actual tuvo como resultado un puntaje de 1.6 teniendo como estado de evaluación "malo" de categoría "no sostenible", debido a que se pudo encontrar diversas partes de la estructura en mal estado, partiendo desde la falta de un cerco perimétrico que pueda proteger a la estructura, la faltas y desgastes de algunos accesorios encontrados en la caseta de válvulas, la falta de un sistema de cloración, el mal estado de las tapas sanitarias de la estructura y no contando con un seguro que pueda protegerlas, en la tesis de Herrera titulada: "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay. Provincia de Recuay, región de Áncash, agosto - 2019", el autor realizo la evaluación del reservorio encontrado teniendo como resultados que algunas partes que comprende la estructura se encuentran en malas condiciones, como es la caseta de válvulas la falta de accesorios y la falta de un cerco perimétrico que proteja la estructura, analizando también en mejorar las condiciones de la estructura para abastecer agua de calidad a la población.

4.2.1.4.Línea de aducción

La evaluación de la línea de aducción actual tuvo como resultado un puntaje de 2.00 con un estado de evaluación "malo" de categoría "no sostenible", debido a que se pudo encontrar que la tubería que comprende la línea se encuentra en diversos tramos encima del terreno natural, a la vez no cuenta con válvulas de aire y de purga por lo que se puede generar patologías en la tubería debido a que el terreno es accidentado, la clase de tubería encontrada fue de 7.5 el cual no es la recomendada en zonas rurales, toda la evaluación nos dio el análisis de que la estructura actual necesita de un mejoramiento para brindar un sistema optimo hacia el caserío. En la tesis de Melgarejo titulada: "Evaluación y Mejoramiento del Sistema de Abastecimiento de Agua Potable y Alcantarillado del Centro Poblado Nuevo Moro, Distrito de Moro, Ancash – 2018", el autor realizo la evaluación de la línea de aducción encontrando deficiencias en todo el tramo obteniendo como resultado ya que se encontró tramos de tubería expuesta a la intemperie pudiendo generar contaminación del agua captada, por lo que se llegó al análisis de que la estructura requiere de un mejoramiento.

4.2.1.5.Red de distribución

La evaluación de la red de distribución actual tuvo como resultado un puntaje de 2.00 con un estado de evaluación "malo" de categoría "no sostenible", debido a que se pudo encontrar que la

tubería principal y la tubería secundaria que conecta tanto con la tubería principal y las conexiones domiciliarias se encuentran expuestas en diversos tramos a contaminación debido a que no están enterradas, existen diversidad de diámetros en todo el sistema de la red debido a que por ciertas roturas los pobladores del caserío optaron de realizarle empalmes con distintos tipos y diámetros de tuberías que pudieron encontrar en su vivienda o una tienda cercana perjudicando haci su función de llevar el agua potable a las viviendas, llegando analizar que si se necesita realizarle un mejoramiento para mejorar la calidad de vida del caserío y la condición sanitaria de la población. En la tesis de Ledesma. titulada: Diseño del mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del sector Parva del Cerro, caserío el Espino, distrito de Chugay, provincia de Sánchez Carrión, departamento La Libertad – 2018, se realizó la evaluación de la red de distribución dando como resultado que en algunos tramos el agua potable no llega a las viviendas ya que la falta de una ampliación en su red de distribución es necesaria, además que ciertas partes de la tubería secundaria que son los ramales se pudieron encontrar fugas y patologías en los empalmes por lo que genera descontento hacia los moradores de su caserío.

4.2.1.6. Cámara rompe presión tipo 6

La evaluación de la cámara rompe presión encontrada en el caserío fue del tipo 6 ya que esta se encuentra conectada con la

línea de conducción ayudando haci a no generar presiones mayores a lo que menciona el reglamento, al ser de ayuda para el sistema también se realizó la evaluación de dicha estructura encontrándose con un puntaje de 1.8 con una clasificación de evaluación "mala", de categoría "No sostenible", partiendo del mal estado de las tapas sanitaria que cuenta la caseta de válvulas y la cámara húmeda, la falta de un cerco perimétrico que proteja la estructura y la falta de accesorios en su caseta de válvulas. En la tesis de Moreno titulada, "Mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del caserío Pampa Hermosa Alta, distrito de Usquil – Otuzco – La Libertad -2018", se realizó la evaluación a la CRP6 encontrando como respuesta la falta de una caseta de válvulas para mantener en buenas condiciones su función, la falta de un cerco perimétrico y la falta de accesorios, por lo que el autor opto en realizarle un mejoramiento para mejora la calidad de vida para la población.

4.2.2. Propuesta de mejoramiento del sistema de agua potable

Al necesitar el mejoramiento de las estructuras actuales que cuentan el caserío se realizó una propuesta de mejoramiento hidráulico a todo el sistema de abastecimiento de agua potable, dicho mejoramiento comienza desde el cálculo hidráulico de una captación de ladera, línea de conducción, reservorio de almacenamiento, línea de aducción, red de distribución y cámara rompe presión tipo 6.

4.2.2.1. Calculo hidráulico de la captación

El mejoramiento hidráulico de la captación de manantial de ladera concentrado, comenzó con el cálculo de los caudales en la fuente de 0.740 l/s y máximo de 0.756 l/s los cuales se calcularon con el método volumétrico, contará con una caseta de válvulas de 0.80 x 0.90 x 0.85, tendrá una la distancia afloramiento es 1.30 mts, contara con una cámara húmeda de 0.90 mt de alto y de ancho pantalla de 1.00 mt. (ancho de pantalla), también contará con tuberías de limpieza de diámetro de 2 pulg. y salida de diámetro de 1 pulg. y un cono de rebose de diámetro de 4 pulg. Todos los cálculos realizados cumples los estándares y parámetros estandarizados en la Resolución Ministerial – 192; al realizar el cálculo hidráulico de dicha estructura se analizó que ayudara a la calidad de vida del caserío y mejora de la condición sanitaria de la población. En la tesis de Zambrano titulada: "Sistema de abastecimiento de agua potable para la comunidad de Mapasingue, parroquia colon, Cantón Portoviejo – 2017", se hizo el calculó hidráulico de la estructura partiendo desde el método volumétrico para hallar el caudal de la fuente tanto el máximo y el mínimo, esta estructura tendrá dimensiones de 1 mt. X 0.76 mt. de altura en la cámara húmeda con tuberías de limpieza y rebose de 2.00 pulg, tendrá una tubería de salida de 1 pulg., por último, los cálculos planteados mejoraran la condición y calidad de vida de la población.

4.2.2.2. Calculo hidráulico de la línea de conducción

El mejoramiento hidráulico de la línea de conducción se realizó en base al caudal máximo diario de 0.50 l/s, gracias a la fórmula de Hazen Williams se tuvo resultado de una tubería de 1 pulg. de diámetro de clase 10 y de tipo PVC, con un coeficiente de rugosidad de 150, anteriormente se encontró una CRP6 el cual cumple hasta el momento con la disipación de energía que tendrá el tramo de la tubería, la carga disponible en todo el tramo es de 62.060 mts. con una longitud total de 563.951 ml., distribuyéndose de la siguiente manera:

 autor plantea una CRP 6 para disipar la energía o presión que esta tendrá cuando lleve el agua al reservorio y pueda generar en la tubería ciertas patologías, los cálculos realizados por el autor también cumplen lo que menciona la Resolución Magisterial — 192.

4.2.2.3. Calculo hidráulico del reservorio de almacenamiento

El mejoramiento hidráulico del reservorio de almacenamiento fue calculado en base a la Resolución Ministerial – 192 mencionando que dicha estructura debe almacenar agua potable para una población actual y a futuro, la estructura será de tipo apoyado y de forma rectangular, estará conectando con la línea de aducción, tendrá un volumen de 10 m³ distribuido con un volumen de regulación y un volumen de reserva, contara con una caseta de cloración el cual ayudara a tener un agua almacenada y distribuida hacia la tubería de aducción de calidad, contara con un cerco perimétrico ayudando haci a peligros de contaminación, por ultimo tendrá una caseta de válvulas en donde se podrá controlar tanto la cloración como el agua que llega y sale de la estructura, tales resultados calculas cumplen con la resolución mencionada línea arriba. En la tesis de Zambrano titulada: "Sistema de abastecimiento de agua potable para la comunidad de Mapasingue, parroquia colon, Cantón Portoviejo – 2017", se hizo el cálculo hidráulico de un reservorio de almacenamiento de forma rectangular de tipo apoyado el cual tendrá un volumen de

52 m³ y un sistema de cloración mejorando haci la calidad de agua que se almacenará en la estructura.

4.2.2.4. Calculo hidráulico de la línea de aducción

El mejoramiento hidráulico de la línea de aducción se realizó en base al caudal máximo horario de 0.50 l/s, gracias a la fórmula de Hazen Williams se tuvo resultado de una tubería de 1 pulg. de diámetro de clase 10 y de tipo PVC, con un coeficiente de rugosidad de, la carga disponible en todo el tramo es de 17.653 mts. con una longitud total de 155.03 ml., distribuyéndose de la siguiente manera:

Tramo - Tubería de Ø 1" PVC- SAP, clase 10...................155.03 ml El tramo total de la tubería de aducción contara con válvulas de aire y purga ya que el terreno es accidentado. El mejoramiento hidráulico de la estructura cumple los parámetros normados por la Resolución Ministerial – 192, por último, los cálculos planteados mejoraran la condición y calidad de vida de la población. En la tesis de Verde titulada: "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío Canchas, distrito Cáceres del Perú, provincia del Santa, región Ancash – 2019", realizo el mejoramiento hidráulico de la estructura con el caudal máximo horario de 0.76 l/s, teniendo como resultado una tubería con diámetro de 1 pulg. de tipo PVC de clase 10, el autor al

realizar los cálculos se basó en Resolución magisterial – 192, el cual ayudo a tener un resultado confiable.

4.2.2.5. Calculo hidráulico de la red de distribución

El mejoramiento hidráulico de la red de distribución se realizó el en base al caudal máximo horario de 0.50 l/s , el caudal unitario de 0.0152 l/s y el software WaterCAD CONNECTION, partiendo desde la línea de aducción con un diámetro de 1 pulg., de tipo PVC de clase 10 hasta el inicio de la red, el sistema que se trabajo fue el ramificado debido a que las viviendas se encuentran dispersas, contara con tuberías principales de diámetro de 1 pulg, y tuberías secundarias de diámetro de ¾ de pulg., ambas serán de tipo PVC y de clase 10, la velocidad mínima en la red será de 0.60 m/s y máxima de 0.747, la estructura conectara para 30 viviendas y 3 lugares públicos tendrá una longitud total de 699.949 mts., que se distribuye de la siguiente manera:

Tubería Principal de Ø 1" PVC- SAP, clase 10......263.459 ml

Tubería Secundaria de Ø 3/4" PVC- SAP, clase 10.....433.490 ml

La red calculada cumple los parámetros mencionas por la

Resolución Ministerial Nº 192. En la tesis de Zambrano titulada:

"Sistema de abastecimiento de agua potable para la comunidad de

Mapasingue, parroquia colon, Cantón Portoviejo – 2017", el autor

aplica el software WaterCAD connection para el mejoramiento

hidráulico de la red de distribución obteniendo como resultados

una velocidad de 0.40 m/s a 3 m/s y una presión de 7 m.c.a hasta 30 m.c.a, todos esos cálculos cumplen con los estándares de la Resolución Ministerial – 192.

4.2.2.6. Calculo hidráulico de la cámara rompe presión tipo 6

El cálculo de la cámara rompe presión tipo 6 se mejoró en base a la Resolución Ministerial – 192, dicha estructura se encuentra en la cota 2305.030, el mejoramiento partes desde una altura de cámara húmeda de 0.90 mts, una tubería de limpia y rebose con diámetros de tubería de 2.00 pulg, un cono de rebose de 4.00 pulg y una longitud de canastilla de 13.00 cm con 30 ranuras. Los resultados de la cámara rompen presión tipo 6 cumple los estándares de los reglamentos y la resolución ministerial. En la tesis de Zambrano titulada: "Sistema de abastecimiento de agua potable para la comunidad de Mapasingue, parroquia colon, Cantón Portoviejo – 2017", se realizó la proyección de una CRP 6 para disipar la energía que tendrá la tubería con el paso del agua, ya que al momento de la evaluación dicho sistema no contenía una CRP 6 por lo que a corto tiempo causara patologías en todo el tramo.

4.2.3. Determinación en la incidencia de la condición sanitaria

Se determinó la incidencia de la condición sanitaria mediante 4 estándares, comenzando por cobertura, cantidad, continuidad y calidad, cada uno de ellos obtuvieron un puntaje el cual ayudo a calcular el promedio de la incidencia en la condición sanitaria de la población en el

caserío de Santa María, este puntaje fue de 3.33 encontrándose en el estado de evaluación "regular" de categoría "medianamente sostenible", determinado haci que la condición sanitaria se encuentra en un estado regular por lo solamente se necesita realizar una mejora diminuta, el cual se representara con el mejoramiento del sistema de abastecimiento de agua potable en el caserío. A continuación, se detallará a continuación el análisis de la evaluación de los resultados de cada uno de los 4 estándares de condición sanitaria.

4.2.3.1.Cobertura del Servicio

La cobertura del servicio obtuvo un resultado de 4 puntos, teniendo un estado de evaluación "Bueno" de categoría "Sostenible", este resultado se basó en que la cantidad de personas que la fuente natural de agua puede abastecer es superior a la que se necesita abastecer a futuro y actualmente. En la tesis de Herrera titulada: "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay. Provincia de Recuay, región de Áncash, agosto - 2019", el autor se basó en la cantidad de conexiones domiciliaras que se encuentran abastecidas del sistema de agua potable actual obteniendo un puntaje de evaluación de 4 teniendo una clasificación "buena" con categoría de evaluación "sostenible", según lo estandarizado en el Sistema de Información Regional de Agua y Saneamiento.

4.2.3.2. Cantidad del Servicio

La evaluación de la cantidad del servicio tuvo como resultado un puntaje de 4, con estado de evaluación "bueno" de categoría "Sostenible", teniendo como respuestas que el volumen de agua que puede abastecer la fuente natural utilizada para el sistema de abastecimiento de agua potable actual es de gran demanda por lo que el volumen que se necesita para el diseño hidráulico es menor por lo que la fuente utilizada y a utilizar a futuro es confiable. En la tesis de Verde titulada: "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío Canchas, distrito Cáceres del Perú, provincia del santa, región Ancash – 2019", el autor realizo la evaluación de la cantidad del servicio en su caserío mediante la comparación del volumen que le puede ofrecer la fuente natural de agua vs el volumen que necesita abastecer a la población actual y a futuro, teniendo un puntaje perfecto de 4 ya que la demanda de agua que tiene la fuente es superior al que se necesita.

4.2.3.3.Continuidad del Servicio

La evaluación de la continuidad del servicio tuvo un puntaje de 3.5 teniendo un estado de evaluación "regular" de categoría "medianamente sostenible", teniendo como resultado que la fuente que se está utilizando para la función del sistema de abastecimiento actual en épocas de sequía es permanente, pero existe el problema de que la cantidad de agua varia por lo que se

observó que es de baja cantidad en la temporada donde no llueve, pero mantiene a la población abastecida del suministro de agua. En la tesis de Melgarejo titulada: "Evaluación y Mejoramiento del Sistema de Abastecimiento de Agua Potable y Alcantarillado del Centro Poblado Nuevo Moro, Distrito de Moro, Ancash - 2018", el autor evaluó el caudal de la fuente teniendo como resultado que el caudal en época de sequía es bajo y se seca algunos meses por lo que se le asignó un puntaje de 2, teniendo como análisis al problema que se debería buscar otra fuente con la que se pueda cumplir este estándar de condición sanitaria.

4.2.3.4. Calidad del Servicio

La evaluación de la calidad del servicio tuvo como resultado un puntaje de 1.87 teniendo como estado de evaluación "malo" de categoría "no sostenible", con resultados de que el agua al momento de llegar hacia las viviendas presenta características no potables (agua turbia) debido a que no existe cloración en todo el sistema actual por lo que a la vez los representantes encargados del mantenimiento del sistema de agua potable "JASS" no se tomaron la molestia de realizar un estudio físico químico bacteriológico en la fuente natural de agua para poder ver si la fuente es apta para el consumo humano, siendo de gran riesgo para toda la población. En la tesis de Verde titulada: "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío Canchas,

distrito Cáceres del Perú, provincia del santa, región Ancash – 2019", el agua que consume la población no es apta para el consumo humano, ya que al momento de llegar a las conexiones domiciliarias estas presentan características como turbidez y notándose a simple vista que no es apta para consumo humano.

V. Conclusiones y recomendaciones

5.1. Conclusiones

1. Se concluye que la evaluación del sistema de abastecimiento de agua potable actual en el caserío de Santa María, fue encontrado con diversas deficiencias debido a los fenómenos ocurridos en los últimos años como es el fenómeno del niño y el tiempo de algunas estructuras. Estas deficiencias parten desde captación presentando la falta de un cerco perimétrico que pueda proteger la estructura, el mal estado de la cámara húmeda y la cámara seca, la falta de accesorios en la cámara seca y el mal estado de las tapas sanitarias y válvulas de control, en la línea de aducción y aducción se encontró que las tuberías de ambos complementos se encuentran en diversos tramos expuestas a contaminación debido a que están por encima del terreno natural y no enterradas, la clase de tubería no es la adecuada para zonas rurales y que debido a que el terreno es accidentado le hace falta en ambos complementos válvulas de aire y de purga que puedan ayudar a evitar patologías en la tubería, en el reservorio de almacenamiento se pudo encontrar la falta de un cerco perimétrico que pueda proteger a la estructura, la falta de un sistema de cloración para mantener el agua en óptimas condiciones, el mal estado de sus tapas sanitarias, la falta de accesorios en la caseta de válvulas y el estado de las válvulas encontradas, en la red de distribución se encontró con un sistema ramificado que tiene tuberías principales expuestas en diversos tramos a contaminación ya que están encima del terreno natural y tuberías secundarias (ramales) también expuestas con presencia de fugas en los empalmes, ambas tuberías presentan diámetros distintos que no cumplen los parámetros de la Resolución Ministerial – 192 debido a que los pobladores hicieron cambios de diámetros en algunos tramos a causa de no quedarse sin agua, por último en la cámara rompe presión tipo 6 se presentaron la falta de un cerco perimétrico, desgastes y mal estado de las tapas sanitarias y el estado medio de toda la estructura que contempla el componente.

2. Se concluye el mejoramiento hidráulico del sistema de abastecimiento de agua potable actual en el caserío de Santa María cumpliendo todos los parámetros mencionados en la Resolución ministerial - 192 y dando mejora a la incidencia en la condición sanitaria de la población, dicho mejoramiento parte desde una captación de tipo ladera concentrado con un caudal máximo en la fuente de 0.756 l/s, y mínimo de 0.740 l/s, tendrá una cámara húmeda con dimensiones de 1.00 mts de ancho x 0.90 mts de altura y una cámara seca de 0.5mts 0 x 0.50 mts, tuberías de rebose y limpia con diámetros de 2 pulg. y un cono de rebose de 4 pulg., una tubería de salida de 1 pulg., todas de tipo PVC de clase 10, por último, tendrá un cerco perimétrico de 4.00 mts. de ancho x 5.50 mts de largo y 1.80 mts. de alto, en la línea de conducción se calculó en base al caudal máximo diario, teniendo una longitud total de 563.951 ml, con un diámetro de tubería en todo el tramo de 1 pulg., de tipo PVC y de clase 10, contara con 2 válvulas de purga y 1 de aire, también contara con una crp6 ya existente el cual se mejoró hidráulicamente las partes de las tuberías con diámetros en la tubería de limpieza y rebose de 2 pulg., un cono de rebose de 4 pulg. y una caseta de válvulas para controlar el suministro de agua que pasa en la tubería de conducción, en el reservorio de almacenamiento se tendrá un volumen de 10.00 m³, cumpliendo con la demanda a futuro (abastecer a la población futura), tendrá tuberías de limpieza y rebose de 2.00 pulg, con un cono de rebose de 4 pulg., una caseta de válvulas de 0.80 mts de ancho x 0.90 mts de largo y 0.85 mts de alto, se agregará una caseta de cloración con dimensiones de 1.22 mts. x 0.85 mts. con un tanque de 60 lt, que tendrá un sistema de clorado de 12 gotas por segundo, en la línea de aducción se calculó en base al caudal máximo horario, teniendo una longitud total de 155.034 ml, con un diámetro de tubería en todo el tramo de 1 pulg., de tipo PVC y de clase 10, contara con 1 válvula de purga y 1 de aire para evitar patologías en todo el tramo de la tubería, por último, en la red de distribución se calculó en base al caudal máximo horario de 0.50 l/s y caudal unitario de 0.0152, dicho componente tendrá el sistema ramificado debido a que las viviendas se encuentran dispersas, conectara a 30 viviendas y 3 lugares públicos, el diámetro en la tubería principal será de 1 pulg. con una longitud de 266.459 ml y en la tubería secundaria tendrá un diámetro de ¾ de pulg. con una longitud de 433.490 ml, ambas tuberías serán de tipo PVC y de clase 10 entando enterradas a 0.80 cm debajo del terreno natural.

3. Se concluye la evaluación de la incidencia de la condición sanitaria de la población con un puntaje de 3.33 teniendo un estado de evaluación regular" de categoría "medianamente sostenible", dándonos a entender que la incidencia se puede mejorar gracias al mejoramiento hidráulico del

sistema de abastecimiento actual, se empezó evaluando la cobertura del servicio el cual se tuvo como resultado un puntaje de 4 con un estado de evaluación "bueno" de categoría "sostenible" debido a que la cantidad de personas que puede llegar bastecer la fuente es muy superior a la que se necesita actualmente y a futuro, en la cantidad del servicio se obtuvo un puntaje de 4 con un estado de evaluación "bueno" de categoría "sostenible", debido a que el volumen que nos puede ofertar nuestra fuente natural de agua es muy superior al volumen que se necesita para abastecer a la población, en la continuidad del servicio se obtuvo un puntaje de 3.5 con un estado de evaluación "regular" de categoría "medianamente sostenible", debido a que la fuente en donde se está captando el agua en épocas de sequía mantiene a la población abastecida del suministro de agua potable(no se seca) pero a la vez el caudal que brinda la fuente es baja, por último en la calidad del servicio se obtuvo un puntaje de 1.8 con un estado de evaluación "malo" de categoría "no sostenible" por lo que se concluye que las características que presenta el agua al llegar a la población no es potable, indicando los representantes del sistema que no se realizó un estudio físico químico bacteriológico de la fuente natural de agua, y que tampoco se realizó un clorado en algunas estructuras debido a que no se ejecutó ningún mantenimiento.

5.2. Recomendaciones

Se recomienda para el inicio de una evaluación hacia un sistema de abastecimiento de agua potable se debe realizar fichas técnicas guiadas por algún reglamento u otro tipo de documento que ayude a demostrar que nuestros resultados sean confiables, para la evaluación de una cámara de captación se recomienda tener en cuenta el tipo de captación que se empleó en el sistema, ya que existen dos tipos los cuales son de ladera el cual consta de cámara húmeda, cámara seca y protección de afloramiento o si es de fondo el cual consta de cámara húmeda y seca, también se debe verificar si la estructura se encuentra protegida con un cerco perimétrico, una caseta de válvulas (cámara seca), el tipo de afloramiento y la distancia entre el afloramiento y la estructura, para la línea de conducción y aducción se recomienda reconocer el sistema que se está empleando, teniendo en cuenta las alturas de las estructuras o tuberías, en la conducción se debe conocer la cota de la captación y la cota del reservorio para haci saber si se está trabajando con un sistema por gravedad o por bombeo, para la aducción se debe conocer la cota del reservorio y la cota del inicio de la red para haci también conocer los dos tipos ya mencionados líneas arriba, en ambas tuberías se debe evaluar el tipo, clase y diámetro de tuberías para ver si son las que se recomienda en zonas rurales, también se debe verificar que en qué tipo de terreno se encuentra los tramos de la tubería para haci verificar o saber si existen válvulas de aire y de purga en ambas líneas, se debe verificar si existen cámara rompe presión ya que dicha estructura nos ayudara a conocer que la altura de agua supera a lo

mencionado en los reglamentos, para conducción son las cámara rompe presión tipo 6 y para la aducción son las cámaras rompe presión tipo 7 a la vez si es que tienen, se debe realizar una evaluación para conocer el estado de dichas estructuras, se recomienda para la evaluación del reservorio de almacenamiento verificar el tipo y forma de reservorio que se está empleando, conocer el volumen actual, evaluar el estado de sus accesorios y tapas sanitarias y si es que la estructura cuenta con un cerco perimétrico que la proteja, por último en la red de distribución se recomienda verificar como se encuentran las viviendas, si están en conjunto será un sistema cerrado y si se encuentran dispersas será un sistema ramificado, también se debe evaluar el tipo, diámetro y clase de tuberías para haci conocer si es que cumple lo mencionado en los reglamentos.

Se recomienda para el mejoramiento para el mejoramiento hidráulico de un sistema de abastecimiento de agua potable, se debe conocer los parámetros, reglamentos y fórmulas para su cálculo, esto se encuentra en la Resolución Ministerial — 192, en el mejoramiento hidráulico de la captación se debe realizar el cálculo mediante el método volumétrico para haci conocer el caudal máximo y mínimo de la fuente, el caudal máximo ayudara con el cálculo del ancho de pantalla y los diámetros de tuberías tanto rebose y limpieza, también se deberá conocer el caudal máximo diario con el cual se podrá calcular el diámetro de la tubería de salida, por ultimo toda la estructura debe contar con una caseta de válvulas y un cerco perimétrico que proteja a la estructura, en el cálculo de la línea de aducción y conducción se debe calcular con el caudal máximo diario (conducción)

y el caudal máximo horario (aducción), ambas tubería tendrán que utilizar la fórmula de Hazen Williams para los cálculos de los diámetros, velocidades, perdidas de carga y presiones, también se debe realizar un perfil longitudinal para observar todo el tramo del terreno y haci sabe si los componentes necesitaran de válvulas de aire, purga o cámara rompe presión, por ultimo las velocidades mínimas que deben tener es 0.60 m/s y máxima de 3.000 m/s, las presiones mínimas deben ser de 10 m.c.a. y máxima de 50 m.c.a., con un tipo de tubería PVC de clase 10 y un diámetro mínimo de 1 pulg., en el cálculo hidráulico del reservorio de almacenamiento se recomienda conocer el caudal que se necesita para su cálculo el cual es caudal promedio, conocer la zona que contempla el caserío para haci detallar los volúmenes que se necesitaran para su diseño (volumen contra incendio, volumen de reserva y volumen de regulación), también dicha estructura debe tener una caseta de cloración para que el agua almacenada se encuentre siempre en óptimas condiciones, una caseta de válvulas que ayuda con el control de entrada y salida del suministro de agua y un cerco perimétrico que pueda proteger la estructura de contaminación, para el mejoramiento hidráulico de la red de distribución se debe calcular con el caudal máximo horario y el caudal máximo diario, se debe saber el tipo de sistema que se empleara, esta estructura contemplara una tubería principal con diámetros mínimos de 1 pulg., y una tubería secundaria con diámetros mínimos de ¾ pulg., ambas tuberías debes ser de tipo PVC de clase 10, las presiones que deben tener ambas tuberías deben estar de 5.00 m.c.a. a 60 m.c.a., las velocidades también

deben estar en los parámetros de 0.60 m/s a 5.00 m/s., para el mejoramiento hidráulico de una cámara rompe presión tipo 6 se deberá calcular el caudal máximo diarios ya que dependiendo de ese caudal se calculara los diámetros de las tuberías de entrada, salida, rebose, cono de rebose y limpia, dicha tubería también debe tener una caseta de válvulas que ayude con el control de entrada y salida del suministro de agua y un cerco perimétrico que pueda proteger la estructura.

Se recomienda realizar una evaluación a todo el sistema de abastecimiento de agua potable y a la fuerte natural de agua, verificando los estados de las estructuras, la fuente y la condición sanitaria de la población, teniendo en cuenta que para tener una buena cobertura se debe tener una mayor cantidad de personas que la fuente que se está utilizando pueda darnos actualmente y a futuro, en cantidad se recomienda calcular el volumen ofertado que puede brindar la fuente natural de agua para ver si es mayor al que se necesita, en base a la continuidad se recomienda realizar una evaluación periódica del caudal mínimo de la fuente en épocas de sequía para saber si es que en tiempos que no llueve la fuente natural de agua sigue brindando dicho suministro o se seca, por ultimo para la calidad de la condición sanitaria se recomienda encuestar a los encargados del mantenimiento del sistema de agua potable para haci conocer la cantidad de cloro que se hecha en las estructuras de almacenamiento o captación, y si es que se realizó un estudio físico químico bacteriológico que pueda avalar que la fuente usada cumple los parámetros para ser de consumo humano.

Referencias bibliográficas

- (1) Montalvo C, et al. Rediseño del sistema de agua potable del Barrio Cashapamba desde el tanque de reserva Cashapamba hasta el tanque de reserva Dolores Vega, ubicado en la parroquia Sangolquí, cantón Rumiñahui, provincia de Pichincha. [Tesis para optar el título de Ingeniero Civil], pg. [329; 1-54-77-78-82-128-130]. Ecuador. Universidad Central del Ecuador; 2018.
- (2) Zambrano C. Sistema de abastecimiento de agua potable para la comunidad de Mapasingue, parroquia colon, Cantón Portoviejo [Tesis para optar título], pg. [106; 01-10-53-59-113]. Samborondón, Ecuador: Universidad de Especialidades Espíritu Santo; 2017.
- (3) Clemente B. Evaluación y mejoramiento del sistema de saneamiento básico en la comunidad de Palcas, distrito de Ccochaccasa, provincia de Angares, departamento de Huancavelica y su incidencia en la condición sanitaria de la población [Tesis para el título profesional], pg. [149; 1-14-16-80-122]. Ayacucho, Perú: Universidad Católica los Ángeles de Chimbote; 2019.
- (4) Moreno J. Mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del caserío Pampa Hermosa Alta, distrito de Usquil – Otuzco – La Libertad [Tesis para el título profesional], pg. [269; 1-27-28-68-81-87-90-218]. Nuevo Chimbote, Perú: Universidad Cesar Vallejo; 2018.
- (5) Ledesma C., Diseño del mejoramiento y ampliación del sistema de agua potable y saneamiento básico rural del sector Parva del Cerro, caserío el Espino, distrito de Chugay, provincia de Sánchez Carrión, departamento La Libertad - 2018 [Tesis para optar título], pg. [200;01-18-32-41-86-89]. Trujillo. Perú: Universidad Cesar

Vallejo; 2018.

- (6) Melgarejo A. Evaluación y Mejoramiento del Sistema de Abastecimiento de Agua Potable y Alcantarillado del Centro Poblado Nuevo Moro, Distrito de Moro, Ancash - 2018 [Tesis para el título profesional], pg. [262; 1-28-30-38-62]; Nuevo Chimbote, Perú: Universidad Cesar Vallejo; 2018.
- (7) Herrera M. Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay, provincia de Recuay, región de Ancash, agosto 2019 [Tesis para el título profesional], pg. [293; 66-72-176-172-177-198]. Chimbote, Perú: Universidad Católica los Ángeles de Chimbote; 2019.
- (8) Verde J. Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío Canchas, distrito Cáceres del Perú, provincia del Santa, región Ancash – 2019[Tesis para el título profesional], pg. [363; 65-77-178-180-177-198]. Chimbote, Perú: Universidad Católica los Ángeles de Chimbote; 2019.
- (9) Ayelen I., Sánchez L., Puccini V. El agua como recurso Limitado; [seriada en línea]; 28 de septiembre del 2013; [citado 2021 mayo 17]: [13 pg; 03]. Disponible en: https://es.slideshare.net/IrinaCiencias/el-agua-como-recurso limitado.
- (10) Julio O., Ciclo Hidrológico. GWP Perú; [seriada en línea]; 2011; [citado 2021 mayo 17]: [44 pg; 06]. Disponible en: https://www.gwp.org/globalassets/global/gwpsam_files/publicaciones/varios/ciclo_hidrologico.pdf.

- (11) Carlos A. Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria de la población en el caserío de Nueva Esperanza, distrito de Huacrachuco, provincia de Marañón, región Huánuco 2020. [Tesis para optar el título de Ingeniero Civil] pg. [41-42]. Perú. Universidad Católica los Ángeles de Chimbote; 2020.
- (12) Vera D. Agua Potable. Scribd; [seriada en línea]; 2009; [citado 2021 mayo 28]:[15 pg; 01-03]. Disponible en: https://es.scribd.com/doc/64398942/Agua-potable-obtencion.
- (13) Jorge A. Características del agua. En: UTN FRRO. Ingeniería Sanitaria. 1^{ra} Edición; Buenos Aires, Argentina: UNT; 2015. pg. [07; 01-02-03].
- (14) Gobierno Nacional de Cajamarca. Sistema de información regional en agua y saneamiento. SIRAS. 2010; pg. [397; 05].
- (15) Real Academia Española. (2014) En Diccionario de la lengua española [Dictionary of the Spanish Language] (avance de la 23° ed.). Madrid, Spain: Author. (Mejoramiento).
- (16) Guerrero V. Sistema de Abastecimiento de Agua. Presi; [Seriada en línea]; 2017; [citado 2021 mayo 28]: [32 pg; 03]. Disponible en: https://prezi.com/a8pbpjfvew3n/unidad-1-sistema-de-abastecimiento-de-agua/
- (17) Reglamento Nacional de Edificaciones. Obras de saneamiento. Consideraciones básicas de diseño de infraestructura sanitaria. [OS. 100]; [05 pg; 01]. Lima: Ministerio de vivienda, construcción y saneamiento.; 2016.
- (18) Norma técnica de diseño: opciones tecnológicas para sistemas de saneamiento en el ámbito rural. Ley N° 30156. Resolución Ministerial N°192 (16-05-2018)

- (19) Comisión nacional del agua. Manual para el diseño de sistema de agua potable y alcantarillado sanitario; 3^{ra} ed. México DF: Secretaría de Medio Ambiente y Recursos Naturales, 2007. pg. [85; 07].
- (20) Agüero R. Guia para el Diseño y Construcción de Captación de Manantiales, [25pg; 09-10-17]. Lima: CEPIS; 2004.
- (21) Reto R. Lineas de Condución. Scribd. [Seriada en Linea] 2011 [citado 2021 julio 09]: [08 pg; 03-04]. Disponible en: https://es.scribd.com/doc/55239266/Lineas-de-Conduccion-Informe.
- (22) Reglamento Nacional de Edificaciones. Obras de saneamiento. Captación Conducción de Agua para Consumo humano. [OS. 010]; [09 pg; 06-07]. Lima: Ministerio de vivienda, construcción y saneamiento; 2016.
- (23) Pinedo C. Eficiencia técnica del sistema de abastecimiento de agua potable de la ciudad de Namballe San Ignacio, 2016. [Tesis para optar el título] pg: [76;29-30]. Universidad Nacional de Cajamarca; 2017.
- (24) Morales L. Sistema de abastecimiento de agua potable en el centro poblado Tutín

 El Cenepa Condorcanqui Amazonas. [Tesis para optar el título] pg: [167;50-51-56-57]. Universidad Nacional Agraria la Molina; 2016.
- (25) Reglamento Nacional de Edificaciones. Obras de saneamiento. Almacenamiento de Agua para Consumo humano. [OS. 030]; [09 pg; 03]. Lima: Ministerio de vivienda, construcción y saneamiento; 2016.
- (26) Magne F. Abastecimiento, Diseño y Construcción de Sistemas de Agua Potable Modernizado en el Aprendizaje y Enseñanza en la Asignatura de Ingenieria

- Sanitaria I. [Tesis de Diplomado Academico]; [401 pg; 114-115]. Cochabamba: Universidad Mayor de San Simón; 2008.
- (27) Reglamento Nacional de Edificaciones. Obras de saneamiento. Red de Distribución de Agua para Consumo humano. [OS. 050]: [08 pg; 02]. Lima: Ministerio de vivienda, construcción y saneamiento.; 2016.
- (28) Rubina C. Condiciones sanitarias del sistema de abastecimientos de agua de parasitosis intestinal de niños menores de 5 años de la comunidad de Taulligán, distrito de Santa María del Valle, provincia y departamento de Huánuco, mayo junio 2018. [Tesis para optar el título], pg: [141; 36]. Universidad de Huánuco; 2018.
- (29) Ministerio de Salud, Abastecimiento de Agua y Saneamiento para poblaciones rurales y urbano-marginales. Norma Técnica [MINSA], pg: [42; 11]. Lima: Ministerio de Salud; 2005.
- (30) Arévalo J. Gestión de la JASS en el servicio de agua potable y saneamiento en el distrito de Cochabamba, 2019. [Tesis para optar el título], pg: [97; 36]. Cajamarca: Universidad Privada del Norte; 2019.

Anexos

Anexo 01: Análisis Químico, Físico y Bacteriológico del agua

"AÑO DEL BICENTENARIO DEL PERÚ: 200 AÑOS DE INDEPENDENCIA"

Chimbote - Mayo 20 - 2021

CARTA COMZ N 809 - 2021

BARRIONUEVO FLORES JOSSELY ADDERLY

Chimbote

Ref.: Solicitud de Servicios Colaterales N 11877 d/f 20-05-2021 (Reg. 5587) Reg. COMR - 7159

Tengo a bien dirigirme a usted, para presentarle mi cordial saludo, y a la vez en atención a su requerimiento, indicado en el documento de la referencia, nuestra Gerencia Técnica mediante Memorando CCAL N 093 - 2021 ha evaluado su petición, el cual informa mediante reporte los resultados del Análisis Físico Químico y Bacteriológico de muestra de agua.

Por lo cual, se adjunta el reporte de Análisis de agua (01 folios).

Sin otro particular, quedo de usted,

Atentamente,

Ing. Gina Ramirez Preciado +
JEFATURA COMERCIALIZACION (e)

SEDACHIMBOTE S.A.

c.c.: COMR

/rs.

CONTROL DE CALIDAD

	ANALISIS DE AGUA	
APPLICATION OF THE PARTY.		
DEPARTAMENTO : CAUAMARCA		MUEVO FLORES JOSSELY ADDERLY
PROVINCIA: SAVMIDUEL	PECHA DE MUESTREO : MYO :	921
DISTRITO : SANMOUEL	HORA DE MUESTREO : 10.30 a	en .
TIPO DE FUENTE : WANANTIAL DE LADEMA	FECHA DE RECEPCION : MAYO :	9024
DIRECCIÓN : PUENTE SUNTA VARIA	HORA DE RECEPCION : 420 pm	
SANTA MARIA, DISTRITO DE S	NO DEL SISTEMA DE ABASTECIMIENTO DE ADI AN MIDUEL, PROVINCIA DE SAN MIDUEL, RES NI SANTARIA DE LA POBLACIÓN - 2021	UA POTABLE EN EL CASENTO DE HÓN CAMAJARCA, PARIA SI/
PARAMETROS DE CONTROL	RESULTADOS	L.M.P. (D.S. N° 004-2017-MINAM)
	ANALISIS BACTERIOLOGICO	
Colformes Totales: NMP/ 100 ml	22	50
Colformes Fecales, NMP/100 ml	11	20
A	NALISIS FÍSICO Y QUÍMICOS	
Cloro Residual Libra, mg/L		
Turbidez : UTN	3.95	
pH	3.82 7.29	5
Temperatura. * C	23.1	6.5-8.5
Cofor aparente , UC	52	25
Color verdadero, UCV escala Pt-Co	0	- 11
Conductividad, us/cm	426	1,500
Sólidos Disueltos Totales, mo/L.	212	1,000
Salinidad, "Ipo	0.2	1,350
Alcalinidad Total, mg/ L	100	
Alcalinidad a la Fencittaleina, mg/ L	2	
Dureza Total , mg/L	148	500
Dureza CálcicaTotal , mg/L	110	100
Dureza Magnesiana , mg/L	38	
Cloruros, mg/L	39	250
Sultatos mg/L	62.82	250
fierro , mg/t,	0.01	0.3
Manganeso, mg/L	0.01	0.4
Vuminio , mg/L	0.007	0.9
Sobre , mg/L	<0.0001	2
Vitratos , mg/L	7.5	50

ANALISTA ÁREA WICHOROLOGIA: BLGA. KELLY TAPIA ESQUIVEL. ANALISTA ÁREA FÍSICO QUÍMICO : TEC. ERICK IMMANO MIRANDA

> BUGA RELLY TAPIA ESQUINEL SUPERVISOR CONTROL DE CAUDAD

ING. JUAN SOND CHERER

GERENCIA TECNICA

Anexo 02: Coordenadas del levantamiento topográfico y certificado de calibración

Tabla 12. Coordenadas del levantamiento topográfico

PUNTO	NORTE	ESTE	COTA	DESCRIPCIÓN
1	735424.606	9224009.251	2352.874	T. Natural
2	735414.970	9224007.602	2352.569	T. Natural
3	735411.655	9223998.997	2351.365	T. Natural
4	735421.675	9223999.970	2351.658	Captación
5	735431.561	9224000.929	2352.315	T. Natural
6	735412.738	9223989.056	2350.052	T. Natural
7	735422.758	9223990.030	2350.641	L. Conducción
8	735432.644	9223990.989	2351.036	T. Natural
9	735413.821	9223979.118	2348.996	T. Natural
10	735423.841	9223980.092	2349.036	L. Conducción
11	735433.727	9223981.051	2349.895	T. Natural
12	735414.904	9223969.179	2347.965	T. Natural
13	735424.924	9223970.153	2348.032	L. Conducción
14	735434.811	9223971.112	2348.635	T. Natural
15	735415.987	9223959.240	2346.325	T. Natural
16	735426.007	9223960.213	2346.789	L. Conducción
17	735435.894	9223961.173	2347.356	T. Natural
18	735417.071	9223949.300	2345.036	T. Natural
19	735427.091	9223950.273	2345.632	L. Conducción
20	735436.977	9223951.233	2346.032	T. Natural
21	735418.154	9223939.362	2343.523	T. Natural
22	735428.174	9223940.335	2343.654	L. Conducción
23	735438.060	9223941.295	2344.499	T. Natural
24	735419.240	9223929.422	241.988	T. Natural
25	735429.260	9223930.395	242.654	L. Conducción
26	735439.146	9223931.355	2343.026	T. Natural
27	735420.342	9223919.484	2340.237	T. Natural
28	735430.362	9223920.457	2340.654	L. Conducción
29	735440.249	9223921.416	2341.254	T. Natural
30	735421.445	9223909.546	2338.236	T. Natural
31	735431.465	9223910.519	2338.623	L. Conducción
32	735441.351	9223911.478	2339.865	T. Natural
33	735422.545	9223899.608	2337.013	T. Natural
34	735432.565	9223900.581	2337.424	L. Conducción
35	735442.451	9223901.541	2338.012	T. Natural
36	735423.618	9223889.668	2334.625	T. Natural
37	735433.638	9223890.641	2335.956	L. Conducción
38	735443.525	9223891.601	2336.985	T. Natural
39	735424.692	9223879.728	2334.745	T. Natural
40	735434.712	9223880.701	2335.154	L. Conducción
41	735444.598	9223881.661	2335.745	T. Natural
42	735425.765	9223869.788	2333.632	T. Natural
43	735435.785	9223870.761	2333.894	L. Conducción
44	735445.672	9223871.721	2334.264	T. Natural
	735426.947	9223859.859	2332.121	T. Natural

46	735436.967	9223860.832	2332.742	L. Conducción
47	735446.854	9223861.791	2333.451	T. Natural
48	735427.913	9223849.908	2331.741	T. Natural
49	735437.933	9223850.881	2331.941	L. Conducción
50	735447.819	9223851.841	2332.741	T. Natural
51	735428.006	9223842.856	2331.690	T. Natural
52	735439.006	9223840.940	2331.451	L. Conducción
53	735449.957	9223840.045	2331.365	T. Natural
54	735431.666	9223834.015	2331.211	T. Natural
55	735442.155	9223836.108	2330.915	L. Conducción
56	735456.174	9223831.125	2330.183	T. Natural
57	735446.917	9223827.315	2329.874	L. Conducción
58	735437.853	9223823.091	2329.142	T. Natural
59	735460.937	9223822.332	2329.412	T. Natural
60	735451.680	9223818.522	2328.896	L. Conducción
61	735442.615	9223814.298	2328.210	T. Natural
62	735465.699	9223813.539	2328.635	T. Natural
63	735456.442	9223809.728	2328.005	L. Conducción
64	735447.378	9223805.505	2327.476	T. Natural
65	735470.462	9223804.745	2327.374	T. Natural
66	735461.204	9223800.935	2326.830	L. Conducción
67	735452.140	9223796.712	2326.374	T. Natural
68	735475.224	9223795.952	2326.321	T. Natural
69	735465.967	9223792.142	2325.932	L. Conducción
70	735456.902	9223787.919	2325.324	T. Natural
71	735479.986	9223787.159	2325.142	T. Natural
72	735470.729	9223783.349	2324.772	L. Conducción
73	735461.665	9223779.126	2324.205	T. Natural
74	735484.749	9223778.322	2324.325	T. Natural
75	735475.492	9223774.512	2323.689	L. Conducción
76	735466.427	9223770.289	2323.013	T. Natural
77	735489.511	9223769.573	2323.264	T. Natural
78	735480.254	9223765.763	2322.730	L. Conducción
79	735471.190	9223761.539	2322.039	T. Natural
80	735494.274	9223765.821	2322.604	T. Natural
81	735485.017	9223756.970	2322.190	L. Conducción
82	735477.621	9223751.034	2321.524	T. Natural
83	735497.898	9223763.585	2321.607	T. Natural
84	735494.585	9223754.150	2321.089	L. Conducción
85	735491.091	9223744.780	2319.636	T. Natural
86	735507.483	9223760.735	2319.765	T. Natural
87	735504.170	9223751.300	2319.012	L. Conducción
88	735500.676	9223741.930	2318.125	T. Natural
89	735517.068	9223757.885	2318.545	T. Natural
90	735513.756	9223748.450	2317.987	L. Conducción
91	735510.261	9223739.080	2317.425	T. Natural
92	735526.653	9223755.035	2317.356	T. Natural

93	735523.341	9223745.599	2316.968	L. Conducción
94	735519.847	9223736.230	2316.321	T. Natural
95	735536.238	9223752.185	2316.535	T. Natural
96	735532.926	9223742.749	2316.032	L. Conducción
97	735529.432	9223733.380	2315.699	T. Natural
98	735545.484	9223749.047	2315.741	T. Natural
99	735540.110	9223740.614	2315.402	L. Conducción
100	735553.696	9223736.528	2314.657	T. Natural
101	735544.874	9223731.820	2314.415	L. Conducción
102	735536.290	9223726.690	2313.999	T. Natural
103	735558.459	9223727.734	2313.741	T. Natural
104	735549.636	9223723.027	2313.021	L. Conducción
105	735541.052	9223717.897	2312.740	T. Natural
106	735563.221	9223718.941	2312.989	T. Natural
107	735554.399	9223714.233	2312.135	L. Conducción
108	735545.815	9223709.104	2311.689	T. Natural
109	735567.983	9223710.148	2311.796	T. Natural
110	735559.161	9223705.440	2311.063	L. Conducción
111	735550.577	9223700.310	2310.968	T. Natural
112	735572.746	9223701.355	2310.894	T. Natural
113	735563.923	9223696.647	2310.138	L. Conducción
114	735555.339	9223691.517	2309.789	T. Natural
115	735577.508	9223692.562	2309.895	T. Natural
116	735568.686	9223687.854	2309.213	L. Conducción
117	735560.102	9223682.724	2308.939	T. Natural
118	735581.775	9223685.967	2309.638	T. Natural
119	735575.376	9223675.502	2308.741	L. Conducción
120	735566.793	9223670.371	2307.860	T. Natural
121	735588.476	9223682.014	2308.762	T. Natural
122	735584.961	9223672.653	2308.036	L. Conducción
123	735581.579	9223663.240	2307.540	T. Natural
124	735598.061	9223679.164	2307.654	T. Natural
125	735594.546	9223669.802	2307.065	L. Conducción
126	735591.164	9223660.390	2306.698	T. Natural
127	735607.646	9223676.313	2306.528	T. Natural
128	735604.131	9223666.951	2305.899	L. Conducción
129	735600.749	9223657.539	2305.325	T. Natural
130	735617.231	9223673.463	2305.426	T. Natural
131	735613.717	9223664.101	2304.657	L. Conducción
132	735610.334	9223654.689	2304.025	T. Natural
133	735626.818	9223670.616	2303.990	T. Natural
134	735623.303	9223661.255	2303.250	L. Conducción
135	735619.921	9223651.843	2302.987	T. Natural
136	735636.401	9223667.761	2303.012	T. Natural
137	735632.887	9223658.400	2302.189	L. Conducción
138	735629.504	9223648.988	2301.862	T. Natural
139	735646.630	9223664.720	2301.874	T. Natural
137	133040.030	7223007.120	2301.074	1.1 vatural

1.10	705(10.11)	00000055 050	2201 107	1011
140	735643.116	9223655.359	2301.106	L. Conducción
141	735639.733	9223645.946	2300.748	T. Natural
142	735656.566	9223651.523	2300.748	T. Natural
143	735647.880	9223646.565	2300.036	L. Conducción
144	735640.194	9223640.170	2299.654	T. Natural
145	735661.327	9223642.731	2299.621	T. Natural
146	735652.641	9223637.772	2298.997	L. Conducción
147	735644.956	9223631.377	2298.421	T. Natural
148	735666.088	9223633.937	2298.458	T. Natural
149	735657.402	9223628.978	2298.898	L. Conducción
150	735649.717	9223622.583	2297.445	T. Natural
151	735670.850	9223625.143	2297.650	T. Natural
152	735662.164	9223620.184	2297.458	L. Conducción
153	735654.479	9223613.789	2296.895	T. Natural
154	735675.612	9223616.349	2296.541	T. Natural
155	735666.926	9223611.391	2296.389	L. Conducción
156	735659.240	9223604.996	2296.011	T. Natural
157	735679.389	9223609.383	2295.531	T. Natural
158	735670.703	9223604.424	2295.214	L. Conducción
159	735663.017	9223598.029	2294.998	T. Natural
160	735685.786	9223604.935	2294.705	T. Natural
161	735678.466	9223598.121	2294.032	L. Conducción
162	735671.421	9223591.025	2293.794	T. Natural
163	735693.553	9223598.635	2293.542	T. Natural
164	735686.233	9223591.821	2293.105	L. Conducción
165	735679.187	9223584.725	2292.738	T. Natural
166	735701.316	9223592.332	2292.625	T. Natural
167	735693.996	9223585.518	2291.952	L. Conducción
168	735686.951	9223578.422	2291.625	T. Natural
169	735709.081	9223586.030	2291.015	T. Natural
170	735701.762	9223579.217	2290.745	L. Conducción
171	735694.716	9223572.120	2290.365	T. Natural
172	735715.266	9223581.014	2370.254	T. Natural
173	735707.947	9223574.200	2289.626	Reservorio
174	735700.901	9223567.104	2288.998	T. Natural
175	735721.532	9223571.929	2289.124	T. Natural
176	735713.559	9223565.898	2288.431	L. Aducción
177	735705.351	9223560.183	2287.897	T. Natural
178	735727.116	9223563,660	2288.437	T. Natural
179	735719.143	9223557.629	2287.756	L. Aducción
180	735710.936	9223551.914	2287.012	T. Natural
181	735732.701	9223555.376	2287.365	T. Natural
182	735724.728	9223549.345	2286.796	L. Aducción
183	735716.520	9223543.630	2286.015	T. Natural
184	735738.306	9223547.095	2286.208	T. Natural
		9223541.064		
185	735730.333	9443341.004	2285.799	L. Aducción

186	735722.126	9223535.349	2285.109	T. Natural
187	735743.822	9223538.928	2285.204	T. Natural
188	735735.860	9223532.893	2284.680	L. Aducción
189	735727.641	9223527.182	2283.999	T. Natural
190	735747.439	9223525.912	2284.185	T. Natural
191	735737.862	9223523.096	2283.437	L. Aducción
192	735728.385	9223519.854	2282.825	T. Natural
193	735749.441	9223516.114	2282.987	T. Natural
194	735739.864	9223513.298	2282.269	L. Aducción
195	735730.387	9223510.056	2281.765	T. Natural
196	735751.443	9223506.317	2281.013	T. Natural
197	735741.866	9223503.500	2280.876	L. Aducción
198	735732.389	9223500.259	2280.696	T. Natural
199	735752.654	9223495.480	2359.768	T. Natural
200	735743.077	9223497.575	2279.325	L. Aducción
201	735751.108	9223486.542	2279.012	T. Natural
202	735741.165	9223487.759	2278.403	L. Aducción
203	735731.282	9223489.171	2278.652	T. Natural
204	735749.220	9223476.723	2278.025	T. Natural
205	735739.278	9223477.941	2277.302	L. Aducción
206	735729.395	9223479.353	2276.824	T. Natural
207	735747.285	9223466.910	2277.052	T. Natural
208	735737.342	9223468.128	2276.458	L. Aducción
209	735727.459	9223469.540	2276.012	T. Natural
210	735745.373	9223457.095	2276.321	T. Natural
211	735735.431	9223458.312	2275.436	L. Aducción
212	735725.548	9223459.725	2274.754	T. Natural
213	735743.521	9223447.272	2275.024	T. Natural
214	735733.579	9223448.489	2274.654	L. Aducción
215	735723.696	9223449.902	2273.632	T. Natural
216	735741.622	9223437.455	2274.312	T. Natural
217	735731.679	9223438.672	2273.645	L. Aducción
218	735721.797	9223440.085	2272.736	T. Natural
219	735739.802	9223428.740	2272.654	T. Natural
220	735729.859	9223429.957	2271.998	L. Aducción
221	735719.976	9223431.369	2271.354	T. Natural
222	735701.347	9223421.389	2268.998	T. Natural
223	735736.812	9223407.021	2267.560	T. Natural
224	735762.895	9223418.439	2268.012	T. Natural
225	735801.003	9223400.879	2266.325	T. Natural
226	735769.083	9223405.756	2265.540	T. Natural
227	735720.467	9223392.075	2265.126	T. Natural
228	735678.343	9223405.901	2264.654	T. Natural
229	735699.606	9223385.568	2264.021	V1
230	735688.597	9223387.747	2263.845	V1

231	735684.890	9223379.576	2263.756	V1
232	735696.227	9223375.980	2263.545	V1
233	735656.948	9223384.291	2262.452	T. Natural
234	735621.887	9223382.317	2262.302	T. Natural
235	735644.059	9223371.785	2262.125	V2
236	735630.213	9223374.924	2262.012	V2
237	735627.644	9223365.260	2261.998	V2
238	735639.990	9223360.913	2261.965	V2
239	735624.257	9223357.169	2261.540	V2
240	735635.856	9223355.760	2261.606	V2
241	735620.029	9223345.683	2261.236	V2
242	735631.412	9223342.649	2261.165	V2
243	735618.190	9223335.560	2260.895	V3
244	735628.127	9223335.336	2260.906	V3
245	735616.136	9223323.927	2260.703	V3
246	735627.130	9223323.547	2260.854	V3
247	735618.673	9223319.066	2260.532	V4
248	735627.058	9223320.663	2260.745	V4
249	735618.939	9223311.217	2260.432	V4
250	735627.408	9223311.411	2260.345	V4
251	735654.232	9223331.513	2260.021	V5
252	735662.378	9223326.031	2259.985	V1
253	735653.915	9223317.148	2259.741	V5
254	735647.152	9223323.591	2259.841	V5
255	735661.259	9223316.747	2259.452	V6
256	735655.643	9223307.105	2259.213	V6
257	735669.583	9223301.162	2259.032	V6
258	735675.265	9223311.200	2259.365	V6
259	735618.621	9223288.438	2258.746	V7
260	735623.143	9223277.152	2258.540	V7
261	735606.744	9223273.986	2258.352	V7
262	735604.850	9223283.793	2258.425	V7
263	735627.236	9223274.672	2258.423	V8
264	735631.368	9223265.214	2258.201	V8
265	735612.043	9223260.418	2258.120	V8
266	735610.710	9223269.476	2258.236	V8
267	735632.613	9223262.202	2258.032	V9
268	735612.403	9223256.756	2258.094	V9
269	735637.017	9223249.309	2257.896	V9-V10
270	735617.826	9223243.334	2257.790	V9-V10
271	735641.539	9223232.339	2257.635	V10
272	735621.093	9223227.974	2257.689	V10
273	735679.856	9223238.743	2258.135	V11
274	735678.172	9223252.417	2258.254	V11
275	735693.746	9223257.045	2258.365	V11
276	735699.075	9223241.110	2258.215	V11
277	735704.726	9223350.187	2261.654	V12
278	735714.522	9223346.043	2261.548	V12

279	735699.637	9223340.018	2261.326	V12
280	735709.847	9223335.755	2261.306	V12
281	735699.457	9223338.066	2261.033	V13
282	735709.817	9223333.665	2260.998	V13
283	735695.637	9223330.803	2260.895	V13
284	735706.385	9223326.143	2260.745	V13
285	735695.836	9223324.170	2260.574	V14
286	735703.435	9223321.918	2260.430	V14
287	735700.022	9223312.005	2260.231	V14
288	735691.844	9223315.738	2260.324	V14
289	735694.973	9223311.710	2260.123	V15
290	735705.026	9223308.107	2260.013	V15
291	735693.187	9223303.789	2259.744	V15
292	735702.809	9223300.850	2259.654	V15
293	735695.622	9223303.045	2259.589	V16
294	735704.171	9223300.433	2259.546	V16
295	735691.983	9223292.687	2259.325	V16
296	735700.445	9223289.763	2259.156	V16
297	735709.061	9223283.041	2258.746	V17
298	735705.127	9223275.601	2258.456	V17
299	735719.460	9223278.393	2258.574	V17-V18
300	735716.062	9223270.962	2258.325	V17
301	735714.372	9223267.265	2258.214	V18
302	735722.222	9223264.693	2258.115	V18-V19
303	735726.667	9223276.948	2258.421	V18
304	735727.669	9223279.710	2258.489	V19
305	735736.767	9223278.095	2258.685	V19
306	735731.859	9223262.120	2258.365	V19
307	735747.754	9223272.928	2258.261	V20
308	735743.475	9223261.113	2258.125	V20
309	735757.979	9223270.029	2258.123	V20
310	735753.991	9223256.546	2258.014	V20
311	735762.376	9223381.927	2263.791	V21
312	735777.939	9223382.206	2263.689	V21
313	735761.608	9223372.161	2263.524	V21
314	735776.752	9223372.301	2263.423	V21
315	735764.028	9223359.180	2263.013	V22
316	735777.024	9223360.760	2262.842	V22
317	735764.731	9223345.663	2262.742	V22
318	735778.254	9223345.663	2262.624	V22
319	735780.888	9223364.446	2262.806	V23
320	735791.855	9223366.047	2262.643	V23
321	735793.461	9223350.336	2262.441	V23
322	735782.293	9223349.174	2262.541	V23
323	735812.113	9223361.888	2261.745	V24
324	735817.625	9223368.569	2261.548	V24
		00000000000	22/1/20	1704
325 326	735833.226 735827.828	9223359.379	2261.658	V24 V24

327	735785.918	9223297.544	2260.111	V25
328	735798.233	9223297.352	2260.032	V25
329	735785.111	9223289.509	2259.947	V25
330	735798.096	9223288.302	2259.874	V25
331	735785.245	9223282.415	2259.545	V26
332	735800.711	9223281.860	2259.489	V26
333	735800.949	9223271.078	2259.236	V26
334	735785.007	9223271.316	2259.312	V26
335	735786.859	9223264.148	2258.785	V27
336	735799.442	9223264.286	2258.654	V27
337	735787.488	9223254.926	2258.423	V27
338	735799.739	9223255.333	2258.204	V27
339	735799.768	9223246.336	2257.865	V29
340	735813.593	9223235.569	2257.423	V29
341	735806.508	9223226.242	2257.214	V29
342	735792.568	9223237.124	2257.632	V29
343	735804.089	9223214.785	2256.845	V30
344	735797.382	9223202.998	2256.645	V30
345	735784.048	9223210.585	2256.689	V30
346	735789.177	9223220.223	2256.987	V30
347	735736.103	9223342.565	2261.677	C. Futbol
348	735760.716	9223334.002	2261.325	C. Futbol
349	735729.347	9223329.962	2260.895	C. Futbol
350	735756.493	9223321.865	2261.013	C. Futbol
351	735765.447	9223332.791	2261.222	Colegio
352	735760.046	9223319.346	2260.878	Colegio
353	735793.939	9223323.422	2260.688	Colegio
354	735788.591	9223309.976	2260.422	Colegio
355	735830.824	9223344.938	2261.203	Iglesia
356	735849.113	9223350.802	2261.103	Iglesia
357	735838.119	9223319.306	2261.003	Iglesia
358	735857.955	9223323.222	2260.973	Iglesia
359	735868.102	9223299.426	2260.456	T. Natural
360	735835.571	9223273.832	2259.658	T. Natural
361	735836.425	9223229.680	2257.236	T. Natural
362	735801.838	9223185.887	2256.123	T. Natural
363	735763.194	9223202.590	2256.548	T. Natural
364	735746.615	9223226.879	2257.756	T. Natural
365	735708.762	9223233.107	2257.896	T. Natural
366	735660.118	9223221.278	2257.426	T. Natural
367	735620.044	9223216.052	2257.201	T. Natural
368	735595.878	9223241.737	2257.654	T. Natural
369	735585.423	9223284.878	2258.013	T. Natural
370	735598.476	9223314.030	2260.132	T. Natural
371	735602.038	9223353.326	2261.425	T. Natural
372	735847.494	9223386.138	2264.024	T. Natural
373	735745.338	9223302.769	2259.874	T. Natural
142				

Certificado de calibración

Anexo 03: Estudio de Mecánica de suelos

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoria de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

ESTUDIO DE MECÁNICA DE SUELOS

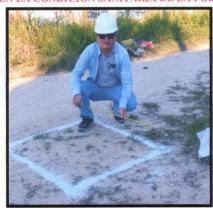
EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJARMACA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN – 2021.

EMPRESA CONSULTORA:
INGEOTECNIA CONSULTORES & EJECUTORES S.A.C.

1
POL RAÍN AGUILA POL GUIN
ING. CIVIL - CIR. PI - B1023
CONSULTOR - REC. C4009

Urb. Las Gardenias Mz.K5- Lote 16 - Nuevo Chimbote - Telef. 043-606058 - Celular: 994267746 RPM #943076777

Código Ejecutor Obras: 12776


R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

ESTUDIO DE MECANICA DE SUELOS

PROYECTO

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO SAN MIGUEL, PROVINCIA DESAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021"

SOLICITANTE:

BARRIONUEVO FLORES, JOSSELY ADEDERLY.

EMPRESA CONSULTORA RESPONSABLE:

INGEOTECNIA CONSULTORES & EJECUTORES S.A.C.

UBICACIÓN:

LUGAR: CASERIO SANTA MARÍA

DISTRITO: SAN MIGUEL.
PROVINCIA: SAN MIGUEL.
REGIÓN: CAJAMARCA

SAN MIGUEL, JUNIO DEL 2021.

POL RATIN AGUILAR OLGUIN ING.CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

2

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

INDICE

- 1. GENERALIDADES:
 - 1.1. INTRODUCCIÓN
 - 1.2. SITUACIÓN ACTUAL
 - 1.3. OBJETIVO DEL ESTUDIO
 - 1.4. MARCO LEGAL
 - 1.5. UBICACIÓN GEOGRAFICA DEL PROYECTO
 - 1.6. CARACTERISTICASCLIMATOLOGICAS
 - 1.7. VÍAS DE ACCESOS
- 2. GEOLOGIA Y SISMICIDAD
 - 2.1. ASPECTOS GEOLOGICOS, GEOMORFOLOGIA DEL AREA DE ESTUDIO
 - 2.2. SISMICIDAD
- 3. EXPLORACIÓN DE CAMPO
- 4. ENSAYOS DE LABORATORIO
 - 4.1. ENSAYOS ESTÁNDAR
 - 4.2. ENSAYOS ESPECIALES
- 5. PERFILES ESTRATIGRAFICOS
 - 5.1. CARACTERISTICAS FISICAS DE MUESTRAS DE SUELO (ENSAYOS ESTANDAR).
 - 5.2. NIVEL FREATICO
- 6. ANÁLISIS DEL TERRENO DE FUNDACION
 - 6.1. TIPO Y PROFUNDIDAD DE CIMENTACION
 - 6.2. CÁLCULO DE LA CAPACIDAD PORTANTE 6.3. ASENTAMIENTO ADMISIBLE
 - 6.4. EFECTO DE SISMO
- 7. CONCLUSIONES Y RECOMENDACIONES

REFERENCIAS

ANEXO I: REGISTRO ESTATIGRAFICOS ANEXO II: ENSAYOS DE LABORATORIO CROQUIS DE UBICACIÓN DE CALICATAS PANEL FOTOGRAFICO

3

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. Nº 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

GENERALIDADES

4

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Iministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

PROYECTO:

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021."

1. MEMORIA DESCRIPTIVA

1.1. INTRODUCCIÓN

Con el fin de satisfacer una de las necesidades básicas en el Caserío de Santa María, distrito de San Miguel, a consecuencia del crecimiento poblacional, lo que hace necesario el mejoramiento del sistema de agua potable existente, por lo que la Municipalidad Distrital de San Miguel, como uno de sus metas es satisfacer las necesidades de su población por lo que ha acordado llevar hacia delante la implementación de una política local que permita usar los recursos económicos provenientes del Canon y Sobre Canon, en los proyectos productivos que ayuden a resolver las necesidades básicas de la población con la finalidad de mejorar la calidad de vida de sus habitantes.

Por tal motivo, la empresa INGEOTECNIA CONSULTORES & EJECUTORES S.A.C. atendiendo lo solicitado ha procedido a realizar el presente estudio de Mecánica de Suelos a fin de proporcionar los datos sobre las características Físico-Mecánicas del suelo que sirvan para el diseño de dicha obra.

1.2. SITUACIÓN ACTUAL

Atendiendo lo solicitado, el Equipo de mecánica de suelos se constituyó que el terreno presenta una topografía con pendiente leve, encontrándose la zona rodeada de terrenos de cultivos y gran parte del tramos proyectado se encuentra al margen de los caminos rurales de la zona a nivel de terreno natural. Por lo que se procedió a realizar los trabajos de excavación de calicatas en las áreas libres, dentro de dicha zona destinada para el futuro mejoramiento de los servicios básicos de agua y desagüe.

Imagen N°01: Situación actual del Area de Estudio.

POL RATH AGUILAR OLGUIN ING. CIP. N° 81025 COMSULTOR - REG. C4009

(

Urb. Las Gardenias Mz.K5- Lote 16 - Nuevo Chimbote - Telef. 043-606058 - Celular: 994267746 RPM #943076777

5

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoria de obras. ministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

1.3.OBJETIVO

El presente estudio de suelos tiene como objetivo principal proporcionar la información técnicanecesaria sobre las propiedades físicas y mecánicas del subsuelo donde se desarrollará el proyecto.

El estudio fue realizado por medio de trabajos de exploración de campo y ensayos de laboratorio, necesarios para definir el perfil estratigráfico del área en estudio, así como sus propiedades de esfuerzo y deformación, proporcionando las recomendaciones necesarias.

Para alcanzar el objetivo principal, previamente se requiere lograr los siguientes objetivos secundarios:

- Elaboración de un estudio geológico superficial de la zona, que sirva de marco para las investigaciones geotécnicas.
- Realización de los ensayos estándares de laboratorio de mecánica de suelos y ensayos especiales.
- Interpretación de los resultados de las investigaciones geotécnicas de campo y los ensayos de laboratorio.
- Conclusiones y Recomendaciones.

1.4. MARCO LEGAL

El presente estudio de Mecánica de Suelos con fines de cimentación, se encuentra enmarcado dentro de la Norma E-050 sobre Estudio de Suelos y Cimentaciones, la cual forma parte del Reglamento Nacional de Edificaciones.

1.5. UBICACIÓN DEL PROYECTO

El presente proyecto se ejecutará en el Caserío de Santa María perteneciente al Distrito de San Miguel, Provincia de San Miguel, Departamento de Cajamarca.

LOCALIZACIÓN:

Región : Cajamarca. Provincia : San Miguel. Distrito : San Miguel.

Localidad: Caserío Santa María.

Coordenadas: Z. 17L 78° 51' 50.66" W (-78.8640710214). (Inicio-Captación) 7° 01' 00.74" S (-7.01687100000).

POL RAÍN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

6

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

TOPOGRAFIA

La zona del proyecto, se encuentra asentada entre la cota 1865 m.s.n.m. y la cota 1976 m.s.n.m. desde la captación, presentando una topografía con pendiente leve a moderada.

1.6. CLIMA Y TEMPERATURA:

El clima del lugar es cálido templado, con pocas precipitación durante los meses de diciembre a abril y un período sin precipitaciones desde mayo a octubre, existiendo una relación directa de altura y la precipitación en forma creciente. La temperatura media anual aproximada registrada en esta zona es de aproximadamente 25°C. y una temperatura mínima de 15°C en los meses de mayo-julio.

1.7. VÍAS DE ACCESO:

Desde la Ciudad de Tarapoto, se puede tomar el transporte (vehículos) que van a al lugar de destino, estos siguen el siguiente recorrido:

- Tarapoto Moyobamba: 102 Km. Carretera asfaltada (1 hora 58 min.)
- Moyobamba Pedro Ruiz: 206 Km. Carretera asfaltada (3 horas 46 min.)
- Pedro Ruiz Bagua Grande : 67.4 Km. Carretera Asfaltada (1 hora 14 min.)
- Bagua Grande Cutervo : 142 Km. Carretera Asfaltada (3 horas 10 min.)
- Cutervo San Miguel de Pallaques : 186 Km. Carretera Asfaltada (5 horas 18 min.)
- San Miguel de Pallaques Caserío Snt. María: 4 Km. Trocha (1 hora 12 min.)

PO IN CO

7

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

ASPECTOS GEOLOGICOS, GEOMORFOLOGIA DEL AREA DE ESTUDIO

8

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

2. GEOMORFOLOGÍA, GEOLOGIA Y VULNERABILIDAD SISMICA DEL ÁREA DE ESTUDIO

2.1. ASPECTOS GEOLOGICOS, GEOMORFOLOGIA DEL AREA DE ESTUDIO:

2.1.1. GEOMORFOLOGIA

Las unidades geomorfológicas para la zona se presenta mediante estribaciones de la Cordillera Occidental, dentro de las cuales se pueden Identificar en la zona las siguientes unidades menores.

El area de estudio se localza en la cordillera occidental en el norte del Perú, su morfologia es muy accidentada, que va desde 2320 a 2720 m.s.n.m. Presenta rasgos que son el resultado de una larg evolución originada por factores, téctonicos, procesos erosivos y desposicionales que an modelado el relieve hasta su estado actual. Se han identificado planicies, lomadas, laderas y escarpes.

Planicies

Se evidencias por las acumulaciones de sedimentos y rocas como: arenas, gravas, bloques, depositos coluviales, aluviales y fluviales; cuya pendiente va desde 0º hasta 8º. Evidenciadas en los margenes a lo largo del recorrido, aguas abajo del rio San Miguel.

Lomadas

Es una elevación del terreno de poca altura, cuya pendiente va de 8º a 25º.

Laderas

Constituidas por las inclinaiones de los cerros cuya pendiente va de 25° a 50° presentando variaciones en su conformación morfologica, debido a los agentes erosivos.

Escarpes

Relieve cuya pendiente va de 50° a 90° presente en los primerios estadios del proceso erosivo.

POL RAIN AGUILAR ING. CIVIL - CIP. N° CONSULTOR - REC.

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

a. QUEBRADAS:

Las quebradas rellenadas se muestran cubiertas casi en su totalidad por depósitos aluviales, coluviales y eólicos (Foto 2.5). Algunas de las quebradas tienen cursos de agua durante la época de lluvias.

Los depósitos de Quebrada son gravas, arenas y limos pobremente seleccionados y ligeramente estratificados, que se acumulan como conos de deyección a ambos lados del valle principal. Su depositación ocurre a partir de flujos rápidos y torrentes de dirección lineal provenientes de las montañas en el Este y se expresan como canales trenzados más al Oeste. En las quebradas secas la depositación ocurre mayormente por flujos iniciados condiciones torrenciales en esporádicas. También pueden ocurrir flujos de lodo en época de lluvias torrenciales, que originan depósitos irregulares en las salidas de quebradas ubicadas en los tramos medios a superior de los valles.

2.1.2. GEOLOGIA LOCAL:

EL Área de influencia en estudio se encuentra en el cuadrángulo de San Miguel (Las características lito-estratigráficas de las rocas y suelos, directamente involucradas en el área del proyecto en estudio, se describe a continuación.

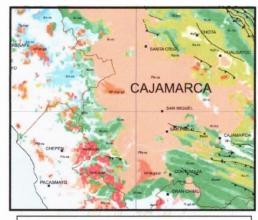
Depositos coluviales

Esta constituido por fragmentos de tobas daciticas angulosas a sub-angulosas y una matriz conformada por ceniza volcánica, presentando unan fábrica clasto-soportado

Depositos aluviales

Estan conformados por los sedimentos y fragmentos de rocas de origen volcánico, que son depositado en los margenes y cauce del rio San Miguel, transportados y depositados por acción de la gravedad y del agua, su tamaño varia desde la arcilla hasta la grava, cantos y bloques.

Volcanico


Su composición es principalmente por piroclásticos dacticos y tobas dacíticas, posee una textura entre afanitica y porfiritica con cuarzo

10

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

Imagen N°03.- Mapa Geológico del Cuadrángulo de San Miguel

Figura N°04.- Perfil Estratigráfico del Cuadrángulo de San Miguel

11

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. uministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

2.1.3. GEODINÁMICA EXTERNA

a.Deslizamientos

El movimiento del suelo, coadyuvado por el agua, por acción de la gravedad, no se manifiesta dentro del área de estudio, tanto como fenómeno que pueda constituir situación de riesgo alguno para obras de infraestructura como para poblados de cualquier dimensión, debido a las características topográficas y climáticas. No siendo observadas a lo largo de la mayor parte de las quebradas principales o tributarias que fueron estudiadas; sin embargo estos pueden presentarse en los extremos orientales en los flancos de valles y elevaciones mayores.

b.Depósitos de escombros

Estos depósitos con características dependientes de la litología, densidad de fracturamiento, diaclasamiento, inclinaciones y clima se presentan tanto en los valles de los ríos principales como en su red tributaria. La caída de fragmentos rocosos de diversos tamaños, en forma de caída libre, saltos, rodamientos y por pérdida de cohesión ocurre en épocas de fuertes precipitaciones, interrumpiendo la carretera en zonas de ambiente semiárido y templado.

c.Aluviones

Los movimientos de masa de pequeña escala o caída repentina, de una porción de suelos o roca, tienen una considerable distribución a lo largo del valle de Nepeña y sus afluentes. Sin embargo, estos casos de pequeña escala no constituyen gran riesgo para las obras de infraestructura o poblados que se ubican en sus inmediaciones.

En cuanto a los aluviones de gran escala; si correlacionamos las precipitaciones pluviales y los parámetros geomorfológicos, los huaycos constituyen un proceso evolutivo natural de evacuación de materiales sólidos de las cuencas que abarcan varios kilómetros, desde su divisoria de aguas hasta el lecho del cauce de escurrimiento.

12

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Juministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

Hidrografía De La Cuenca Del Rio Jequetepeque:

La cuenca del río Jequetepeque está ubicada en la costa Norte del Perú, entre los paralelos 7° 6′ y 7° 30′ de Latitud Sur y los meridianos 78°30′ y 79° 40′ Longitud Oeste del meridiano de Greenwich. Tal ubicación corresponde a la vertiente occidental de la Cordillera de los Andes y tiene un área total de 698,200 hectáreas; distribuida entre los departamentos de La Libertad (provincias de Pacasmayo y Chepén) y Cajamarca (provincias de Cajamarca, Contumazá, San Pablo y San Miguel), abarcando un total de seis provincias y 30 distritos. Los niveles altitudinales varían entre 0. y 4,188 msnm, con una accidentada topografía y con rangos de precipitación de 0 a 1,100 mm anuales.

Los ríos que dan origen al Jequetepeque son: El rio Pallac, con una cuenca de 250 Km2; San Miguel o Puclush con una cuenca de 1 065 Km2 y Magdalena con 1 500 Km2. El sistema hidrográfico incluye una red de drenaje de más de 30 ríos secundarios, así como un número elevado de riachuelos y quebradas menores. Esta cuenca se puede considerar como un macro sistema de 648,000Ha, desde la línea divisoria continental de las vertientes del Océano Pacifico y del Atlántico hasta el litoral marino en el Océano Pacifico.

2.2. SISMICIDAD

De acuerdo al Nuevo Mapa de Zonificación Sísmica del Perú, según la nueva Norma Sismo Resistente (NTE E-030) y del Mapa de Distribución de Máximas Intensidades Sísmicas observadas en el Perú, presentado por Alva Hurtado (1984), el cual se basó en isosistas de sismos peruanos y datos de intensidades puntuales de sismos históricos y sismos recientes; se concluye que el área en estudio se encuentra dentro de la Zona de alta sismicidad (Zona 3), el cual se interpreta como la aceleración máxima del terreno con una probabilidad del 10% a ser excedida en 50

Imagen Nº 05.- Zonificación

Sísmica del Perú

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

(13

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

años, el cual se considerara por el tipo de suelo un factor S2 (Suelo Intermedio) = 1.4, tomando como periodo que define la plataforma del espectro: Ts = 0.9. Existiendo la posibilidad de que ocurran sismos de intensidades tan considerables como VIII y IX en la escala Mercalli Modificada. (Ver figura Nº6 "Zonificación

Sísmica del Perú" y Figura N°7 "Mapa de Distribución de Máximas Intensidades Sísmicas").

De acuerdo con la nueva Norma Técnica NTE E-030 y el predominio del suelo bajo la cimentación, se recomienda adoptar en los Diseños Sismo-Resistentes para las obras no lineales como son reservorios, y obras menores, los siguientes parámetros, según la siguiente:

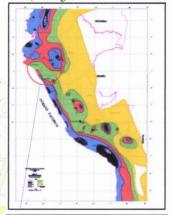


Imagen N°07.- Mapa de Máximas Intensidades Sísmicas del Perú

TIPO DE SUELO	Factor de zona Z	Factor de amplificación del suelo S	Periodo que define la Plataforma del espectro T _p (S)
ARENAS CON GRAVAS o GRAVAS ARENOSAS	0.4	1.4	0.9
ROCA SEDIMENTARIA	0.4	1.00	0.40

CUADRO Nº 01.- Cuadro de Parámetros Sísmicos

Sismos Registrados

Los sismos en el área de estudio presentan el mismo patrón general de distribución espacial que el resto del territorio peruano; caracterizado por la concentración de la actividad sísmica en el litoral, paralelo a la costa.

De acuerdo a Información Sismológica y al Cuadro Nº 02, en los últimos cuatro años en el Departamento de Cajamarca se han producido sismos cuya Magnitud Local varía entre 4.2 y 3.9 (ML), obteniéndose en promedio una magnitud Local de 4.1 (ML). La intensidad máxima de sismos ocurridos fue frecuentemente de II en la escala de Mercalli Modificada.

POL RAÍN AGUILAR OLGUIN ING. CIVIL - CIP Nº 81023 CONSULTOR - REC. CAGOO

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

EPICENTRO		CENTRO		EPICENTRO		Profundidad	Referecia	Magnitud Local	Intensidad Max.
	Latitud	Longitud							
Cajamarca	-0.6.62°	-78.56°	21/06/2013	8	9 Km al norte de Bambamarca	3.9	II		
Cajamarca	-0.5.66"	-78.66°	20/05/2013	21	17 Km al este de Jaén	4.1	II		
Cajamarca	-0.6.93°	-79.40°	10/09/2010	55	37 Km al oeste de San miguel	4.2	II		
Cajamarca	-0.6.09°	-78.82°	26/06/2010	36	32 Km al norte de Cutervo	4.0	II		
					Promedio	4.1			

CUADRO Nº 02.- Registro sismicos en Cajamarca

El análisis de los sismos registrados nos permite aseverar que los sismos más destructivos alcanzaron intensidades de VIII MM, los mismos que se caracterizaron por ser de tipo intermedios y profundos. La información histórica e instrumental no ha registrado sismos de tipo superficial en las inmediaciones del área de estudio.

Considerando lo expuesto se recomienda tomar un sismo base de diseño de VIII MM y adoptar aceleraciones sísmicas entre 0.30 g. Esta información servirá para la aplicación de criterios sismorresistentes en el diseño.

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

15

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

EXPLORACIÓN DE CAMPO

16

POL RATIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras inistro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

3. EXPLORACIÓN DE CAMPO Y ENSAYOS DE LABORATORIO:

3.1. EXPLORACIÓN DE CAMPO

La exploración de campo se efectuó con la ayuda de los planos respectivos dedistribución general realizándose lo siguiente:

a.Calicatas

Con la finalidad de definir el perfil estratigráfico en la obra, se realizaron 04 pozos calicatas de -1.45 mts. de profundidad de profundidad promedio, conforme a la norma ASTM D-420.

CUADRO Nº 03: Resumen de Calicatas

No CALICATAS	C-01	C-02	C-03	C-04
PROFUNDIDAD	-1.50 mts	-1.50 mts	-1.40 mts	-1.30 mt

b.Muestreo Disturbado

Se tomaron muestras disturbadas de cada uno de los tipos de suelos encontrados, en cantidad suficiente como para realizar los ensayos de clasificación e identificación de suelos.

c.Registro de Sondaje y Excavaciones

Paralelamente al avance de los sondajes y excavaciones de las calicatas, se realizó el registro de excavación vía clasificación manual visual según ASTM D2488, descubriéndose las principales características de los suelos encontrados tales como: espesor, tipo de suelo, color, plasticidad, humedad, compacidad, etc.

Nº CALICATAS	Ubicación según plano de distribución general	Coordenadas UTM	Napa Freática	Profundidad
C-01	Captación	735418.93 m S 9223997.10 m N	No presenta	-1.50 mts
C-02	Reservorio	735707.83 m S 9223570,20 m N	No presenta	-1.50 mts
C-03	C-03 Red de disribución		No presenta	-1.30 mts
C-04	Red de disribución	735646.07 m S 9223288.66 m N	No presenta	-1.40 mts

CUADRO Nº 04: Registro de Sondajes

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

ENSAYOS DE LABORATORIO

18

POL RATH AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

4.ENSAYOS DE LABORATORIO

Los ensayos de laboratorio realizados fueron conforme a las normas establecidas. Entre los cuales podemos mencionar los siguientes:

4.1. ENSAYOS ESTANDAR:

4.1.1. Análisis Granulométrico de Agregados Gruesos y Finos

Determinar, cuantitativamente, los tamaños de las partículas de agregados gruesos y finos de un material, por medio de tamices de abertura cuadrada.

Se determina la distribución de los tamaños de las partículas de una muestra seca del agregado, por separación a través de tamices dispuestos sucesivamente de mayor a menor abertura.

La determinación exacta de materiales que pasan el tamiz de 75 mm (No. 200) no puede lograrse mediante este ensayo. El método de ensayo que se debe emplear será: "Determinación de la cantidad de material fino que pasa el tamiz de 75 mm (No. 200)", norma MTC E202.

4.1.2. Determinación del Límite Líquido de los Suelos

El límite líquido de un suelo es el contenido de humedad expresado en porcentaje del suelo secado en el horno, cuando éste se halla en el límite entre el estado plástico y el estado líquido.

4.1.3. Determinación del Límite Plástico e Índice de Plasticidad

Es la determinación en el laboratorio del límite plástico de un suelo, y el cálculo del índice de plasticidad (I.P.) si se conoce el límite líquido (L.L.) del mismo suelo.

Se denomina limite plástico (L.P.) a la humedad más baja con la que pueden formarse barritas de suelo de unos 3 mm (1/8") de diámetro, rodando dicho suelo entre la palma de la mano y una superficie lisa (vidrio esmerilado), sin que dichas barritas se desmoronen.

4.1.4. Ensayo para Determinar el Contenido de Humedad de Un Suelo

La humedad o contenido de humedad de un suelo es la relación, expresada como porcentaje, del peso de agua en una masa dada de suelo, al peso de las particulas solidas.

4.1.5. Ensayo para determinación de las densidades máxima y mínima (Norma ASTM D1556)

Su finalidad es determinar las densidades secas máxima y mínima de

xima y mínima de syfélős no POL RAÍN AGUILAR OLGUII ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

19

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

cohesivos, no cementados, de tamaño máximo nominal hasta 80 mm., que contengan hasta un 12% en masa de partículas menores que 0,08 mm. y un IP igual o menor que 5.

El método se aplica ya que en esta clase de suelos, estén secos o saturados, la compactación por impacto no produce una curva bien definida de relación humedad-densidad.

Karl Terzaghi expresó el grado de compacidad de estos suelos en términos de la densidad relativa también denominado índice de densidad (ID), la cual se encuentra en función de las densidades máxima y Mínima obtenidas en laboratorio.

4.1.6. Ensayo para determinación de la Densidad Natural (Norma ASTM D1556)

El ensayo permite obtener la densidad de terreno y así verificar los resultados obtenidos en faenas de compactación de suelos, en las que existen especificaciones en cuanto a la humedad y la densidad.

4.1.7. Clasificación de los suelos SUCS, ASTM D 2487

Los suelos han sido clasificados de acuerdo al Sistema Unificado de Clasificación de Suelos (SUCS – ASTM D-2487), para ello se hizo uso del programa Clasif.

4.1.8. Descripción visual de los suelos, ASTM D 2487

Incluye su probable identificación, sin ayuda de ensayos de laboratorio, que permitirá realizar una evaluación de la que sería su clasificación de suelo en el Sistema Unificado de Clasificación de Suelos, sistema éste que sí requiere de ensayos de laboratorio

4.2. ENSAYOS ESPECIALES

4.2.1. Ensayo para Determinar las Características Químicas de un Suelo

Se refieren a la determinación de las características químicas (agresivas o no agresivas al concreto y/o acero de refuerzo). Con los resultados se determina:

- a).- Si se presenta o no, una Agresividad de los sulfatos al concreto,
- b).- Si se presenta o no una Agresividad de los cloruros al fierro;
- c).- Si se presenta o no una Agresividad del ataque ácido (Ph<4) al concreto.

POL RAIN AGUSLAR OLGUIN ING, CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

20

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

PERFILES ESTRATIGRÁFICOS

21

POL RATH AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecânicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de

5. PERFILES ESTRATIGRÁFICOS.

Se generan de acuerdo a las descripciones del suelo obtenidos en la investigación de campo realizada en la zona, en base a las calicatas y su identificación por medio de ensayos de laboratorio, que permitirá realizar su clasificación de suelo en el Sistema Unificado de Clasificación de Suelos (SUCS). Las excavaciones se realizaron de manera manual a cielo abierto. Se adjunta en el anexo los diferentes perfiles estratigráficos y descripciones del suelo de las calicatas (Ver Anexo I: Perfiles Estratigráficos).

De los trabajos realizados en campo y los análisis practicados a las muestras se ha podido elaborar el perfil del suelo, generándose en términos generales lo siguiente:

5.1.<u>CARACTERISTICAS FISICAS DE MUESTRAS DE SUELO (ENSAYOS ESTANDAR)</u>

	CLASIFICACIÓN .								
N° CALICATAS	Sucs	Asshto	LL	LP	% Humedad	Espesor (m)	(m)		
C-01	2	SUELO LIM	-0.30	1.50					
	GM	A-2-4	24.30	N.P	3.54	-1.20	-1.50		
C 42		SUELO LIA	-0.90	-1.50					
C-02	SM	A-2-4	22.40	N.P	3.40	-0.60	-1.50		
6.03		SUELO LIN	-0.40	1.70					
C-03	SM	A-2-4	N,P	N.P	3.34	-0.90	-1.30		
C-04		SUELO LIN	IOSO CONTA	MINADO		-0.70	1.40		
	SM	A-2-4	N.P	N.P	2.70	-0.70	-1.40		

Cuadro Nº05: Resumen de Estratigrafías de Calicatas.

ESTRATIGRAFIA CALICATAS C-01.

HORIZONTE 1: El espesor del estrato es de 0.30 m., constituidas por limos con presencia de arenas y gravas, contaminada con recursos vegetales como raíces y hoias.

Condición in situ: Estado de compactación Mediana, presencia de bajo contenido de humedad, color predominante beige amarillento.

HORIZONTE 2: El espesor del estrato es de 1.20 m., constituidas gravas mezclados con presencia de arenas y limos. Presencia de boloneria hasta de 12" de Ø.

POL RATH AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

22

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

Condición in situ: Suelo de Baja plasticidad, en estado de compactación mediana a compacto, presencia de bajo contenido de humedad, color predominante beige marronoso. La clasificación del suelo hallado de acuerdo a la clasificación SUCS tiene una denominación GM (Gravas Limosas). y según la clasificación AASHTO A-2-4 (Materiales granulares con partículas finas limosas.).

ESTRATIGRAFIA CALICATA C-02.

HORIZONTE 1: El espesor del estrato es de 0.60 m., constituidas por limos con presencia de arenas y gravas, contaminada con recursos vegetales como raíces y hojas.

Condición in situ: En estado de compactación Mediana, presencia de bajo contenido de humedad, color predominante beige amarillento.

HORIZONTE 2: El espesor del estrato es de 0.90 m., constituidas por arenas mezclados con presencia de limos y gravas. Presencia de boloneria hasta de 8" de Ø. Condición in situ: Suelo de Baja plasticidad, en estado de compactación mediana a compacto, presencia de bajo contenido de humedad, color predominante beige marronoso. La clasificación del suelo hallado de acuerdo a la clasificación SUCS tiene una denominación SM (Arenas Limosas). y según la clasificación AASHTO A-2-4 (Materiales granulares con partículas finas limosas.).

ESTRATIGRAFIA CALICATA C-03.

HORIZONTE 1: El espesor del estrato es de 0.40 m., constituidas por limos con presencia de arenas y gravas, contaminada con recursos vegetales como raíces y hoias.

Condición in situ: En estado de compactación Mediana, presencia de bajo contenido de humedad, color predominante beige amarillento.

HORIZONTE 2: El espesor del estrato es de 0.90 m., constituidas por arenas mezclados con presencia de limos y gravas. Presencia de boloneria hasta de 4" de \emptyset .

Condición in situ: Suelo de Baja plasticidad, en estado de compactación mediana, presencia de bajo contenido de humedad, color predominante beige marronoso.

La clasificación del suelo hallado de acuerdo a la clasificación SUCS tiene una denominación SM (Arenas Limosas). y según la clasificación AASHTO A-2-4

(Materiales granulares con partículas finas limosas.).

23

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

ESTRATIGRAFIA CALICATA C-04.

HORIZONTE 1: El espesor del estrato es de 0.70 m., constituidas por limos con presencia de arenas y gravas, contaminada con recursos vegetales como raíces y hojas.

Condición in situ: En estado de compactación Mediana, presencia de bajo contenido de humedad, color predominante beige amarillento.

HORIZONTE 2: El espesor del estrato es de 0.70 m., constituidas por arenas mezclados con presencia de limos y gravas. Presencia de boloneria hasta de 4" de Ø.

Condición in situ: Suelo de Baja plasticidad, en estado de compactación mediana, presencia de bajo contenido de humedad, color predominante beige marronoso.

La clasificación del suelo hallado de acuerdo a la clasificación SUCS tiene una denominación SM (Arenas Limosas). y según la clasificación AASHTO A-2-4 (Materiales granulares con partículas finas limosas.).

5.2. NIVELES DE NAPA FREÁTICA

Durante las excavaciones la napa freática ha sido localizada en las siguientes calicatas a las siguientes profundidades:

Nº CALICATAS	Coordenadas UTM	Napa Freática	Profundidad	
C-01	735418.93 m S 9223997.10 m N	No presenta	-1.50 mts	
C-02	735707.83 m S 9223570.20 m N	No presenta	-1.50 mts	
C-03	735811.26 m S 9223342.13 m N	No presenta	-1.30 mts	
C-04	735646.07 m S 9223288.66 m N	No presenta	-1.40 mts	

Cuadro Nº06: Resumen de Napa Freática encontrados en sondajes.

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

24

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alguiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaría, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

IGT :

ANÁLISIS DEL TERRENO DE FUNDACIÓN

25

Urb. Las Gardenias Mz.K5- Lote 16 - Nuevo Chimbote - Telef. 043-606058 - Celular: 994267746 RPM #943076777

POL RATA AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

6. ANÁLISIS DEL TERRENO DE FUNDACIÓN

6.1. TIPO Y PROFUNDIDAD DE CIMENTACIÓN

Los resultados de las investigaciones realizadas en esta oportunidad conjuntamente con los determinados en estudios anteriores realizados en la zona de Proyecto, han sido analizados en gabinete a fin de determinar proporcionar que el tipo de estructura para la conducción de agua será mediante Canales Abiertos, de Concreto simple, salvo en las estructuras hidráulicas como captación, de geometría que se ajuste a las condiciones del caudal y contemple la máxima eficiencia máxima hidráulica.

Como resultado del análisis geotécnico se está recomendando y del tipo de suelo, se contempla una base de material de préstamo de 0.10m de espesor, debajo de la base del canal.

Para el tipo de estructura para el almacenamiento de agua será mediante una platea de cimentación, cuya profundidad de cimentación recomendable sea a -1.00m de profundidad.

6.2. CÁLCULO DE CAPACIDAD PORTANTE ADMISIBLE

Para la aplicación de la capacidad portante, se aplica la teoría de Terzaghi para cimientos corridos de base rugosa.

Es necesario mencionar que de acuerdo a la estratigrafía, se identificaron estratos de suelos limosos y arenas, con presencia importante de gravas hasta de 2 ½" de diámetro, presentando estabilidad en los cortes realizados.

De acuerdo a las características del sub suelo anteriormente y aplicando el método indirecto. Para la determinación de Angulo de fricción interna (Q),

 $Cr = (Ydnat-Ydmin)/(Ydmax-Ydmin) \times (Ydmax/Ydnat) \times 100$

 $\emptyset = 25 + 0.15 \,\mathrm{Cr}$

Dónde:

Cr = Densidad relativa

Ydnat = Densidad natural

Ydmin = Densidad Mínima

Ydmax = Densidad máxima

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

26

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, Viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

	I	Densidad (gr/cm	3)	Profundidad
N" CALICATAS	Natural	Mínima	Máxima	(m)
C-01	1.94	1.84	2.09	1.00
C-02	1.85	1.80	1.98	1.00

Cuadro Nº07: Resumen de Densidad Natural, Maxima y Minima.

A continuación se realizan los análisis de la cimentación para diferentes profundidades (ver cuadros de Capacidad Portante y Capacidad Admisible). En suelos friccionantes y medianamente densos con valores de Cohesión (C).

(Ver Anexos Ensayos de Laboratorio)

Para Cimientos corridos:

Para Cimientos cuadrados:

Dónde:

$$q_c = c.N_c + \gamma.D_f.N_q + 0.5\gamma.B.N\gamma$$

$$q_c = 1.3c.N'_c + \gamma .D_f.N'_a + 0.4\gamma .B.N'\gamma$$

qc = Capacidad Portante (Kg/cm2).

γ = Peso volumétrico (gr/cm³).

Df = Profundidad de cimentación (m).

B = Ancho de la zapata (m)

N'c, N'q y N'g = Factores de capacidad de carga (kg/cm²).

C = Cohesión (kg/cm²): limoso = 0.01

Ø = Angulo de Fricción Interna (°)

FS = Factor de Seguridad = 3

Para hallar la Capacidad Admisible es:

$$qad = qc / FS$$

En el siguiente cuadro se tiene las capacidades admisibles a las siguientes profundidades y ancho de cimentación, donde reemplazando valores se tiene:

Para Cimientos Rectangulares:

Calicata C-01: CAPTACION

 $\gamma = 1.94 \text{ kg/cm}^3$ $\phi = 36.3 \text{ °}$ N'q = 14.3N'c = 27.2

N'c = 27.2 $N'\gamma = 9.8$ C = 0.0000 kg/cm2

Fc = 3.00

Qad= Cap	acidad		"B" ANCHO DE CIMIENTO									
Admisible	Kg/cm²	0.6 m.	0.8 m.	1.0 m.	1.2 m.	L5 m.	1.7 m.	2.0 m.	2.2 m.			
	0.6 m.	0.75	0.81	0.87	0.94	1.03	1.09	1.19	1.25			
"DF" Prof.	0.8 m.	0.93	0.99	1.06	1.12	1.22	1.28	1.37	1,44			
De	1.0 m.	1.12	1,18	1.24	1,31	1.40	1.46	1.56	1.62			
imentación	1.3 m.	1.39	1.46	1.52	1.58	1.68	1.74	1.84	1.90			
	1.5 m.	1.58	1.64	1.70	1.77	1.86	1.93	2.02	2.08			

27

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Inlistro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

Para Cimientos Cuadradas:

Calicata C-02: RESERVORIO

 $\gamma = 1.85 \text{ gr/cm}^3$ $\varphi = 34.7$ ° N'q = 14.3N'c = 24.8C

$N'\gamma = 9.9$
C = 0.0000 kg/cm2
Fc = 3.00

Qad= Cap	neidad		"B" ANCHO DE CIMIENTO									
Admisible	Kg/cm ²	1.0 m.	1.5 m.	2.0 m.	2.5 m.	3.0 m.	3.5 m.	4.0 m.	4.5 m			
	0.6 m.	0.77	0.90	1.02	1.14	1.26	1.38	1.51	1.63			
"DF" Prof.	0.8 m.	0.95	1.07	1.20	1.32	1.44	1.56	1.68	1.81			
De	1.0 m.	1.13	1.25	1.37	1.49	1.62	1.74	1.86	1.98			
imentación	1.3 m.	1.39	1.52	1.64	1.76	1.88	2.00	2.13	2.25			
	1.5 m.	1,57	1.69	1,81	1.94	2.06	2.18	2.30	2,42			

6.3. ASENTAMIENTO ADMISIBLE

Se realiza la verificación por asentamiento elástico debiendo llegar como máximo a una deformación de 1" como deformación total, para el caso de cimiento corrido. El Asentamiento elástico inicial según la teoría de Elasticidad "Lambe y Witman" está dada por:

$$S = \frac{qad.B(1 - \mu^2)}{E}.Iw$$

Dónde:

S = Asentamiento Total en cm.

qad = Capacidad admisible de carga en Ton/m2

= Modulo de elasticidad

= Modulo de Poisson

= Ancho de Zapata en m.

estudio

Iw = factor de Influencia

df = Profundidad

presente

Las propiedades elásticas del suelo de cimentación fueron asumidas a partir de tablas publicadas con valores para el tipo de suelo existente donde ira desplantada la cimentación:

Para el suelo limoso gravoso conservadoramente se considera un módulo de elasticidad de E=5000 Tn/m2, y un coeficiente de Poisson = 0.20, los cálculos de asentamiento se ha realizado considerando cimentación flexible, además los esfuerzos transmitidos son iguales a la capacidad de carga por corte. A continuación se presenta los siguientes cálculos con los resultados obtenidos en el

tomando

como 28

carga

ING. CIVIL - CIP. Nº

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

adquirida con base y profundidad indicadas en el cuadro con sus respectivos asentamientos.

Calicata C-01 : CAPTACIÓN

C - 1			"B	" ANCHO I	DE CIMIEN	то	Comme Comme	
S = Asentamiento	0.6 m.	0.6 m. 0.8 m. 1.0 m. 1.2 m. 1.5 m. 1.7 m. 2.0						
qad	1.578	1.641	1.705	1.768	1.863	1.926	2.021	2.085
Asentamiento	0.409 cm.	0.567 cm.	0.736 cm.	0.916 cm.	1.207 cm.	1.415 cm.	1.746 cm.	1.981 cm.

Calicata C-03: RESERVORIO

C = A contemionte			"	B" ANCHO	DE ZAPAT	ГА			
S = Asentamiento	1.0 m. 1.5 m. 2.0 m. 2.5 m. 3.0 m. 3.5 m. 4.0 m.							4.5 m.	
qad	1.570	1.692	1.814	1.936	2.059	2.181	2.303	2.425	
Asentamiento	0.286 cm.	0.463 cm.	0.662 cm.	0.883 cm.	1.126 cm.	1.392 cm.	1.680 cm.	1.990 cm	

En donde se aprecia la carga admisible para el suelo de fundación verificado por asentamiento es menor al máximo permitido según reglamento (1")

6.4. EFECTO DE SISMO

De acuerdo a la información si<mark>smológica, s</mark>e han producido sismos con intensidades promedio de VII - IX según la Escala de Mercalli Modificada.

Por otra parte la zona en estudio se encuentra ubicada en la Zona 3 del mapa de Zonificación Sísmica del Perú, de acuerdo a la Norma Técnica de Edificación E030 – Diseño Sísmico Resistente.

Las Fuerza Sísmicas Horizontales, pueden calcularse de acuerdo a las Normas de Diseño Resistente, según la siguiente relación:

$$H = \frac{Z \times U \times S \times C}{Rd} \times P$$

De acuerdo a los antecedentes de sismicidad del área de estudio, sé recomienda utilizar los siguientes factores sísmicos:

Factor de suelo (s) = 1.40

Factor de zona (z) = 0.4 (zona 3)

Período predominante de vibración del suelo (Ts) = 0.90

POL RAÍN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

29

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

CONCLUSIONES Y RECOMENDACIONES

30

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

7. CONCLUSIONES Y RECOMENDACIONES

1) El presente informe se ha desarrollado con la finalidad de investigar las características del suelo donde se proyecta la "EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA - 2021".

2) Para la aplicación de las normas de diseño sismo resistente se debe considerar, los siguientes valores:

Zona 3

Z=0.40

Factor de Amplificación Sísmica C=1.5/T (T: Periodo Fundamental de la estructura)

Suelo

S=1.4

Periodo

Tp = 0.90 seg

- 3) Con el propósito de identificar las características físicas mecánicas y químicas del suelo de fundación se ubicaron 06 calicatas o excavaciones a cielo abierto en ubicaciones convenientes, hasta llegar a la profundidad máxima de -1.50m.
- 4) Los ensayos estándar, especiales y químicos se ejecutaron en el Laboratorio del consultor especialista en geotecnia. De tal manera que nos permiten identificar e interpretar las características del terreno en la zona de estudio y determinar el Perfil estratigráfico
- 5) El subsuelo está conformado de la siguiente manera:
 - Primer Horizonte: Presenta una capa superficial constituido por suelo limoso con presencia de cobertura vegetal en la superficie tallos y raíces.
 - Segundo Horizonte: Este estrato está constituido principalmente por arenas con
 presencia de importantes de gravas de ángulo redondeado, con presencia de
 boloneria hasta de 12". color predominante del suelo beige marronoso en estado
 seco, en estado flojo a medianamente compacto a compacto, con presencia de bajo
 contenido de humedad, de baja a nula plasticidad.

31

ING. CI

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

- 6) Según el tipo de suelo hallado principalmente, de acuerdo a la clasificación:
 - Clasificación SUCS tiene una denominación SM (Arenas Limosas) y GM (Gravas Limosas)
 - Clasificación AASHTO es A-2-4(0) (Materiales granulares con partículas finas limosas).
- 7) En base a los resultados presentados por los análisis de las muestras extraídas de las calicatas, el tipo de suelo presente es semirocoso (Suelo tipo 2), en los tramos desde 0+000 Km (Captación) hasta la línea de aduccion, medianamente compacto a compacto. En la zona de las líneas de distribución, el suelo se considerar normal (Suelo tipo 1). Se recomienda que se considere los rendimientos adecuados debido a estas características.
- 8) Se recomienda que el tipo de cimentación a utilizar sea losa de concreto no armada, armada o platea de cimentación, que son las consideras para estructuras indicadas en el Proyecto o (Captación, Filtros, Plantas de Tratamiento, Reservorio).
- 9) Se recomienda que La Capacidad Portante Admisible del terreno sea:

Captación

Se recomienda que el tipo de cimentación sea tipo losa o platea, con capacidad admisible mínima de 1.00 kg/cm2, a 1.00 m. de Profundidad, para un ancho mínimo 0.60.

Reservorio:

Se recomienda que el tipo de cimentación sea tipo losa armada o Platea de Cimentación, con capacidad admisible mínima de 1.50 kg/cm2, a 1.00 m. de profundidad, para un ancho minimo de 3.00m.

10) Se recomienda que la profundidad mínima para la realización de zanjas para A.P. sea de como mínimo 0.50m. La profundidad mínima para la construcción de las unidades básicas de saneamiento sea de 2.00m. Considerar la colocación de los filtros de arena y piedra para el control de la contaminación. Estos se apoyaran sobre suelos gravosos de compacidad firme. Se recomienda rellenar con material seleccionado de la zona.

POL RAÍN AGUNAR OLGUN NOS CONSULTOR NE 31023 CONSULTOR REC. CAUDO

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaría, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

- 11) Se recomienda aplicar una cama de arena de 10 cm de espesor o material granular seleccionada menor a 3/8".
- 12) Se Recomienda compactar la Sub Rasante al 90 % de la Máxima Densidad Seca Encontrada con el Ensayo de Proctor Estandar como mínimo.
- 13) Se Recomienda compactar la Base al 95 % de la Máxima Densidad Seca Encontrada con el Ensayo de Proctor Estandar como mínimo y que el tamaño del agregado grueso sea como máximo de 2".
- Se Recomienda controlar la compactación mediante el Ensayo de Densidad de Campo.
- 15) Que el concreto a utilizar como medida preventiva deberá ser preparado con cemento Pórtland tipo MS, con la resistencia prevista por el proyectista.
- 16) El asentamiento total es menor de 1" (2.54 cm.) recomendado para este tipo de estructuras (Para Edificaciones el Asentamiento Permisible es de 2" para cimentaciones tipo Platea), por lo tanto no se presentaran problemas por asentamiento.
- 17) Finalmente se acompaña los planos de ubicación de sondeos, perfil estratigráfico del suelo, certificados de los ensayos de laboratorio y vistas fotográficas, que amplían el presente informe de verificación del suelo exclusivamente del proyecto.

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

33

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alguiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

PROYECTO: "EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021."

ANEXO 01:

PERFILES ESTRATIGRAFICOS

POL RATA AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

PROYECTO: EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA.

DISTRITO DE SAN MIGUEL. PROVINCIA DE SAN MIGUEL. REGIÓN CALMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANTARIA DE LA POBLACIÓN—OSA.

SOLICITA: BARRIONUEVO FLORES, JOSSELY ADDERLY

CASERÍO: SANTA MARÍA: DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL DEPARTAMENTO: CAJAMARCA

CALICATA: C-01 COORDENADAS (WSG 84): 17 L 735418.93 m S

MUESTRA: Obc-01 Mab-01 9223997.10 m N

FEHA: JUNIO 2021

UBICACIÓN: CAPTACIÓN NIVEL FREÁTICO: No presenta

REGISTRO DE SONDAJE

Profundidad total (metros) (me	L.L. (w%)	I.P. (w%)
2.35 2.10 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.3		
1.38 1.20	4 24,30	N.P
Del analisis en laboratorio dio: S7.45 % de Grava S7.45 % de Grava S7.45 % de Grava S7.45 % de Grava S7.45 % de finos no plásticos S7.45 % de fi		

POL RATH AGUNLAR OLGUIN ING.CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

PROYECTO: DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN AGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN
SANITARIA DE LA POBLACIÓN - 2021.

SOLICITA: BARRIONUEVO FLORES, JOSSELY ADDERLY
CASERÍO: SANTA MARÍA DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL DEPARTAMENTO: CAJAMARCA
CALICATA: CO2 COORDENADAS (WSG 84) 17 L 735707.83 m S
MUESTRA: JUNIO 2021
UBICACIÓN: RESERVORIO: No presenta

REGISTRO DE SONDAJE

Profundidad total (metros)	(metros)	Tipo de excavación	Tipo de extracción	Muestras	SÍMBOLO	DESCRIPCIÓN DEL MATERIAL	CLASIFICACIÓN	CLASIFICACIÓN (AASHTO)	HUMEDAD (w%)	L.L. (w%)	I.P. (w%)
	0.35 0.19 0.15 0.29 0.25 0.30 0.35 0.40 0.46 0.46 0.50 0.50	ATA	LO ABIERTO	Obs-01	1 4	Primer Horizonte: Suelos Limoso Contaminado Estrato formado por una capa superficial de material limoso mezclado con presencia de gravas de Ø 3° a 5° de forma subanguloso de un color del suelo beigs amarillento y de material vegetal como hojas secas y raices.					
-1.50	2.76 2.75 3.80 3.80 3.80 3.80 3.85 1.00 1.16 1.15 1.16 1.25 1.30 1.25 1.30 1.40 1.46	CALICA	MUESTRA A CIEL	Mab-01		Segundo Horizonte: Areno Limoso Estrato formado por limos, las mismas que presentan una mezcia de finos y arena con presencia de gravas. Condicion del suelo no plastico. Con un bajo contenido de humedad, donde el color predominante del suelo es un beige marronoso, consistencia medianamente compacta a compacta. Del analisis en laboratorio dio: 33.58 % de Grava 49.81 % de arena de grano uniforme 16.61 % de finos no plásticos	× 02	A-2-4(0)	3,40	22,40	q,n
ORSER	VACIONES:							19			

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. Nº 81029 CONSULTOR - REC. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

PROYECTO : DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CUAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANTARIA DE LA PORTACIÓN PROVINCIA DE SAN MIGUEL, REGIÓN CUAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SOLICITA : BARRIONUETO FLORES, JOSSELY ADDERLY
CASERÍO : SANTA MARÍA DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL DEPARTAMENTO: CAJAMARCA CALICATA : C-63 COORDENADAS (WSG 84) 17 L 735811.26 m.S
MUESTRA : Obs-01 Mab-01 922342.11 m.N
FEHA : JUNIO 2021
UBICACIÓN : RED DE DISTRIBUCIÓN I NIVEL FREÁTICO: No presenta

REGISTRO DE SONDAJE

Profundidad total (metros)	Espesor de Estrato (metros)	Tipo de excavación	Tipo de extracción	Muestras obtenidas	SÍMBOLO	DESCRIPCIÓN DEL MATERIAL	CLASIFICACIÓN	CLASIFICACIÓN (AASHTO)	HUMEDAD (w%)	L.L. (w%)	I.P. (w%)
	8,05 8,10 8,15 9,20 9,20 0,30 8,36 8,40		ERTO	Obs-01	4	Primer Horizonte: Suelos Limoso Contaminado Estrato formado por una capa superficial de material limoso mezciado con presencia de grávas subariguloso de un color del suelo beigs amarillento y de material vegetal como hojas secas y raices.					
-1.30	9.45 1.50 1.45 1.46 1.45 1.46 1.70 1.75 1.40 1.45 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.45 1.40 1.40 1.45 1.40 1.40 1.45 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	CALICATA	MUESTRA A CIELO ABIEI	Mab-01	1	Segundo Hortzonte: Areno Limoso Estrato formado por limos, las mismas que presentan una mezcla de finos y arena con presencia de gravas. Condicion del suelo no plastico. Con un bajo contenido de l'aumedad, donde el color predominante del suelo es un beige marronoso, consistencia medianamente compacta a compacta. Del nanásis en laboratorio dio: 27.04 % de Grava 58.27 % de arena de grano uniforme 14.69 % de finos no ptásticos	WS	A-2-4(0)	3,34	24.10	N.P
OBSER	-		*			14.69 % de finos no plásticos					

POL RATH AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alguiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

PROYECTO: USTRITO DE SAM MIGUEL, PROVINCIA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERIO DE SANTA MARÍA,

SANTARIA DE LA POBLACIÓN - 2021.

SOLICITA: BARRIONUEYO FLORES, JOSSELY ADDERLY

CASERÍO: SANTA MARÍA DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL DEPARTAMENTO: CAJAMARCA

CALICATA: C-04 COORDENADAS (WSG 84) 17 L 735646.07 m S

MUESTRA: JUNIO 2021

UBICACIÓN: RED DE DISTRIBUCIÓN 2 NI PEREÁTICO: No presenta

REGISTRO DE SONDAJE

0.70	ATA	IELO ABIERTO	Obs-01	1 4	Primer Hortzonte: Suelos Limoso Contaminado Estrato formado por una capa superficial de material limoso mezolado con presencia de gravas subanguloso de un color del suelo belga amariliento y de material vegetal como hojas secas y raices.					
0.70	CALIC	MUESTRA A C	Mab-01		Segundo Horizonta: Aretio Limoso Estrato formado por limos, las mismas que presentan una mezcla de finos y arena con presencia de gravas. Condicion del suelo no plastico. Con un bajo contenido de humedad, donde el coler predominante del suelo es un beige marronoso, consistencia medianamente compacta a compacta. Del analisis en laboratorio dio: 24.93 % de Grava 54.47 % de arena de grano uniforme 20.60 % de finos no plásticos	SM	A-2-4(0)	2.70	N.P.	N.P
		0 > 1 > 0	C A L C A T A CIELO ABIERT	MUESTRA A CIELO ABIERT	0.70	0.70 Obs-01 A Segundo Herizonta: Areno Limoso Estrato formado por limos, las mismas que presentan una mezola de finos y arena con presencia de gravas. Condicion del suelo no plastico. Con un bajo contenido de humedad, donde el color predominante del suelo es un beige marronoso, consistencia medianamente compacta a compacta. Del analisis en laboratorio dio: 24,93 % de Grava 54,47 % de arena de grano uniforme 20.50 % de finos no plásticos	Obs-01 A Segundo Horizonta: Areno Limoso Estrato formado por limos, las mismas que presentan una mezcla de finos y arena con presencia de gravas. Condicion del suelo no plastico. Con un bajo contenido de numedad, donde el color predominante del suelo es un beige marronoso, consistencia medianamente compacta a compacta. Del analisis en laboratorio dio: 24.93 % de Grava 54.47 % de arena de grano uniforme 20.60 % de finos no plásticos	0.70 V V V V V V V V V V V V V V V V V V V	0.70 Obs-01 A Segundo Horizonte: Areno Limoso Estrato formado por limos, lias mismas que presentan una mezola de finos y arena con presencia de gravas. Condicion del suelo no plastico. Con un bajo contenido de humedad, donde el color predominante del suelo es un beige marronoso, consistencia medianamente compacta a compacta. Del anasisis en laboratorio dio: 24.93 % de Grava 54.47 % de arena de grano uniforme 20.60 % de finos no plásticos	Obs-01 A Segundo Herizonta: Areno Limoso Estrato formado por limos, las mismas que presentan una mezola de finos y arena con presencia de gravas. Condicion del suelo no plastico. Con un bajo contenido de numerodad, donde el color predominante del suelo es un beige marronoso, consistencia medianamente compacta a compacta. Del analisis en laboratorio dio: 24,93 % de Grava 54,47 % de arena de gravo uniforme 20.50 % de finos no plásticos

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

PROYECTO: "MEJORAMIENTO Y EVALUACIÓN DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021."

ANEXO 02:

ENSAYOS DE LABORATORIO

POL RAIN AGUILAR OLGUIN ING, CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA.

PROVECTO: DISTRITO DE SAN MIGURE, PROVINCIA PE SAN MIGURE, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN
SOLICITA: RARRIONUEVO FLORES, JOSSELY ADDERLY

CASERÍO: SANTA MARÍA DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL DEPARTAMENTO: CAJAMARCA
CALICATA: C-01 MUESTRA: M.-F

FEHA: JUNIO 2021 NIVEL FREÁTICO: N.-P ESPESOR DE ESTRATO: 1, 20 m.
UBICACIÓN: CAPTACIÓN PROFUNDIDAD DE CALICATA: -1,50 m.

RESULTADOS DE ENSAYOS ESTANDAR DE LABORATORIO

1. ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM - D421)

Peso Inicial Se	co, [gr]	2194.400			
Peso Inicial Se	co, [gr]				
Mallas	Abertura [mm]	Peso retenido [grs]	% RETENIDO	% Reterido Acumulado	% pasa
2 1/2"	63.500	192,40	8.77	8.77	91.23
2"	50.800	235.40	10.73	10.73	89.27
1 1/2"	38,100	148,50	6.77	17.49	82,51
1"	25.400	247.30	11.27	28.76	71.24
3/4"	19.050	150.10	6.84	35.60	64.40
1/2"	12.500	209,20	9,53	45.14	54,86
3/8*	9,500	97,80	4.46	49.59	50.41
Nº 4	4.750	172.40	7.86	57.45	42.55
Nº 10	2.000	151.40	6.90	64.35	35.65
N° 20	1,000	108,90	4.96	69.31	30,69
N° 40	0.425	121.50	5.54	74.85	25.15
Nº 100	0.150	177.60	8.09	82.94	17.06
Nº 200	0.074	86.20	3.93	86.87	13.13
< N° 200		95.70	4.36	91.23	8.77

Grava (%) = 57.45

0.60

 $D_{60} =$

Arena (%) = 29.42

D ₁₀ =	0.07	Cu =	D 60	8.57	$Cc = (D_{30})^2$		23.81
$D_{10} = D_{30} =$	1.00	2000 H	D 60 D 10		$Cc = \frac{(D_{30})^2}{D_{10} \times D_{80}}$	=	

Finos (%) = 13.13

SISTEMA	CLASIFICACION	DESCRIPCION
SUCS	GM	Gravus Limosus
AASHTO	A - 2 - 4 (0)	Materiales granulares con partículas finas limosas.

POL RATH AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General n de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

2. LIMITES DE CONSISTENCIA DE ATTERGBER (ASTM - D4318)

		LIMITE L	LIM, PLASTICO	CONSISTENCIA			
Procedimiento	Tara N° 01	Tara Nº 02	Tara Nº 03	Tara Nº 04	Tara Nº 05		
1. No de Golpes	33	21	11			LL = 24.30	
2. Peso Tara, [gr]	18,28	17.78	18.78			LL = 24.30	
3. Peso Tara + Suelo Húmedo, [gr]	41.14	41.37	42.73			LP = N.P	
4. Peso Tara + Suelo Seco, [gr]	36.77	36.68	37.64			LP - N.P	
5. Peso Agua, [gr]	4.37	4.69	5.09				
6. Peso Suelo Seco, [gr]	18.49	18.90	18.86			IP = N.P	
7. Contenido de Humedad, [%]	23.634	24.815	26.988				

3. CONTENIDO DE HUMEDAD (ASTM - D2216)

Procedimiento	Tara No 01	Tara No 02	
1. Peso Tara, [gr]	28.160	27.530	
2. Peso Tara + Suelo Húmedo, [gr]	206.78	210.47	File C
3. Peso Tara + Suelo Seco, [gr]	200.18	204.72	
4. Peso Agua, [gr]	6.60	5.75	
5. Peso Suelo Seco, [gr]	172.02	177.19	PROMEDIO
6. Contenido de Humedad, [%]	3,837	3,245	3,541

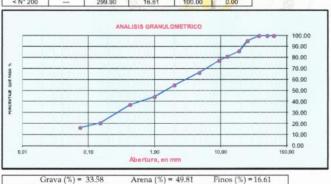
4. RESUMEN DE ENSAYOS ESTANDAR DE LABORATORIO

Grava (No.4 < Diam < 3*)	57.45 %
Arena (No.200 < Diam < No.4)	29.42 %
Finos (Diam < No.200)	13.13 %
Límite Líquido	24,30 %
Límite Plástico	N.P
Indice Plasticidad	N.P
Contenido de Humedad	3.54 %
Clasificación SUCS:	GM
Clasificación AASHTO:	A - 2 - 4 (0)

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alguiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoria y Consultoria de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad


PROYECTO: EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGLA POTABLE EN EL CASERÍO DE SANTA MURÍA.

PROYECTO: DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGION CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN
SOLICITA: BARRIONUEVO FLORES, JOSSELY ADDERLY
CASERÍO: SANTA MARÍA: DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL DEPARTAMENTO: CAJAMARCA
CALICATA: C-02: MUESTRA: M-F
FEHA: JUNIO 2021: NIVEL PREÁTICO: N-P
ESPESOR DE ESTRATO: 0.90 m.
UBICACIÓN: RESERVORIO: PROFUNDIDAD DE CALICATA: 1.50 m.

RESULTADOS DE ENSAYOS ESTANDAR DE LABORATORIO

1. ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM - D421)

Peso Inicial Se	co, [gr]	1805.200			
Peso Inicial Se	co, [gr]				
Mallas	Abertura [mm]	Peso retenido [grs]	% RETENIDO	% Retenido Acumulado	% pasa
2 1/2"	63.500	0.00	0.00	0.00	100.00
2"	50.800	0.00	0.00	0.00	100.00
1 1/2"	38,100	0.00	0.00	0.00	100.00
1"	25.400	85.60	4,74	4.74	95,26
3/4"	19.050	165.20	9.15	13,89	86.11
1/2"	12.500	95.60	5,30	19.19	80,81
3/8"	9.500	64,20	3.56	22.75	77.25
Nº 4	4.750	195.60	10.84	33.58	66.42
Nº 10	2.000	204.20	11.31	44.89	55.11
N° 20	1.000	189.60	10.50	55.40	44.60
N° 40	0.425	125.60	6.96	62.35	37.65
Nº 100	0.150	304.50	16.87	79.22	20.78
Nº 200	0.074	75.20	4.17	83.39	16.61
< N° 200		299.90	16.61	100.00	0.00

D ₁₀ =	0.07	Cu =	D 60	41.43	$C_C = (D_{30})^2$		0.33
$D_{10} = D_{30} =$	0.26	1777	D 60	100 to 10	$Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$	=	3873
$D_{60} =$	2.90						

SISTEMA	CLASIFICACION	DESCRIPCION
SUCS	SM	Areno Limoso
AASHTO	A - 2 - 4 (0)	Materiales granulares con partículas finas limosas.

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alguiler y/o Venta de Bienes en General n de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

2. LIMITES DE CONSISTENCIA DE ATTERGBER (ASTM - D4318)

		LIMITE L	IQUIDO		LIM. PLASTICO	CONSISTENCIA	
Procedimiento	Tara Nº 01	Tara Nº 02	Tara Nº 03	Tara Nº 04	Tara Nº 05		
1. No de Golpes	28	18	12			LL = 22.40	
2. Peso Tara, [gr]	18.24	17.78	18,50			LL - 22.40	
3. Peso Tara + Suelo Húmedo, [gr]	53,18	48.27	42,61			LP = N.P	
4. Peso Tara + Suelo Seco, [gr]	46.82	42.52	37.82			Lr - N.F	
5. Peso Agua, [gr]	6.36	5.75	4.79				
6. Peso Suelo Seco, [gr]	28.58	24.74	19.32			IP = N.P	
7 Contenido de Humedad (%)	22 253	23 242	24 793				

3. CONTENIDO DE HUMEDAD (ASTM - D2216)

Procedimiento	Tara No 01	Tara No 02	
1. Peso Tara, [gr]	28.510	27.130	
2. Peso Tara + Suelo Húmedo, [gr]	186.48	191,66	FIRE
3. Peso Tara + Suelo Seco, [gr]	181.18	186.35	
4. Peso Agua, [gr]	5.30	5.31	
5. Peso Suelo Seco, [gr]	152.67	159.22	PROMEDIC
6. Contenido de Humedad, [%]	3.472	3.335	3,403

4. RESUMEN DE ENSAYOS ESTANDAR DE LABORATORIO

Grava (No.4 < Diam < 3*)	33,58 %
Arena (No.200 < Diam < No.4)	49,81 %
Finos (Diam < No.200)	16,61 %
Límite Líquido	22,40 %
Límite Plástico	N.P
Indice Plasticidad	N.P
Contenido de Humedad	3.40 %
Clasificación SUCS:	SM
Clasificación AASHTO	A - 2 - 4 /D

Código Ejecutor Obras: 12776

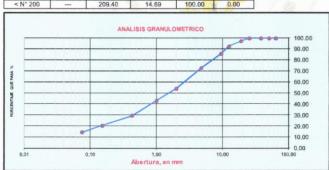
R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

PROYECTO: DISTRIPCION Y MERIORANIENTO DEL ENTERMA DE ABASTECIMIENTO DE GUIA POTABLE EN EL CASERIO DE SANTA MARIA.

PROYECTO: DISTRIPCO ES SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN
SOLICITA: BARRIONUEVO FLORES, JOSSELY ADDERLY

CASERÍO: SANTA MARÍA: DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL DEPARTAMENTO: CAJAMARCA
CALICATA: C-03: MUESTRA: M-F


FEHA: JUNIO 2021: NIVEL FREÁTICO: N-P ESPESOR DE ESTRATO: 0,90 m.
UBICACIÓN: RED DE DISTRIBUCCIÓN I PROFUNDIDAD DE CALICATA: -J.30 m.

RESULTADOS DE ENSAYOS ESTANDAR DE LABORATORIO

1. ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM - D421)

Peso Inicial Se	co, [gr]	1425.300			
Peso Inicial Se	co, [gr]		130		
Mallas	Abertura [mm]	Peso retenido [grs]	% RETENIDO	% Retenido Acumuledo	% pasa
2 1/2"	63.500	0.00	0.00	0.00	100,00
2°	50.800	0.00	0.00	0.00	100.00
1 1/2"	38.100	0.00	0.00	0.00	100.00
1"	25.400	0.00	0.00	0.00	100.00
3/4"	19.050	35.30	2.48	2,48	97,52
1/2"	12.500	65.60	4.60	7.08	92,92
3/8*	9.500	99.20	6,96	14.04	85.96
N° 4	4.750	185.30	13.00	27.04	72.96
Nº 10	2.000	265.30	18.61	45.65	54.35
N° 20	1,000	155.30	10.90	56.55	43.45
N° 40	0.425	195.30	13.70	70.25	29.75
Nº 100	0.150	128.30	9.00	79.25	20.75
N° 200	0.074	86.30	6.05	85.31	14.69
< N° 200		209.40	14.69	100.00	0.00

Grava (%) = 27.04

Arena (%) = 58.27

D ₁₀ =	0.07	Cu =	D 60	37.14	$Cc = D \frac{(D_{30})^2}{D_{10 \times} D_{60}}$		0.97
$D_{30} =$	0.42	-	D 10=		D 10 x D 60	=	
D -	2.60						

Finos (%) = 14.69

SISTEMA	CLASIFICACION	DESCRIPCION
SUCS	SM	Areno Limoso
AASHTO	A - 2 - 4 (0)	Materiales granulares con partículas finas limosas.

POL RAIN AGUILAR OLGUIN ING.CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alguiler y/o Venta de Bienes en General n de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

2. LIMITES DE CONSISTENCIA DE ATTERGBER (ASTM - D4318)

		LIMITE L	IQUIDO		LIM. PLASTICO	CONSISTENCIA
Procedimiento	Tara Nº 01	Tara Nº 02	Tara Nº 03	Tara Nº 04	Tara Nº 05	
No de Golpes				LL = 24.10		
2. Peso Tara, [gr]					LL - 24.10	
3. Peso Tara + Suelo Húmedo, [gr]		NO PRESENTA			LP = N.P	
4. Peso Tara + Suelo Seco, [gr]					LF - A.F	
5. Peso Agua, [gr]						
6. Peso Suelo Seco, [gr]					IP = N.P	
7. Contenido de Humedad, [%]						

3. CONTENIDO DE HUMEDAD (ASTM - D2216)

Procedimiento	Tara No 01	Tara No 02	
1. Peso Tara, [gr]	28.150	27.420	-
2. Peso Tara + Suelo Húmedo, [gr]	175.96	186.31	Fine Co
3. Peso Tara + Suelo Seco, [gr]	171.29	181.05	Pillor
4. Peso Agua, [gr]	4.67	5.26	
5. Peso Suelo Seco, [gr]	143.14	153.63	PROMEDIO
6. Contenido de Humedad, [%]	3,263	3,424	3.343

4. RESUMEN DE ENSAYOS ESTANDAR DE LABORATORIO

Grava (No.4 < Diam < 3*)	27.04 %
Arena (No.200 < Diam < No.4)	58.27 %
Finos (Diam < No.200)	14.69 %
Límite Líquido	24,10 %
Límite Plástico	N.P
Indice Plasticidad	N.P
Contenido de Humedad	3.34 %
Clasificación SUCS:	SM
Clasificación AASHTO:	A - 2 - 4 /N

POL RATH AGUILAR OLGUIN ING. CIVIL - CIP. Nº 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

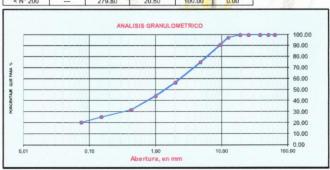
R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

PROYECTO : EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA.

PROYECTO : DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGION CALAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN
SOLICITA : BARRIONUEVO FLORES, JOSSELY ADDERLY

CASERÍO : SANTA MARÍA DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL DEPARTAMENTO: CAJAMARCA
CALICATA : C-0 MUESTRA: M - F


FEHA : JUNIO 2021 NIVEL FREÁTICO: N - P ESPESOR DE ESTRATO : 0, 70 m.
UBICACIÓN : RED DE DISTRIBUCIÓN 2 PROFUNDIDAD DE CALICATA : -1,40 m.

RESULTADOS DE ENSAYOS ESTANDAR DE LABORATORIO

1. ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM - D421)

Peso Inicial Se	co, [gr]	1358.400			
Peso Inicial Se	co, [gr]				
Mallas	Abertura [mm]	Peso retenido [grs]	% RETENIDO	% Retenido Acumulado	% pasa
2 1/2"	63,500	0.00	0.00	0.00	100.00
2"	50.800	0.00	0.00	0.00	100.00
1 1/2"	38.100	0.00	0.00	0.00	100.00
1"	25.400	0.00	0.00	0.00	100.00
3/4*	19.050	0.00	0.00	0.00	100.00
1/2"	12.500	34.20	2.52	2.52	97.48
3/8"	9,500	89.30	6.57	9.09	90.91
Nº 4	4.750	215.20	15.84	24.93	75.07
Nº 10	2.000	248.30	18.28	43.21	56.79
N° 20	1.000	165.30	12.17	55.38	44.62
N° 40	0.425	168.50	12.40	67.79	32.21
Nº 100	0.150	89.40	6.58	74.37	25.63
N° 200	0.074	68.40	5.04	79.40	20.60
< N° 200		279.80	20.60	100.00	0.00

Grava (%) = 24.93

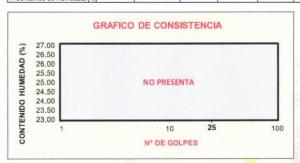
Arena (%) = 54.47

D ₁₀ =	0.07	Cu =	D 50	32.86	$C_C = (D_{30})^2$		0.56
	0.30	-	D 60 D 10		$Cc = D \frac{(D_{30})^2}{D_{10} \times D_{60}}$	=	
D -	2 30						

Finos (%) = 20.60

SISTEMA	CLASIFICACION	DESCRIPCION	
SUCS	SM	Areno Limoso	
AASHTO	A - 2 - 4 (0)	Materiales granulares con partículas finas limosas.	

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009


Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General n de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

2. LIMITES DE CONSISTENCIA DE ATTERGBER (ASTM - D4318)

	LIMITE LIQUIDO			LIM. PLASTICO	CONSISTENCIA	
Procedimiento	Tara Nº 01	Tara Nº 02	Tara Nº 03	Tara Nº 04	Tara Nº 05	
1. No de Golpes					LL = N.P.	
2. Peso Tara, [gr]					LL = N.P.	
3. Peso Tara + Suelo Húmedo, [gr]		NO PRESENTA			LP = N.P	
4. Peso Tara + Suelo Seco, [gr]						
5. Peso Agua, [gr]						
6. Peso Suelo Seco, [gr]				IP = N.P		
7. Contenido de Humedad, [%]						

3. CONTENIDO DE HUMEDAD (ASTM - D2216)

Procedimiento	Tara No 01	Tara No 02	
1. Peso Tara, [gr]	27.590	26.470	
2. Peso Tara + Suelo Húmedo, [gr]	191,64	176.29	BIRE
3. Peso Tara + Suelo Seco, [gr]	187.34	172.34	
4. Peso Agua, [gr]	4.30	3.95	
5. Peso Suelo Seco, [gr]	159,75	145.87	PROMEDIO
6. Contenido de Humedad, [%]	2,692	2,708	2.700

4. RESUMEN DE ENSAYOS ESTANDAR DE LABORATORIO

Grava (No.4 < Diam < 3*)	24,93 %
Arena (No.200 < Diam < No.4)	54,47 %
Finos (Diam < No.200)	20,60 %
Límite Líquido	N,P,
Límite Plástico	N.P
Indice Plasticidad	N.P
Contenido de Humedad	2.70 %
Clasificación SUCS:	SM
Clasificación AASHTO:	A-2-4 (0)

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoria de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN E PROYECTO:

DISTRITO: SAN MIGUEL

CASERÍO DE SANTA MARIA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021

CASERÍO: SANTA MARIA FECHA : JUNIO DE 2021

PROVINCIA: SAN MIGUEL REGIÓN: CAJAMARCA

CALICATA: C-1

MUESTRA: M-F

NAPA FREATICA: NO PRESENTA

DENSIDAD NATURAL CON MUESTRA DIRECTA (INALTERADA)

	DESCRIPCION	Calicata C-1	
	Profundidad	A 1.00 m.	
1	Peso del Molde de Alumínio	65.32	
2	Peso de bolsa (gr)	5.00	iel lei
3	Peso de Molde + Bolsa + Suelo (gr)	674.81	
4	Peso de muestra	604.49	(3)
5	Diametro de Molde de Aluminio	5.02	9
6	Altura de Molde de Aluminio	15.52	(89)
7	Volumen	307.18	39 /
8	Densidad húmeda (gr/cm³)	1.97	

CONTENIDO DE HUMEDAD (ASTM D-2216-80)

9 Peso de la tara (gr)	28.83	
10 Peso tara + suelo húmedo (gr)	203.38	
11 Peso tara + suelo seco (gr)	200.52	
12 Peso del agua (gr)	2.86	
13 Peso del suelo seco (gr)	171.69	
14 Contenido de humedad (%)	1.67	
15 Densidad seca (gr/cm³)	1.936	
16 Promedio Densidad seca (gr/s	-m ³)	1 936

Código Ejecutor Obras: 12776

R.U.C. 20445586537

PROVINCIA: SAN MIGUEL

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL PROYECTO:

CASERÍO DE SANTA MARIA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN

CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021

DISTRITO: SAN MIGUEL FECHA

: JUNIO DE 2021 REGIÓN: CAJAMARCA

CALICATA: C-1

SANTA MARIA

CASERÍO:

NAPA FREATICA: NO PRESENTA MUESTRA: M-F

DENSIDAD MAXIMA Y MINIMA (ASTM D4254; ASTM D4253)

	DEN	SIDAD MININ	1A	
Nº de ensayo		1		
Diametro del molde	(cm.)	10.202		
Altura del molde	(cm.)	11.705		
Peso del molde	(g.)	4030.000		
Peso del molde + suelo	(g.)	5788.000		187
Peso del suelo	(g.)	1758.000	F N N	4
Volumen del molde	(cm3)	956.824		
Densidad	(g/cm3)	1.837		
Densidad Minima	(g/em3)		1.837	1550

DENSIDAD MAXIMA							
Nº de ensayo		1	. (9)				
Diametro del molde	(cm.)	10.202					
Altura del molde	(cm.)	11.705		10			
Peso del molde	(g.)	4030.000					
Peso del molde + suelo	(g.)	6031.000					
Peso del suelo	(g.)	2001.000					
Volumen del molde	(cm3)	956.824					
Densidad	(g/cm3)	2.091					
Densidad Maxima	(g/cm3)	2.091					

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General - Prestación de Servicios Generales - Asesoria y Consultoria de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general - Laboratorio de Ensayos de Control de Calidad

CALCULO DE CAPACIDAD PORTANTE DEL TERRENO

PROYECTO:	CASERÍO DE SANTA	MARIA, DISTRITO I	DE SAN MIGUEL, PRO	CIMIENTO DE AGUA POTABLE EN EL DVINCIA DE SAN MIGUEL, REGIÓN ITARIA DE LA POBLACIÓN - 2021
CASERÍO:	SANTA MARIA	DISTRITO:	SAN MIGUEL	PROVINCIA: SAN MIGUEL
FECHA	: JUNIO DE 2021			REGIÓN: CAJAMARCA
CALICATA:	C-1			
MUESTRA:	M-F	NA	PA FREATICA: NO PE	RESENTA

CALICATA Nº 01

Cr = (Ydnat-Ydmin)/(Ydmax-Ydmin) x (Ydmax/Ydnat)x100

Ydnat = 1.94 gr/cm³ Ydmin = 1.84 gr/cm³ Ydmax = 2.09 gr/cm³

Cr = 41.83 %

$$\emptyset = 30 + 0.15 \text{ Cr}$$

= 36.27°

$q_{ad} = 1/F.S(\gamma.Df.N'q + 0.5.\gamma.B.N'y)$

qad = Capacidad admisible de carga límite en Kg/cm².

γ = Peso volumétrico del suelo en Kg/cm³

Df = Profundidad de desplante de la cimentación en centimetros (mínimo).

B = Ancho de la zapata cuadrada, o dimensión menor de la zapata rectangular en centimetros (mínimo).

N'q= Coeficiente de capacidad de carga relativo a la sobrecarga, por corte local

Vy= Coeficiente de capacidad de carga relativo al peso volumétrico del suelo, por corte local

F.S = Factor de Seguridad

DATOS:

$$q_{ad} = 1/F.S(c.N'c+\gamma.Df.N'q + 0.5.\gamma.B.N'y)$$

qad = 1.875 kg/cm2

Urb. Las Gardenias Mz.K5- Lote 16 - Nuevo Chimbote - Telef. 043-606058 - Celular: 994267746 RPM #943076777

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General - Prestación de Servicios Generales - Asesoria y Consultoria de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general - Laboratorio de Ensayos de Control de Calidad

CALCULO DE CAPACIDAD PORTANTE DEL TERRENO

PROYECTO:	CASERÍO DE SANTA	MARIA, DISTRITO I	DE SAN MIGUEL, PRO	CIMIENTO DE AGUA POTABLE EN EL DVINCIA DE SAN MIGUEL, REGIÓN ITARIA DE LA POBLACIÓN - 2021
CASERÍO:	SANTA MARIA	DISTRITO:	SAN MIGUEL	PROVINCIA: SAN MIGUEL
FECHA	: JUNIO DE 2021			REGIÓN: CAJAMARCA
CALICATA:	C-1			
MUESTRA:	M-F	NA	PA FREATICA: NO PI	RESENTA

CALICATA Nº 01

Cr = (Ydnat-Ydmin)/(Ydmax-Ydmin) x (Ydmax/Ydnat)x100

Ydnat = 1.94 gr/cm³ Ydmin = 1.84 gr/cm³ Ydmax = 2.09 gr/cm³

Cr = 41.83 %

$$\emptyset = 30 + 0.15 \text{ Cr}$$

= 36.27°

$q_{ad} = 1/F.S(\gamma.Df.N'q + 0.5.\gamma.B.N'y)$

qad = Capacidad admisible de carga límite en Kg/cm².

γ = Peso volumétrico del suelo en Kg/cm³.

Df = Profundidad de desplante de la cimentación en centimetros (mínimo).

B = Ancho de la zapata cuadrada, o dimensión menor de la zapata rectangular en centimetros (mínimo).

N'q= Coeficiente de capacidad de carga relativo a la sobrecarga, por corte local

Vy= Coeficiente de capacidad de carga relativo al peso volumétrico del suelo, por corte local

F.S = Factor de Seguridad

DATOS:

$$q_{ad} = 1/F.S(c.N'c+\gamma.Df.N'q + 0.5.\gamma.B.N'y)$$

qad = 1.875 kg/cm2

Urb. Las Gardenias Mz.K5- Lote 16 - Nuevo Chimbote - Telef. 043-606058 - Celular: 994267746 RPM #943076777

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

CALCULO DE LA CAPACIDAD PORTANTE DEL TERRENO

PROYECTO : EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERIO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.

UBICACION : CASERÍO SANTA MARÍA – DISTRITO DE SAN MIGUEL – PROVINCIA SAN MIGUEL REGION CAJAMARCA

FECHA: JUNIO DE 2021

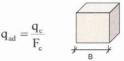
CALICATA: C-1

NIV. FREATICO: NO PRESENTA

Capacidad Admisible de Carga por Limitacion de Esfuerzo Cortante

Donde:

ac


= Capacidad admisible de carga

= Factor de seguridad

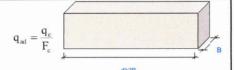
Ancho de Zapata en m.

Df = Profundidad de Cimentacion en m.

C = Cohesion

$$q_c = 1.3cN_c + \gamma D_f N_a + 0.4\gamma BN\gamma$$

1.94 gr/cm³


N'q = 14.3

N'c = 27.2

0.0000 kg/cm2 Fc = 3.00 qad = Capacidad. "B" ANCHO DE ZAPATA
2.0 m. 2.5 m. 3.0 m. 3.5 m. 1.0 m. 4.0 m. 4.5 m. Admisible Kg/cm² 0.81 0.94 1.06 1.32 1.57 1.70 0.6 m. 0.8 m 1.37 1.50 1.75 1.88 2.07 1.0 m 1.18 1.31 1.43 1.56 1.69 1.81 1.94 1.46 1.58 1.71 1.84 1.96 2.09 2.22 2.34 1.3 m n.

Capacidad Admisible de Carga por Limitación de Esfuerzo Corrante

Donde:

 $q_c = c \cdot N_c + \gamma \cdot D_f \cdot N_q + 0 \cdot 5 \gamma \cdot B \cdot N \gamma$

1.94 kg/cm³

qad = Capacidad.				"B" /	NCHO D	E CIMIE	NTO		
Admisible	Kg/cm²	0.6 m.	0.8 m.	1.0 m.	1.2 m.	1.5 m.	1.7 m.	2.0 m.	2.2 m
	0.6 m.	0.75	0.81	0.87	0.94	1.03	1.09	1.19	1.25
"DF" PROF. de	0.8 m.	0.93	0.99	1.06	1.12	1.22	1.28	1.37	1.44
Cimentacio n.	1,3 m.	1.39	1.46	1,52	1,58	1.68	1.74	1.84	1,90
".	1.5 m.	1.58	1.64	1.70	1.77	1.86	1,93	2.02	2.08

0,0000 kg/cm2

POL RAM AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoria de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

CALCULO DEL ASENTAMIENTO DE CIMENTACIONES

PROYECTO : EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERIO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.

UBICACION : CASERÍO SANTA MARÍA - DISTRITO DE SAN MIGUEL - PROVINCIA SAN MIGUEL REGION CAJAMARCA

FECHA: JUNIO DE 2021

CALICATA: C-1

NIV. FREATICO: NO PRESENTA

Asentamiento Total en cm. Capacidad admisible de carga en Ton/m² Modulo de elasticidad Modulo de Poisson

CALCULO DE ASENTAMIENTO PARA ZAPATAS CUADRADA

Ancho de Zapata en m. lw factor de Influencia df Profundidad

 $S = \frac{qad \cdot B(1 - \mu^2)}{Iw}$ E

Si:

Donde:

qad E

= 0.20 5000 Ton/m² 95 cm/m 1.5 m. lw Df

S =	"B" ANCHO DE ZAPATA								
Asentamiento	1.0 m.	1.5 m.	2.0 m.	2.5 m.	3.0 m.	3.5 m.	4.0 m.	4.5 m.	
qad	1.641	1.768	1.895	2.021	2.148	2.275	2.401	2.528	
Asentamiento	0.299 cm.	0.484 cm.	0.691 cm.	0.922 cm.	1,175 cm.	1,452 cm.	1.752 cm.	2.075 cm.	

CALCULO DE ASENTAMIENTO PARA ZAPATAS RECTANGULARES (Cimientos Corridos)

Asentamiento Total en cm. Asentamiento I otal en cm. Capacidad admisible de carga en Ton/m² Modulo de elasticidad Modulo de Poisson Ancho de Zapata en m. factor de Influencia Profundidad qad E

μ B W df

 $S = \frac{qad \cdot B(1 - \mu^2)}{Iw}$

Si:

= 0.20 E = 5000 Ton/m² = 225 cm/m 1.5 m.

S=	"B" ANCHO DE CIMIENTO									
Asentamiento	0.6 m.	0.8 m.	1.0 m.	1.2 m.	1.5 m.	1.7 m.	2.0 m.	2.2 m.		
qad	1.578	1.641	1.705	1.768	1.863	1.926	2.021	2.085		
Asentamiento	0.409 cm.	0.567 cm.	0.736 cm.	0.916 cm.	1.207 cm.	1,415 cm.	1,745 cm.	1,981 cm.		

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81025 CONSULTOR - REC. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL PROYECTO:

DISTRITO: SAN MIGUEL

CASERÍO DE SANTA MARIA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021

CASERÍO: SANTA MARIA

M-F

PROVINCIA: SAN MIGUEL

FECHA : JUNIO DE 2021

REGIÓN: CAJAMARCA

CALICATA: C-2

MUESTRA:

NAPA FREATICA: NO PRESENTA

DENSIDAD NATURAL CON MUESTRA DIRECTA (INALTERADA)

	DESCRIPCION	Calicata C-2		
	Profundidad	A 1.00 m.		
1	Peso del Molde de Aluminio	65.25	28	
2	Peso de bolsa (gr)	5.00	IED L	
3	Peso de Molde + Bolsa + Suelo (gr)	650.35		
4	Peso de muestra	580.10	8	
5	Diametro de Molde de Aluminio	5.05	GP /	
6	Altura de Molde de Aluminio	15.38	(69)	
7	Volumen	308.06	<u>Co</u>	
8	Densidad húmeda (gr/cm³)	1.88		

CONTENIDO DE HUMEDAD (ASTM D-2216-80)

9	Peso de la tara (gr)	29.61		
10	Peso tara + suelo húmedo (gr)	196.24		
11	Peso tara + suelo seco (gr)	193.64		
12	Peso del agua (gr)	2.60		
13	Peso del suelo seco (gr)	164.03		
14	Contenido de humedad (%)	1.59		
15	Densidad seca (gr/cm³)	1.854		
16	Promedio Densidad seca (gr/cm³)	1.854		

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alguiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL PROYECTO:

CASERÍO DE SANTA MARIA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021

SANTA MARIA DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL CASERÍO:

FECHA : JUNIO DE 2021

REGIÓN: CAJAMARCA

CALICATA: C-2

MUESTRA:

NAPA FREATICA: NO PRESENTA

DENSIDAD MAXIMA Y MINIMA (ASTM D4254; ASTM D4253)

DENSIDAD MINIMA							
Nº de ensayo	T	311	12/00				
Diametro del molde	(cm.)	10.202	-16/				
Altura del molde	(cm.)	11.705	-	1/2			
Peso del molde	(g.)	4030.000					
Peso del molde + suelo	(g.)	5753.000					
Peso del suelo	(g.)	1723.000	V	3/			
Volumen del molde	(cm3)	956.824					
Densidad	(g/cm3)	1.801	14 14	40			
Densidad Minima	(g/cm3)	1,801					

	DEN	SIDAD MAXI	IMA	
Nº de ensayo	10	1	17	
Diametro del molde	(cm.)	10.202	Maria de la companya della companya	
Altura del molde	(cm.)	11.705		60
Peso del molde	(g.)	4030.000	-0	9 /
Peso del molde + suelo	(g.)	5925.000	San Call	
Peso del suelo	(g.)	1895.000		
Volumen del molde	(cm3)	956.824		
Densidad	(g/cm3)	1.981		
Densidad Maxima	(g/cm3)	1.981		

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorio de Ensayos de Control de Calidad

CALCULO DE CAPACIDAD PORTANTE DEL TERRENO

PROYECTO:	CASERÍO DE SANTA	MARIA, DISTRITO	DE SAN MIGUEL, PRO	CIMIENTO DE AGUA POTABLE EN EL DVINCIA DE SAN MIGUEL, REGIÓN ITARIA DE LA POBLACIÓN - 2021
CASERÍO:	SANTA MARIA	DISTRITO:	SAN MIGUEL	PROVINCIA: SAN MIGUEL
FECHA	JUNIO DE 2021			REGIÓN: CAJAMARCA
CALICATA:	C-2			
MUESTRA:	M-F	NA	PA FREATICA : NO PI	RESENTA

CALICATA Nº 01

Cr = (Ydnat-Ydmin)/(Ydmax-Ydmin) x (Ydmax/Ydnat)x100

Ydnat = 1.85 gr/cm³ Ydmin = 1.80 gr/cm³ Ydmax = 1.98 gr/cm³

Cr = 31.48%

$$\emptyset = 30 + 0.15 \text{ Cr}$$

= 34.72°

$q_{ad} = 1/F.S(\gamma.Df.N'q + 0.5.\gamma.B.N'y)$

qad = Capacidad admisible de carga límite en Kg/cm².

γ = Peso volumétrico del suelo en Kg/cm³.

Df = Profundidad de desplante de la cimentación en centímetros (mínimo).

B = Ancho de la zapata cuadrada, o dimensión menor de la zapata rectangular en centímetros (minimo).

N'q=- Coeficiente de capacidad de carga relativo a la sobrecarga, por corte local

V'y= Coeficiente de capacidad de carga relativo al peso volumétrico del suelo, por corte local

F.S = Factor de Seguridad

DATOS:

γ = 1.85 gr/cm³
Df = 100 cm.
B = 300 cm.
N'q= 14.31
N'y= 9.88
N'c= 24.77
c = 0.0000 kg/cm2
F S = 3

 $q_{ad} = 1/F.S(c.N'c+\gamma.Df.N'q + 0.5.\gamma.B.N'y)$

qad = 1.800 kg/cm2

Urb. Las Gardenias Mz.K5- Lote 16 - Nuevo Chimbote - Telef. 043-606058 - Celular: 994267746 RPM #943076777

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alguiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

CALCULO DE LA CAPACIDAD PORTANTE DEL TERRENO

PROYECTO: EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERIO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.

UBICACION : CASERÍO SANTA MARÍA - DISTRITO DE SAN MIGUEL - PROVINCIA SAN MIGUEL REGION CAJAMARCA

FECHA: JUNIO DE 2021

CALICATA: C-2

NIV. FREATICO: NO PRESENTA

Capacidad Admisible de Carga por Limitacion de Estuerzo Cortante

Donde:

qc = Capacidad ultima de carga

qad = Capacidad admisible de carga
Fc = Factor de seguridad
γ = Peso específico Total

B = Ancho de Zapata en m.

Df = Profundidad de Cimentacion en m.

C = Cohesion

φ = Angulo de friccion Interna

 $q_c = 1.3c.N'_c + \gamma.D_f.N'_q + 0.4\gamma.B.N'\gamma$

 $= 1.85 \text{ gr/cm}^3$

 ϕ = 34.7 ° N'q = 14.3

N'q = 14.3 N'c = 24.8 $N'\gamma = 9.9$

 $N\gamma = 9.9$ C = 0.0000 kg/cm2Fc = 3.00

qad = Capacidad. "B" ANCHO DE ZAPATA Admisible Kg/cm² 1.0 m. 1.5 m. 2.0 m. 2.5 m. 3.0 m. 3.5 m. 4.0 m. 4.5 m. 6.0 m 0.77 0.90 1.02 1.14 1.26 1.38 1.51 1,63 1,56 1,81 0.8 m 0.95 1,07 1,20 1,32 1,44 1,68 PROF. de 1,37 1,98 1.0 m 1,25 1.62 1.3 m. 1.39 1.52 1.64 1.76 1.88 2.00 2.13 2,25 1.5 m 1.57 1.69 1.81 1.94 2.42

> POL RAM AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REC. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

CALCULO DEL ASENTAMIENTO DE CIMENTACIONES

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERIO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CA-JAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021 PROYECTO:

UBICACION : CASERÍO SANTA MARÍA - DISTRITO DE SAN MIGUEL - PROVINCIA SAN MIGUEL REGION CAJAMARCA

FECHA: JUNIO DE 2021

CALICATA: C-2

NIV. FREATICO: NO PRESENTA

CALCULO DE ASENTAMIENTO PARA ZAPATAS CUADRADAS

Donde:

lw Df

Asentamiento Total en cm.

qad E Capacidad admisible de carga en Ton/m²

Modulo de elasticidad Modulo de Poisson В

Ancho de Zapata en m. factor de Influencia df = =

 $S = \frac{qad \cdot B(1 - \mu^2)}{r} \cdot Iw$ Profundidad

Si: = 0.20 = 5000 Ton/m²

= 95 cm/m = 1.5 m.

"B" ANCHO DE ZAPATA
 1.0 m.
 1.5 m.
 2.0 m.
 2.5 m.
 3.0 m.
 3.5 m.
 4.0 m.
 4.5 m.

 1.570
 1.692
 1.814
 1.936
 2.059
 2.181
 2.303
 2.425
 Asentamiento qad

POL RAIN AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Urb. Las Gardenias Mz.K5- Lote 16 - Nuevo Chimbote - Telef. 043-606058 - Celular: 994267746 RPM #943076777

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

PROYECTO: "EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO SAN MIGUEL, PROVINCIA PROVINCIA SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021."

PANEL FOTOGRAFICO DEL ESTUDIO

POL RATA AGUILAR OLGUIN ING. CIVIL - CIP. N° 81029 CONSULTOR - REG. C4009

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

PANEL FOTOGRAFICO

UBICACIÓN DE CALICATAS EN EL CASERÍO SANTA MARÍA

PROYECTO: "EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA

POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO SAN MIGUEL, PROVINCIA SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITÁRIA DE LA 'POBLACIÓN - 2021."

SOLICITANTE: BARRIONUEVO FLORES, JOSSELY ADDERLY

FECHA: JUNIO DE 2021.

EXCAVACION Y MUESTREO DE SUELOS:

CALICATA Nº 01 – CAPTACIÓN

FOTO 01: SE MUESTRA LA UBICACIÓN DE LA EXCAVACIÓN DE LA CALICATA C-01.

CALICATA Nº 02 RESERVORIO

FOTO 02: SE MUESTRA LA UBICACIÓN DE LA EXCAVACIÓN DE LA CALICATA C-02.

UBICACIÓN DE CALICATA SEGÚN PLANO DE DISTONSULTON: REG. CA000 CASERÍO DE SANTA MARÍA - REGIÓN CAJAMARGA

Urb. Las Gardenias Mz.K5- Lote 16 - Nuevo Chimbote - Telef. 043-606058 - Celular: 994267746 RPM #943076777

Código Ejecutor Obras: 12776

R.U.C. 20445586537

Ejecución de Obras Civiles, Metal Mecánicas, Hidráulicas, viales, portuarias y todo tipo de construcciones afines. Alquiler y/o Venta de Bienes en General – Prestación de Servicios Generales – Asesoría y Consultoría de obras. Suministro de Maquinaria, Equipos, Herramientas y Materiales en general – Laboratorío de Ensayos de Control de Calidad

PANEL FOTOGRAFICO

UBICACIÓN DE CALICATAS EN EL CASERÍO SANTA MARÍA

PROYECTO: "EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA

POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO SAN MIGUEL, PROVINCIA SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITÁRIA DE LA 'POBLACIÓN - 2021."

SOLICITANTE: BARRIONUEVO FLORES, JOSSELY ADDERLY

FECHA: JUNIO DE 2021.

EXCAVACION Y MUESTREO DE SUELOS:

CALICATA Nº 03 RED DE DISTRIBUCIÓN - 1

FOTO 03: SE OBSERVA LA UBICACIÓN DE LA EXCAVACIÓN DE LA CALICATA C-03.

CALICATA Nº 04 RED DE DISTRIBUCIÓN - 2

FOTO 04: SE OBSERVA LA UBICACIÓN DE LA EXCAVACIÓN DE LA CALICATA C-04

UBICACIÓN DE CALICATA SEGÚN PLANO DE DISTRINGUENTE A PUBLAR OLGUN GONSULTOR - REG. CA009 CASERÍO DE SANTA MARÍA - REGIÓN CAJAMARCA

Urb. Las Gardenias Mz.K5- Lote 16 - Nuevo Chimbote - Telef. 043-606058 - Celular: 994267746 RPM #943076777

Anexo 04: Encuestas

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021. BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY **ENCUESTA** Tesista: NGENIERIA EN MGTR. ING. LEÓN DE LOS RÍOS, GONZALO MIGUEL Asesor: RECOLECCIÓN DE INFORMACIÓN DE LA POBLACIÓN 1. Miembro de familia encuestada Padre \mathbf{X} Hijo (a) \mathbf{X} Madre X Otros 2. Edad del encuestado Entre 18 años - 25 años Entre 31 años - 40 años X Entre 26 años - 30 años Entre 41 años - 60 años X 3. Numero de integrantes en su vivienda Expecifique. Mujeres Niños (a). 2 1 Varones 1 Total de integrantes 4 RECOLECCIÓN DE INFORMACIÓN DE LAS CARACTERISTICAS DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE 4. ¿Cuál es el tipo de fuente de donde captan el agua? Fuente subterranea Fuente pluvial Fuente Superficial No existe ninguna fuente 5. ¿La cantidad de agua tiene suficiente volumen de agua para abaster a su caserío? SI NO 6. ¿El afloramiento del agua en la fuente tiene una pendiente adecuada? SINO 7. ¿Cada que tiempo hacen mantenimiento a su sistema de agua potable? Una vez al año X Tres veces al año Dos veces al año \mathbf{X} No se hace mantenimiento 8. ¿ El sistema de abastecimiento de agua potable actual conecta a su vivienda? NO SI 9. ¿Con que frecuencia dispone de agua potable? Permanente \mathbf{X} Una vez al día Por horas Una o dos veces a la semana 10. ¿Qué tipos de actividades emplea el suministro de agua potable que recibe? Domestica Ganaderia Agricola Industrial

SONZAL EDUANDO FRANCE CERNA

-- CENIE NO CIVIL

ALG. COLEGIO DE INGENERAS IN 7352
REGISTRO DE SOMBOLIO IN PORMA

11. ¿Cómo calificas la continuidad del agua que llega a tu vivienda?							
Bueno		Malo					
Regular	X	Muy malo					
12. ¿El sistema de abastecimiento de agua potable abastece a todo el caserío?							
SI	X	NO					
13. ¿Cómo calificas la cobertura del sistema de agua potable ?							
Bueno	X	Malo					
Regular		Muy malo					
14. ¿Qué caracteristicas presenta el suministro de agua que llega a su vivienda ?							
Agua clara	X	Agua con elementos extraños	X				
Agua turbia	X	Otros					
15. ¿Según dichas caracteristicas el sabor, color y olor del agua es aceptable ?							
SI		Poco	X				
NO	X						
16. ¿ En el reservorio actual existe algun sistema de cloración ?							
SI		NO	X				
17. ¿ En la linea de conducción existen fugas, perjudicando la calidad de agua ?							
SI	X	NO	X				
18. ¿ En la linea de aducción existen fugas,perjudicando la calidad de agua ?							
SI	X	NO	X				
19. ¿ En la red de distribución existen fugas,perjudicando la calidad de agua ?							
SI	X	NO					
20. ¿Cómo calificas la calidad del agua de tu sistema de agua potable?							
Bueno		Malo	X				
Regular		Muy malo	X				
21. ¿Qué enfermedades se presentan mas a menudo en su caserío ?							
Tifoidea		Infección estomacal	X				
Anemia	X	Diarrea					
22. ¿ Crees que se debe mejorar el sistema de abastecimiento de agua potable ?							
SI	X	NO					

23. ¿ Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la cobertura					
del servicio?					
SI	X NO				
24. ¿ Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la cantidad					
del servicio?					
SI	X NO				
25. ¿ Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la					
contunidad del servicio?					
SI	X NO				
26. ¿ Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la calidad					
del servicio?					
SI	X NO				

Anexo 05: Gráficos de encuesta y estudio físico, químico y bacteriológico del agua

Gráfico 21. Persona encontrada en la vivienda

Los resultados obtenidos en la pregunta N° 1 fueron que dentro de las 30 viviendas que conforma el caserío Santa María se logró encuestar a cada representante de hogar divido por 12 padres de familia, 15 madres de familia y 3 hijos (as), tal y como nos muestra el gráfico N° 21.

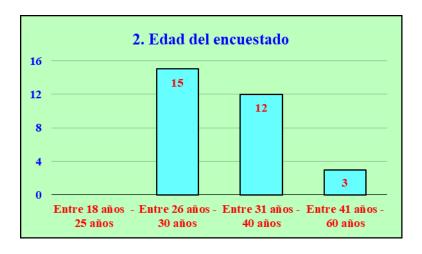


Gráfico 22. Edad del encuestado

Interpretación:

Los resultados obtenidos en la pregunta Nº 2 la edad de las personas encuestadas varía desde 15 personas que tienen entre 26 a 30 años, 12 personas entre 31 a 40 años y 3 personas entre 41 a 60 años de edad, dicha interpretación se muestra en el gráfico Nº 22.

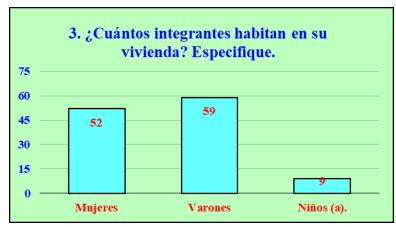


Gráfico 23. ¿Cuántos integrantes habitan en su vivienda?

Los resultados obtenidos en la pregunta Nº 3 fueron que el caserío Santa María está constituido por 52 personas que son mujeres, 59 personas que son varones y 9 personas que son niños(a), sumando un total de 120 personas que habitan en el caserío de Santa María el cual nos muestra el gráfico Nº 23.

Gráfico 24. ¿Cuál es el tipo de fuente de donde captan el agua?

Interpretación:

Los resultados obtenidos en la pregunta Nº 4 fueron que los 30 representantes de hogar que tiene el caserío Santa María conocen el tipo de fuente donde captan el agua potable para su consumo tal y como nos muestra el gráfico Nº 24.



Gráfico 25. ¿La cantidad de agua tiene suficiente volumen de agua para abastecer a su caserío?

Los resultados obtenidos en la pregunta Nº 5 fueron que 30 representantes de hogar dicen que la fuente de captación tiene suficiente cantidad para abastecer a su caserío, tal y como nos muestra el gráfico Nº 25.

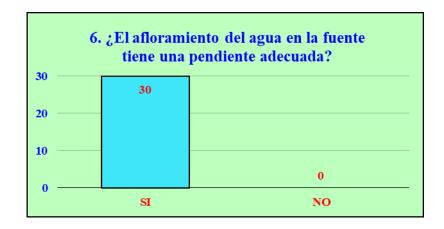
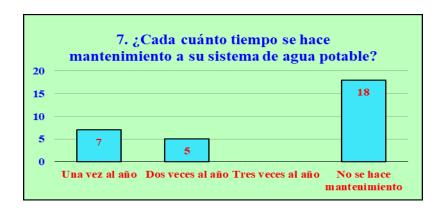
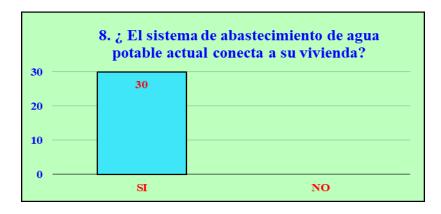



Gráfico 26. ¿El afloramiento del agua en la fuente tiene una pendiente adecuada?


Interpretación:

Los resultados obtenidos en la pregunta $N^{\rm o}$ 6 indicó que 30 representantes de hogar saben que la pendiente donde aflora el agua a captar para su consumo es la adecuada, esto se muestra en el gráfico $N^{\rm o}$ 26.

Gráfico 27. ¿Cada cuánto tiempo se hace mantenimiento a su sistema de agua potable?

Los resultados obtenidos en la pregunta Nº 7 indicó que 7 representantes de hogar dicen que se una vez al año se hace mantenimiento a su sistema mientras que 5 indican que se hace mantenimiento dos veces al año, y 18 indican que no sea mantenimiento a su sistema de agua potable, esto se muestra en el gráfico Nº 27.

Gráfico 28. ¿El sistema de abastecimiento de agua potable llega abastecer a su vivienda?

Interpretación:

Los resultados obtenidos en la pregunta Nº 8 indicó que 30 representantes de hogar dicen que el sistema de abastecimiento de agua potable abastece a su vivienda tal y como se muestra en el gráfico Nº 28.

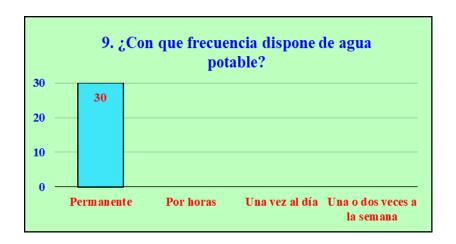


Gráfico 29. ¿Con que frecuencia dispone de agua potable?

Los resultados obtenidos en la pregunta $N^{\rm o}$ 9 nos dice que 30 representantes de hogar tienen frecuencia permanente de la disposición de agua potable, tal y como nos muestra el gráfico $N^{\rm o}$ 29.

Gráfico 30. ¿En qué actividades emplea el agua potable?

Interpretación:

Los resultados obtenidos en la pregunta Nº 10 indicó que 24 representantes de hogar usan el agua en consumo doméstico y ganadero, como nos muestra el gráfico Nº 30.

Gráfico 31. ¿Cómo calificarías la continuidad del agua que llega a tu vivienda?

Los resultados obtenidos en la pregunta Nº 11 indicó que 30 representantes de hogar dicen que la continuidad del agua potable que llega a su vivienda es regular mientras que 5 representantes mencionan que es malo, tal y como indica el grafico Nº 31.

Gráfico 32. ¿El sistema de abastecimiento de agua potable abastece a todo el caserío?

Interpretación:

Los resultados obtenidos en la pregunta Nº 12 indicó que 30 representantes de hogar conocen que el sistema de abastecimiento de agua potable en el caserío de Santa María abastece a todas las viviendas tal y cual nos muestra el gráfico Nº 32.

Gráfico 33. ¿Cómo calificas la cobertura del sistema de agua potable?

Los resultados obtenidos en la pregunta Nº 13 indicó que 30 representantes de hogar califican como regular la cobertura del sistema de agua potable del caserío de Santa María tal y cual nos muestra el grafico Nº 33.

Gráfico 34. ¿Qué características tiene el agua que llega a su vivienda?

Interpretación:

Los resultados obtenidos en la pregunta Nº 14 indicó que 25 representantes de hogar dicen que el agua que llega a su vivienda es agua turbia mientras que 5 nos indican que el agua que llega a su vivienda tiene elementos extraños tal como nos muestra el gráfico Nº 34.

Gráfico 35. ¿Según sus características el sabor, color y olor del agua es aceptable?

Los resultados obtenidos en la pregunta Nº 15 indicó que 28 representantes de hogar dicen que las características del agua como el sabor, color y olor no es aceptable y 2 nos indican que es poco aceptable las características del agua, tal como nos muestra el gráfico Nº 35.

Gráfico 36. ¿En su reservorio existe algún sistema de cloración?

Interpretación:

Los resultados obtenidos en la pregunta Nº 16 nos muestra que 30 representantes de hogar dicen que no existe ningún sistema de cloración en su reservorio, tal como nos indica el gráfico Nº 36.

Gráfico 37. ¿En la línea de conducción existen fugas perjudicando la calidad de agua?

Los resultados obtenidos en la pregunta Nº 17 indica que 27 representantes de hogar conocen que existen fugas de agua en la línea de conducción, mientras que 3 mencionan que no conocen, esto se muestra en el gráfico Nº 37.

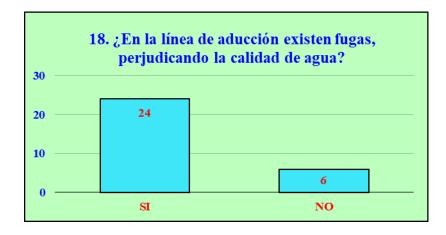
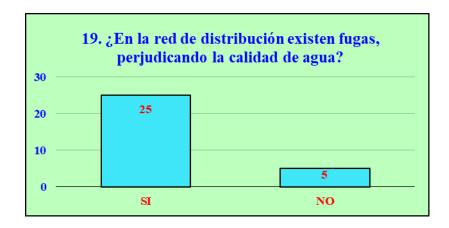



Gráfico 38. ¿En la línea de aducción existen fugas, perjudicando la calidad de agua?

Interpretación:

Los resultados obtenidos en la pregunta Nº 18 indica que 24 representantes de hogar conocen que existen fugas de agua en la línea de aducción, mientras que 6 nos mencionan que no conocen, esto se muestra en el gráfico Nº 38.

Gráfico 39. ¿En la red de distribución existen fugas, perjudicando la calidad de agua?

Los resultados obtenidos en la pregunta Nº 19 indica que 25 representantes de hogar conocen que existen fugas de agua en la red de distribución, mientras que 5 mencionan que no conocen fugas en la red, esto se muestra en el gráfico Nº 39.

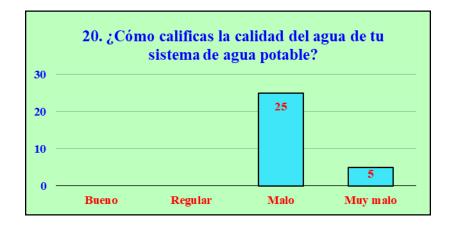


Gráfico 40. ¿Cómo calificas la calidad del agua de tu sistema de agua potable?

Interpretación:

Los resultados obtenidos en la pregunta Nº 20 indica que 25 representantes de hogar califican la calidad del agua de su sistema de abastecimiento de agua potable como malo, mientras que 5 representantes de hogar indican que la calidad de agua es muy mala, esto se muestra en el gráfico Nº 40.

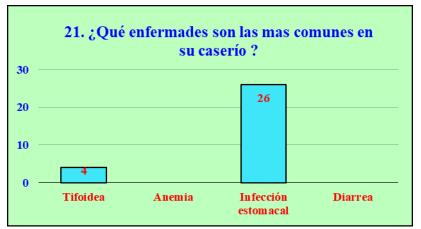


Gráfico 41. ¿Qué enfermedades son las más comunes en su caserío?

Los resultados obtenidos en la pregunta $N^{\rm o}$ 21 nos indican que 4 representantes de hogar dicen que la tifoidea es la enfermedad más común en su caserío mientras que 26 indican que la enfermedad más común es la infección estomacal, tal y como indica el gráfico $N^{\rm o}$ 41.

Gráfico 42. ¿Crees que se debe mejorar el sistema de abastecimiento de agua potable?

Interpretación:

Los resultados obtenidos en la pregunta Nº 22 indica que 30 representantes de hogar creen que se debe mejorar el sistema de abastecimiento de agua potable del caserío Santa María, esto se muestra en el gráfico Nº 42.



Gráfico 43. ¿Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la cobertura del servicio?

Los resultados obtenidos en la pregunta Nº 23 indica que 30 representantes de hogar mencionan que con el mejoramiento del sistema mejorará la cobertura del servicio del caserío Santa María, esto se muestra en el gráfico Nº 43.

Gráfico 44. ¿Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la cantidad del servicio?

Interpretación:

Los resultados obtenidos en la pregunta Nº 24 indica que 30 representantes de hogar mencionan que con el mejoramiento del sistema mejorará la cantidad del servicio del caserío Santa María, esto se muestra en el gráfico Nº 44.

Gráfico 45. ¿Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la continuidad del servicio?

Los resultados obtenidos en la pregunta Nº 25 indica que 30 representantes de hogar mencionan que con el mejoramiento del sistema mejorará la continuidad del servicio del caserío Santa María, esto se muestra en el gráfico Nº 45.

Gráfico 46. ¿Con el mejoramiento del sistema de abastecimiento de agua potable mejorará la calidad del servicio?

Interpretación:

Los resultados obtenidos en la pregunta Nº 26 indica que 30 representantes de hogar mencionan que con el mejoramiento del sistema mejorará la calidad del servicio del caserío Santa Mar, esto se muestra en el gráfico Nº 46.

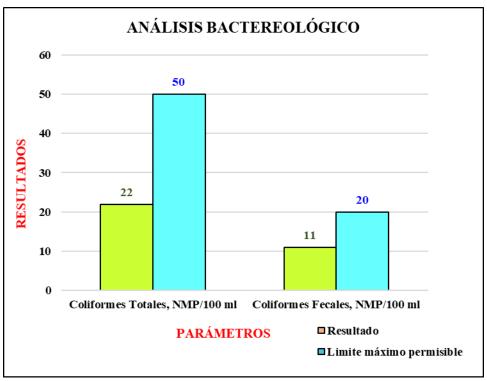


Gráfico 47. Análisis bacteriológico del agua

Los resultados obtenidos en el análisis bacteriológico del agua cumplen con los límites máximos permisibles reglamentados por el Decreto Supremo N° 0004 - 2017 - Ministerio del Ambiente el cual nos indica que los Coliformes totales deben ser > 50 NMP/100 ml y los Coliformes fecales deben ser menor a 20 NM/100 ml tal y como nos muestra en el gráfico N° 47.

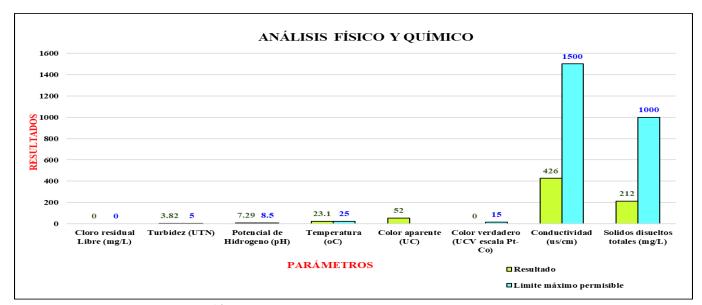


Gráfico 48. Análisis físico y químico del agua - 1

Los resultados obtenidos en el análisis bacteriológico del agua cumplen con los límites máximos permisibles reglamentados por el Decreto Supremo Nº 0004 – 2017 – Ministerio del Ambiente el cual nos indica que la turbidez que debe tener el agua debe ser menor a 5 UTN, a la vez el PH debe ser menor a 8.5, la temperatura no debe ser mayor a 25 °C, el color verdadero debe ser menor a 15 UCV escala Pt – Con en tanto a conductividad deber ser menor a 1500 y los sólidos disueltos que puede presentarse en el agua no debe ser menor a 1000 mg/L tal y cual nos indica el grafico Nº 48.

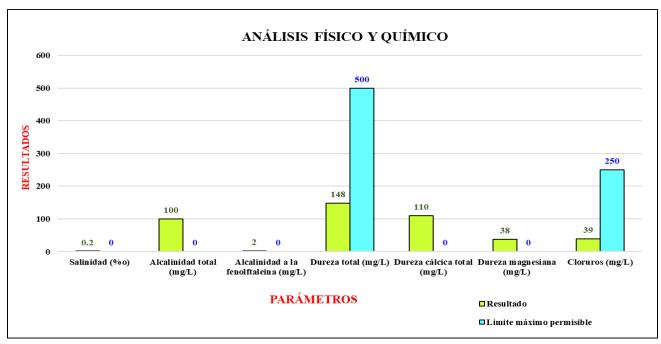


Gráfico 49. Análisis físico y químico del agua - 2

Los resultados obtenidos en el análisis bacteriológico del agua cumplen con los límites máximos permisibles reglamentados por el Decreto Supremo Nº 0004 – 2017 – Ministerio del Ambiente, teniendo como resultados un 0.2 º/ºº de salinidad, 100 mg/L de alcalinidad total, 2 mg/L, 148 mg/L en dureza total dividíos en 110 mg/L en dureza cálcica y 38 mg/L en dureza magnesiana, en cuanto a cloruros se obtuvo 39 mg/L tal y como nos muestra el gráfico Nº 49.

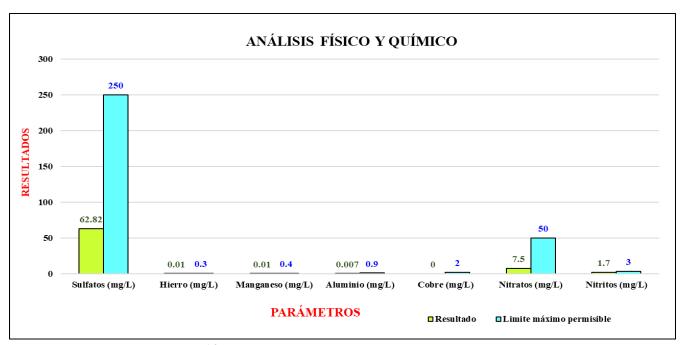


Gráfico 50. Análisis físico y químico del agua - 3

Los resultados obtenidos en el análisis bacteriológico del agua cumplen con los límites máximos permisibles reglamentados por el Decreto Supremo Nº 0004 – 2017 – Ministerio del Ambiente, teniendo como resultados que el agua ensaya tiene 62.52 mg/L de sulfatos, 0.01 mg/L de hierro, 0.01 mg/L de manganeso, 0.007 mg/L de aluminio, 0 mg/L de cobre, 7.5 mg/L de nitratos y 1.7 mg/L de nitritos tal y como nos muestra el gráfico Nº 49.

Anexo 06: Elaboración de fichas para la evaluación del sistema de abastecimiento de agua potable mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 01: Evaluación de la cámara de captación existente en el caserío Santa María

C	ASER	IO DI	ESA	NTA M	EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN – 2021. TESISTA BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY												
	MICDIA		7	TESIS.	ГА	В	ACH.	BA	RRIO	NUEV	O FL	ORI	ES, JO)SS	ELY	ADDE	RLY
	NIERIA CHA		,	ASESC)R	M	GTR	. IN	G. LEĆ	N DI	E LOS	S RÍO	OS, G	ON'	ZAL(O MIG	UEL
							A	. CA	PTAC	IÓN							
			1. ¿	Con cu	ıantas	cap	tacion		uenta e		ema d	de ag	ua po	tabl	e?		
2.	Segi	ín el	nun	nero de	e capt	acioi	ies, c		aptació e <mark>struct</mark>		ıe nta	con	pe rin	ıétr	ico y	cual es	el .
material de construcción de la captación Tiene cerco perimétrico Material de construccción de la captación																	
Tiene cerco perimétrico Material d												onst	ruccci	ón (de la	captac	ión
No tiene Si tiene										Co	oncreto	О			A	rtesana	l
	X										X						
				P	untaj	e P2	$=\frac{1}{P2}$	= [1								
			3. I)e te rm	inar y	des	cribir	el e	stado d	le la e	strcu	tura	''capt	ació	n''		
			I	Estados	de los	con	pleme	ntos	que tie					ión"			
B = Bu	eno/si	4 pu	ntos	<i>R</i> =	Regule		_		M = Malo 2 puntos No cuenta/no 1 punto								
					_	Е	stado	actua	tual de la estructura								
			3.1	. Válvi					3.2.a. Tapa sanitaria 1 (filtro)								
I	No ti	ene			Sic	cuent	ta		No	Seg		Co	ncret		cuen	nta Meta	1
					В		N	<u> </u>	tiene	No	Si	В	R	M	В	R	M
							X									X	
3.2.b	. Tap	a sar	itar	ia 2 (c	amara	rec	olecto	<u>ra)</u>		3.2.c.	Tapa	sani	taria :	3 (c	aja va	alvulas	<u>)</u>
No	Seg	uro		~	Si cu				No	Seg	uro				cuen		_
				Concreto Metal			tie ne	No	Si		ncret	M	В	Meta			
tie ne	No	Si			1/1	D						В	R	IV	n n		
tie ne		Si	В	R	M	В	R	M			v						M
	X		В	R			X	IVI	3,4.h.	Tube	X eria de	e lim		1,1		X	
	X	Si	В	R	M 5.4.a. (X	IVI	3.4.b.	Tube		e lim			3.4.0		de
	X		В	R	.4.a. (Cana Si cu	X		3.4.b. No tiene		eria de ebose Si cu	enta		ľ	3.4.0	X c. Dado otecció	de

Cálculo de la evaluación de la estructura "captación"											
Valvulas (P3.1) = 2 puntos	Estrcutura (P3.3) = 2 puntos										
Tapas sanitarias (P3.2)											
$P3.2.a = \frac{(P.tapa + P.seguro)}{2} = 3$	+ 1 = 2										
$P3.2. a = \frac{(P. tapa + P. seguro)}{2} = 3$	seguro										
$P3.2. c = \frac{(P.tapa + P.seguro)}{2} = 3$	seguro = 3 7										
$P17.2 = \frac{(a) + (b) + (c)}{3} = \frac{7 \text{ pum}}{3}$,										
Accesorios (P3.4)											
or ner centering	= 2 +										
or nor rudding at maping y reddige	= 2										
3.4.c. Dado de protección $=$ $\frac{2}{6}$											
$P3.4 = \frac{(a) + (b) + (c)}{3} = \frac{6 \text{ pun}}{3}$	tos = 2 puntos										
Punt	aje de P37										
Puntaje $P3 = \frac{P3.1 + p3.2 + P3.3 + P3.4}{4}$	2.04 puntos										
4. Identificación de peligros que exi	sten en la fuene y estructura de captación										
No presenta X	Huayco										
Crecidas o avenidas	Hundimiento de terreno										
Inundaciones	Deslizamiento										
Desprendimiento de rocas	Contaminación de la fuente de agua										
5. Clase de tuberia encontrad	a en los accesorios de la estructura										
Clase de tubería 5	Clase de tuberia 10										
Clase de tubería 7.5	Clase de tuberia 15										
El puntaje de la estructura ''captació	on" esta dado por el promedio de P2 y P3										
$CAPTACIÓN = \frac{P2 + P3}{2} = 1.52$											
Captación	n = 1.52 puntos										
Fuente: Flaboración de ficha mediante l	as guías del Sistema de Información Regional										

Fuente: Elaboración de ficha mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 02: Evaluación de la línea de conducción existente en el caserío Santa María

EN EL CAS	SERÍO DE SANT	A MARÍA, DI CA, PARA SU	STRITO DE SAN MIGUE	IENTO DE AGUA POTABLE L, PROVINCIA DE SAN ONDICIÓN SANITARIA DE							
NGENIERIA	TESISTA	васн.	BARRIONUEVO FLORE	S, JOSSELY ADDERLY							
FICHA 02	ASESOR	MGTR.	ING. LEÓN DE LOS RÍO	S, GONZALO MIGUEL							
		B. LÍNEA	DE CONDUCCIÓN								
	6. ¿El sisten	na actual cuent	a con una tubería de cond	lucción?							
	Si	X	No	Pase a la siguiente ficha							
	7. ¿En qu	ie estado se en	cuentra actualmente la tub	pería?							
Totalme	nte enterrada		Inoperativa								
Enterra e	en diversos tramos	X	Colapsada								
8. ¿Qué clase de tubería tiene la línea de conducción actual?											
Clase de tubería 5 Clase de tuberia 10											
Clase de	tubería 7.5	X	Clase de tuberia	15							
	9. ¿Exis	sten pases o cru	ices aeros en algunos tram	10s?							
	Si		No	(Pasar a la p.11)							
	10. ¿En qué	estado se encu	entra el cruce o pase aérec	actual?							
	Bueno		Malo								
	Regular		Colapsado								
El punt	aje en la pregunta	a 7 sera:	El puntaje en	la pregunta 10 sera:							
Totalmente ent	errada	= 4 puntos	Bueno	= 4 puntos							
Enterra en dive	ersos tramos	= 3 puntos	Regular	= 3 puntos							
Inoperativa		= 2 puntos	Malo	= 2 puntos							
Colapsada		= 1 puntos	Colapsado	= 1 puntos							
		11. Identif	icación de peligros								
No prese	enta	X	Huayco								
Crecidas	o avenidas		Hundimiento de terreno								
Inundaci	ones		Deslizamiento								
Desprend	dimiento de rocas		Contaminación de la fuente de agua								

12. Descripción del estado de las válvulas en la línea de conducción, si no tiene especifique: si necesita o no necesita													
Descripción		Si tiene		No tiene									
Descripcion	Bueno	Mal	Cantidad	Necesita	No necesita								
12.1 Válvulas de aire				X									
12.2 Válvulas de purga				X									
El puntaje en la pregunta 12 sera:													
Bueno = 4 puntos Necesita = 1 punto													
Mal = 3 puntos													
Cantidad = 2 puntos													
Cálculo de la	evaluación	de las ''v	alvulas										
12.1 Válvulas de aire	= 1	1 +											
12.2 Válvulas de purga	= 1	1											
$P12 = \frac{12.1 + 12.2}{2} = \frac{2}{2}$	puntos 2	2 = 1.	0 puntos										
Cálculo de la evaluación	en la estru	ıctura ''line	a de condu	cción''									
$LINEA DE CONDUCCIÓN = \frac{P7 + 1}{\#respu}$	- P10 + P12 uestas Valid	las =	2.00										
linea de	conducción	= 2.0 punt	tos										

Fuente: Elaboración de ficha mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 03: Evaluación del reservorio de almacenamiento existente en el caserío Santa María

	OTA	BLI	E EN DE SA	EL C	CASEF	RÍO I L, R	DE SA EGIÓ	ANTA ON CA	ISTEN MAR AJAM DE LA	RÍA, D ARC	OISTE A, PA	RITO RA S	DE SA	AN I	MIG	UEL,	
NGENIE		4	T	ESIST	ГА	В	ACH.	BAF	RRION	IUEV	O FL	ORES	s, jos	SSE	LY A	DDEI	RLY
FICI		3	A	SESC	R	M	GTR	. ING	. LEÓ	N DE	LOS	RÍOS	s, GO	NZA	ALO	MIGU	JEL
1101	III U			C	. RES	ERV	ORIC) DE	ALM	ACEN	AMI	ENT()				
		13.	¿El s	sisten	na act	ual c	uenta	con t	ın res	ervori	o de a	almac	e nami	ient	0?		
			Si				X			No					Pase a	la sigui	ente ficha
				14. ¿	De qu	e tip	o es e	el res	rvorio	actua	l del s	sisten	na?				
		(Circula	ır						Recta	ngulaı	•	X				
				15.	¿Cuái	nto e	s el v	olum	en actı	ual de	l rese	rvori	0?				
	Vo	lume	n de 1	m³ a s	$5m^3$				Volu	ımen d	le 10m	n³ a 15	6 m 3		X		
	Vo	lumei	n de 5	m ³ a	10m ³]	Volu	ımen d	le 15m	o ³ a 20)m ³				
Volumen de 5m³ a 10m³ Volumen de 15m³ a 20m³ 6. Cuenta con cerco perimétrico que protega la estructura. Indicar el material con que se c												se co	nstrux				
Tiene cerco perimetrico que protega la estructura. Indicar el material con que se construy Material de construcción del reservorio																	
No tie					Si tien		punto	s)	Concreto Artesanal								
	X	•				- ()					X						
					1	Punt	aje P1	16 =	1.00 punto								
	17. E	valua	ar los	comp	pleme	ntos	y acc	esori	os enc	ontrad	dos ei	ı el re	servo	rio	exist	tente	
				Estad	los de l	los co	ompler	nento	s de la	estruct	tura "r	eservo	orio"				
B = Bue	eno/si	4 pu	ntos	R = R	Regular	3 p	untos		M = Malo 2 puntos No cuenta/no 1						punto		
	<u>17</u>	.1.a.	Tapa	sanit	aria 1	(TA)			<u>1′</u>	7.1.b.	Tapa	sanit	aria	1 (C	<u>V)</u>	
No	Seg	uro			Si cu	enta			No	Seg	uro			Si c	uent		
tiene	No	Si	B	oncre R	to M	В	Meta R	l M	tie ne	No	Si	Co B	ncre to	o M	В	Meta R	M
	X		ь	I	IVI	В	K	X	X			ь	IX	171	D	K	IVI
	71							71	74					Ш			
	D	escri	pción	1						E	stado	actua	ıl				
			F	-		N	o cue	nta	1	Bueno)	Re	egular	•		Malo)
17.2			orio/ nami	_	ue de								X				
17.3	Cą	ja de	valv	ulas												X	
17.4	Ca	nas ti	lla										X				
17.5 Tuberia de limpia y rebose												X					
17.6	Tu	bo de	e ven	tilacio	ón		X										

17.7	Hipoclorador				X								
17.8	Valvula flotadora			X									
17.9	Valvula de entrada			X									
17.10	Valvula de salida			X									
17.11	Valvula de desague			X									
27.12	Nivel estativo			X									
17.13	Dado de protección				X								
17.14	Cloración por goteo			X									
17.15	Grifo de enjuague				X								
	Cálculo de la evaluación de la estructura "reservorio"												
Tapas	sanitarias (P28.1)												
P17.1. $a = \frac{(P. tapa + P. seguro)}{2} = \begin{bmatrix} tapa & seguro \\ 2 & + \end{bmatrix}$													
P1	$7.1.a = \frac{(P.tapa + P.seguro)}{2}$			=	2 +								
	$7.1.a = \frac{(P.tapa + P.seguro)}{2}$ $7.1.b = \frac{(P.tapa + P.seguro)}{2}$	= 2 tapa		= =	1								
	2	= 2 tapa = 1	+ 1 seguro + 1	⊣	'								
P1'	$7.1.b = \frac{(P.tapa + P.seguro)}{2}$	= 2 tapa = 1	+ 1 seguro + 1	_]	1								
P1'	7.1. $b = \frac{(P. tapa + P. seguro)}{2}$ $P17.1 = \frac{(a) + (b)}{2}$	= 2 tapa = 1	+ 1 seguro + 1	_]	1								
Comp	7.1. $b = \frac{(P. tapa + P. seguro)}{2}$ $P17.1 = \frac{(a) + (b)}{2}$ elementos Reservorio/ Tanque de	=	+ 1	_]	1								
Comp 17.2	7.1. $b = \frac{(P.tapa + P.seguro)}{2}$ $P17.1 = \frac{(a) + (b)}{2}$ Reservorio/ Tanque de Almacenamiento	=	+ 1 seguro	_]	1								
Comp 17.2 17.3	7.1. $b = \frac{(P. tapa + P. seguro)}{2}$ $P17.1 = \frac{(a) + (b)}{2}$ elementos Reservorio/ Tanque de Almacenamiento Caja de valvulas	=	+ 1	_]	1								

2

3

3

3

17.7 Hipoclorador

17.8 Valvula flotadora

17.9 Valvula de entrada

17.1 Valvula de salida

1	** 1 1 1 1		2		I								
17.11	Valvula de edesague	=	3										
17.12	Nivel estativo	=	3										
17.13	Dado de protección	=	2										
17.14	Cloración por goteo	=	3										
17.15	Grifo de enjuague	=	2										
		Puntaje	de P18										
	Puntaje P17 = $\frac{\sum (de \ P17.1 \ a \ P17.17)}{15}$ = 2.40 puntos												
	18. ¿Qué clase de tubería tienen los accesorios encontrados en el reservorio?												
	Clase de tubería 5 Clase de tuberia 10												
	Clase de tubería 7.5	X	Cla	se de tuberia 15									
	1	9. Identificacio	ón de pelig	ros									
	No presenta	X	Huayco										
	Crecidas o avenidas		Hundimie	nto de terreno									
	Inundaciones		Deslizami	ento									
	Desprendimiento de rocas		Contamina	ación de la fuente de agua									
	El puntaje de la estructura	"reservorio"	esta dado j	oor el promedio de P16	y P17								
	$RESERVORIO = \frac{P16 + P17}{2} = \boxed{1.70}$												
		Reservorio =	1.70 punt	os									

Fuente: Elaboración de ficha mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

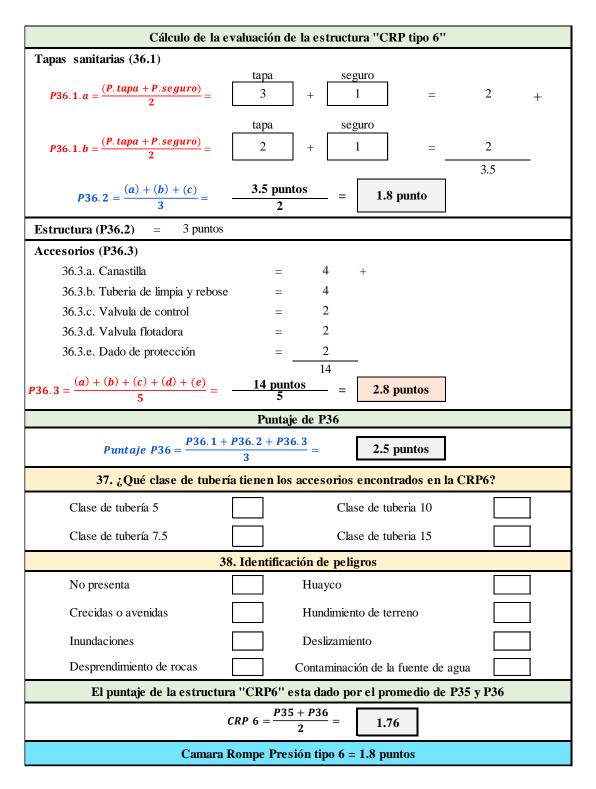
Ficha 04: Evaluación de la línea de aducción existente en el caserío Santa María

EN EL CAS	SERÍO DE SANT	A MARÍA, CA, PARA	DIST SU I	EMA DE ABASTECIA RITO DE SAN MIGU NCIDENCIA EN LA (ACIÓN – 2021.	EL, PROV	INCIA DE	SAN				
NGENIERIA	TESISTA	BAC	H. BA	ARRIONUEVO FLOR	ES, JOSSE	LY ADDEI	RLY				
FICHA 04	ASESOR	MGT	R. IN	G. LEÓN DE LOS RÍ	OS, GONZ	ALO MIG	UEL				
		D. LÍ	NEA I	DE ADUCCIÓN							
	20. ¿El siste	ema actual	cuent	a con una tubería de a	ducción?						
	Si	X		No		Pase a la sigui	iente ficha				
	21. ¿En q	ue estado se	e encu	entra actualmente la t	ubería?						
Totalmer	nte enterrada			Inoperativa							
Enterra e	en diversos tramos	X		Colapsada]					
22. ¿Qué clase de tubería tiene la línea de aducción actual?											
Clase de tubería 5 Clase de tuberia 10											
Clase de	tubería 7.5	X		Clase de tuberia	a 15						
	23. ¿Exi	sten pases o	cruc	es aeros en algunos tra	amos?						
	Si			No	X	(Pasar a	la p.25)				
	24. ¿En qué	estado se e	ncuen	tra el cruce o pase aér	eo actual?						
	Bueno			Malo							
	Regular			Colapsado							
El punta	aje en la pregunta	21 sera:		El puntaje e	n la pregui	nta 24 sera:					
Totalmente ent	errada	= 4 pu	ntos	Bueno		= 41	puntos				
Enterra en dive	ersos tramos	= 3 pu	ntos	Regular		= 3 1	puntos				
Inoperativa		= 2 pu	ntos	Malo		= 21	puntos				
Colapsada		= 1 pu	ntos	Colapsado		= 1 1	puntos				
		25. Ide	ntifica	ación de peligros							
No prese	enta	X		Huayco							
Crecidas	o avenidas			Hundimiento de terre	no						
Inundaci	ones			Deslizamiento							
Desprend	dimiento de rocas			Contaminación de la fuente de agua							

26. Descripción del estado de las válvulas en la línea de aducción, si no tiene especifique: si necesita o no necesita												
Descripción		Si tiene		No tiene								
Descripcion	Bueno	Mal	Cantidad	Necesita	No necesita							
26.1 Válvulas de aire				X								
26.2 Válvulas de purga				X								
El puntaje en la pregunta 26 sera:												
Bueno = 4 puntos Necesita = 1 punto												
Mal = 3 puntos No necesita = 1.5 puntos												
Cantidad = 2 puntos												
Cálculo de la	ı evaluación	de las ''v	alvulas									
26.1 Válvulas de aire	= :	1 +										
26.2 Válvulas de purga	= :	1										
$P26 = \frac{26.1 + 26.2}{2} = \frac{2}{2}$		2	.0 puntos									
Cálculo de la evaluación	ı en la estru	ıctura ''line	ea de condu	cción''								
$LINEA DE ADUCCIÓN = \frac{P21 + P}{respuesto}$	24 + P26 as Validas	=	2]								
linea de	e aducción :	= 2.0 punto	os									

Fuente: Elaboración de ficha mediante las guías del de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 05: Evaluación de la red de distribución existente en el caserío Santa María


POTABI	ÓN Y MEJORA LE EN EL CAS DE SAN MIGU CONDICIÓ	ERÍO DE JEL, REG	SANT IÓN (ΓΑ M CAJA	ARÍA, DIS MARCA, I	TRITO DE PARA SU I	E SAN MIO	GUEL,					
	TESISTA	ВАСН	ACH. BARRIONUEVO FLORES, JOSSELY ADDERLY										
FICHA 05	ASESOR	MGTI	R. ING	G. LEC	ÓN DE LO	S RÍOS, GO	ONZALO	MIGUEL					
		E. RE	D DE	DISR	IBUCIÓN								
	27. El siste	ma actual	cuent	a con	una red de	distribució	n?						
	Si	X			No								
28. Cual es el sistema que tiene la red ede distribución actual													
Sistema ramificado X Sistema mixta													
Sistema	Sistema cerrado												
29. ¿Cuántas viviendas y lugares publicos estan conectadas a la red actual?													
Vivienda	as conectadas	30		Lugar	es públicos	3	;						
	30. ¿Qué cla	ase de tub	ería ti	ene la	a línea de ao	ducción act	ual?						
Clase de	e tubería 5				Clase de ti	uberia 10							
Clase de	e tubería 7.5	X	X Clase de tuberia 15										
	31. ¿En qu	e estado s	e enc	uentr	a actualmer	nte la tuber	ía?						
Totalme	nte enterrada				Inoperativa								
Enterra	en diversos tramo	os X			Colapsada								
32. Descripcio	ón del estado de				d de distrib necesita	ución, si no	tiene esp	pecifique: si					
T	Dogovinojón				Si tiene		No	tiene					
1	Descripción		Bue	eno	Mal	Cantidad	Necesita	No necesita					
32.1	Válvulas de cont	rol						X					
El puntaj	El puntaje en la pregunta 28 sera: El puntaje en la pregunta 32 sera:												

Totalmente enterrada	=	4 puntos	Bueno	=	4 puntos
Enterra en diversos tramos	=	2 puntos	Mal	=	2 puntos
Inoperativa	=	1 puntos	Cantidad	=	2 puntos
Colapsada	=	0 puntos	No Necesita	=	1.5 puntos
			Necesita	=	1 puntos
	3	3. Identific	ación de peligros		
No presenta		X	Huayco		
Crecidas o avenidas			Hundimiento de terreno		
Inundaciones	[Deslizamiento		
Desprendimiento de roca	.s		Contaminación de la fuente de agua		
Cálculo de la	evalı	uación en la	a estructura "red de distribución	•	
RED DE DISTRIBUCIÓN	= P2 '	$\frac{7+P31}{2}=$	2 puntos + 2 puntos = 2	punto	os
	re	d de distri	bución = 2 puntos		

Fuente: Elaboración de ficha mediante las guías Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 06: Evaluación de la cámara rompe presión tipo 6 existente en el caserío Santa María

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN – 2021. TESISTA BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY																	
	٠		7	ESIST	Γ A]	BACI	I. BA	RRIO	NUEV	O FL	ORE	S, JO	SSE	LY A	ADDEI	RLY
FIC	HA ()6	A	ASESO	R	I	MGTR. ING. LEÓN DE LOS RÍOS, GONZALO MIGUEL										
					F. C	ÁM A	ARA I	ROM	PE PR	ESIÓ	N TII	PO 6					
			3	4. ¿El	sistem	a cu	enta c	on C	RP tipo	6? s	i cuen	ta es _l	pe cifi	que			
1 CRP 6																	
35. Cuenta con cerco perimétrico que protega la estructura. Indicar el material con que se construyó																	
Tiene cerco perimetrico Material de construccción del reservorio																	
No tiene (1 punto) Si tiene (4 puntos) Concreto Artesanal																	
X X																	
$Puntaje P35 = \frac{1}{P34} = 1.00 \text{ puntos}$																	
			36.	Detern	ninar y	des	cribir	el es	tado de	e la es	tructi	ura ''(CRP t	ipo (6''		
				Esta	dos de	los c	omple	mento	s de la	estruc	tura "(CRP ti	ро 6"				
B = Bu	eno/s	i 4 pı	untos	R = R	egular	3 ри	intos		M =	Malo	2 pun	tos		No	cuent	ta/no 1	punto
							stado	actual	de la e								
	Con		1.a. T	Tapa sa	<u>mitaria</u> Si tie				36.1.b. Tapa sanitaria Seguro								
No	Seg	uro	(Concre			Meta	ıl	No	Seg	uro	Co	ncret	Si tiene to Metal			
tiene	No	Si	В	R	M	В	R	M	tiene	No	Si	В	R	M	В	R	M
	X									X				X			
36.2	. Est	ruet	เมาอ	4	36.3.a.	Can	actilla		36.3.l	. Tub	eria d	le lim	pia y	3	6.3.c	. Valvu	la de
	7. LS	ruct	ura_				ie ne	-		<u>r</u>	<u>ebose</u> Si ti				_	control	iene
No tiene	В	R	M	No tiene	В		r i	<u></u>	No tiene	I		ene N	1		No ene	B	M
		X			X						X				•		X
	36.3.d. Valvula flo							a flota	dora		.3.e. I prote	Dado (cción	de_				
					No		Si	tie ne		No tiene		Si ti	ene				
tiene B								M	110 (10110	В	M					
									X				X				

Fuente: Elaboración de ficha mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Ficha 11. Evaluación del sistema de abastecimiento de agua potable existente del caserío Santa María

POTABLI	EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN – 2021.					
TESISTA BACH. BARRIONUEVO FLORES, JOSSELY A				S, JOSSELY ADDERLY		
NGENIERIA	ASESOR	MGTR. ING. LEÓN DE LOS RÍOS, GONZALO MIGUEL				
	ESTADO DEL SISTEMA DE AGUA POTABLE ACTUAL					
Comprende de la P1 a la P36						
1) Can	1) Camara de captación = 1.5 puntos P1 a P5					
2) Line	2) Linea de conducción			2.0 puntos	P6 a P12	
3) Res	3) Reservorio de Almacenamient = 1.6 puntos P13 a P19					
4) Line	ea de aducción		=	2.0 puntos	P20 a P26	
5) Red	de distribución		=	2.0 punto	P27 a P33	
6) Can	nara rompe presi	ón tipo 6	=	1.8 puntos	P34 a P38	
El puntaje del estado de la infraestructura es						
Puntaje $EI = \frac{(1) + (2) + (3) + (4) + (5) + (6)}{6} = $ 1.82						
	Estad	o del sister	na actual d	le aua potable =		

Fuente: Elaboración de ficha mediante las guías del Sistema de Información Regional en Agua y Saneamiento (SIRAS).

Anexo 07: Memoria de calculo

CÁLCULO DEL CAUDAL DE LA FUENTE MEDIANTE EL MÉTODO VOLUMÉTRICO

METODO VOLUMETRICO

Tabla 13. Cálculo del caudal de la fuente en época de estiaje

Cálculo del caudal de la fuente en epoca de estiaje		Simbolo	Fórmula	Cálculo	Resultado	unidad
Volumen del recipiente		v	-	-	4	litros
	1	t_1	-	-	5.35	seg.
D 1 " 1	2	t_2	-	-	5.31	seg.
Pruebas realizadas "n" 5	-3	t_3	-	-	5.29	seg.
_	4	t_4	-	-	5.49	seg.
	5	t_5	-	-	5.58	seg.
	_				27.02	seg.
Tiempo promedio		T_t	$T_t = \frac{\sum t_t}{n}$	$T_t = \frac{27.02}{5}$	5.404	seg.
caudal en epoca de estiaj	e (junio)	Qmin	$Q_{min} = \frac{V}{T_t}$	$Q_{min} = \frac{4}{5.40}$	0.740	l/s

Fuente: Elaboración propia – 2021

Tabla 14. Cálculo del caudal de la fuente en época de lluvia

2 Cálculo del caudal de la fuente en epoca de lluvia		Simbolo	Fórmula	Cálculo	Resultado	unidad
volumen del recipiente		V	-	-	4	litros
	1	t_1	-	-	5.12	seg.
	2	t_2	-	-	5.35	seg.
Pruebas realizadas	$= \frac{1}{3}$	t_3	-	-	5.2	seg.
	4	t_4	-	-	5.47	seg.
	5	t_5	-	-	5.3	seg.
				26.44	26.44	seg.
Tiempo promedio		T_t	$T_t = \frac{\sum t_t}{n}$	$T_t = \frac{26.44}{5}$	5.288	seg.
caudal en epoca de lluvia (marzo)		Qmax	$Q_{max} = \frac{V}{T_t}$	$Q_{max} = \frac{4}{5.288}$	0.756	l/s

CÁLCULO DE LA POBLACIÓN FUTURA MEDIANTE EL MÉTODO ARIMETICO

FORMULAS DEL CÁLCULO DE LA POBLACIÓN FUTURA POR EL MÉTODO ARIMÉTICO

 $r = \frac{\frac{P_f}{P_o} - 1}{t}$

r = Coeficiente de crecimientot = Periodo de diseño

Pa = Población actual

 $P_f = P_o(1 + r.t)$

 $Pf = Poblaci\'{o}n futura$

Tabla 15. Cálculo de la densidad poblacional

Datos	Fórmula	Resultado	
Nº de hab.	Hallado	120 Hab.	
Vivienda	Hallado	30	
Densidad	hab. viviendas	4	

Fuente: Elaboración propia – 2021

Tabla 16. Datos censales de la población

POBLACIÓN FUTURA						
AÑO	AÑO Mujeres Varones Total					
2011	41	49	90			
2013	49	52	101			
2016	50	54	104			
2018	55	56	111			
2021	59	61	120			

Tabla 17. Cálculo del coeficiente de crecimiento poblacional

POBLACIÓN FUTURA						
AÑO Mujeres Varones To						
2011	41	49	90			
2013	49	52	101			
2016	50	54	104			
2018	55	56	111			
2021	59	61	120			

Tabla 18. Cálculo de la población futura

COEFICIENTE DE CRECIMIENTO POBLACIONAL						
AÑO	POBLACIÓN	FÓRMULA	COEFICIENTE DE CRECIMIENTO	TIEMPO		
2011	90 Hab.		0.0306	4 años		
2013	101 Hab.	$\frac{P_f}{P} - 1$	0.0149	2 años		
2016	104 Hab.	$r = \frac{r_0}{t}$	0.0337	2 años		
2018	111 Hab.		0.0405	2 años		
2021	120 Hab.	PROMEDIO	0.02990	2.99 %		

CÁLCULO DE LA DEMANDA DE AGUA

Cuadro 17. Dotación de agua para centros educativos

Dotación de agua para centros educativos					
Descripción Dotación					
Educación primaria e inferior (sin residencia)	20 lt/alum. x dia				
Educación secundaria y superior (sin reside.) 50 lt/alum. x dia					
Educación en general (con residencia)	25 lt/alum. x dia				

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 18. Dotación de agua para establecimientos

Dotación de agua para establecimientos				
Tipo de establecimiento	Dotación			
Cines, teatros y auditorios	3 lt/asiento			
Discotecas, casino y salas de baile y similares	30 lt/m2 de area			
Estadios, velódromos, autódromos, plaza de toros y similares.	1 lt/espectador			
Circos, hipódromos, parques de atracción y similares	1lt/espec. + dot. anim.			

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 19. Dotación según la opción tecnológica

	Dotación según tipo de opción tecnológica (l/hab x d)				
Región	Sin arrastre hidraulico (compostera y hoyo seco ventilado)	Con arrastre hidraulico (tanque septico mejorado)			
Costa	60	90			
Sierra	50	80			
Selva	70	100			

Fuente: Resolución Ministerial - 192 - 2018 vivienda

	Dotación de agua para Instituciones Educativas en Zona Rural						
Cantidad	Descripción	Nº de alumnos	Horas de consumo	Dotación (l/alum x d)	Formula	Q. Consumo l/s	
1	LE nivel primaria	25	7	20	$\frac{25 \cdot 7 \cdot 20}{86400 \cdot 24} =$	0.001688	
1		Consumo total (C	Qnd)			0.001688	

	Dotación de agua para iglesias						
Cantidad	Descripción	Nº de asientos	Horas de consumo	Dotación (l/asiento.d.)	Formula	Q. Consumo l/s	
1	IGLESIA	30	4	3	$\frac{30 \cdot 4 \cdot 3}{86400 \cdot 24} =$	0.000174	
1		Consumo total (Qnd)		—	0.000174	

	Dotación de agua para parques de atracción y areas verdes					
Cantidad	Descripción	Área (m2)	Horas de consumo	Dotación (l/m2.d.)	Formula	Q. Consumo l/s
1	Campo de futbol	366	3	2	$\frac{366 \cdot 3 \cdot 2}{86400 \cdot 24} =$	0.001059
1		Consumo total (Qnd)			0.001059

La dotación de agua para áreas verdes será de 2 l/m2. d. No se requerirá incluir áreas pavimentadas, enripiadas u otras no sembradas para los fines de esta dotación

Tabla 19. Cálculo del consumo no doméstico

Resumen de Consumo no domestico				
Descripción	Cantidad	Qnd	Q. unitario	
Estatal	1	0.001688	0.00169 l/s	
Social	2	0.001232	0.00062 l/s	

Tabla 20. Cálculo del consumo doméstico

Resumen de Consumo domestico					
Descripción	Dato	Cantidad			
Densidad poblacional	Den.	4			
Número de viviendas	N° viv.	30			
Población al año "0"	P _a	120			
Población al año "20"	P_{f}	192			
Dotación	Dot	80			
Q.consumo domestico(Po)	QP	0.111 l/s			
Q.consumo domestico(Pf)	QP	0.178 l/s			

Fuente: Elaboración propia – 2021

VARIACIONES DE CONSUMO

FORMULA DEL CALCULO DEL CAUDAL PROMEDIO

$$QP. = \frac{Poblaci\'{o}n \cdot Dotaci\'{o}n}{86400 \, s/dia}$$

$$Qm = \frac{Pf \cdot Dot}{86400 \ s/dia}$$

Cuadro 20. Datos para el cálculo de las variaciones de consumo "k1 y k2"

Descripción	Unidad	Cantidad	Unid	Fuente
Tasa de crecimiento	r	2.990	%	Calculada
Densidad poblacional	D	4	hab/ viv.	Inei/Calculada
Nº de personas	viv.	120	viv.	Catastro

Cuadro 21. Parámetros de diseño para el cálculo de las variaciones de consumo "k1 y k2"

Descripción	Unidad	Cantidad	Unid	Fuente
Dotación	r	2.990	% RM	. 192 2018 VIVIENDA
Coeficiente de variación diaria	k1	1.3	RM	. 192 2018 VIVIENDA
Coeficiente de variación horaria	k2	2	RM	. 192 2018 VIVIENDA

Cuadro 22. Criterios técnicos para el cálculo de las variaciones de consumo "k1 y k2"

Descripción	Unidad	Cantidad	Unid	Fuente
Crecimiento Estatal	Ce	1.00%	%	Criterio Propio
Crecimiento Social	Cs	0.50%	%	Criterio Propio
Crecimiento comercial	Сс	1.50%	%	Criterio Propio
% Perdida al año "0"	Per "0"	30.00%	%	Criterio Propio
% Perdida al año "20"	Per "20"	15.00	%	Criterio Propio

Tabla 21. Cálculo de las variaciones de consumo

Año		Pf (Met. Arimetic	Conex.	Conex. Estatal	Conex. Social	Domestico	No Dor	nestico	Cons.	% de	Qp.	Qmd. (l/s)	Qmh. (l/s)
Allo		o)	Dome.	ce: 1%	Cs 0.5%	Cons. D. (l/s)	Cons. Est.	Cons. Soc.	Total (l/s)	pe rdida	(l/s)	k1: 1.3	k2: 2.0
2021	0	120	30	1.00	2.00	0.11111	0.00169	0.00123	0.114	30.00%	0.163	0.212	0.326
2022	1	124	31	1.00	2.00	0.11481	0.00169	0.00123	0.118	29.25%	0.166	0.216	0.333
2023	2	128	32	1.00	2.00	0.11852	0.00169	0.00123	0.121	28.50%	0.170	0.221	0.340
2024	3	131	33	1.00	2.00	0.12130	0.00169	0.00123	0.124	27.75%	0.172	0.224	0.344
2025	4	135	34	1.00	2.00	0.12500	0.00169	0.00123	0.128	27.00%	0.175	0.228	0.350
2026	5	138	35	1.00	2.00	0.12778	0.00169	0.00123	0.131	26.25%	0.177	0.230	0.354
2027	6	142	36	1.00	2.00	0.13148	0.00169	0.00123	0.134	25.50%	0.180	0.235	0.361
2028	7	146	37	1.00	2.00	0.13519	0.00169	0.00123	0.138	24.75%	0.184	0.239	0.367
2029	8	149	37	1.00	2.00	0.13796	0.00169	0.00123	0.141	24.00%	0.185	0.241	0.371
2030	9	153	38	1.00	2.00	0.14167	0.00169	0.00123	0.145	23.25%	0.188	0.245	0.377
2031	10	156	39	1.00	2.00	0.14444	0.00169	0.00123	0.147	22.50%	0.190	0.247	0.380
2032	11	160	40	1.00	2.00	0.14815	0.00169	0.00123	0.151	21.75%	0.193	0.251	0.386
2033	12	164	41	1.00	2.00	0.15185	0.00169	0.00123	0.155	21.00%	0.196	0.255	0.392
2034	13	167	42	1.00	2.00	0.15463	0.00169	0.00123	0.158	20.25%	0.198	0.257	0.395
2035	14	171	43	1.00	2.00	0.15833	0.00169	0.00123	0.161	19.50%	0.200	0.260	0.401
2036	15	174	44	1.00	2.00	0.16111	0.00169	0.00123	0.164	18.75%	0.202	0.262	0.404
2037	16	178	45	1.00	2.00	0.16481	0.00169	0.00123	0.168	18.00%	0.205	0.266	0.409
2038	17	181	45	1.00	2.00	0.16759	0.00169	0.00123	0.171	17.25%	0.206	0.268	0.412
2039	18	185	46	1.00	2.00	0.17130	0.00169	0.00123	0.174	16.50%	0.209	0.271	0.417
2040	19	189	47	1.00	2.00	0.17500	0.00169	0.00123	0.178	15.75%	0.211	0.275	0.422
2041	20	192	48	1.00	2.00	0.17778	0.00169	0.00123	0.181	15.00%	0.213	0.276	0.425

Cuadro 23. Criterios para los caudales hallados según las variaciones de consumo

Rango	Q. md real	Se diseña con
1	< de 0.50 l/s	0.50 l/s
2	0.50 l/s hasta 1.00 l/s	1.00 l/s
3	> de 1.00 l/s	1.50 l/s

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 24. Resumen del cálculo de los caudales de diseño

Resumen	Resumen de calculo de caudales de diseño				
Descripción	Simbologia	Resultado			
P. futura	Pf	192 hab.			
Q. max. diario	Qmd	0.2761/s			
Q. max. Horario	Qmh	0.425 l/s			
Q. unitario	Qu	0.014 l/s			

CÁLCULO DE LA CÁMARA DE CAPTACIÓN

Cuadro 25. Periodo de diseño para el cálculo de la cámara de captación

Periodo de diseño en estructuras			
Componente	Peridod de diseño		
Obras de captación	20 años		
Conduccion	10 a 20 años		
Reservorio	20 años		
Red principal	20 años		
Red secundaria	10 años		

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 26. Dotación para el cálculo de la cámara de captación

	Dotación según el tipo de opción tecnológica (l/hab x d)				
Región	Sin arrastre hidráulico (compostera y hoyo seco ventilado)	Con arrastre hidráulico (tanque septico mejorado)			
Costa	60	90			
Sierra	50	80			
Selva	70	100			

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 27. Coeficiente de rugosidad "Hazen Williams" y coeficiente de descarga en orificios

Coeficiente de rugosidad ''Hanzen-Williams''		
Tipo de Material "C"		
Pvc	150	

Coeficiente de descarga en orificios					
Tipo de orificio Cd					
Total. Sumergido	0.8				

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 28. Coeficiente de variación diaria

Coeficiente de Variación diaria						
Dia Hor k1						
diaria	1.30					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 29. Datos para el diseño hidráulico de la cámara de captación

1. Datos para el diseño:	Simbolo	Fórmula	Cálculo	Resultado
Caudal máximo época de lluvia	Qrm			0.756 l/s
Caudal mínimo época de estiaje	Qre			0.740 l/s
Población Actual	Pa			120 hab
Dotación	Dot			80.00 l/hab/dia
Tiempo de diseño	t			20 años
Coeficiente de crecimiento	r			2.99%
Población futura	$\mathbf{P_f}$	$Pf = Pa \cdot \left(1 + \frac{r \cdot t}{1000}\right)$	$Pf = 120 \text{ hab} \cdot \left(1 + \frac{2.99\% \cdot 20}{100}\right)$	192.00 hab
Caudal máximo	Qp			0.213 l/s
Coeficiente de varia. diaria	K1			1.30
Caudal Maximo diario	Qmd	$Qmd = k1 \cdot Qm$	$Qmd = 1.30 \cdot 0.213$	0.5000 1/s
Coeficiente de descarga en orificios sumergidos	Cd			0.80
Perdida de carga para tuberia de rebose y limpia	Hf			1 %
Cota del afloramiento	C1			2351.9654 m.s.n.m

Tabla 22. Cálculo de la cota número 2

2 . Calculo de C2	Simbolo	Fórmula	Calculo	Resultado
Por consideraciones en diseños de sistemas de abastecimiento de agua potable en zonas rurales se considera una la altura de la camara humeda "Ht" de 0.5 a 2 mts por seguridad contra accidentes y facilidad de mantenimiento	Ht	se cons	idera una "Ht" de1.00 m	1.00 m
C2	C2	C2 = C1 - Ht	C2 = 2351.9654 - 1.00	2350.9654 m.s.n.m

Tabla 23. Cálculo de la distancia de afloramiento y la cámara húmeda

3 . Cálculo del la distancia del afloramiento y la cámara humedad	Simbolo	Fórmula	Cálculo	Resultado	
Altura del afloramiento al orificio de entrada debe cumplir los siguientes parametros " $0.40 > H > 0.50$ "	Н	Se asume un H de 0.40	0 cumpliendo los parametros	0.40 m	
Velocidad de paso del orificio	V	$V = \left(\frac{2g \cdot H}{1.56}\right)^{1/2}$	$V = \left(\frac{2(9.81) \cdot 0.40}{1.56}\right)^{1/2}$	2.243 m/s	
*	La velocidad de paso del orificio debe cumplir los siguientes parametros cuando $V < 0.6 m/s$ se asume una velocidad de paso de $V = 0.50 m/s$				
Perdida de Carga en el orificio	hi	$hi = \frac{1.56 \cdot V^2}{2g}$	$hi = \frac{1.56 \cdot 0.50^{-2}}{2 \cdot 9.81}$	0.020 m	
Pérdida de carga entre el afloramiento y el orifio de entrada	hf	hf = H - hi	hf = 0.40 -0.02	0.380 m	
Distancia entre el punto de afloramiento y la cámara húmeda	L	$L = \frac{hf}{0.30}$	$L = \frac{0.38}{0.30}$	1.270 m	

Tabla 24. Cálculo del ancho de la pantalla

4 . Cálculo del ancho de la pantalla	Simbolo	Fórmula	Cálculo	Resultado		
Tomando el mismo " $L=1.27$ m" del punto de afloramiento y de la pantalla húmeda, se calculara las velcidades de entrada "V3" y de salida "V2" teniendo en cuenta que la velocidad de entrada tiene " L " calculado = 1.27 m que cumplirel siguiente parametr V 0 < 0.60 m/s" de noser haci se aumentara " L "						
Velocidad de salida	V3	$V_3 = \left(\frac{2g \cdot hi}{1.56}\right)^{1/2}$	$V_3 = \left(\frac{2(9.81) \cdot 0.020}{1.56}\right)^{1/2}$	0.502 m/s		
Velocidad de entrada	V2	$V_2 = \frac{V_3}{Cd}$	$V_2 = \frac{0.502}{0.80}$	0.627 m/s		
Evaluamos si cumple la condición "	0.627 <	0.60 m/s "No Cumple!	Se recalculara los datos anteriores asumiendo un "L" $^{"}L$ " =	1.30 m		
Pérdida de carga entre el afloramiento y el orifio de entrada	hf	$hf = L \cdot 0.3$	$hf = 1.30 \cdot 0.3$	0.390 m		
Pérdida de carga en el orificio	hi	hi = H - hf	hi = 0.40 - 0.39	0.010 m		
Velocidad de salida	V3	$V_3 = \left(\frac{2g \cdot hi}{1.56}\right)^{1/2}$	$V_3 = \left(\frac{2(9.81) \cdot 0.010}{1.56}\right)^{1/2}$	0.355 m		
Velocidad de entrada	V2	$V_2 = \frac{V_3}{Cd}$	$V_2 = \frac{0.35}{0.80}$	0.443 m		
Evaluamos si cumple la condición "	Evaluamos si cumple la condición " 0.443 < 0.60 m/s" Cumple! Cumplendo la condiciendo se pasara a cálcular los siguiendes datos					

Area del orificio	A2	$A_2 = \frac{\left(\frac{Q_{max}}{1000}\right)}{cd \cdot V_2}$	$A_2 = \frac{\left(\frac{0.75}{1000}\right)}{0.80 \cdot 0.443}$	0.0021 m2
Diametro del orificio	D	$D = \left(\frac{4 \cdot A}{\pi}\right)^{0.5}$	$D = \left(\frac{4 \cdot 0.0021}{\pi}\right)^{0.5}$	0.0521 m
Convertimos a pulgadas	$1 \text{ m} = 39.37 \text{ pulg}$ $\frac{39.37 \text{ pulg}}{1m} \cdot 0.0521 \text{ m}$		1.951 pulg	
			se redondea ''D''	2 pulg
			diametro asumido "D2"	1 1/2 pulg
Numero de orificios	NA	$NA = \left(\frac{D}{D_2}\right)^2 + 1$	$NA = \left(\frac{2}{1.5}\right)^2 + 1$	3.00 orificios
Ancho de la Pantalla	b	$b = 2(6 \cdot D) + NA \cdot D + 3D \cdot (NA - 1)$	$b = 2(6 \cdot 1.5) + 3 \cdot 1.5 + 3 \cdot 1.5 \cdot (3 - 1)$	31.50 pulg
Convertimos a metros	1 pul	$= 0.0254 \text{ mts}$ $\frac{0.0254}{1pulg}$	$\frac{m}{g}$ · 31.50 pulg	0.800 m
			se redondea "b"	b = 1.00 m

Tabla 25. Cálculo del cono de rebose

5 . Cálculo del cono de rebose	Simbolo	Fórmula	Cálculo	Resultado	
Se considera una longitud "L" para tuberías de rebose en zonas rurales de 10 mts a 20 mts					
Cota de la altura de rebose	C_3	$C_3 = C_1 - H$	$C_3 = 2351.965 - 0.40$	2351.5654 m.s.n.m	
	Para poblaciones rurales el espesor de la loza de fondo "eC°" se le considera "0.20 mts", porque el recubrimiento para cimentaciones que tengan contacto con el agua es 0.07 m en "eC°" asumido sera = 0.20 mts ambos laterales				
Espesor de afirmado en el fondo de captación (solado)	e_{Af}			0.10 mts	
Rugosidad del malterial "Pvc"	С			150	
Cota de la tuberia de rebose	C_4	$C_4 = C_2 - (e_{C^0} - e_{AF})$	$C_4 = 2350.965 - (0.20 - 0.1)$	2350.8654 m.s.n.m	
Pendiente de la tuberia de rebose	S			0.035	
Diámetro del rebose	D	0.71 * Qmax ^{0.38} hf ^{0.21}	0.71 * Qmax ^{0.38} hf ^{0.21}	1.68 pulg	
El como de mobre			se redondea "D"	2 pulg	
El cono de rebose sera 2 veces mayor al diámetro de la tubería de rebose D = 4.00 pulg					

Tabla 26. Cálculo de la tubería de limpieza

6 . Cálculo de la tubería de limpieza	Simbolo	Fórmula	Cálculo	Resultado
Diámetro de la tubería de limpieza	D	$\frac{0.71 * Qmax^{0.38}}{hf^{0.21}}$	$\frac{0.71 * Qmax^{0.38}}{hf^{0.21}}$	1.68 pulg
			se redondea ''D''	2 pulg

Tabla 27. Cálculo de la tubería de conducción

7 . Cálculo de la tubería de conducción	Simbolo	Fórmula	Cálculo	Resultado
Para hallar el diámetro de la tubería d se calcula con la formula de Hazen y		$Q = 0,2786 * C * D^0$		$\frac{\left(\frac{Qmd}{1000}\right)}{2786 * C * S^{0.54}}\right)^{0.38}$
Diámetro de la tubería de conducción	D	$D = \left(\frac{\left(\frac{Qmd}{1000}\right)}{0.2786 * C * S^{0.54}}\right)^{0.38}$	$D = \left(\frac{\left(\frac{0.500}{1000}\right)}{0.2786 \cdot 150 \cdot 0.035^{0.54}}\right)^{0.38}$	0.0268 m
Convertimos a pulgadas	1 m=	$= 39.37 \text{ pulg}$ $\frac{39.37p}{1m}$	oulg . 0.0268	1.056 pulg
			se redondea ''D'' Convertimos a cm	1 pulg D = 2.54 cm

Tabla 28. Cálculo de la canastilla

8. Cálculo de la canastilla	Simbolo	Fórmula	Cálculo		Resultado	
Para el calculo del diámetro de la canastilla se cosiderara el doble del diámetro de la tuberia de conducción " D_{can} " asumido sera $2 \cdot D_{con}$ $D_{can} = 2 \cdot 1$ pulg						
Se recomienda que la Longitud de la ca esta condición "3 Dcon <		con " $L = 3 \cdot D_c$	on $L = 3 \cdot 1$ pulg		3.00 pulg	
		$L=6\cdot D_{c}$	con $L = 6 \cdot 1$ pulg	\Rightarrow	6.00 pulg	
		$3.00 \mathrm{~pulg} < L <$	(6.00 pulg " L " asur	nido sera =	5.00 pulg	
Convertimos a centimetros	1 pul	$= 2.54 \text{ cm} \qquad \frac{2.54 \text{ cm}}{1 \text{pulg}}.$	5.00 pulg		13.000 cm	
Área de la Ranura						
	Para el calculo del area de la ranura el MINSA se considera el ancho " A_m " 7 mm y de largo " L_m " 5 mm					
DETALLE DE LA	RANURA 7 mm	Área de la Ran	Largo de la Ranura ura	= 5.00 mm		
-5 mm	_		$a_r \cdot l_r$ $A_r = 7.00 \cdot 10^{-1}$			
5 mm		Convertimos a m ²	A_{r}	= 0.000035	0 m2	

Área de la canastilla	A_{c}	$A_c = 2 \cdot \frac{\pi \cdot D_{con}^2}{4}$	$A_c = \frac{\pi \cdot 0.0254^{\ 2}}{4}$	0.0005067 m
Área total de ranuras	A_{t}	$A_t = 2 \cdot A_C$	$A_t = 2 \cdot 0.000506$	0.00101 m
El valor de At no debe ser mayor al 50% lateral de la granada "Ag"	del area	Debe cumplir el siguiente parame	tro $t \le 50\%$ del area la	ateral de la granada
Asuimiendo el diametro de la granada "D pulgadas hallamos el area	g" de 2	$A_g = 0.5 \cdot D_g \cdot L \blacksquare$	$A_g = 0.5 \cdot 5.08 \cdot 13.0$ Ag =	=33.02 cm2
		$10.13 \text{ cm}2 \leq 16$	5.51 cm2 Cumple!	
Número de Ranuras	Nr	$N_r = \frac{A_t}{A_r} + 1$	$N_r = \frac{0.00101 \text{ m}}{0.000035} + 1$	30.00 Und.

Tabla 29. Cálculo de la cámara húmeda

9 . Altura de la cámara húmeda	Simbolo	Fórmula		Cálculo		Resultado			
Para el cálculo del diámetro de la cámara húmeda se especifica las siguientes condiciones:									
Sedimentación de la arena	A					0.1000 m +			
Diámetro de la conducción	В					0.0254 m			
Altura de agua	H	altura de agua como minir	no es 30 cn	H asumido de	=	0.4000 m			
Borde linbe	E	se considera "E" de 20 cm	n a 30 cm	E asumido de	=	0.3000 m			
Desnivel minimo del ingreso de agua y afloramiento	D	se considera como minim	o 3 cm	D asumido de	=	0.0400 m			
				Total	=	0.87 m			
Altura de la cámara húmeda	Ht					0.90 m			

Tabla 30. Cálculo de la cota de conducción

10. Cálculo de la cota de conducción	Simbolo	Fórmula	Cálculo	Resultado
Cota de la tuberia de conducción	C6	C6 = C2 - A - B	C6 = 2350.965 - 0.10 - 0.0254	2350.8400 m.s.n.m

CÁLCULO HIDRÁULICO DE LA LÍNEA DE CONDUCCIÓN

Cuadro 30. Periodo de diseño para el cálculo de la línea de conducción

Periodo de diseño en estructuras							
Componente Peridod de diseño							
Obras de captación	20 años						
Conduccion	10 a 20 años						
Reservorio	20 años						
Red principal	20 años						
Red secundaria	10 años						

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 31. Coeficiente de rugosidad "Hazen Williams" según el tipo de material de tubería

Coeficiente de Rugozidad de Hanzen-Williams:						
Material "C"						
Fierro fundido	100					
Concreto	110					
Acero	120					
Asbesto, cemento	140					
PVC	140 - 150					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 32. Presiones máximas en tuberías tipo PVC

Presiones máximas en tuberias PVC								
Tipo	Tipo P. max de prueba P. max de trabajo							
5	50	35						
7.5	75	50						
10	105	70						
15	150	100						

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 33. Diámetros comerciales para tuberías de clase 10 de tipo PVC

Diámetros comerciales de clase 10 "PVC"								
diámetros exterior Espesor diámetro								
pulg	mm	mm	interior mm					
1	33	1.8	29.4					
1 1/2	48	2.0	44.4					
2	60	2.9	55.6					
2 1/2	73	3.5	67.8					
3	88.5	4.2	82.1					

Fuente: NTP 399.002: 2009 "Tuberías para agua fría con Presión"

Para el cálculo de las tuberías que están trabajando a presión, se utilizará a Fórmula establecida por HAZEN y WILLIAMS, el cual se presenta a continuación:

$$Q = 0.0004264 \ (C) \left(D^{2.63}\right) \left(h_f^{0.54}\right)$$

Donde:

C = Coeficiente de rugosidad

D = Diametro de la tuberia "pulg"

hf = Perdida de carga unitaria

Q = Caudal de conducción

Según la sección (e), Para el cálculo de las tuberías que trabajan con flujo a presión se utilizarán fórmulas racionales. En caso de aplicarse la fórmula de Hazen y Williams, se utilizarán los coeficientes de fricción que se establecen. Para el caso de tuberías no consideradas, se deberá justificar técnicamente el valor utilizado.

Se realizará un análisis general de toda la línea (tramo por tramo), para de esta forma poder verificar las presiones existentes en cada punto, de acuerdo a los criterios establecidos por Hazen y Williams, presentados en el siguiente cuadro:

Cuadro 34. Descripción, cotas, distancias y otros datos en la línea de conducción

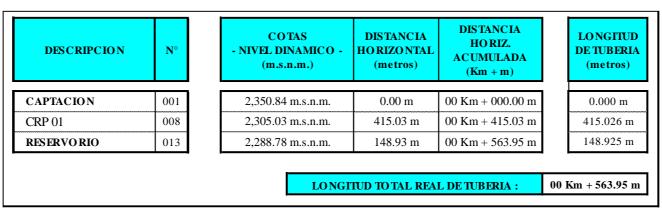


Tabla 31. Cálculo hidráulico de la línea de conducción

	DISEÑO HIDRÁULICO DE LA LINEA DE CONDUCCIÓN												
						DATOS DE	CÁLCULO						
NGENIERIA	CAUDAL MÁXIMO DIÁRIO: .50 Lit./Seg. COEFICIENTE C: (R.N.E) Tub.: Poli(cloruro de vinilo)(PVC) Entonces sera de: 150 Se realizará un análisis general de toda la línea, para de esta forma poder verificar las presiones existentes en cada punto, de acuerdo a los criterios establecidos por Hazen y Williams, presentados en el siguiente cuadro:						,						
PUNTO	DISTANCIA HORIZONTAL	NIVEL DINÁMICO - COTA -	DESNIVEL	TUBERIA	CAUDAL	CALCULADO		VELOCIDAD CALCULADA	VELOCIDAD REAL	PERDIDA DE CARGA UNITARIA	H_f ACUMULADA	ALTURA PIES OMETR. - COTA -	PRESIÓN
<u>, </u>	(Km + m)	(m.s.n.m.)	(m)	(m)	(m ³ /S eg.)	(mm)	(mm)	\rightarrow (m/S eg.)	→ (m/S eg.)	(m/Km)	→ (m)	(m.s.n.m.)	(m) ↑
CAPTACIÓN	00 Km + 000.00 m	2,350.840		0.00	0.00050							2,350.840	0.000
CRP6 - 1	00 Km + 415.03 m	2,305.030	45.810	415.026	0.00050	21.138	29.4	1.425 m/Seg.	0.737 m/Seg.	9.1849	9.1849	2,341.655	36.625
Pérdida de carga en el tramo: 9.185 m													
CRP6 - 1	00 Km + 415.03 m	2,305.030		0.00	0.00050							2,305.030	0.000
RESERVORIO	00 Km + 563.95 m	2,288.780	16.250	148.925	0.00050	21.188	29.4	1.418 m/Seg.	0.737 m/Seg.	3.2959	3.2959	2,301.734	12.954
	Pérdida de carga en el tramo: 3.296 m												

Cuadro 35. Fórmulas para el cálculo en la línea de conducción

FORMULAS PARA LA LÍNEA DE CONDUCCIÓN						
NOMBRES DE FÓRMULAS	FÓRMULA ESTABLECIDAD	DESCRIPCIÓN DE FÓRMULA				
FÓRMULA DEL DIÁMETRO	$\mathbf{Q} = 0.2785 \cdot C^{2.63} \cdot hf^{0.54} \longrightarrow \text{Despejamos D}$ $\mathbf{D} = \left(\frac{Q}{0.2785 \cdot C \cdot hf^{0.54}}\right)^{\frac{1}{2.63}}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). hf = Pérdida unitaria. C = Coeficiente de rugosidad.				
FÓRMULA DEL CAUDAL	$\mathbf{Q} = 0.2785 \cdot C^{2.63} \cdot hf^{0.54}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). hf = Pérdida unitaria. C = Coeficiente de rugosidad.				
FÓRMULA PARA LA VELOCIDAD	$\mathbf{V} = \frac{\mathbf{Q}}{\mathbf{A}} \longrightarrow \mathbf{V} = \frac{\mathbf{Q}}{\frac{\mathbf{m} \cdot \mathbf{D}^2}{4}} \longrightarrow \mathbf{V} = \frac{4 \cdot \mathbf{Q}}{\mathbf{m} \cdot \mathbf{D}^2}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). V = Velocidad (m/s).				
FÓRMULA PARA LA PÉRDIDA UNITARIA	$\mathbf{Q} = 0.2785 \cdot \mathbf{C}^{2.63} \cdot \mathbf{hf}^{0.54} \longrightarrow \text{Despejamos hf}$ $\mathbf{hf} = \left(\frac{\mathbf{Q}}{0.2785 \cdot \mathbf{C} \cdot \mathbf{D}^{2.63}}\right)^{\frac{1}{0.54}}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). hf = Pérdida unitaria. C = Coeficiente de rugosidad.				
FÓRMULA PARA LA DISTANCIA X	$\mathbf{Hf} = \mathrm{hf1} \cdot (\mathrm{L} - \mathrm{X}) + \mathrm{hf2} \cdot \mathrm{X} \longrightarrow \mathrm{Despejamos} \ \mathrm{Hf}$ $\mathbf{X} = \frac{\mathrm{H_f} \cdot (\mathrm{hf_1} \cdot \mathrm{L})}{\mathrm{h_{f2}} - \mathrm{h_{f1}}}$	Donde: Hf = Pérdida por tramo (m). L = Longitud por tramo (m). hf1 = Pérdida unitaria 1 hf2 = Pérdida unitaria 2				
FÓRMULA PARA LA PÉRDIDA DE CARGA DE TRAMO	$\mathbf{Hf} = \mathbf{hf} \cdot \mathbf{L}$	Donde: Hf = Pérdida por tramo (m). L = Longitud por tramo (m)				

CÁLCULO HIDRÁULICO DEL RESERVORIO DE ALMACENAMIENTO

Cuadro 36. Periodo de diseño para el cálculo del reservorio

Periodo de diseño en estructuras						
Componente Peridod de diseño						
Obras de captación	20 años					
Conduccion	10 a 20 años					
Reservorio	20 años					
Red principal	20 años					
Red secundaria	10 años					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 37. Coeficiente de variación para el cálculo del reservorio

Coeficiente de Variación						
Complemento "k"						
Horaria "k2"	2.00					
Diaria "k1"	1.30					

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Cuadro 38. Datos para el diseño hidráulico del reservorio de almacenamiento

1 . Datos para el diseño:	Simbolo	Fórmula	Cálculo	Resultado
Caudal máximo época de Iluvia	Qmax			0.756 l/s
Caudal máximo época de estiaje	Qmin			0.740 l/s
Población actual	Pa			120.00 hab
Población futura	Pf			192.00 hab
Caudal promedio anual	Qm			0.2126 l/s
Coeficiente de varia. diaria	K1			1.30
Coeficiente de varia. horaria	K2			2.00
Caudal Máximo diario	Qmd	$Qmd = k1 \cdot Qm$	Se redondeo a 0.50 l/s	0.500 l/s
Caudal Máximo horario	Qmh	$Qmh = k2 \cdot Qm$	Se redondeo a 0.50 l/s	0.500 l/s

Tabla 32. Cálculo del volumen del reservorio

2 . Cálculo del volumen del reservorio	Simbolo	Fórmula	Cálculo	Resultado			
La RM - 192 - 2018 VIVIENDA nos dice para el volumen de almacenamiento del reservorio debe ser el 25% de la demanda promedio diaria anual (Qprom). formula del volumen de regulación $V_{reg} = 25 \cdot Q_{prom} \cdot 86400 \cdot n/24$							
Volumen de regulación	T 7	$V_{reg} = 0.25 * Q_{prom} * 86400 * n/24$	$V_{reg} = 0.25 \cdot 0.212 \cdot 86400 \cdot 24/24$	4591.85 litros			
n=Horas del suministro (n= 24h)	Vreg	Se convierte a m 3 V_{re}	$g = 4591.85 \ litros \cdot \frac{1m^3}{1000 \ litros}$	4.59 m3			
Volumen contra incendios	V_{i}	Solo se considera a zonas co poblacional de mas de 2000 l	merciales e industriales con una demanda nabitantes	0.00 litros 0.00 m3			
Volumen de reserva el volumen de reserva es el 20% mas del volumen de regulación para casos de emergencias o mantenimiento	Vr	$V_r = 0.2 \cdot V_{reg}$	$V_r = 0.2 \cdot 4591.85$ Se convierte a m ³	918.37 litros 0.92 m3			
Volumen total del reservorio	V_{t}	$V_t = V_{reg} + V_i + V_r \qquad V_t =$	= 4591.85 + 0.00 + 918.37 Se convierte a m ³	5510.22 litros 10.00 m3			

Tabla 33. Dimensionamiento del reservorio rectangular

3 . Dimensionamiento del reservorio rectangular	Simbolo	Fórmula	Cálculo	Resultado
Ancho interno	b			3.00 m
Largo interno	l			3.00 m
Altura útil de agua	h	$h = \frac{V_t}{(b \cdot l)}$	$h = \frac{10.00 \text{ m}3}{(3.00 \text{ m} \cdot 3.00 \text{ m})}$	1.11 m
Distancia vertical eje salida y fondo reservorio	hi			0.10 m
Altura total del agua	ha	ha = h + hi	ha = 1.11 + 0.10	1.21 m
Relación del ancho de la base y la altura (b/h)	j	$j = \frac{b}{ha}$	$j = \frac{3.00 \text{ m}}{1.21 \text{ m}}$	2.48 m
Distancia vertical techo reservorio y eje tubo de ingreso de agua	k			0.20 m
Distancia vertical entre eje tubo de rebose y eje ingreso de agua	1			0.15 m
Distancia vertical entre eje tubo de rebose y nivel maximo de agua	m			0.10 m
Altura total interna	h	h = ha + (k + l + m)	h = 1.21 + (0.20 + 0.15 + 0.10)	1.66 m

Tabla 34. Cálculo de los diámetros de las tuberías

4 . Cálculo de los diámetros de las tuberías	Simbolo	Fórmula	Cálculo	Resultado		
Tubería de entrada	Den	La tubería de entrada es igual a	La tubería de entrada es igual ala tuberia de la linea de conducción			
Tubería de salidad - Linea de A	Aducción					
	Para hallar el diámetro de la tubería de aducción se calcula con la formula de Hazen y Williams tomando el coeficiente máximo horario $ \boxed{ Q = 0,2786 * C * D^{0,63} * S^{0,54} } $ $ Despejamos para hallar "D" $ $ Despejamos para hallar "D" $					
Pendiente	S	$S = \frac{Alt.agua}{Longitud}$	$S = \frac{1.21 \text{ m}}{3.00 \text{ m}}$	0.403703704		
Diámetro de la tuberia de salidad	$\mathbf{D}_{\mathrm{adu}}$	$D = \left(\frac{\left(\frac{Qmh}{1000}\right)}{0.2786 * C * S^{0.54}}\right)^{0.38}$	$D = \left(\frac{\left(\frac{0.500}{1000}\right)}{0.2786 \cdot 150 \cdot 0.403^{0.54}}\right)^{0.38}$	0.0162 m		
			Convirtiendo a pulgadas	1		
Tubería de rebose y cono de rebose						
Como la tubería de entrada esResultado, para el rebose de considera un mayor diámetro así que asumimos D = 2.00 pulg						

Tubería de limpieza						
Diámetro de la tubería de limpieza	D	$\frac{0.71 * Qmax^{0.38}}{hf^{0.21}}$	$\frac{0.71 * \text{Qm}d^{0.38}}{\text{hf}^{0.21}}$	1.44 pulg		
			se redondea "D"	2.00 pulg		
Diámetro de la tubería de rebose	Dr	Se considera el mismo d	liámetro que la tubería de limpieza	2.00 pulg		
El cono	de rebos	e sera 2 veces mayor al diámetro	de la tubería de rebose	4.00 pulg		
Tubería de desagüe	Tubería de desagüe					
Se conside	era el misi	mo diámetro de la tubería de limp	$\mathbf{D_{de}} =$	2.00 pulg		
Tubería de Ventilación						
Según RNE en la OS 0.30 (5.2), el sist		entilación deberá permitir la circula el caudal máximo de entrada o sa	ación del aire en el reservorio con una capa lida de agua	acidad mayor que		
De acuerdo a lo qu	e nos esp	ecifica el reglamento, tomamos	como referencia al $Q_{\it mh}$	0.500 l/s		
Ahora determinamos los números de o	Ahora determinamos los números de orificios para la ventilación asumiendo un diámetro de la tubería de ventilación de $D_{ve} = 1.00 \text{ pul}$					
Número de orificios	N°	$N = \left(\frac{D_{adu}}{D_{ve}}\right)^2$	$N = \left(\frac{1.00}{0.500}\right)^2$	1.00 orificios		
Eso indica que se colocará 1 orificio de ventilación de 1.00 pulg de diámetro.						

Tabla 35. Cálculo del llenado y vaciado del reservorio

5 . Cálculo del llenado y vaciado del reservorio	Simbolo	Fórmula	Cálculo	Resultado
Tiempo de llenado del	T_{LL}	$T_{LL} = V_t \cdot 1000/Q_{md}$	$T_{LL} = 10.00 \cdot 1000 / 0.500$	20000.00 seg
reservorio	I LL		Convirtiendo a horas el T_{LL}	5.6 horas
Según RNE en la OS 0.3	0 (5.2) el	diámetro de la tubería de desag	üe deberá permitir un tiempo de vaciado	2h.
Velocidad de defogue	$V_{ m df}$	es la misma veloc	idad de la tuberia de limpieza	0.38 m/s
Caudal de defogue	$Q_{ m df}$	$Qdf = \frac{\pi \cdot D_{de}^{2} \cdot V_{df}}{4}$	$Qdf = \frac{\pi \cdot D_{de}^{2} \cdot V_{df}}{4}$	0.770 l/s
Tiempo de vaciado del reservorio	$T_{ m va}$	$T_{va} = \frac{Vt}{Q_{df}}$	$T_{va} = \frac{Vt}{Q_{df}}$	7156.13 s
			Convirtiendo a horas el T_{va}	2.0 horas

Tabla 36. Cálculo de la canastilla en el reservorio

6 . Cálculo de la canastilla	Simbolo	F	'órmula		Cálculo		Resultado
Para el cálculo del diámetro de la ca el doble del diámetro de la tubería d			"D _{can} " sera 2 · D	con	$D_{Can} =$	2 · 1	2.00 pulg
Se recomienda que la longitud de l esta condición "3 Dadue		-	$L = 3 \cdot D_{adu}$ $L = 6 \cdot D_{adu}$		$L = 3 \cdot 2.00 \text{ pulg}$ $L = 6 \cdot 2.00 \text{ pulg}$	→	3.00 pulg 6.00 pulg
			3.00 pulg < L <	6.00 p	oulg '' L'' asumi	do sera =	5.00 pulg
Convertimos a centimetros	1 pul =	= 2.54 cm	$rac{0.0254\ cm}{1pulg}$.	5.00		→	13.000 cm
Área de la Ranura							
Para el cálculo del área de la ranu se considera el ancho "A _m " 7 mm					Ancho de la ranura =	7.00 mm	
"L _m " 5 mm		A	Área de la Raura	ı	Largo de la Ranura =	5.00 mm	
5 mm	7 mm		$A_r = a_r$ Convertimos a m ²	$\cdot l_r$	$A_r = 7.00 \cdot 5.00$ $A_r =$	= 35.00 0.0000350	

Área de la canastilla	$\mathbf{A_c}$	$A_c = 2 \cdot \frac{\pi \cdot D_{adu}^2}{4}$	$A_c = \frac{\pi \cdot 0.0254^2}{4}$	0.00051 m
Área total de ranuras	$\mathbf{A_t}$	$A_t = 2 \cdot A_C$	$A_t = 2 \cdot 0.00051$	0.001013 m
El valor de At no debe ser mayor a lateral de la granada "Ag"	150% del	area Debe cumplir el siguiente parametro	At ≤ 50% del área granada ''A	
Asuimiendo el diametro de la granada 2 pulgadas hallamos el area	•	$A_g = 0.5 \cdot D_g \cdot L$	$A_g = 0.5 \cdot 5.08 \cdot 13.00$ $Ag =$	33.02 cm2
	1	$0.13 \text{ cm}2 \leq 16.$	51 cm2 Cumple!	
Número de Ranuras	Nr	$N_r = \frac{A_t}{A_r} + 1$	$N_r = \frac{0.001013}{0.000035} + 1$	30.00 Und.

CÁLCULO DEL SISTEMA DE CLORACIÓN POR GOTEO

Cuadro 39. Datos para el cálculo hidráulico del sistema de cloración por goteo

1. Datos para el diseño	Simbolo	Fórmula	Cálculo	Resultado
Dosis adoptada	Da			2 mg/lt de hiplocorito de calcio
Porcentaje de cloro activo	r			65%
Concetración de la solución	С			0.25 %
Equivalencia 1 gota	E			0.00005 lt

Fuente: Elaboración propia – 2021

Tabla 37. Cálculo del sistema de cloración por goteo

2 . Cálculo del sistema de cloración por goteo	Simbolo	Fórmula	Cálculo	Resultado
Volumen del reservorio	Vr			10 m3
Caudal máximo diario	Qmd			0.500 l/s
Caudal máximo diario (m3/h)	Qmd ₂	$Qmd_2 = \frac{Qmd \cdot 3600}{1000}$	$Qmd_2 = \frac{0.500 \cdot 3600}{1000}$	1.800 m3/h
Dosis adoptada	Da			2 gr/m3
Peso del cloro	P	$P = Qmd_2 \cdot Da$	$P = 0.500 \cdot 2$	3.600 gr/h
Porcetaje de cloro activo	r			65%
Peso producto comercial	Pc	$Pc = \frac{P}{Pca}$	$Pc = \frac{3.600}{65\%}$	5.538 gr/h
	Convert	imos a <i>Kg/H</i>		0.005538 Kg/h
Concetración de la solución	С			0.25 %
Demanda de la solución	qs	$qs = \frac{Pc \cdot 100}{C}$	$qs = \frac{0.005538 \cdot 100}{0.25 \%}$	2.215 <i>V</i> h
Tiempo del uso del recipiente	t			12.00 h
Volumen de solución	Vs	$Vs = qs \cdot t$	$Vs = 2.215 \cdot 12.00$	26.581
Volumen del bidón adoptado	Vb			60.00 lt
Demanda de la solución en gotas/s	qs	$qs = \frac{qs}{E \cdot 60 \cdot 60}$	$qs = \frac{2.215}{0.00005 \cdot 60 \cdot 60}$	12 gotas/s

CÁLCULO HIDRÁULICO DE LA LÍNEA DE ADUCCIÓN

Cuadro 40. Periodo de diseño para el cálculo de la línea de aducción

Periodo de diseño de es	structuras
Estructura	" t "
Linea de aducción	20 años

Fuente: Resolución Ministerial - 192 - 2018 vivienda

Para el cálculo de las tuberías que están trabajando a presión, se utilizará a Fórmula establecida por HAZEN y WILLIAMS, el cual se presenta a continuación:

$$Q = 0.0004264 \ (C) (D^{2.63}) (h_f^{0.54})$$

Donde:

C = Coeficiente de rugosidad

D = Diametro de la tuberia "pulg"

hf = Perdida de carga unitaria

Q = Caudal de conducción

Según la sección (e), Para el cálculo de las tuberías que trabajan con flujo a presión se utilizarán fórmulas racionales. En caso de aplicarse la fórmula de Hazen y Williams, se utilizarán los coeficientes de fricción que se establecen. Para el caso de tuberías no consideradas, se deberá justificar técnicamente el valor utilizado.

Se realizará un análisis general de toda la línea (tramo por tramo), para de esta forma poder verificar las presiones existentes en cada punto, de acuerdo a los criterios establecidos por Hazen y Williams, presentados en el siguiente cuadro:

Cuadro 41. Descripción, cotas, distancias y otros datos en la línea de aducción

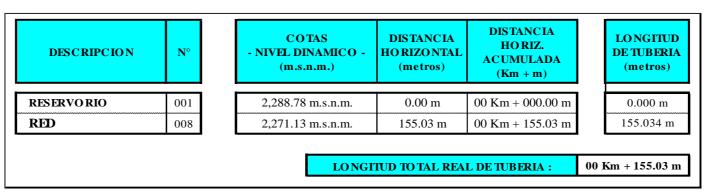


Tabla 38. Cálculo hidráulico de la línea de aducción

	DISEÑO HIDRÁULICO DE LA LINEA DE ADUCCIÓN												
						DATOS DE	CÁLCULO						
NGENIERIA	CAUDAL MÁXIMO DIÁRIO: COEFICIENTE C: (R.N.E) Tub.: Poli(cloruro de vinilo)(PVC) Entonces sera de: Se realizará un análisis general de toda la línea, para de esta forma poder verificar las presiones existentes en cada punto, de acuerdo a los criterios establecidos por Hazen y Williams, presentados en el siguiente cuadro:												
PUNTO	DISTANCIA HORIZONTAL (Km + m)	NIVEL DINÁMICO - COTA - (m.s.n.m.)	DES NIVEL	LONG. DE TUBERÍA (m)	CAUDAL (m³/S eg.)	DIÁMETRO CALCULADO (mm)	DIÁMETRO AS UMIDO (mm)	VELOCIDAD CALCULADA → (m/S eg.)	VELOCIDAD REAL → (m/S eg.)	PERDIDA DE CARGA UNITARIA (m/Km)	H_f ACUMULADA \rightarrow (m)	ALTURA PIES OMETR COTA - (m.s.n.m.)	PRESIÓN (m) ↑
RESERVORIO	00 Km + 000.00 m	2,288.780		0.00	0.00050							2,288.780	0.000
RED	00 Km + 155.03 m	2,271.127	17.653	155.034	0.00050	21.003	29.4	1.443 m/Seg.	0.737 m/Seg.	3.4311	3.4311	2,285.349	14.222
								Pérdida	a de carga en el tr	amo:	3.431 m		

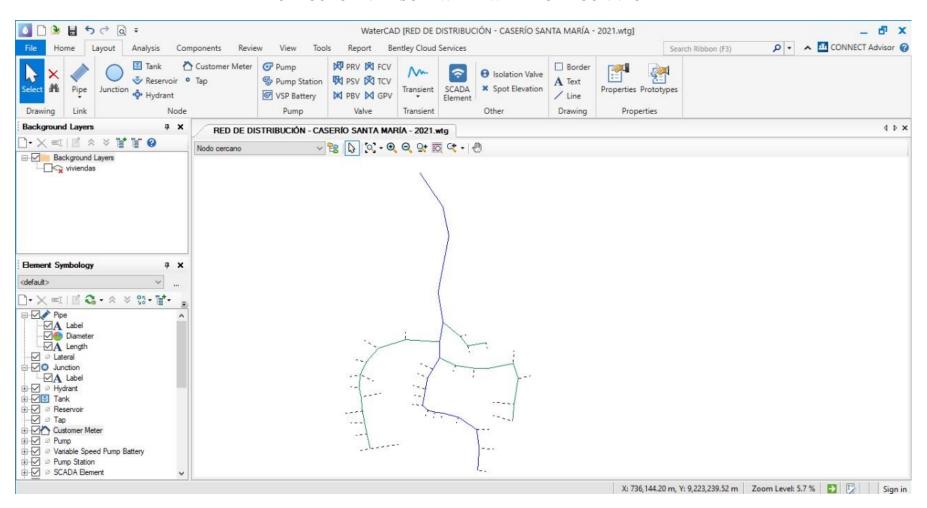
Cuadro 42. Fórmulas para el cálculo en la línea de aducción

FORMUI	LAS PARA LA LÍNEA DE ADUCCIÓN	
NOMBRES DE FÓRMULAS	FÓRMULA ESTABLECIDAD	DESCRIPCIÓN DE FÓRMULA
FÓRMULA DEL DIÁMETRO	$\mathbf{Q} = 0.2785 \cdot C^{2.63} \cdot \text{hf}^{0.54} \longrightarrow \text{Despejamos D}$ $\mathbf{D} = \left(\frac{Q}{0.2785 \cdot C \cdot \text{hf}^{0.54}}\right)^{\frac{1}{2.63}}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). hf = Pérdida unitaria. C = Coeficiente de rugosidad.
FÓRMULA DEL CAUDAL	$\mathbf{Q} = 0.2785 \cdot C^{2.63} \cdot hf^{0.54}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). hf = Pérdida unitaria. C = Coeficiente de rugosidad.
FÓRMULA PARA LA VELOCIDAD	$\mathbf{V} = \frac{\mathbf{Q}}{\mathbf{A}} \longrightarrow \mathbf{V} = \frac{\mathbf{Q}}{\frac{\mathbf{\pi} \cdot \mathbf{D}^2}{4}} \longrightarrow \mathbf{V} = \frac{4 \cdot \mathbf{Q}}{\mathbf{\pi} \cdot \mathbf{D}^2}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). V = Velocidad (m/s).
FÓRMULA PARA LA PÉRDIDA UNITARIA	$\mathbf{Q} = 0.2785 \cdot C^{2.63} \cdot \text{hf}^{0.54} \longrightarrow \text{Despejamos hf}$ $\mathbf{hf} = \left(\frac{Q}{0.2785 \cdot C \cdot D^{2.63}}\right)^{\frac{1}{0.54}}$	Donde: Q = Caudal (m^3/s). D = Diámetro (m). hf = Pérdida unitaria. C = Coeficiente de rugosidad.
FÓRMULA PARA LA DISTANCIA X	$\mathbf{Hf} = \text{hf1} \cdot (\mathbf{L} - \mathbf{X}) + \text{hf2} \cdot \mathbf{X} \longrightarrow \text{Despejamos Hf}$ $\mathbf{X} = \frac{\mathbf{H_f} \cdot (\mathbf{hf_1} \cdot \mathbf{L})}{\mathbf{h_{f2}} - \mathbf{h_{f1}}}$	Donde: Hf = Pérdida por tramo (m). L = Longitud por tramo (m). hf1 = Pérdida unitaria 1 hf2 = Pérdida unitaria 2
FÓRMULA PARA LA PÉRDIDA DE CARGA DE TRAMO	$\mathbf{Hf} = \mathbf{hf} \cdot \mathbf{L}$	Donde: Hf = Pérdida por tramo (m). L = Longitud por tramo (m)

CÁLCULO HIDRÁULICO DE LA RED DE DISTRIBUCIÓN

Tabla 39. Cálculo hidráulico de la tubería principal y secundaria en la red de distribución

TRAZO	LONGITUD (mts)	DIÁMETRO (mm)	MATERIAL	COEFICIENTE DE RUGOCIDAD "C"	CAUDAL (L/s)	VELOCIDAD (m/s)
Linea de Aducción	155.034	29.4	PVC	150	0.500	0.74
TUBP-1	37.110	29.4	PVC	150	0.500	0.74
TUBP-2	24.159	29.4	PVC	150	0.455	0.67
TUBS-1	26.955	22.9	PVC	150	0.045	0.11
TUBS-2	14.608	22.9	PVC	150	0.030	0.07
TUBS-3	22.286	22.9	PVC	150	0.015	0.04
TUBP-3	19.403	29.4	PVC	150	0.273	0.40
TUBS-4	41.481	22.9	PVC	150	0.182	0.44
TUBP-4	16.192	29.4	PVC	150	0.182	0.27
TUBS-5	21.454	22.9	PVC	150	0.091	0.22
TUBP-5	12.416	29.4	PVC	150	0.167	0.25
TUBS-6	22.164	22.9	PVC	150	0.076	0.18
TUBP-6	13.787	29.4	PVC	150	0.152	0.22
TUBS-7	17.168	22.9	PVC	150	0.061	0.15
TUBP-7	9.951	29.4	PVC	150	0.136	0.20
TUBP-8	10.144	29.4	PVC	150	0.121	0.18
TUBS-8	31.220	22.9	PVC	150	0.061	0.15
TUBP-9	8.860	29.4	PVC	150	0.106	0.16
TUBP-10	8.775	29.4	PVC	150	0.091	0.13
TUBP-11	9.405	29.4	PVC	150	0.076	0.11
TUBP-12	19.736	29.4	PVC	150	0.061	0.09
TUBS-9	19.320	22.9	PVC	150	0.045	0.11
TUBP-13	26.623	29.4	PVC	150	0.045	0.07
TUBP-14	23.021	29.4	PVC	150	0.030	0.04
TUBP-15	26.877	29.4	PVC	150	0.015	0.02
TUBS-10	31.212	22.9	PVC	150	0.030	0.07
TUBS-11	21.037	22.9	PVC	150	0.015	0.04
TUBS-12	34.690	22.9	PVC	150	0.167	0.40
TUBS-13	22.067	22.9	PVC	150	0.152	0.37
TUBS-14	16.653	22.9	PVC	150	0.136	0.33
TUBS-15	15.715	22.9	PVC	150	0.106	0.26
TUBS-16	11.618	22.9	PVC	150	0.091	0.22
TUBS-17	17.541	22.9	PVC	150	0.076	0.18
TUBS-18	13.950	22.9	PVC	150	0.061	0.15
TUBS-19	13.849	22.9	PVC	150	0.045	0.11
TUBS-20	18.502	22.9	PVC	150	0.030	0.07


Tabla 40. Cálculo de las presiones en los nodos de la red de distribución

VIVIENDA	DEMANDA (L/s)	ELEVACIÓN (m)	PRESIÓN (m H2O)
Viv1	0.015	2263.641	20.520
Viv2	0.015	2261.311	22.326
Viv3	0.015	2260.637	22.887
Viv4	0.015	2260.254	23.204
Viv5	0.015	2259.759	23.766
Viv6	0.015	2259.281	24.138
Viv7	0.015	2258.737	24.641
Viv8	0.015	2258.376	24.981
Viv9	0.015	2257.984	25.360
Viv10	0.015	2257.934	25.402
Viv11	0.015	2258.206	25.131
Viv12	0.015	2261.450	22.988
Viv13	0.015	2260.852	23.549
Viv14	0.015	2260.331	24.036
Viv15	0.015	2259.833	24.512
Viv16	0.015	2259.310	25.019
Viv17	0.015	2258.761	25.556
Viv18	0.015	2258.709	25.599
Viv19	0.015	2258.820	25.482
Viv20	0.015	2258.482	25.811
Viv21	0.015	2263.742	21.318
Viv22	0.015	2262.847	22.207
Viv23	0.015	2262.645	22.406
Viv24	0.015	2261.933	22.369
Viv25	0.015	2260.038	24.232
Viv26	0.015	2259.467	24.799
Viv27	0.015	2258.803	25.483
Viv28	0.015	2257.714	26.568
Viv29	0.015	2257.175	27.104
Viv30	0.015	2262.203	21.617
Viv31	0.015	2261.485	22.941
Viv32	0.015	2261.014	23.361
Viv33	0.015	2261.169	23.116

Tabla 41. Cálculo de las presiones en las viviendas

NODO	ELEVACIÓN (mts)	PRESIÓN (m H2O)
N-1	2285.349	14.222
N-2	2265.458	19.63
N-3	2263.606	21.455
N-4	2263.188	21.866
N-5	2262.878	22.173
N-6	2263.531	21.105
N-7	2262.155	22.34
N-8	2261.251	23.187
N-9	2261.925	22.501
N-10	2260.721	23.68
N-11	2261.774	22.601
N-12	2260.176	24.191
N-13	2259.694	24.652
N-14	2261.686	22.663
N-15	2259.148	25.181
N-16	2258.914	25.403
N-17	2258.872	25.437
N-18	2258.928	25.374
N-19	2261.272	23.03
N-20	2258.737	25.556
N-21	2258.647	25.639
N-22	2257.727	26.554
N-23	2257.081	27.199
N-24	2260.909	23.376
N-25	2260.132	24.138
N-26	2259.311	24.955
N-27	2263.202	20.959
N-28	2262.166	21.655
N-29	2260.899	22.738
N-30	2260.491	23.034
N-31	2260.144	23.314
N-32	2259.365	24.054
N-33	2258.653	24.726
N-34	2258.343	25.014
N-35	2258.09	25.254
N-36	2257.954	25.382

CÁLCULO EN EL SOFTWARE WATERCAD CONNECT

CÁLCULO HIDRÁULICO DE LA CÁMARA ROMPE PRESIÓN TIPO 6

Tabla 42. Cálculo hidráulico de la cámara rompe presión tipo 6

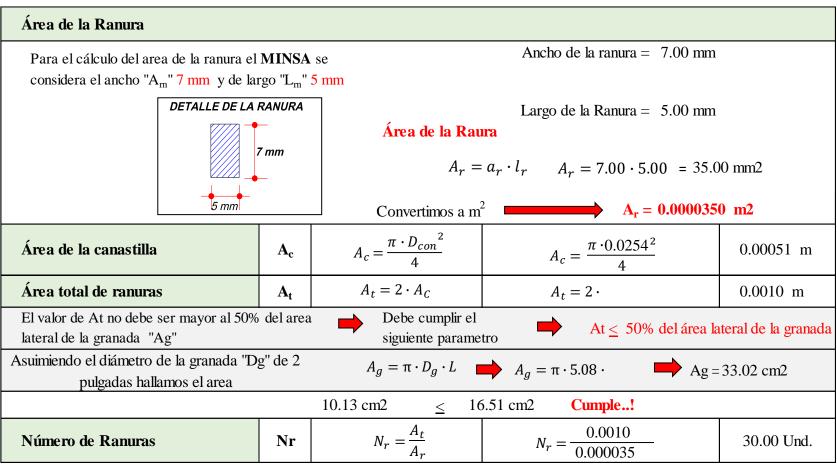

1 . Diseño de la CRP 6	Simbolo	Fórmula	Cálculo	Resultado
Caudal maximo diario	Qmd			0.5000 l/s
Diámetro de salida	Ds		Obtenido	1.00 pulg.
Velocidad de salida	V	$V_2 = 1.9735 \cdot \left(\frac{Qmd}{Ds^2}\right)$	$V_2 = 1.9735 \cdot \left(\frac{0.50}{1.00} \right)$	0.99 m/s
Gravedad	g			9.81 m/s^2
Altura de nivel de agua	Н	$h = 1.56 \cdot \frac{V^2}{2 \cdot g}$	$h = 1.56 \cdot \frac{0.99^{-2}}{2 \cdot 9.81}$	0.08 m
Por porceso constructivo H sera				0.40 m
Altura mínima de salida	A			0.10 m
Borde libre	BL			0.40 m
Altura total de camara húmeda	Ht	Ht = A + H + BL	Ht = 0.10 + 0.40 + 0.40	0.90 m

Tabla 43. Cálculo de la tubería de rebose en la CRP6

2. Diseño del rebose	Simbolo	Fórmula	Cálculo	Resultado
Perdida de carga unitaria (1 a 1.5 %)	hf			1.00 %
Diámetro de tubería de rebose	Dr	$Dr = \frac{0.71 \cdot Qmd^{0.38}}{hf^{0.21}}$	$Dr = \frac{0.71 \cdot 0.50^{-0.38}}{1.00^{-0.21}}$	1.44 pulg
Considera	mos un d	liametro de la tubería de rebo	ose de	2.00 pulg
Diámetro del cono de rebose	Der	$Dr = 2 \cdot Dr$	$Dr = 2 \cdot 2.00$	4.00 pulg

Tabla 44. Cálculo de la canastilla en la CRP6

3 . Cálculo de la canastilla	Simbolo	Fá	órmula	Cálculo		Resultado
Para el cálculo del diámetro de la canast doble del diámetro de la tuberia de condu		siderara el	"Dg" asumido s	era $2 \cdot \text{Dadu.} \longrightarrow D_g = 2$.1.00	2.00 pulg
Se recomienda que la Longitud de la ca esta condición "3 Dcon <			$L = 3 \cdot D_c$ $L = 6 \cdot D_c$		→	3.00 pulg 6.00 pulg
			> L >	> "L" asum	ido sera =	5.00 pulg
Convertimos a centimetros	1 pul	= 2.54 cm	$\frac{0.0254\ cm}{1pulg}$	<u>.</u>		13.000 cm

Anexo 08: Metrado del sistema de abastecimiento de agua potable

Tabla 45. Metrado de la cámara de captación

D A DEED A	pro opmovávy	** * 1 1 1		MEI		- D	a .	T . 1	
PARTIDA	DES CRIPCIÓN	Unidad	Cant.	Largo	Ancho	Altura	- Parcial	Cant.	Total
01.	SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE - SANTA M	IARÍA							
0.1.01	OBRAS PROVICIONALES								
01.01.01	CASETA DE ALMACEN, GUARDIANIA Y OFICINA	GLB	1.00				1.00	1	1.00
01.01.02	CARTEL DE OBRA 3.6 X 2.40 mts (Gigantografia)	UND	1.00				1.00	1	1.00
01.01.03	CINTA PLASTICA SEÑALIZADORA PARA LIMITES DE SEGURIDAD DE OBRA	ML	1.00	900			900	1	900
01.01.04	ENERGIA ELECTRICA PROVISIONAL	MES	5.00				5.00	1	5.00
0.1.01	TRABAJOS PRELIMINARES								
01.01.01	MOVILIZACIÓN Y DESMOVILIZACIÓN DE EQUIPOS	GLB	1.00				1.00	1	1.00
01.01.02	CERCADO DE ESTRUCTURAS CON MATERIAL SINTÉTICO	m		100			100.00	1	100.00
01.01.03	DEMOLICIÓN DE ESTRUCTURAS	m3							14.03
01.03.	SEGURIDAD Y SALUD								
01.03.01	EQUIPOS DE PROTECCIÓN COLECTIVA	GLB	1.00				1.00	1	1.00
01.03.02	EQUIPOS DE PROTECCCIÓN INDIVIDUAL	GLB	1.00				1.00	1	1.00
01.03.03	SEÑALIZACIÓN TEMPORAL DE SEGURIDAD	GLB	1.00				1.00	1	1.00
01.03.04	CAPACITACIÓN EN SEGURIDAD Y SALUD	GLB	1.00				1.00	1	1.00
01.03.05	RECURSOS PARA EMERGENCIAS EN SEGURIDAD	GLB	1.00				1.00	1	1.00
01.04.	IMPLEMENTACIÓN DEL PLAN PARA PREVENCIÓN DE LA SALUD EN OBRAS ANTI COVID - 19								
01.04.01	ELABORACIÓN DEL PLAN PARA VIGILANCIA, PREVENCIÓN DEL COVID 19	GLB	1.00				1.00	1	1.00
01.04.02	LIMPIEZA Y DESINFECCIÓN EN OBRA	mes	5.00				5.00	1	5.00
01.04.03	EVALUACIÓN DE LA CONDICIÓN DE SALUD DEL TRABAJADOR	PER	30.00				30.00	1	30.00
01.04.04	LAVADO Y DESINFIECCIÓN DE MANOS	mes	5.00				5.00	1	5.00
01.04.05	SENSIBILIZACIÓN DE LA PREVENCIÓN DEL CONTAGIO COVID-19 EN OBRA	mes	1.00				1.00	1	1.00
01.04.06	MEDIDAS PREVENTIBAS COLECTIVAS	GLB	1.00				1.00	1	1.00
01.04.07	MEDIDAS DE PROTECCIÓN PERSONAL	mes	5.00				5.00	1	5.00

01.04.08	IDENTIFICACIÓN DE SISTEMATOLOGIA COVID - 19 AL INGRESAR A LA OBRA	und	30.00				30.00	1	30.00
01.04.09	VIGILANCIA DE LA SALUD DEL TRABAJADOR EN EL CONTEXTO DEL COVID - 19	und	30.00				30.00	1	30.00
01.05.	CAPTACIÓN SANTA MARÍA TIPO LADERA Q = 0.50 l/s								
01.05.01	TRABAJOS PRELIMINARES								
01.05.01.01	LIMPIEZA DE TERRENO MANUAL	m2						1	22.00
	captación nueva(inc. Cerco perimetrico)		1.00	5.50	4.00		22.00		
01.05.01.02	TRAZO Y REPLANTEO PRELIMINAR	m2						1	22.00
01.03.01.02	captación nueva(inc. Cerco perimetrico)	1112	1.00	5.50	4.00		22.00	1	22.00
			1.00	3.30	1.00		22.00		
01.05.02	MOVIMIENTO DE TIERRAS								
01.05.02.01	EXCAVACION MANUAL EN MATERIAL SUELTO	m3						1	1.83
	cámara húmeda		2.00	0.60	0.20	0.15	0.04		
			2.00	1.10	0.20	0.15	0.07		
	.Com de colonda		1.00	1.10	1.10	0.45	0.54		
	cámara de valvula zanja limpieza y rebose		1.00 1.00	0.60 2.00	0.60 0.40	0.35 0.50	0.13 0.40		
	dado movil		1.00	0.20	0.40	0.20	0.40		
	zanja de cuneta de coronación		1.00	4.30	0.30	0.50	0.65		
0.1.05.02.02	ACARREO DE MATERIAL EXCEDENTE HASTA D. Prom. = 30 m	m3						1	2.19
				Excava	cion zanjas		1.83		
				Esponjan	niento 20%		0.37		

01.05.03	OBRAS DE CONCRETO SIMPLE								
01.05.03.01	CONCRETO F'C=100Kg/cm2	m3						1	0.27
	solado base de cámara húmeda		1.00	0.70	0.60	0.05	0.02		
	solado para base de filtro(long. prom. 0.75)		1.00	1.33	0.75	0.10	0.10		
	recubrimiento de captacion(long.prom. 1.50)		1.00	1.71	1.29	0.07	0.15		
01.05.03.02	CONCRETO F'C=175 kg/cm2	m3						1	0.12
	cámara de válvula:								
	muro long		2.00	0.60	0.10	0.50	0.06		
	muro transv		1.00	0.40	0.10	0.50	0.02		
	ciment.long.		2.00	0.60	0.20	0.10	0.02		
	ciment.trans.		1.00	0.30	0.20	0.10	0.01		
	alero de apoyo para tapa		1.00	0.40	0.10	0.10	0.004		
	dado móvil:								
	dado movil		1.00	0.20	0.20	0.20	0.01		
01.05.03.03	ENCOFRADO Y DESENCOFRADO	m2						1	1.95
	cámara de válvula:								
	muro long. cara interior		2.00	0.50		0.50	0.50		
	muro trans.cara interior		1.00	0.40		0.50	0.20		
	base muro long.cara interior		2.00	0.40		0.10	0.08		
	base muro trans.cara interior		1.00	0.30		0.10	0.03		
	muro long.cara exterior		2.00	0.60		0.50	0.60		
	muro trans. cara exterior		1.00	0.60		0.50	0.30		
	alero de apoyo		2.00	0.40	0.1		0.08		
	dado movil:								
	dado movil		4.00	0.20		0.20	0.16		

01.05.03.04		m3						1	0.62
	EMPEDRADO PERIMETRAL DE CONCRETO 1:8+50% P.G.		2.00	2.46	0.70	0.15	0.52		
			2.00	1.17	0.15	0.15	0.05		
			1.00	0.57	0.60	0.15	0.05		
01.05.04	OBRAS DE CONCRETO ARMADO								
01.05.04.01	CONCRETO F'C=210 kg/cm2 SIN MEZCLADORA	m3						1	1.61
	cámara húmeda								
	muro long.		2.00	0.70	0.15	0.80	0.17		
	muro transv.		1.00	0.90	0.15	0.80	0.11		
	muro transv.		1.00	0.90	0.15	1.18	0.16		
	losa de fondo		1.00	0.70	0.60	0.15	0.06		
	cimentacion long.		2.00	1.10	0.20	0.35	0.15		
	cimentacion trans.		2.00	0.60	0.20	0.35	0.08		
	alero de apoyo		1.00	0.60	0.10	0.10	0.01		
	alero de ventilacion		1.00	0.88	0.10	0.15	0.01		
	alerones								
	cimentaciones		2.00	1.50	0.20	0.35	0.21		
	muro (alt.promedio 1.44)		2.00	1.50	0.15	1.44	0.65		
				•					
01.05.04.02	ACERO F'Y=4200 kg/cm2	kg						1	37.70
					PESO				
	<u>cámara húmeda</u>								
	Æ $1/4$ ", Peso =0,25 Kg/m - long. En la base		5.00	1.10	0.25		1.38		
	Æ 1/4", Peso =0,25 Kg/m - trans. En la base		5.00	1.07	0.25		1.34		
	Æ 1/4", Peso =0,25 Kg/m - horiz. En los muros laterales		6.00	1.10	0.25		1.65		
	Æ 1/4", Peso =0,25 Kg/m -vert. En los muros laterales		6.00	1.16	0.25		1.74		
	Æ 1/4", Peso =0,25 Kg/m - horiz. En el muro de salida 293		6.00	1.07	0.25	l	1.61		

				•						
	Æ 1/4", Peso =0,25 Kg/m -vert. En el muros de salida		5.00	1.16	0.25		1.45			l
	Æ 1/4", Peso =0,25 Kg/m - horiz. En el muro de ingreso		7.00	1.07	0.25		1.87			l
	Æ 1/4", Peso =0,25 Kg/m -vert. En el muros de ingreso		5.00	1.70	0.25		2.13			ĺ
	Æ 1/4", Peso =0,25 Kg/m -vert. En el alero de apoyo		4.00	0.33	0.25		0.33			İ
	Æ 1/4", Peso =0,25 Kg/m -horiz. En el alero de apoyo		1.00	1.10	0.25		0.28			İ
	alerones									ĺ
	Æ $3/8$ ", Peso =0.56 Kg/m - Horiz.		12.00	1.72	0.56		11.56			İ
	Æ 3/8", Peso =0,56 Kg/m - Vert.(long.promedio 1.84)		12.00	1.84	0.56		12.36			ĺ
										İ
01.05.04.03	ENCOFRADO Y DESENCOFRADO	m2						1	14.98	ĺ
	cámara húmeda									İ
	muro long.cara interior		2.00	0.70		0.80	1.12			İ
	muro trans.cara interior		2.00	0.60		0.80	0.96			ĺ
	cara inf. Alero de apoyp		1.00	0.60	0.10		0.06			ĺ
	muro long.cara exter.		2.00	1.00		0.80	1.60			İ
	muro trans.cara exter.		1.00	0.90		0.80	0.72			İ
	muro trans.cara exter.		1.00	0.70		1.18	0.83			ĺ
	muro trans.cara exter.frontal		1.00	0.90		0.35	0.32			ĺ
	alero de ventilacion-base		1.00	0.88	0.10		0.09			ĺ
	alero de ventilacion-lateral		1.00	0.88		0.15	0.13			ĺ
	alero de ventilacion-extremos		2.00		0.10	0.15	0.03			İ
	<u>alerones</u>									ĺ
	muros(alt. Prom. 1.44)		4.00	1.50		1.44	8.61			ĺ
	muros-extrem.		2.00	0.15		1.69	0.51			ĺ
										ĺ
01.05.05	REVOQUES Y ENLUCIDOS									
01.05.05.01	TARRAJEO CON IMPERMEABILIZANTES MEZCLA 1:4, e=1.5 cm	m2							2.12	ĺ
01.03.03.01	TARRAJEO CON INTERNICABILIZANTES NIEZCLA 1:4, e=1.3 CM	III∠						1	2,12	ĺ

	cámara húmeda			I						l
	muro long.cara interior		2.00	0.70		0.70	0.98			Ĭ
	muro trans.cara interior		2.00	0.60		0.70	0.84			l
	cara inf. Alero de apoyp		1.00	0.60	0.10		0.06			l
	borde laterales long, tapa		2.00	0.60		0.10	0.12			l
	borde laterales trans. tapa		2.00	0.60		0.10	0.12			l
										l
01.05.05.02	TARRAJEO EN MUROS EXTERIORES 1:5, e=1.5cm	m2						1	5.26	
	cámara húmeda									l
	muro long.cara exter.		2.00	0.88		0.55	0.97			
	muro trans.cara exter.		1.00	0.90		0.80	0.72			l
	muro trans.cara exter.frontal		1.00	0.90		0.35	0.32			l
	alero de ventilacion-base		1.00	0.88	0.10		0.09			
	alero de ventilacion-lateral		1.00	0.88		0.15	0.13			l
	alero de ventilacion-extremos		2.00		0.10	0.15	0.03			l
	cámara de valvula:									l
	muro long.cara exterior		2.00	0.60		0.25	0.30			
	muro trans. cara exterior		1.00	0.60		0.25	0.15			
	alero de apoyo		1.00	0.40	0.1		0.04			
	<u>alerones</u>									l
	muros(alt. Prom. 0.84 m)		2.00	1.50		0.84	2.51			
										ļ
01.05.06	TAPA METALICA									
01.05.06.01	TAPA METALICA ESTRIADA 0.60X0.60 e=1/8" + MARCO METAL INC. ACCESORIO	Und						1	1.00	
	Tapa cámara húmeda 0.6x0.6x1/8"		1.00				1.00			
01.05.06.02	TAPA METALICA ESTRIADA 0.40X0.40 e=1/8" + MARCO METAL INC.	Und						1	1 00	
	ACCESORIO Tapa cámara válvulas 0.4x0.4x1/8"		1.00				1.00	1	1.00	
1	1 apa camara varvutas 0.4x0.4x1/6		1.00	l		I	1.00			ı

suministro e instalación de válvula de esferica PVC de 1" ACCESORIOS DE TUBERÍA DE CONDUCCIÓN suministro e instalación de canastilla de bronce de 2" suministro e instalación de adaptador PVC roscado Ø 1" suministro e instalación de unión universal F° G° de 1" suministro e instalación de niple de Ø PVC 1"	und. und. und. und. und.	1.00 1.00 1.00 2.00				1.00	1	1.00
ACCESORIOS DE TUBERÍA DE CONDUCCIÓN suministro e instalación de canastilla de bronce de 2" suministro e instalación de adaptador PVC roscado Ø 1" suministro e instalación de unión universal F° G° de 1" suministro e instalación de niple de Ø PVC 1"	und. und. und.	1.00 1.00					1	
suministro e instalación de canastilla de bronce de 2" suministro e instalación de adaptador PVC roscado Ø 1" suministro e instalación de unión universal $F^{\circ}G^{\circ}$ de 1" suministro e instalación de niple de Ø PVC 1"	und.	1.00				1.00	1	
suministro e instalación de adaptador PVC roscado Ø 1" suministro e instalación de unión universal $F^{o}G^{o}$ de 1" suministro e instalación de niple de Ø PVC 1"	und.	1.00				1.00		
suministro e instalación de unión universal $F^{\circ}G^{\circ}$ de 1" suministro e instalación de niple de \emptyset PVC 1"	und.							1.00
suministro e instalación de niple de Ø PVC 1"		2.00				1.00		1.00
-	und					2.00		2.00
	una.	2.00				2.00		2.00
suministro e instalación de adaptadores PVC 1"	und.	2.00				2.00		2.00
ACCESORIOS DE TUBERÍA DE LIMPIEZA Y REBOSE							1	
suministro e instalación de cono de rebose PVC de 4"	und.	1.00				1.00		1.00
suministro e instalación de codo de PVC SAP de 2"	und.	1.00				1.00		1.00
suministro e instalación de tapón PVC SAP perforado de 2"	und.	1.00				1.00		1.00
suministro e instalación de tubería PVC clase 10 de 2"	ml.		20.00			20.00		20.00
ACCESORIOS DE VENTILACIÓN							1	
suministro e instalación de codo de PVC SAP de 2"	und.	2.00				2.00		2.00
suministro e instalación de tapón perforado de PVC SAP de 2"	und.	2.00				2.00		2.00
suministro e instalación de tubería PVC clase 10 de 2"	ml.		0.20			0.20		0.20
VTURA								
PINTURA ESMALTE EN MUROS EXTERIOR	m2						1	6.38
Viene de: tarrajeo de muros exteriores		1.00				5.26		
Mas coronaciones								
coronacion de muro long.		2.00	0.85	0.15		0.26		
coronacion de muro trans.		2.00	0.60	0.15		0.18		
borde laterales long. tapa		2.00	0.60		0.10	0.12		
NT.	suministro e instalación de cono de rebose PVC de 4" suministro e instalación de codo de PVC SAP de 2" suministro e instalación de tapón PVC SAP perforado de 2" suministro e instalación de tubería PVC clase 10 de 2" CCESORIOS DE VENTILACIÓN suministro e instalación de codo de PVC SAP de 2" suministro e instalación de tapón perforado de PVC SAP de 2" suministro e instalación de tubería PVC clase 10 de 2" CURA NTURA ESMALTE EN MUROS EXTERIOR Viene de: tarrajeo de muros exteriores Mas coronaciones coronacion de muro long, coronacion de muro trans.	SUMINISTRO E INSTALACIÓN SUMINISTRO E INSTALACIÓN GENERAL EN MUROS EXTERIOR SUMINISTRO E INSTALACIÓN GENERAL EN MUROS EXTERIOR Viene de: tarrajeo de muros exteriores Mas coronacion de muro long coronacion de muro trans. borde laterales long tapa	CCESORIOS DE TUBERÍA DE LIMPIEZA Y REBOSE suministro e instalación de cono de rebose PVC de 4" und. suministro e instalación de codo de PVC SAP de 2" und. suministro e instalación de tapón PVC SAP perforado de 2" und. suministro e instalación de tubería PVC clase 10 de 2" ml. CCESORIOS DE VENTILACIÓN suministro e instalación de codo de PVC SAP de 2" und. suministro e instalación de tapón perforado de PVC SAP de 2" und. suministro e instalación de tubería PVC clase 10 de 2" ml. CURA NTURA ESMALTE EN MUROS EXTERIOR Viene de: tarrajeo de muros exteriores Mas coronaciones coronacion de muro long, coronacion de muro long, coronacion de muro trans. borde laterales long, tapa 2.00	CCESORIOS DE TUBERÍA DE LIMPIEZA Y REBOSE suministro e instalación de cono de rebose PVC de 4" und. 1.00 suministro e instalación de codo de PVC SAP de 2" und. 1.00 suministro e instalación de tapón PVC SAP perforado de 2" und. 1.00 suministro e instalación de tubería PVC clase 10 de 2" ml. 20.00 CCESORIOS DE VENTILACIÓN suministro e instalación de codo de PVC SAP de 2" und. 2.00 suministro e instalación de tapón perforado de PVC SAP de 2" und. 2.00 suministro e instalación de tubería PVC clase 10 de 2" ml. 0.20 CURA NTURA ESMALTE EN MUROS EXTERIOR Viene de: tarrajeo de muros exteriores Mas coronaciones coronacion de muro long coronacion de muro long coronacion de muro trans. borde laterales long, tapa 2.00 0.60	CCESORIOS DE TUBERÍA DE LIMPIEZA Y REBOSE suministro e instalación de cono de rebose PVC de 4" suministro e instalación de codo de PVC SAP de 2" suministro e instalación de tapón PVC SAP perforado de 2" suministro e instalación de tubería PVC clase 10 de 2" suministro e instalación de tapón perforado de PVC SAP de 2" suministro e instalación de tapón perforado de PVC SAP de 2" suministro e instalación de tapón perforado de PVC SAP de 2" suministro e instalación de tapón perforado de PVC SAP de 2" suministro e instalación de tubería PVC clase 10 de 2" ml. 2.00 CURA NTURA ESMALTE EN MUROS EXTERIOR Viene de: tarrajeo de muros exteriores Mas coronaciones coronacion de muro long. coronacion de muro long. coronacion de muro long. borde laterales long, tapa 2.00 0.60 0.15	CCESORIOS DE TUBERÍA DE LIMPIEZA Y REBOSE suministro e instalación de cono de rebose PVC de 4" und. 1.00 suministro e instalación de tapón PVC SAP de 2" und. 1.00 suministro e instalación de tapón PVC SAP perforado de 2" und. 1.00 suministro e instalación de tubería PVC clase 10 de 2" ml. 20.00 CCESORIOS DE VENTILACIÓN suministro e instalación de codo de PVC SAP de 2" und. 2.00 suministro e instalación de tapón perforado de PVC SAP de 2" und. 2.00 und. 2.00 suministro e instalación de tubería PVC clase 10 de 2" ml. 0.20 CURA NTURA ESMALTE EN MUROS EXTERIOR Viene de: tarrajeo de muros exteriores Mas coronaciones coronacion de muro long. 2.00 0.85 0.15 coronacion de muro long. 2.00 0.60 0.15 borde laterales long, tapa 2.00 0.60 0.15	CCESORIOS DE TUBERÍA DE LIMPIEZA Y REBOSE suministro e instalación de cono de rebose PVC de 4" suministro e instalación de codo de PVC SAP de 2" und. 1.00 suministro e instalación de tapón PVC SAP perforado de 2" suministro e instalación de tubería PVC clase 10 de 2" CCESORIOS DE VENTILACIÓN suministro e instalación de codo de PVC SAP de 2" und. 2.00 suministro e instalación de tapón perforado de PVC SAP de 2" und. 2.00 suministro e instalación de tapón perforado de PVC SAP de 2" und. 2.00 suministro e instalación de tubería PVC clase 10 de 2" ml. 0.20 CURA NTURA ESMALTE EN MUROS EXTERIOR Viene de: tarrajeo de muros exteriores Mas coronaciones coronacion de muro long coronacion de muro trans. borde laterales long, tapa 2.00 0.60 0.15 0.10 0.12	1

	borde laterales trans. tapa		2.00	0.60		0.10	0.12		
	coronacion de muro long.		2.00	0.85	0.15		0.26		
	coronacion de muro trans.		2.00	0.60	0.15		0.18		
01.05.09	MATERIAL PARA FILTRO								
01.05.09.01	COLOCACIÓN DE GRAVILLA	m3						1	0.47
	gravilla(Long. Prom. 1.85)		1.00	1.85	0.30	0.85	0.47		
01.05.09.02	COLOCACIÓN DE GRAVA	m3						1	0.29
	grava(Long. Prom. 1.15)		1.00	1.15	0.30	0.85	0.29		
01.05.09.03	COLOCACIÓN DE PIEDRA CHICA	m3						1	0.20
	piedra chica(Long.Prom. 0.95)		1.00	0.95	0.25	0.85	0.20		
01.05.09.04	LECHO GRAVOSO EN CAJA DE VÁLVULAS	m3						1	0.01
01.03.09.04	Grava de 1 1/2"	1113	1.00	0.40	0.30	0.10	0.01	1	0.01
01.05.10	CERCO PERIMÉTRICO								
01.05.10.01	EXCAVACION MANUAL EN TIERRA SUELTA	m3						1	1.30
			9.00	0.90	0.40	0.40	1.30		
01.05.10.01	CONCRETO E/C. 175 Indiana SIN MEZCI ADORA	m3						,	1.33
01.05.10.01	CONCRETO F'C=175 kg/cm2 SIN MEZCLADORA parte inferior	111.5	9.00	0.90	0.40	0.40	1.30	1	1.33
	parte superior(forma cónica)		9.00	0.40	0.40	0.10	0.03		
01.05.10.02	CERCO PERIMÉTRICO CON MALLA OLIMPICA GALVANIZADA	m2						1	27.18
	largo		2.00	5.50		1.51	16.61		
	ancho		1.00	4.00		1.51	6.04		
	ancho		2.00	1.50		1.51	4.53		
01.05.10.03	PUERTA C/MARCO DE TUBO F°G°, MALLA OLIMPICA GALVANIZADA DE 1.0 X	und							1.00
01.00.10.00	1.80 M.	ana	1.00				1.00	1	1.00
	297		1.00				1.00		

Tabla 46. Metrado de la línea de conducción

		MEDIDAS							
PARTIDA	DES CRIPCIÓN	Unidad	Cant.	Largo	Ancho	Altura	Parcial	Cant.	Total
01.06.	LÍNEA DE CONDUCCIÓN (L=563.951 MTS)								
	TUBERÍAS								
01.06.01	TRABAJOS PRELIMINARES								
01.06.01.01	DESBROCE Y LIMPIEZA MANUAL EN ZONAS BOSCOSA . OBRAS LINEALES	m	1.00	563.95			563.95	1	563.95
01.06.01.02	DESBROCE Y LIMPIEZA MANUAL EN ZONAS NO BOSCOSAS. OBRAS LINEALES	m	1.00	563.95			563.95	1	563.95
01.06.01.03	TRAZO Y REPLANTEO C/ EQUIPO DE OBRAS LINEALES	Km	1.00	0.5640			0.5640	1	0.5640
01.06.02	MOVIMIENTO DE TIERRAS								
01.06.02.01	EXCAVACIÓN A PULSO DE ZANJA DE 0.60 x 0.70 m. EN TERRENO NATURAL	m	1.00	563.95			563.95	1	563.95
01.06.02.02	REFINE Y NIVELACIÓN DE FONDO DE ZANJA B=0.6 m T.N	m	1.00	563.95			563.95	1	563.95
01.06.02.03	CAMA DE APOYO PARA TUBERÍA CON MAT. PRESTAMO E=0.10 m., B=0.60 m	m	1.00	563.95			563.95	1	563.95
01.06.02.04	RELLENO COMPACT. C/EQUIPO C/MAT. PROPIO SELECCIONADO EN ZANJA DE 0.60 X 0.70 M	m	1.00	563.95			563.95	1	563.95
01.06.02.05	ELIMINACIÓN MANUAL DE MAT. EXCEDENTE DE ZANJA EN T.N DE 0.60×0.70 M. (Dm=30 m)	m	1.00	563.95			563.95	1	563.95
01.06.03	TUBERÍAS Y ACCESORIOS								
01.06.03.01	SUMINISTRO DE TUBERÍA PVC NTP 339.002 DN 1"	m	1.00	563.95			563.95	1	563.95
01.06.03.02	SUM INISTRO E INSTALACIÓN DE CODO PVC NTP 339.002/ NTP 399.019 C - 10 SP 22.5° D=1"	Und.	2.00				2.00	1	2.00
01.06.03.03	SUM INISTRO E INSTALACIÓN DE CODO PVC NTP 339.002/ NTP 399.019 C - 10 SP 45° D=1"	Und.	4.00				4.00	1	4.00
01.06.03.04	PRUEBA HIDRÁHULICA + DESINFECCIÓN EN TUBERÍA DE AGUA POTABLE DN 25 - 63	m	4.00	563.95			2255.80	1	2255.80
01.06.03.05	DADOS DE ANCLAJE PARA ACCESORIOS PVC DE 1" A 1"	Und.	6.00				6.00	1	6.00

Tabla 47. Metrado de la cámara rompe presión tipo 6

PARTIDA	DES CRIPCIÓN	Unidad	MEDIDAS					G .	TD 4.1
			Cant.	Largo	Ancho	Altura	- Parcial	Cant.	Total
01.07.	CÁMARA ROMPE PRESIÓN TIPO 6 (1 UND)								
01.07.01	TRABAJOS PRELIMINARES								
01.07.01.01	LIMPIEZA DE TERRENO MANUAL	m2						1	3.75
	Cámara de la CRP 6		1.00	1.00	1.00		1.00		
	Caja de válvulas de la CRP 6		1.00	1.00	0.90		0.90		
	Tubería en limpia y rebose de la CRP 6		1.00	3.00	0.40		1.20		
	Dado de conreto y piedra asentado de la CRP 6		1.00	1.30	0.50		0.65		
01.07.01.02	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS	m2						1	3.75
	Cámara de la CRP 6		1.00	1.00	1.00		1.00		
	Caja de válvulas de la CRP 6		1.00	1.00	0.90		0.90		
	Tubería en limpia y rebose de la CRP 6		1.00	3.00	0.40		1.20		
	Dado de conreto y piedra asentado de la CRP 6		1.00	1.30	0.50		0.65		
01.07.02	MOVIMIENTO DE TIERRAS								
01.07.02.01	EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N	m3						1	2.99
	Cámara de la CRP 6		1.00	1.20	1.00	0.80	0.96		
	Caja de válvulas de la CRP 6		1.00	1.20	1.10	0.90	1.19		
	Tubería en limpia y rebose de la CRP 6		1.00	3.00	0.40	0.70	0.84		
01.07.02.02	REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS	m2						1	3.72
	Cámara de la CRP 6		1.00	1.20	1.00		1.20		
	Caja de válvulas de la CRP 6		1.00	1.20	1.10		1.32		
	Tubería en limpia y rebose de la CRP 6		1.00	3.00	0.40		1.20		
01.07.02.03	RELLENO CON MATERIAL PROPIO SELECCIONADO	m3						1	1.24
22.07.02.00	Cámara de la CRP 6		1.00	3.00	0.10	0.60	0.18	•	
	Caja de válvulas de la CRP 6		1.00	3.20	0.10	0.70	0.22		
			1.00	3.00	0.10	0.70	0.22		
01.07.02.04	Tubería en limpia y rebose de la CRP 6 ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m	m2	1.00	1.74		I ponjamiento	2.09	1	2.09

01.07.03	OBRAS DE CONCRETO								
01.07.03.01	CONCRETO f´c= 140 kg/cm2, PARA SOLADOS	m2						1	0.25
	Cámara de la CRP 6		1.00	1.20	1.00	0.10	0.12		
	Caja de válvulas de la CRP 6		1.00	1.20	1.10	0.10	0.13		
01.07.03.02	CONCRETO f'c= 140 kg/cm2, PARA DADOS	m3						1	0.01
	Dado de concreto de la CRP 6		1.00	0.30	0.20	0.20	0.01		
01.07.03.03	CONCRETO f´c= 280 kg/cm2, PARA CÁMARAS	m3						1	0.85
	CÁMARA HÚMEDA EN LA CRP6								
	Losa de fondo		1.00	1.20	1.10	0.10	0.13		
	Muro longitudinal		2.00	1.00	0.10	0.90	0.18		
	Muro transversal		2.00	0.80	0.10	0.90	0.14		
	CÁMARA SECA - CAJA DE VÁLVULAS								
	Losa de fondo		1.00	1.20	1.10	0.10	0.13		
	Muro longitudinal		2.00	0.90	0.10	0.80	0.14		
	Muro transversal		1.00	0.80	0.10	0.80	0.06		
	Losa de techo		1.00	0.90	1.00	0.10	0.09		
	Descuento de abertura de tapa		-1.00	0.60	0.60	0.10	-0.04		
01.07.03.04	ACERO fý = 4200 Kg/cm2 PARA CAMARA ROMPE PRESIÓN TIPO 6	kg	1.00				43.18	1	43.18
01.07.03.05	ENCOFRADO Y DESENCOFRADO	m2						1	11.84
	CÁMARA HÚMEDA EN LA CRP6								
	Losa de fondo		1.00	4.60		0.10	0.46		
	Muro longitudinal exterior		2.00	1.00		0.90	1.80		
	Muro longitudinal interior		2.00	0.80		0.90	1.44		
	Muro transversal exterior		1.00	1.00		0.90	0.90		
	Muro transversal interior		2.00	0.80		0.90	1.44		
	CÁMARA SECA - CAJA DE VÁLVULAS								

	Losa de fondo		1.00	4.60		0.10	0.46		1
	Muro longitudinal exterior		2.00	0.90		0.80	1.44		1
	Muro longitudinal interior		2.00	0.80		0.80	1.28		i
	Muro transversal exterior		1.00	1.00		0.80	0.80		i
	Muro transversal interior		2.00	0.80		0.80	1.28		i
	Losa de techo		1.00	0.90	1.00		0.90		ĺ
	Descuento de abertura de tapa		-1.00	0.60	0.60		-0.36		i
01.07.03.06	EMBOQUILLADO DE PIEDRA, CONCRETO f´c=140 kg/cm2, e=0.15 m.	m3	1.00	1.00	0.50	0.10	0.05	1	0.05
01.07.03.07	PIEDRA CHANCADA 1/2" PARA SUMIDERO	m3	1.00	0.20	0.20	0.20	0.01	1	0.01
01.07.04	ACABADOS								
01.07.04.01	TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm.	m2						1	8.66
	CÁMARA HÚMEDA EN LA CRP6								i
	Muro longitudinal exterior		2.00	1.00		0.90	1.80		i
	Muro longitudinal interior		1.00	1.00		0.90	0.90		i
	Losa de fondo de la CRP 6		1.00	3.00		0.10	0.30		i
	CÁMARA SECA - CAJA DE VÁLVULAS								ĺ
	Losa de fondo		1.00	3.20		0.10	0.32		i
	Muro longitudinal exterior		2.00	0.90		0.80	1.44		i
	Muro longitudinal interior		2.00	0.80		0.80	1.28		ĺ
	Muro transversal exterior		1.00	1.00		0.80	0.80		i
	Muro transversal interior		2.00	0.80		0.80	1.28		i
	Losa de techo		1.00	0.90	1.00		0.90		i
	Descuento de abertura de tapa		-1.00	0.60	0.60		-0.36	į l	1
01.07.04.02	TARRAJEO INTERIOR C/ IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm.	m2						1	3.52
	CÁMARA HÚMEDA EN LA CRP6								1
			2.00	0.80		0.90	1.44	1	1
	Muro longitudinal interior							1	4
	Muro longitudinal interior Muro longitudinal interior Losa de fondo de la CRP 6		2.00 1.00	0.80 0.80	0.80	0.90	1.44 0.64		

01.07.04.03	PINTURA LATEX EN ESTRUCTURA, 2 manos	m2						1	5.48
	CÁMARA HÚMEDA EN LA CRP6								
	Muro longitudinal exterior		2.00	1.00		0.90	1.80		
	Muro longitudinal exterior		1.00	1.00		0.90	0.90		
	CÁMARA SECA - CAJA DE VÁLVULAS								
	Muro longitudinal exterior		2.00	0.90		0.80	1.44		
	Muro transversal exterior		1.00	1.00		0.80	0.80		
	Losa de techo		1.00	0.90	1.00		0.90		
	Descuento de abertura de tapa		-1.00	0.60	0.60		-0.36		
01.07.05	EQUIPAMIENTO								
01.07.05.01	SUMINISTRO E INSTLACIÓN DE TAPAS METALICAS DE 0.60 x 0.60, E= 3/16" INC. CANDADO	Und.	1.00				1.00	1	1.00
01.07.05.02	SUMINISTRO E INSTLACIÓN DE TAPAS METALICAS DE 0.80 x 0.80, E= 3/16" INC. CANDADO	Und.	1.00				1.00	1	1.00
01.07.06	SUMINISTRO E INSTALACION DE ACCESORIOS EN CRP6								
01.07.06 01.07.06.01	SUMINISTRO E INSTALACION DE ACCESORIOS EN CRP6 SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6							1	
		Und.	1.00				1.00	1	1.00
	SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6	Und. Und.	1.00 2.00				1.00	1	1.00 2.00
	SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6 suministro e instalación de válvula compuerta de bronce de 1"							1	
	SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6 suministro e instalación de válvula compuerta de bronce de 1" suministro e instalación de niple con rosca PVC 1 x 4"	Und.	2.00				2.00	1	2.00
	SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6 suministro e instalación de válvula compuerta de bronce de 1" suministro e instalación de niple con rosca PVC 1 x 4" suministro e instalación de unión universal F° G° de 1" suministro e instalación de adaptador UPR PVC 1"	Und. Und. Und.	2.00 2.00 2.00				2.00 2.00 2.00	1	2.00 2.00 2.00
	SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6 suministro e instalación de válvula compuerta de bronce de 1" suministro e instalación de niple con rosca PVC 1 x 4" suministro e instalación de unión universal F° G° de 1" suministro e instalación de adaptador UPR PVC 1" suministro e instalación de codo SP PVC 1"	Und. Und. Und. Und.	2.00 2.00 2.00 3.00				2.00 2.00 2.00 3.00	1	2.00 2.00 2.00 3.00
	SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6 suministro e instalación de válvula compuerta de bronce de 1" suministro e instalación de niple con rosca PVC 1 x 4" suministro e instalación de unión universal F° G° de 1" suministro e instalación de adaptador UPR PVC 1"	Und. Und. Und.	2.00 2.00 2.00				2.00 2.00 2.00	1	2.00 2.00 2.00
	SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6 suministro e instalación de válvula compuerta de bronce de 1" suministro e instalación de niple con rosca PVC 1 x 4" suministro e instalación de unión universal F° G° de 1" suministro e instalación de adaptador UPR PVC 1" suministro e instalación de codo SP PVC 1"	Und. Und. Und. Und.	2.00 2.00 2.00 3.00				2.00 2.00 2.00 3.00	1	2.00 2.00 2.00 3.00
01.07.06.01	SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6 suministro e instalación de válvula compuerta de bronce de 1" suministro e instalación de niple con rosca PVC 1 x 4" suministro e instalación de unión universal F° G° de 1" suministro e instalación de adaptador UPR PVC 1" suministro e instalación de codo SP PVC 1" suministro e instalación de tubería PVC C-10 D=1"	Und. Und. Und. Und.	2.00 2.00 2.00 3.00				2.00 2.00 2.00 3.00		2.00 2.00 2.00 3.00

	suministro e instalación de codo SP PVC 2"	Und.	2.00		2.00	1	2.00
	suministro e instalación de unión SP PVC de 2"	Und.	1.00		1.00		1.00
	suministro e instalación de tapón SP PVC 2" con perforación de 3/16"	Und.	1.00		1.00		1.00
01.07.06.03	SUM INISTRO E INSTALACIÓN DE SALIDA EN CRP6					1	
	suministro e instalación de canastilla de PVC 1"	Und.	1.00		1.00		1.00
	suministro e instalación de tubería PVC C-10 D=1"	ml	0.30		0.30		0.30
	suministro e instalación de unión SOQUET PVC de 1"	Und.	1.00		1.00		1.00
01.07.06.04	SUMINISTRO E INSTALACIÓN DEVENTILACIÓN EN CRP6					1	
	suministro e instalación de brida rompe agua de F° G° 2", Niple F° G° (L=0.25m) con rosca"	Und.	1.00		1.00		1.00
	suministro e instalación de codo 90° F° G° 2", NTP ISO 49:1997	Und.	1.00		1.00		1.00
	suministro e instalación de niple Fo Go (L=0.10m) de 2", ISO - 65 serie I	Und.	1.00		1.00		1.00
	suministro e instalación de codo de 90° F° G° ", con malla soldada, NTP 49:1997	Und.	1.00		1.00		1.00

Tabla 48. Metrado de válvula de aire

PARTIDA	DES CRIPCIÓN	TL-: J- 1		MI	EDIDAS		D	C4	T-4-1
PARTIDA	DESCRIPCION	Unidad	Cant.	Largo	Ancho	Altura	Parcial	Cant.	Total
01.08.	VÁLVULA DE AIRE AUTOMÁTICA 0.8 x 0.8 m (2 UND)								
01.08.01	TRABAJOS PRELIMINARES								
01.08.01.01	LIMPIEZA DE TERRENO MANUAL	m2						2	1.28
	Caja de válvula de aire		1.00	0.80	0.80		0.64		
01.08.01.02	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS	m2	1.00	0.00	0.00		0.64	2	1.28
01 00 02	Caja de válvula de aire		1.00	0.80	0.80		0.64		
01.08.02	MOVIMIENTO DE TIERRAS							_	
01.08.02.01	EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N	m3	1.00	0.80	0.80	0.70	0.45	2	0.90
01.08.02.02	Caja de válvula de aire REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS	m2	1.00	0.80	0.80	0.70	0.45	2	1.28
01.00.02.02	Caja de válvula de aire		1.00	0.80	0.80		0.64	2	1.20
01.08.02.02	ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m	m2	1.00	0.45	1	I ponjamiento %	0.56	2	1.13
01.08.03	OBRAS DE CONCRETO								
01.08.03.01	CONCRETO f´c= 100 kg/cm2, PARA SOLADOS	m2	1.00	0.80	0.80		0.64	2	1.28
01.08.03.02	CONCRETO f´c= 140 kg/cm2, PARA DADOS	m3	1.00	0.20	0.20	0.30	0.01	2	0.02
01.08.03.03	CONCRETO f´c= 210 kg/cm2, PARA CÁJAS	m3						2	0.58
	Caja de válvula de aire - muro largo		2.00	0.80	0.10	0.70	0.11		
	Caja de válvula de aire - muro ancho		2.00	0.60	0.10	0.70	0.08		
	Losa de válvula de aire		1.00	1.00	1.00	0.10	0.10		
	Descuento de abertura de tapa		-1.00	0.20	0.20	0.20	-0.01		
01.08.03.04	ACERO fý = $4200 \text{ Kg/cm} 2 \text{ GRADO } 60$	kg	1.00				16.86	2	33.71
01.08.03.05	ENCOFRADO Y DESENCOFRADO	m2						2	9.76

	Caja de válvula de aire - muro interior largo		2.00	0.60		0.80	0.96		
	Caja de válvula de aire - muro interior ancho		2.00		0.60	0.80	0.96		
	Caja de válvula de aire - muro exterior largo		2.00	0.80		0.80	1.28		
	Caja de válvula de aire - muro exterior ancho		2.00		0.80	0.80	1.28		
	Losa de válvula de aire		4.00	1.00	0.10		0.40		
01.08.03.06	GRAVA D.MAX = 1"	m3						2	0.02
	Drenaje de válvula de aire		1.00	0.20	0.20	0.20	0.01		
			1.00	0.20	0.20	0.20	0.01		
01.08.04	ACABADOS								
01.08.04.01	TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm.	m2	4.00	0.80		0.25	0.80	2	1.60
01.08.04.02	TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm.	m2						2	4.08
	Caja de válvula de aire - piso		1.00	0.60	0.60		0.36		
	Caja de válvula de aire - muro interior		4.00	0.60		0.70	1.68		
01.08.04.03	PINTURA LATEX EN ESTRUCTURAS, 2 MANOS	m2						2	5.68
	Muros interiores		4.00	0.60		0.70	1.68		
	Muros exteriores		4.00	0.80		0.25	0.80		
	Losa de fondo de válvula de aire		1.00	0.60	0.60		0.36		
01.08.05	EQUIPAMIENTO								
01 00 05 01	TADA METALIGA 0.00 . 0.00 . CONTLANTINO DUHA		1.00				1.00	2	2.00
01.08.05.01	TAPA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA	Und.	1.00				1.00	2	2.00
01.08.05.02	ACCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2"	Und.							
	1 T. DVCCAD C. 110		1.00				1.00	2	2.00
	1. Tee PVC SAP Ø = 1 1/2" 2. Podvosića PVC SAP Ø = 1 1/2" Ø 1"		1.00				1.00	2	2.00
	2. Reducción PVC SAP Ø = 1 1/2"a Ø =1" 3. Niple PVC SAP Ø = 1 1/2" x 2"		1.00 1.00				1.00	2 2	2.00 2.00
	3. Nipie PVC SAP $\theta = 1.1/2 \times 2$ 4. Válvula compuerta de bronce de 1"		1.00				1.00	2	2.00
	4. Valvula compuerta de bronce de 1 5. Válvula de aire automática de 1"		1.00				1.00	2	2.00
	3. vaivuia de aire automatica de 1		1.00				1.00	∠	2.00

Tabla 49. Metrado de válvula de purga

DADEED A	pro comoción	T7 • 1 1		MI	EDIDAS		D ' 1	G 4	TD 4.1
PARTIDA	DES CRIPCIÓN	Unidad	Cant.	Largo	Ancho	Altura	Parcial	Cant.	Total
01.09.	VÁLVULA DE PURGA 0.8 x 0.8 m (3 UND)								
01.09.01	TRABAJOS PRELIMINARES								
01.09.01.01	LIMPIEZA DE TERRENO MANUAL	m2						3	3.90
	Caja de válvula de purga		1.00	0.80	0.80		0.64		
	Dado de válvula de purga		1.00	0.30	0.30		0.09		
	Piedra asentada de concreto		1.00	0.50	0.50		0.25		
	Tubería		1.00	0.80	0.40		0.32		
01.09.01.02	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS	m2						3	3.90
	Caja de válvula de purga		1.00	0.80	0.80		0.64		
	Dado de válvula de purga		1.00	0.30	0.30		0.09		
	Piedra asentada de concreto		1.00	0.50	0.50		0.25		
	Tubería		1.00	0.80	0.40		0.32		
01.09.02	MOVIMIENTO DE TIERRAS								
01.09.02.01	EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N	m3						3	1.97
	Caja de válvula de purga		1.00	0.80	0.80	0.70	0.45		
	Dado de válvula de purga		1.00	0.30	0.30	0.20	0.02		
	Tubería		1.00	0.80	0.40	0.60	0.19		
01.09.02.02	REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS	m2						3	3.15
	Caja de válvula de purga		1.00	0.80	0.80		0.64		
	Dado de válvula de purga		1.00	0.30	0.30		0.09		
	Tubería		1.00	0.80	0.40		0.32		
01.09.02.03	RELLENO Y COMPACTACIÓN CON MATERIAL PROPIO	m3	1.00	0.80	0.40	0.60	0.19	3	0.58
01.09.02.04	ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m	m3	1.00	0.47	factor de es ₁	onjamiento %	0.58	3	1.73

01.09.03	OBRAS DE CONCRETO								
01.09.03.01	CONCRETO f´c= 100 kg/cm2, PARA SOLADOS	m2	1.00	1.00	1.00	0.10	0.10	3	0.30
01.09.03.02	CONCRETO f´c= 140 kg/cm2, PARA DADOS	m3						3	0.11
	Dado de válvula de purga intermedia		1.00	0.30	0.30	0.40	0.04		
01.09.03.03	CONCRETO CICLOPEO f´c= 140 kg/cm2, PARA EMBOQUILLADO	m3	1.00	0.50	0.50	0.10	0.03	3	0.08
01.09.03.04	CONCRETO f´c= 210 kg/cm2, PARA CÁJAS	m3						3	0.89
	Caja de válvula de purga - muro largo		2.00	0.80	0.10	0.80	0.13		
	Caja de válvula de purga - muro ancho		2.00	0.60	0.10	0.80	0.10		
	Losa de válvula de purga		1.00	0.90	0.90	0.10	0.08		
	Descuento de abertura de tapa		-1.00	0.20	0.20	0.20	-0.01		
01.09.03.05	ACERO fý = 4200 Kg/cm2 GRADO 60	kg	1.00				16.85	3	50.55
01.09.03.06	ENCOFRADO Y DESENCOFRADO	m2						3	16.08
	Caja de válvula de purga - muro interior largo		2.00	0.60		0.80	0.96		
	Caja de válvula de purga - muro interior ancho		2.00		0.60	0.80	0.96		1
	Caja de válvula de purga - muro exterior largo		2.00	0.80		0.80	1.28		1
	Caja de válvula depurga - muro exterior ancho		2.00		0.80	0.80	1.28		
	Dado de válvula de purga - muro exterior		4.00	0.30		0.40	0.48		
	Losa de válvula de aire		4.00	1.00	0.10		0.40		
01.09.03.07	GRAVA D.MAX = 1"	m3						3	0.02
	Drenaje de válvula de purga		1.00	0.20	0.20	0.20	0.01		
01.09.04	ACABADOS								
01.09.04.01	TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm.	m2						3	1.92

	Caja de válvula de aire - muro exterior		4.00	0.80		0.20	0.64		
01.09.04.02	TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm.	m2						3	6.84
	Caja de válvula de aire - piso		1.00	0.60	0.60		0.36		
	Caja de válvula de aire - muro interior		4.00	0.60		0.80	1.92		
01.09.04.03	PINTURA LATEX EN ESTRUCTURAS, 2 MANOS	m2						3	8.76
	Caja de válvula de purga - muro interior largo		2.00	0.60		0.80	0.96		
	Caja de válvula de purga - muro interior ancho		2.00		0.60	0.80	0.96		
	Caja de válvula de purga - losa		1.00	0.60	0.60		0.36		
	Caja de válvula de purga - muro exterior		4.00	0.80		0.20	0.64		
01.09.05	EQUIPAMIENTO								
01.09.05.01	TAPA METALICA 0.60 x 0.60 m, CON LLA VETIPO BUJIA	Und.	1.00				1.00	3	3.00
01.09.05.02	ACCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2"	Und.							
	Adaptador PVC SAP Ø = 1 1/2"		2.00				2.00	3	6.00
	Codo PVC SAP Ø = 1 1/2"a 90°"		2.00				2.00	3	6.00
	Niple PVC SAP $\emptyset = 1 \frac{1}{2}$ " x 2"		1.00				1.00	3	3.00
	Tapón PVC 1 1/2" (perforado 3/16")		1.00				1.00	3	3.00
	Tee PVC SAP 1 1/2" x 1 1/2 "		1.00				1.00	3	3.00
	Unión universal PVC Ø =1 1/2"		2.00				2.00	3	6.00
	Válvula de bronce Ø= 1 1/2"		1.00				1.00	3	3.00

Tabla 50. Metrado del reservorio de almacenamiento

01.10.	RES ERVORIO DE ALMACENAMIENTO (10 M3)								
01.10.01	TRABAJOS PRELIMINARES								
01.10.01.01	TRAZO Y REPLANTEO INICIALES	m2						1	27.24
			1.00	5.00	5.00		25.00		
			1.00	0.80	2.80		2.24		
01.10.01.02	TRAZO Y REPLANTEO FINALES	m2						1	27.24
			1.00	5.00	5.00		25.00		
			1.00	0.80	2.80		2.24		
01.10.01.03	TRANSPORTE DE MATERIALES, HER-EQUIPOS EN ZONA SIN ACCESO VEHICULAR P/INSTAL	Glb						1	1.00
	VEHICULAR F/INSTAL		1.00				1.00		
01.10.02	MOVIMIENTO DE TIERRAS								
01.10.02.01	EXCAVACIONES EN T-NORMAL (C. MAQUINARIA)	m3						1	100.00
	Volumen de corte		1.00	100.00			100.00		
01.10.02.02	EXCAVACIONES TERRENO NORMAL A PULSO HASTA 1.00 M PROF.	m3						1	5.71
	Excavación para losa de cimentación		1.00	2.40	2.40	0.20	1.15		
	Zapata		1.00	0.27	12.80		3.46		
	Vereda		1.00	0.06	18.40		1.10		
01.10.02.03	REFINE, NIVELACIÓN Y COMPACTACIÓN EN TERRENO NORMAL A PULSO	m2						1	27.24
	Losa de cimentación + vereda		1.00	27.24			27.24		
01.10.02.04	RELLENO C/M ATERIAL PROPIO COMPACTADO	m3						1	1.00
				área					
	Relleno para cimentación de vereda		2.00	0.05	5.00		0.50		
			2.00	0.05	5.00		0.50		
01.10.02.05	ACARREO Y ACOMODO EN ZONA ALEDANA DESMONTE - PULSO	m3						1	125.65
	Retiro		1.00	104.71	factor de es ₁	I ponjamiento %	125.65	1	

01.10.02.06	ELIMINACIÓN DE DESMONTE EN TERRENO NORMAL R=10 KM CON MAQUINARIA	m3						1	125.65
	Vol.= Vol. Corte + Vol. Excavación + Relleno		1.00	104.71	factor de esp 20		125.65	1	
01.10.03	OBRAS DE CONCRETO SIMPLE								
01.10.03.01	CONCRETO f´c= 100 kg/cm2, PARA SOLADOS Y/O SUB BASES (CEMENTO P-1)	m3						1	0.81
	Solado p/losa de cimentación de cisterna		1.00	2.40	2.40	0.10	0.58		
	Parte inclinada		4.00	0.24	2.40	0.10	0.23		
01.10.04	OBRAS DE CONCRETO ARMADO								
01.10.04.01	CONCRETO F´C= 280 kg/cm2, PARA ZAPATAS (CEMENTO P-1)	m3		área				1	3.47
	Zapata		2.00	0.27	3.80		2.05		
			1.00	0.27	2.60		0.70		
			2.00	0.27	0.95		0.51		
			1.00	0.29	0.70		0.20		
01.10.04.02	CONCRETO F'C= 280 kg/cm2, PARA LOSAS DE FONDO-PISO (CEMENTO P-1)	m3						1	1.15
	Losa de cimentación		1.00	2.40	2.40	0.20	1.15		
01.10.04.02	CONCRETO F´C= 280 kg/cm2, PARA MUROS REFORZADOS (CEMENTO P-1)	m3						1	4.38
	Muros de reservorio		2.00	3.40	0.20	1.71	2.33		
			2.00	3.00	0.20	1.71	2.05		
01.10.04.03	ENCOFRADO (INCL. HABILITACIÓN DE MADERA) PARA MUROS TIPO CARAVISTA	m2						1	43.78
	Muros exterior en reservorio		4.00	3.40		1.71	23.26		
	Muro interior en reservorio		4.00	3.00		1.71	20.52		
01.10.04.03	CONCRETO F'C 280 kg/cm2 PARA LOSAS MACIZAS (CEMENTO P-1)	m3						1	1.36
	Losa maciza		1.00	3.60	2.60	0.15	1.40		
	Borde de tapa		1.00	2.60	0.05	0.05	0.01		

01.10.05	REVOQUES, ENCLUIDOS Y MOLDURAS								
01.10.05.01	TARRAJEO C/IMPERMEABILIZANTE LOSA FONDO-PISO RESERVORIO E=20mm C:A 1:3	m2						1	9.21
	Losa de fondo		1.00	3.00	3.00		9.00		
	Tolva de salida		1.00	1.40		0.15	0.21		
01.10.05.02	TARRAJEO C/IMPERMEABILIZANTE MUROS P/RESERVORIO APOYADO E= 20 mm C:A 1:3	m2						1	20.52
	Muro interior de reservorio		4.00	3.00		1.71	20.52		
01.10.06	PIS OS Y PAVIMENTOS								
01.10.06.01	VEREDA DE CONCRETO F´C= 175 kg/cm2, E= 0.10 m PASTA 1:2 (C-1) C/EMPLEO DE MEZCLADORA (INCL.)	m2						1	16.00
	vereda		2.00	5.00	0.80		8.00		
			1.00	5.00	0.80		4.00		
			2.00	1.10	0.80		1.76		
			1.00	2.80	0.80		2.24		
01.10.06.02	ENCOFRADO (I/ HABILITACIÓN DE MADERA) P/ VEREDAS Y AMPAS	m2		perímetro				1	1.76
			1.00	17.60		0.10	1.76		
01.10.06.03	SELLADO DE JUNTAS EN VEREDAS E= 1"	m		perímetro				1	14.60
			1.00	11.40			11.40		
			4.00			0.80	3.20		
01.10.07	CARPINTERIA METALICA Y HERRERA								
01.10.07.01	ESCALERA DE TUBO F° G ° CON PARANTES DE 1 1/2 " PELADAÑOS 1"	m						1	1.78

	Escalera de acceso a reservorio exterio	r	1.00			1.78	1.78		
01.10.07.02	TAPA METALICA SANITARIA C/PLANCA ESTRAIDA DE ACERO E= 3/16" (0.60 mm 0.60 mm)	Und.						1	1.00
	Losa de reservor	О	1.00	1.00			1.00		
01.10.07.03	VENTILACIÓN C/TUBERÍA DE ACERO S/DISEÑO DE 2"	Und.						1	2.00
			1.00	2.00			2.00		
01.10.08	CERRAJERIA								
01.10.08.01	CANDADO INCLUYENDO ALDABAS	Und.						1	1.00
			1.00	1.00			1.00		
01.10.09	PINTURA								
01.10.09.01	PINTADO EXTERIOR C/TERNOMATE O SIMILAR DE RESERVORIO APOYADO INCL. MENSAJE	m2						1	24.66
	Muro exterior en reservor	О	4.00	3.40		1.71	23.26		
	Volac	О	2.00	3.60	0.10		0.72		
			2.00	3.40	0.10		0.68		
01.10.10	ADITAMIENTOS VARIOS								
01.10.10.01	PROVISIÓN Y COLOCACIÓN DE JUNTA WATER STOP DE PVC E=6"	m						1	13.20
	Perímetro de reservor	О	4.00	3.30			13.20		
01.10.10.02	JUNTA DE DILATACIÓN CON SELLO ELASTOMÉRICO	m2						1	1.74
	Junta de vereda con reservor	О	1.00	12.40		0.10	1.24		
	Junta entre vered	a	1.00	5.00		0.10	0.50		
01.10.11	PRUEBAS DE CALIDAD								
01.10.11.01	PRUEBA DE CALIDAD DEL CONCRETO (PRUEBA A LA COMPRESIÓN)	Und.						1	5.00
			1.00	5.00			5.00		
01.10.11.02	PRUEBA HIDRÁULICA CON EMPLEO DE CISTERNA Y EQUIPO DE BOMBEO PARA EL LLENADO	m3		vol.				1	10.00
			1.00	10.00			10.00		1 1

01.10.12	OTROS								
01.10.12.01	EVACUACIÓN DE AGUA DE PRUEBA CÆMPLEO DE LÍNEA DE SALIDA	m3		vol.				1	10.00
			1.00	10.00			10.00		
01.10.12.01	LIMPIEZA Y DESINFECCIÓN DE RESERVORIOS APOYADOS	m2						1	29.73
	Losa de fondo en reservorio		1.00	3.00	3.00		9.00		
	Muro en reservorio		4.00	3.00		1.71	20.52		
	Tolva de salida		1.00	1.40	0.15		0.21		
01.10.13	EQUIPAMIENTO HIDRÁULICO DEL RES ERVORIO APOYADO (10M3)								
01.10.13.01	TUBERÍA Y NIPLES							1	
	Tubería fie. galvanizado ISO=65 serie I 2" i/elemento unión + 2% desp.	m	1.00	1.20			1.20		1.20
	Tubería fie. galvanizado ISO=65 serie I 1" i/elemento unión + 2% desp.	m	1.00	0.50			0.50		0.50
	Tubería fie. galvanizado ISO=65 serie I 1/2" i/elemento unión + 2% desp.	m	1.00	5.00			5.00		5.00
	Tubería PVC SAP SP NTP ISO 399.002 C - 10 Ø 2" + 2% desp.	m	1.00	10.20			10.20		10.20
	Tubería PVC SAP SP NTP ISO 399.002 C - 10 Ø 1" + 2% desp.	m	1.00	1.50			1.50		1.50
	Tubería PVC SAP SP NTP ISO 399.002 C - 10 Ø 1/2" + 2% desp.	m	1.00	12.80			12.80		12.80
	Niple roscado ambos lados de F $^{\rm o}$ G $^{\rm o}$ de 1" x 0.07 m	pza.	1.00	5.50			5.50		5.50
	Niple roscado ambos lados de F ^o G ^o de 1" x 0.35 m	pza.	1.00	1.00			1.00		1.00
	Niple roscado ambos lados de F ^o G ^o de 2" x 0.10 m	pza.	1.00	5.00			5.00		5.00
	Niple roscado ambos lados de F ^o G ^o de 2" x 0.25 m	pza.	1.00	1.00			1.00		1.00
	Niple roscado ambos lados de F ^o G ^o de 2" x 0.45 m	pza.	1.00	1.00			1.00		1.00
	Niple roscado ambos lados de F $^{\rm o}$ G $^{\rm o}$ de 2" x 0.50 m	pza.	1.00	7.00			7.00		7.00
01.10.13.02	UNIONES, ADAPTADORES Y SOPORTES							1	
	Adaptadot unión presión - rosca PVC SAP Ø 2"	Und.	1.00	1.00			1.00		1.00
	Adaptadot unión presión - rosca PVC SAP Ø 1"	Und.	1.00	3.00			3.00		3.00

	Adaptadot unión presión - rosca PVC SAP Ø 1/2"	Und.	1.00	2.00		2.00		2.00	
	Adaptadot unión presión - rosca hembra PVC SAP Ø 1"	Und.	1.00	1.00		1.00		1.00	
	Unión roscada de fierro galvanizado de 2"	Und.	1.00	1.00		1.00		1.00	
	Unión universal de fierro galvanizado de 2"	Und.	1.00	4.00		4.00		4.00	
	Unión universal de fierro galvanizado de 1"	Und.	1.00	2.00		2.00		2.00	
01.10.13.03	ACCESORIOS						1		
	Codo de 90º de fierro galvanizado unión roscada Ø 3"	Und.	1.00	2.00		2.00		2.00	
	Codo de 90° de fierro galvanizado unión roscada Ø 2"	Und.	1.00	2.00		2.00		2.00	
	Codo de 90° de fierro galvanizado unión roscada Ø 1/2"	Und.	1.00	2.00		2.00		2.00	
	Codo de 45° de fierro galvanizado unión roscada Ø 1"	Und.	1.00	1.00		1.00		1.00	
	Codo de 90° de fierro galvanizado unión roscada Ø 2" c/malla soldada	Und.	1.00	2.00		2.00		2.00	
	Suministro codo PVC SAP SP Ø 2" 90°	Und.	1.00	2.00		2.00		2.00	
	Suministro codo PVC SAP SP Ø 1/2" 90°	Und.	1.00	2.00		2.00		2.00	
	Suministro codo PVC SAP SP Ø 2" 90°	Und.	1.00	2.00		2.00		2.00	
	Suministro codo PVC SAP SP Ø 2" 45°	Und.	1.00	3.00		3.00		3.00	
	Suministro codo PVC SAP SP Ø 1" 45°	Und.	1.00	2.00		2.00		2.00	
	Tee de fierro galvanizado unión roscada Ø 1"	Und.	1.00	2.00		2.00		2.00	
	Suministro tee PVC SAP SP Ø 2" - 2"	Und.	1.00	1.00		1.00		1.00	
	Reducción F ^o G ^o de 1" a 1/2" roscado	Und.	1.00	1.00		1.00		1.00	
	Suministro reducción PVC SAP SP Ø 2" - 1"	Und.	1.00	2.00		2.00		2.00	
	Suministro tapón PVC SAP SP Ø 2"	Und.	1.00	1.00		1.00		1.00	
01.10.13.04	VÁLVULAS						1		
	Válvula compuerta NTP 350.084 DE 2"	Und.	1.00	1.00		1.00		1.00	
	Válvula compuerta NTP 350.084 DE 1"	Und.	1.00	2.00		2.00		2.00	
	Válvula flotadora de bronce de control directo Ø 1"	Und.	1.00	1.00		1.00		1.00	I
	Grifo D= 1/2" NTP 350.084	Und.	1.00	1.00		1.00		1.00	I
01 10 12 05	INSTALACIÓN	Olid.	1.00	1.00		1.00	1	1.00	I
01.10.13.05		GII.	1.00	1.00		1.00	1	1.00	ĺ
	Montaje de instalación hidráulica de reservorio V= 10 m3	Glb.	1.00	1.00		1.00		1.00	
L	,								

Tabla 51. Metrado de caseta de cloración del reservorio

PARTIDA	DES CRIPCIÓN	TI! J J	MEDIDAS					C4	Total
PARTIDA	DESCRIPCION	Unidad	Cant.	Largo	Ancho	Altura	Parcial	Cant.	1 otai
01.11.	CASETA DE CLORACIÓN PARA RESERVORIO (10M3)								
01.11.01	OBRAS DE CONCRETO								
01.11.01.01	CONCRETO F´C= 210 kg/cm2, PARA DADOS (CEMENTO P-1)	m3						1	0.05
			1.00	0.72	0.72	0.10	0.05		
01.11.01.02	ENCOFRADO (INCL. HABILITACIÓN DE MADERA) PARA DADOS	m2						1	0.29
			2.00	0.72		0.10	0.14		
			2.00		0.72	0.10	0.14		
01.11.01.03	CONCRETO F´C= 210 kg/cm2, PARA MUROS REFORZADOS (CEMENTO P-1)	m3						1	0.31
			2.00	0.70	0.10	1.29	0.18		
	Muros para caseta de cloración		1.00	1.05	0.10	1.22	0.13		
01.11.01.04	ENCOFRADO (INCL. HABILITACIÓN DE MADERA) PARA MUROS TIPO	m2						1	6.17
01.11.01.04	CARAVISTA	1112						1	0.17
	Muros exterior en caseta de cloración		2.00	0.80		1.29	2.06		
			1.00	1.05		1.20	1.26		
	Muros exterior en caseta de cloración		2.00	0.70		1.29	1.81		
	Huios extensi di casca de castado		1.00	0.85		1.22	1.04		
01.11.02	REVOQUES, ENCLUIDOS Y MOLDURAS								
01.11.02.01	TARRAJEO EN CIELO RASO	m2						1	1.01
01.11.02.01	That also is the second of the	1112						1	1.01
	Losa masisa		1.00	0.70	0.85		0.60		
	Volado		2.00	1.25	0.10		0.25		
			2.00	0.80	0.10		0.16		

01.11.02.02	TARRAJEO EN EXTERIOR	m2						1	5.41
	Muro exterior de caseta de cloración		2.00	0.80		1.29	2.06		
			2.00	1.05		1.26	2.65		
			2.00	0.10		1.26	0.25		
	Frisos		2.00	1.00		0.10	0.20		
			2.00	1.25		0.10	0.25		
01.11.02.03	TARRAJEO EN INTERIOR	m2						1	2.84
	Muro interior de caseta de cloración		2.00	0.70		1.29	1.81		
			1.00	0.85		1.22	1.04		
01.11.03	CARPINTERIA METALICA Y HERRERA								
101 11 03 01	PUERTA METALICA TIPO REJA CON MARCO DE "L" 1" x 1" x 3/16". 0.85 m x 1.2 m S/DETALLE	Und.						1	1.00
			1.00	1.00			1.00		
01.11.04	CERRAJERIA								
01.11.04.01	CANDADO INCLUYENDO ALDABAS	Und.						1	1.00
			1.00	1.00			1.00		
01.11.04.02	BISAGRAS	Und.						1	4.00
01.11.04.02	DISAUKAS	Ond.	1.00	4.00			4.00	1	4.00
01 11 07	DD/W/D A		1.00	4.00			4.00		
01.11.05	PINTURA								
01.11.05.01	PINTURA EN CIELO RASO	m2						1	1.46
	Losa maciza		1.00	0.70	0.85		0.60		

	Frisos		2.00	1.00	0.10	0.20		
			2.00	1.25	0.10	0.25		
01.11.05.02	PINTURA EXTERIOR C/TEKNOMATE O SIMILAR	m2					1	5.41
	Muro exterior de caseta de cloración		2.00	0.80	1.29	2.06		
			2.00	1.05	1.26	2.65		
			2.00	0.10	1.26	0.25		
	Frisos		2.00	1.00	0.10	0.20		
			2.00	1.25	0.10	0.25		
01.11.05.03	PINTURA INTERIOR C/TEKNOMATE O SIMILAR	m2					1	2.84
	Muro interior de caseta de cloración		2.00	0.70	1.29	1.81		
			1.00	0.85	1.22	1.04		
01.11.06	PRUEBAS DE CALIDAD							
01.11.06.01	PRUEBA DE CALIDAD DEL CONCRETO (PRUEBA A LA COMPRESIÓN)	Und.					1	1.00
			1.00	1.00		1.00		
01.11.07	EQUIPAMIENTO HIDRÁULICO DE SISTEMA DE CLORACIÓN							
01.11.07.01	EQUIPOS DE CLORACIÓN Y ACCESORIOS DE CLORACIÓN S/PLANO	Glb					1	1.00
			1.00	1.00		1.00		

Tabla 52. Metrado de cerco perimétrico de reservorio

D. DETE. 1	pro opposów			MI	DIDAS			~ .	
PARTIDA	DES CRIPCIÓN	Unidad	Cant.	Largo	Ancho	Altura	Parcial	Cant.	Total
01.12.	CERCO PERIMÉTRICO (INCL. PUERTA DE INGRESO)								
01.12.01	TRABAJOS PRELIMINARES								
01.12.01.01	TRAZO INICIAL, NIVELACIÓN Y REPLANTEO PARA CERCO PERIMÉTRICO	m						1	33.30
	Tramo A - B		1.00	8.55			8.55		
	Tramo B - C		1.00	8.10			8.10		
	Tramo C - D		1.00	8.55			8.55		
	Tramo D - E		1.00	8.10			8.10		
01.12.01.02	REPLANTEO FINAL DE OBRA, PARA CERCO PERIMÉTRICO (CON EQUIPO)	m						1	33.30
	Tramo A - B		1.00	8.55			8.55		
	Tramo B - C		1.00	8.10			8.10		
	Tramo C - D		1.00	8.55			8.55		
	Tramo D - E		1.00	8.10			8.10		
01.12.02	MOVIMIENTO DE TIERRAS								
01.12.02.01	EXCAVACIONES EN T-NORMAL A PULSO HASTA 1.00 M DE PROF.	m3						1	3.62
	Dado de concreto		15.00	0.40	0.40	1.00	2.40		
	Cimiento de columnas		2.00	0.75	0.75	1.00	1.13		
			1.00	0.60	0.30	0.50	0.09		
01.12.02.02	RELLENO C/M ATERIAL PROPIO COM PACTADO	m3						1	0.10
	Cimiento de columnas		2.00	0.50	0.50	0.20	0.10		****
01.12.02.03	ACARREO Y ACOMODO EN ZONA ALEDANA DESMONTE - PULSO	m3	2.00	0.50	0.50	0.20	0.10	1	4.40
01.12.02.03			4.00		factor de es	l ponjamiento	4.40	_	4.40
	Retiro		1.00	3.52	20	%	4.40	1	
01.12.03	OBRAS DE CONCRETO SIMPLE								
01.12.03.01	CONCRETO f'c= 175 kg/cm2 + 30% P.G PARA CIMENTACIONES (CEMETO P -1)	m3						1	3.39
	Dado de concreto		15.00	0.40	0.40	1.00	2.40		
	Cimiento de columnas		2.00	0.75	0.75	0.80	0.90		
			1.00	0.60	0.30	0.50	0.09		

01.12.04	OBRAS DE CONCRETO ARMADO								
01.12.04.01	CONCRETO F´C= 210 kg/cm2, PARA COLUMNAS (CEMENTO P-1)	m3						1	0.29
	C - 1 (0.25 m x 0.25 m)		2.00	0.25	0.25	2.30	0.29		
01.12.04.02	ENCOFRADO (INCL. HABILITACIÓN DE MADERA) PARA COLUMNAS	m2		perímetro				1	4.60
	Muro interior en reservorio		2.00	1.00		2.30	4.60		
01.12.05	REVOQUES, ENCLUIDOS Y MOLDURAS								
01.12.05.01	TARRAJEO DE SUPERFICIE DE COLUMNAS CON CEMENTO - ARENA	m2		perímetro				1	4.60
	C - 1 (0.25 m x 0.25 m)		2.00	1.00		2.30	4.60		
01.12.06	CARPINTERIA METÁLICA Y HERRERA								
01.12.06.01	PUERTA METÁLICA DE TUBO Fº Gº Ø 2" CON MALLA DE FIERRO GALVANIZADO COCADA 2" x 2" - CALIBRE BWG=12 (1.60 de ancho x 2.3 de largo	Und.						1	1.00
			1.00				1.00		
01.12.06.02	CERCO METALICO MARCO ANGULO Fo TIPO L DE 1 1/4" x 1 1/4" x 1/8", PARANTE TUBO F° G° Ø 2". MALLA COCADA 2" x 2" CON FIERRO	m						1	31.20
	Tramo A - B		1.00	8.55			8.55		
	Tramo B - C		1.00	8.10			8.10		
	Tramo C - D		1.00	8.55			8.55		
	Tramo D - E		1.00	8.10			8.10		
	Puerta		-1.00	2.10			-2.10		
01.12.07	CERRAJERIA								
01.12.07.01	CANDADO INCLUYENDO ALDABAS	Und.						1	1.00
			1.00				1.00		

01.12.07.02	BISAGRAS F° G° Ø 2 1/2 " Y PL 1/4" 0.04 x 0.10 m PARA PUERTA METÁLICA	pza.					1	6.00
01.12.07.03	PICAFORTE DE FIERRO REDONDO DE 3/4" x 0.65 m.	Und.	6.00			6.00	1	2.00
			2.00			2.00		
01.12.08	OTROS							
01.12.08.01	PRUEBA DE CALIDAD DEL CONCRETO (PRUEBA A LA COMPRESIÓN)	Und.					1	2.00
			2.00	1.00		2.00		
01.12.08.02	ANCLAJE DE 5/8" L=0.25m PARA ANCLAJES DE TUBO EN CIMENTACIÓN	kg					1	3.88
			10.00	1.55	0.25	3.88		

Tabla 53. Metrado de la línea de aducción

DADEED A	Pro comovávy	T7 1 1 1	MEDIDAS					G 4	T 4 1
PARTIDA	DES CRIPCIÓN	Unidad '	Cant.	Largo	Ancho	Altura	Parcial	Cant.	Total
01.13.	LÍNEA DE ADUCCIÓN (L=155.034MTS)								
	TUBERÍAS								
01.13.01	TRABAJOS PRELIMINARES								
01.13.01.01	DESBROCE Y LIMPIEZA MANUAL EN ZONAS BOSCOSA . OBRAS LINEALES	m	1.00	155.03			155.03	1	155.03
01.13.01.02	DESBROCE Y LIMPIEZA MANUAL EN ZONAS NO BOSCOSAS. OBRAS LINEALES	m	1.00	155.03			155.03	1	155.03
01.13.01.03	TRAZO Y REPLANTEO C/ EQUIPO DE OBRAS LINEÁLES	Km	1.00	0.1550			0.1550	1	0.1550
01.13.02	MOVIMIENTO DE TIERRAS								
01.13.02.01	EXCAVACIÓN MANUAL EN MATERIAL SUELTO	m	1.00	155.03			155.03	1	155.03
01.13.02.02	REFINE Y NIVELACIÓN DE FONDO DE ZANJA B=0.6 m T.N	m	1.00	155.03			155.03	1	155.03
01.13.02.03	CAMA DE APOYO PARA TUBERÍA CON MAT. PRESTAMO E=0.10 m., B=0.60 m	m	1.00	155.03			155.03	1	155.03
01.13.02.04	RELLENO COMPACT. C/EQUIPO C/MAT. PROPIO SELECCIONADO EN ZANJA DE 0.60 X 0.70 M	m	1.00	155.03			155.03	1	155.03
01.13.02.05	ELIMINACIÓN MANUAL DE MAT. EXCEDENTE DE ZANJA EN T.N DE 0.60×0.70 M. (Dm=30 m)	m	1.00	155.03			155.03	1	155.03
01.13.03	TUBERÍAS Y ACCESORIOS								
01.13.03.01	SUMINISTRO DE TUBERÍA PVC NTP 339.002 DN 1"	m	1.00	155.03			155.03	1	155.03
01.13.03.02	SUM INISTRO E INSTALACIÓN DE CODO PVC NTP 339.002/ NTP 399.019 C - 10 SP 22.5° D=1"	Und.	2.00				2.00	1	2.00
01.13.03.03	SUM INISTRO E INSTALACIÓN DE CODO PVC NTP 339.002/NTP 399.019 C - 10 SP 45° D=1"	Und.	0.00				0.00	1	0.00
01.13.03.04	PRUEBA HIDRÁHULICA + DESINFECCIÓN EN TUBERÍA DE AGUA POTABLE DN 25 - 63	m	4.00	155.03			620.14	1	620.14
01.13.03.05	DADOS DE ANCLAJE PARA ACCESORIOS PVC DE 1" A 1"	Und.	2.00				2.00	1	2.00

Tabla 54. Metrado de la red de distribución

1.14.0.1 TRABAJOS PRELIMINARES	DADEED A	DES CRIPCIÓN	T		MEI	DIDAS		- D · 1	C 4	T 4 1
TUBERÍA PRINCIPAL TUBERÍA SECUNDARIA Y CONEXIONES DOMICILIARIAS	PARTIDA	DESCRIPCION	Unidad	Cant.	Largo	Ancho	Altura	Parcial	Cant.	Total
1.14.01.01 TRABAJOS PRELIMINARES	01.14.	RED DE DISTRIBUCIÓN								
11.14.01.01 TRAZO Y REPLANTEO C/INICIAL PARA LÍNEAS DE AGUA m 1.00 699.95 699.95 1		TUBERÍA PRINCIPAL, TUBERÍA S ECUNDARIA Y CONEXIONES DOMICILIARIAS								
1.14.01.02 TRAZO Y REPLANTEO C/FINAL PARA LÍNEAS DE AGUA m 1.00 699.95 699.95 1 699.95 1.14.02 MOVIMIENTO DE TIERRAS	01.14.01	TRABAJOS PRELIMINARES								
1.14.02.01 EXCAVACIÓN MANUAL EN MATERIAL DE ZANJA DE 0.60 x 0.70 m EN T.N m 1.00 699.95 1 699.9	01.14.01.01	TRAZO Y REPLANTEO C/ INICIAL PARA LÍNEAS DE AGUA	m	1.00	699.95			699.95	1	699.95
1.14.02.01 EXCAVACIÓN MANUAL EN MATERIAL DE ZANJA DE 0.60 x 0.70 m EN T.N m 1.00 699.95 699.95 1 699.95	01.14.01.02	TRAZO Y REPLANTEO C/ FINAL PARA LÍNEAS DE AGUA	m	1.00	699.95			699.95	1	699.95
1.14.02.02 REFINE Y NIVELACIÓN DE FONDO DE ZANJA B=0.6 m T.N m 1.00 699.95 699.95 1 699.95	01.14.02	MOVIMIENTO DE TIERRAS								
1.14.02.03 CAMA DE APOYO PARA TUBERÍA CON MAT. PRESTAMO E=0.10 m., B=0.60 m m 1.00 699.95 699.95 1 699.95	01.14.02.01	EXCAVACIÓN MANUAL EN MATERIAL DE ZANJA DE 0.60 x 0.70 m EN T.N	m	1.00	699.95			699.95	1	699.95
1.14.02.04 RELLENO COMPACT. C/EQUIPO C/MAT. PROPIO SELECCIONADO EN ZANJA DE 0.60 X 0.70 M 1.00 699.95 1 699.	01.14.02.02	REFINE Y NIVELACIÓN DE FONDO DE ZANJA B=0.6 m T.N	m	1.00	699.95			699.95	1	699.95
11.14.02.04 0.60 X 0.70 M	01.14.02.03	CAMA DE APOYO PARA TUBERÍA CON MAT. PRESTAMO E=0.10 m., B=0.60 m	m	1.00	699.95			699.95	1	699.95
M. (Dm=30 m) M.	01.14.02.04	1	m	1.00	699.95			699.95	1	699.95
SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC CLASE 10 DN 3/4" NTP 339.002 m 1.00 433.49 1	01.14.02.05		m	1.00	699.95			699.95	1	699.95
1.14.03.01 (2015) (2015) m 1.00 433.49 1	01.14.03	TUBERÍAS Y ACCESORIOS								
(2015) PRUEBA HIDRÁHULICA + DESINFECCIÓN EN TUBERÍA DE AGUA POTABLE DN 25 - 63 SUMINISTRO E INSTALACIÓN DE ACCESORIOS PARA CONEXIÓN DN 3/4" NTP PARA RED DN 1" Tee SP PVC 3/4" Und. 8.00 266.46 1 266.46 699.95 1 699.95 1 8.00	01.14.03.01		m	1.00	433.49			433.49	1	433.49
25 - 63 SUMINISTRO E INSTALACIÓN DE ACCESORIOS PARA CONEXIÓN DN 3/4" NTP PARA RED DN 1" Tee SP PVC 3/4" Und. 8.00 699.95 1 699.95 1 1 699.95 1 8.00	01.14.03.02		m	1.00	266.46			266.46	1	266.46
PARA RED DN 1" Tee SP PVC 3/4" Und. 8.00	01.14.03.03		m	1.00	699.95			699.95	1	699.95
	01.14.03.04			1.00					1	
Adaptador UPR PVC 3/4" Und. 8.00 8.00 8.00		Tee SP PVC 3/4"	Und.	8.00				8.00		8.00
		Adaptador UPR PVC 3/4"	Und.	8.00				8.00		8.00

		j			Ì	1			1
	Codo SP PVC 3/4" x 22.5°	Und.	7.00				7.00		7.00
	Unión universal con rosca PVC 3/4"	Und.	13.00				13.00		13.00
	Niple con rosca PVC 3/4" x 1/2"	Und.	12.00				12.00		12.00
01.14.03.05	SUMINISTRO E INSTALACIÓN DE ACCESORIOS PARA CONEXIÓN DN 1" NTP PARA RED DN 1"							1	
	Tee SP PVC 1"	Und.	18.00				18.00		18.00
	Adaptador UPR PVC 3/4"	Und.	18.00				18.00		18.00
	Codo SP PVC 1" x 22.5°	Und.	1.00				1.00		1.00
	Codo SP PVC 1" x 45°	Und.	2.00				2.00		2.00
	Unión universal con rosca PVC 1"	Und.	12.00				12.00		12.00
	Niple con rosca PVC 1" x 1/2"	Und.	10.00				10.00		10.00
01.14.04	CAJA Y TAPA								
01.14.04.01	EXCAVACIÓN EN MATERIAL CONGLOMERADO							1	1.98
	Caja de conexión pre-fabricada	m3	33.00	0.50	0.30	0.40	1.98		
01.14.04.02	REFINE Y COMPACTACIÓN MANUAL PARA ESTRUCTURAS							1	4.95
		m2	33.00	0.50	0.30		4.95		
01.14.04.03	SOLADO DE CONCRETO f'c= 100 kg/cm2, e=4"							1	1.98
		m3	33.00	0.50	0.30	0.40	1.98		
01.14.04.04	SUMI. E INSTAL. CAJA REGISTRO C/TAPA TERMOPLASTICA								
	Caja de conexión pre-fabricada 0.50 x 0.30 x 0.35m	Und.	33.00				33.00		33.00
	tapa termoplastica 0.20 x 0.30 m	Und.	33.00				33.00		33.00
	tap a termopiastica 0.20 x 0.30 iii	Ollu.	33.00				33.00		33.00

Anexo 09: Costos y presupuestos

Tabla 55. Costos y presupuestos

PARTIDA	DESCRIPCION	Unidad	Metrado	Precio S/.	Parcial S/.
01	SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE - SANT	A MAR	ÍA		317,147.71
01.01	OBRAS PROVICIONALES				8,936.03
01.01.01	CASETA DE ALMACEN, GUARDIANIA Y OFICINA	GLB	1.00	2650.00	2,650.00
01.01.02	CARTEL DE OBRA 3.6 X 2.40 mts (Gigantografia)	UND	1.00	856.03	856.03
01.01.03 01.01.04	CINTA PLASTICA SEÑALIZADORA PARA LIMITES DE SEGURIDAD DE OBRA ENERGIA ELECTRICA PROVISIONAL	ML MES	900 5.00	2.70 600.00	2,430.00 3,000.00
01.02	TRABAJOS PRELIMINARES	MES	3.00	000.00	52,813.81
01.02	MOVILIZACIÓN Y DESMOVILIZACIÓN DE EQUIPOS	GLB	1.00	25476.00	25,476.00
01.02.02	CERCADO DE ESTRUCTURAS CON MATERIAL SINTÉTICO	m	100.00	98.74	9,874.00
01.02.03	DEMOLICIÓN DE ESTRUCTURAS	m3	28.03	623.04	17,463.81
01.03	SEGURIDAD Y SALUD				5,100.00
01.03.01	EQUIPOS DE PROTECCIÓN COLECTIVA	GLB	1.00	600.00	600.00
01.03.02	EQUIPOS DE PROTECCCIÓN INDIVIDUAL	GLB	1.00	2500.00	2,500.00
01.03.03	SEÑALIZACIÓN TEMPORAL DE SEGURIDAD	GLB	1.00	200.00	200.00
01.03.04 01.03.05	CAPACITACIÓN EN SEGURIDAD Y SALUD RECURSOS PARA EMERGENCIAS EN SEGURIDAD	GLB GLB	1.00 1.00	1000.00 800.00	1,000.00 800.00
	IMPLEMENTACIÓN DEL PLAN PARA PREVENCIÓN DE LA SALUD EN OBRAS	GLB	1.00	800.00	
01.04	ANTI COVID - 19				25,278.16
01.04.01	ELABORACIÓN DEL PLAN PARA VIGILANCIA, PREVENCIÓN DEL COVID 19	GLB	1.00	1200.00	1,200.00
01.04.02	LIMPIEZA Y DESINFECCIÓN EN OBRA	mes	5.00	2851.00	14,255.00
01.04.03	EVALUACIÓN DE LA CONDICIÓN DE SALUD DEL TRABAJADOR	PER	30.00	17.95	538.50
01.04.04	LAVADO Y DESINFIECCIÓN DE MANOS	mes	5.00	266.40	1,332.00
01.04.05 01.04.06	SENSIBILIZACIÓN DE LA PREVENCIÓN DEL CONTAGIO COVID-19 EN OBRA MEDIDAS PREVENTIBAS COLECTIVAS	mes GLB	1.00 1.00	464.24 4394.92	464.24 4,394.92
01.04.06	MEDIDAS DE PROTECCIÓN PERSONAL	mes	5.00	505.00	2,525.00
01.04.08	IDENTIFICACIÓN DE SISTEMATOLOGIA COVID - 19 AL INGRESAR A LA OBRA	und	30.00	17.95	538.50
01.04.09	VIGILANCIA DE LA SALUD DEL TRABAJADOR EN EL CONTEXTO DEL COVID -	und	30.00	1.00	30.00
01.04.09	19	una	30.00	1.00	30.00
01.05	CAPTACIÓN SANTA MARÍA TIPO LADERA Q = 0.50 1/s				7,129.58
01.05.01	TRABAJOS PRELIMINARES				57.42
01.05.01.01	LIMPIEZA DE TERRENO MANUAL	m2	22.00	1.15	25.30
01.05.01.02	TRAZO Y REPLANTEO PRELIMINAR	m2	22.00	1.46	32.12
01.05.02	MOVIMIENTO DE TIERRAS				108.05
01.05.02.01	EXCAVACION MANUAL EN MATERIAL SUELTO	m3	1.83	34.82	63.56
01.05.02.02	ACARREO DE MATERIAL EXCEDENTE HASTA D. Prom. = 30 m	m3	2.19	20.31	44.49
01.05.03	OBRAS DE CONCRETO SIMPLE		2.17	20.51	244.28
01.05.03	CONCRETO F'C=100Kg/cm2 (SOLADO Y RECUBRIMIENTO)	m3	0.27	296.28	81.28
01.05.03.01	CONCRETO F'C=175 kg/cm2 SIN MEZCLADORA	m3	0.12	314.28	38.97
01.05.03.03	ENCOFRADO Y DESENCOFRADO	m2	1.95	33.59	65.50
01.05.03.04	EMPEDRADO PERIMETRAL DE CONCRETO 1:8+50% P.G.	m2	0.62	94.40	58.53
01.05.04	OBRAS DE CONCRETO ARMADO	2	0.02	70	1,179.95
					-
01.05.04.01	CONCRETO F'C=175 kg/cm2 SIN MEZCLADORA	m3	1.61	314.28	505.99
01.05.04.02	ACERO F'Y=4200 kg/cm2	kg	37.70	4.53	170.78
01.05.04.03	ENCOFRADO Y DESENCOFRADO	m2	14.98	33.59	503.18
01.05.05	REVOQUES Y ENLUCIDOS				148.21
01.05.05.01	TARRAJEO CON IMPERMEABILIZANTES MEZCLA 1:4, e=1.5 cm	m2	2.12	23.09	48.95
01.05.05.02	TARRAJEO EN MUROS EXTERIORES 1:5, e=1.5cm	m2	5.26	18.87	99.26
01.05.06	TAPA METALICA				390.40
	TAPA METALICA ESTRIADA 0.60X0.60 INC. MARCO METALICO + PINTURA				
01.05.06.01	ANTICORROSIVA	Und	1.00	212.77	212.77
01.05.06.02	TAPA METALICA ESTRIADA 0.40X0.40 INC. MARCO METALICO + PINTURA ANTICORROSIVA	Und	1.00	177.63	177.63
01.05.07	SUMINISTRO E INSTALACION DE VALVULAS Y ACCESORIOS EN CAPTACION C-1				565.01
01.05.07.01	VÁLVULAS				
	suministro e instalación de válvula de esferica PVC de 1"	Und	1.00	80.43	80.43
01.05.07.02	ACCESORIOS DE TUBERÍA DE CONDUCCIÓN				
	suministro e instalación de canastilla de bronce de 2"	und.	1.00	64.76	64.76
	suministro e instalación de adaptador PVC roscado Ø 1"	und.	1.00	29.16	29.16
	suministro e instalación de unión universal F° G° de 1"	und.	2.00	42.29	84.58
	suministro e instalación de niple de Ø PVC 1"	und.	2.00	40.50	81.00
	suministro e instalación de adaptadores PVC 1"	und.	2.00	29.16	58.32
01.05.07.03	ACCESORIOS DE TUBERÍA DE LIMPIEZA Y REBOSE				
01.05.07.03	ACCESORIOS DE TUBERÍA DE LIMPIEZA Y REBOSE suministro e instalación de cono de rebose PVC de 4"	und.	1.00	35.89	
01.05.07.03	ACCESORIOS DE TUBERÍA DE LIMPIEZA Y REBOSE	und. und. und.	1.00 1.00 1.00	35.89 22.48 12.71	35.89 22.48 12.71

01.05.08	PINTURA				39.81
01.05.08.01	PINTURA ESMALTE EN MUROS EXTERIOR	m2	6.38	6.24	39.81
01.05.09	MATERIAL PARA FILTRO				87.02
01.05.09.01 01.05.09.02	COLOCACION DE GRAVILLA COLOCACION DE GRAVA	m3	0.47	118.75 75.08	55.81
01.05.09.02	COLOCACION DE GRAVA COLOCACION DE PIEDRA CHICA	m3 m3	0.29 0.20	43.83	21.77 8.77
01.05.09.04	COLOCACION DE LECHO DE GRAVA Ø 1 1/2" (CAJA DE VALVULAS)	m3	0.01	66.88	0.67
01.05.10	CERCO PERIMÉTRICO				4,309.42
01.05.10.01	EXCAVACION MANUAL EN MATERIAL SUELTO	m3	1.30	34.82	45.27
01.05.10.02	CONCRETO F'C=175 kg/cm2 SIN MEZCLADORA CERCO PERIMÉTRICO CON MALLA OLIMPICA GALVANIZADA	m3 m	1.33 27.18	314.28 133.96	416.94 3,641.03
01.05.10.04	PUERTA C/MARCO CON ANGULO DE 1 1/2" X 1 1/2" X 1/8" Y MALLA OLIMPICA GALVANIZADA	und	1.00	206.18	206.18
01.06	LÍNEA DE CONDUCCIÓN (L=563.951 MTS)				62,531.02
01.06.01	TRABAJOS PRELIMINARES				5,429.68
01.06.01.01	DESBROCE Y LIMPIEZA MANUAL EN ZONAS BOSCOSA . OBRAS LINEALES	m	563.95	5.45	3,073.53
01.06.01.02	DESBROCE Y LIMPIEZA MANUAL EN ZONAS NO BOSCOSAS. OBRAS LINEALES	m	563.95	3.61	2,035.86
01.06.01.03	TRAZO Y REPLANTEO C/ EQUIPO DE OBRAS LINEALES	Km	0.5640	567.93	320.28
01.06.02	MOVIMIENTO DE TIERRAS				47,631.30
01.06.02.01	EXCAVACIÓN A PULSO DE ZANJA DE 0.60 x 0.70 m. EN TERRENO NATURAL	m	563.95	36.02	20,313.52
01.06.02.02	REFINE Y NIVELACIÓN DE FONDO DE ZANJA B=0.6 m T.N	m	563.95	0.92	518.83
01.06.02.03	CAMA DE APOYO PARA TUBERÍA CON MAT. PRESTAMO E=0.10 m., B=0.60 m	m	563.95	19.08	10,760.19
01.06.02.04	RELLENO COMPACT. C/EQUIPO C/M AT. PROPIO SELECCIONADO EN ZANJA DE 0.60 X 0.70 M ELIMINACIÓN MANUAL DE MAT. EXCEDENTE DE ZANJA EN T.N DE 0.60 x 0.70	m	563.95	8.13	4,584.92
01.06.02.05 01.06.03	TUBERÍAS Y ACCESORIOS	m	563.95	20.31	11,453.84 9,470.03
01.06.03.01	SUMINISTRO DE TUBERÍA PVC NTP 339.002 DN 1"	m	563.95	7.88	4,443.93
01.06.03.02	SUMINISTRO E INSTALACIÓN DE CODO PVC NTP 339.002/ NTP 399.019 C - 10 SP 22.50 D=1"	Und.	2.00	26.02	52.04
01.06.03.03	SUM INISTRO E INSTALACIÓN DE CODO PVC NTP 339.002/ NTP 399.019 C - 10 SP 450 D=1"	Und.	4.00	26.02	104.08
01.06.03.04	PRUEBA HIDRÁHULICA + DESINFECCIÓN EN TUBERÍA DE AGUA POTABLE DN 25 - 63	m	2255.80	2.04	4,601.84
01.06.03.05	DADOS DE ANCLAJE PARA ACCESORIOS PVC DE 1" A 1"	Und.	6.00	44.69	268.14
01.07	CÁMARA ROMPE PRESIÓN TIPO 6 (1 UND)				2,338.58
01.07.01	TRABAJOS PRELIMINARES				9.79
			3.75	1.15	4.31
01.07.01.01	LIMPIEZA DE TERRENO MANUAL	m2			
01.07.01.01	LIMPIEZA DE TERRENO MANUAL TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS	m2 m2	3.75	1.46	5.48
01.07.01.01				1.46	5.48 184.66
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N	m2 m3	3.75 2.99	34.82	184.66 104.04
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS	m2 m3 m2	3.75 2.99 3.72	34.82 5.54	184.66 104.04 20.61
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO	m2 m3 m2 m3	3.75 2.99 3.72 1.24	34.82 5.54 18.01	184.66 104.04 20.61 22.40
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m	m2 m3 m2	3.75 2.99 3.72	34.82 5.54	184.66 104.04 20.61 22.40 37.60
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04 01.07.03	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO	m2 m3 m2 m3 m3	3.75 2.99 3.72 1.24 2.09	34.82 5.54 18.01 18.01	184.66 104.04 20.61 22.40 37.60 1,280.17
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04 01.07.03.01	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO 1°C= 140 kg/cm2, PARA SOLADOS	m2 m3 m2 m3 m3	3.75 2.99 3.72 1.24 2.09	34.82 5.54 18.01 18.01	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04 01.07.03.01 01.07.03.01 01.07.03.02	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO f'c= 140 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS	m3 m2 m3 m3 m3	3.75 2.99 3.72 1.24 2.09 0.25 0.01	34.82 5.54 18.01 18.01 18.08 430.30	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04 01.07.03.01 01.07.03.01 01.07.03.02 01.07.03.03	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO 1°C= 140 kg/cm2, PARA SOLADOS	m3 m2 m3 m3 m3	3.75 2.99 3.72 1.24 2.09	34.82 5.54 18.01 18.01	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.03.01 01.07.03.01 01.07.03.02 01.07.03.03	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO f'= 140 kg/cm2, PARA SOLADOS CONCRETO f'= 140 kg/cm2, PARA DADOS CONCRETO f'= 280 kg/cm2, PARA CÁMARAS	m3 m2 m3 m3 m3	2.99 3.72 1.24 2.09 0.25 0.01 0.85	34.82 5.54 18.01 18.01 18.08 430.30 697.83	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16 593.16
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04 01.07.03.01 01.07.03.01 01.07.03.02 01.07.03.03 01.07.03.04 01.07.03.04	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO f'c= 140 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 280 kg/cm2, PARA CÁMARAS ACERO fý = 4200 Kg/cm2 PARA CAMARA ROMPE PRESIÓN TIPO 6	m2 m3 m2 m3 m3 m3 m3 kg	2.99 3.72 1.24 2.09 0.25 0.01 0.85 43.18	34.82 5.54 18.01 18.01 18.08 430.30 697.83 6.01	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16 593.16 259.51
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.03.01 01.07.03.01 01.07.03.02 01.07.03.03 01.07.03.04 01.07.03.05 01.07.03.06	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO f'c= 140 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 280 kg/cm2, PARA CÁMARAS ACERO fý = 4200 Kg/cm2 PARA CAMARA ROMPE PRESIÓN TIPO 6 ENCOFRADO Y DESENCOFRADO	m2 m3 m2 m3 m3 m3 m3 m3 m3 m3	3.75 2.99 3.72 1.24 2.09 0.25 0.01 0.85 43.18 11.84	34.82 5.54 18.01 18.01 18.08 430.30 697.83 6.01 33.59	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16 593.16 259.51 397.71
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04 01.07.03	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO f'c= 140 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 280 kg/cm2, PARA CÁMARAS ACERO fý = 4200 Kg/cm2 PARA CAMARA ROMPE PRESIÓN TIPO 6 ENCOFRADO Y DESENCOFRADO EMBOQUILLADO DE PIEDRA, CONCRETO f'c=140 kg/cm2, e=0.15 m.	m2 m3 m2 m3 m3 m3 m3 m3 m3 m3 m3	3.75 2.99 3.72 1.24 2.09 0.25 0.01 0.85 43.18 11.84 0.05	34.82 5.54 18.01 18.01 18.08 430.30 697.83 6.01 33.59 381.34	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16 593.16 259.51 397.71 19.07
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04 01.07.03.01 01.07.03.03 01.07.03.03 01.07.03.03 01.07.03.04 01.07.03.05 01.07.03.06 01.07.03.07	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO f'c= 140 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 280 kg/cm2, PARA CÁMARAS ACERO fý = 4200 kg/cm2 PARA CAMARA ROMPE PRESIÓN TIPO 6 ENCOFRADO Y DESENCOFRADO EMBOQUILLADO DE PIEDRA, CONCRETO f'c=140 kg/cm2, e=0.15 m. PIEDRA CHANCADA 1/2" PARA SUMIDERO	m2 m3 m2 m3 m3 m3 m3 m3 m3 m3 m3	3.75 2.99 3.72 1.24 2.09 0.25 0.01 0.85 43.18 11.84 0.05	34.82 5.54 18.01 18.01 18.08 430.30 697.83 6.01 33.59 381.34	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16 593.16 259.51 397.71 19.07 1.01
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04 01.07.03.01 01.07.03.03 01.07.03.03 01.07.03.03 01.07.03.05 01.07.03.06 01.07.03.07 01.07.04 01.07.04 01.07.04	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO 1'C= 140 kg/cm2, PARA SOLADOS CONCRETO 1'C= 140 kg/cm2, PARA DADOS CONCRETO 1'C= 280 kg/cm2, PARA CÁMARAS ACERO fý = 4200 kg/cm2, PARA CAMARA ROMPE PRESIÓN TIPO 6 ENCOFRADO Y DESENCOFRADO EMBOQUILLADO DE PIEDRA, CONCRETO 1'C=140 kg/cm2, e=0.15 m. PIEDRA CHANCADA 1/2" PARA SUMIDERO ACABADOS	m2 m3 m2 m3 m3 m3 m3 m3 m3 m3 m3 kg m2 m3 m3	3.75 2.99 3.72 1.24 2.09 0.25 0.01 0.85 43.18 11.84 0.05 0.01	34.82 5.54 18.01 18.08 430.30 697.83 6.01 33.59 381.34 125.91	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16 593.16 259.51 397.71 19.07 1.01 458.91
01.07.01.01 01.07.01.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.02.04 01.07.03.01 01.07.03.03 01.07.03.04 01.07.03.05 01.07.03.06 01.07.03.07 01.07.03.07 01.07.03.07 01.07.03.07 01.07.03.07 01.07.04 01.07.04.01 01.07.04.02 01.07.04.03	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO f'c= 140 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 280 kg/cm2, PARA CÁMARAS ACERO fý = 4200 Kg/cm2, PARA CAMARA ROMPE PRESIÓN TIPO 6 ENCOFRADO Y DESENCOFRADO EMBOQUILLADO DE PIEDRA, CONCRETO f'c=140 kg/cm2, e=0.15 m. PIEDRA CHANCADA 1/2" PARA SUMIDERO ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/ IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURA, 2 manos	m2 m3 m2 m3 m3 m3 m3 m3 m3 m3 kg m2 m3 m3	3.75 2.99 3.72 1.24 2.09 0.25 0.01 0.85 43.18 11.84 0.05 0.01 8.66	34.82 5.54 18.01 18.08 430.30 697.83 6.01 33.59 381.34 125.91	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16 593.16 259.51 397.71 19.07 1.01 458.91 264.65
01.07.01.01 01.07.01.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.03.01 01.07.03.02 01.07.03.03 01.07.03.04 01.07.03.05 01.07.03.05 01.07.03.05 01.07.03.06 01.07.03.07	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO f'c= 140 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 280 kg/cm2, PARA CÁMARAS ACERO fý = 4200 kg/cm2, PARA CAMARA ROMPE PRESIÓN TIPO 6 ENCOFRADO Y DESENCOFRADO EMBOQUILLADO DE PIEDRA, CONCRETO f'c=140 kg/cm2, e=0.15 m. PIEDRA CHANCADA 1/2" PARA SUMIDERO ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/ IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm.	m2 m3 m2 m3 m3 m3 m3 m3 m3 m3 m2 m2 m2	3.75 2.99 3.72 1.24 2.09 0.25 0.01 0.85 43.18 11.84 0.05 0.01 8.66 3.52	34.82 5.54 18.01 18.08 430.30 697.83 6.01 33.59 381.34 125.91 30.56 32.52	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16 593.16 259.51 397.71 19.07 1.01 458.91 264.65 114.47
01.07.01.01 01.07.01.02 01.07.02 01.07.02.01 01.07.02.02 01.07.02.03 01.07.03.01 01.07.03.03 01.07.03.03 01.07.03.04 01.07.03.05 01.07.03.06 01.07.03.07 01.07.04.01 01.07.04.01 01.07.04.01 01.07.04.02 01.07.04.03	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS RELLENO CON MATERIAL PROPIO SELECCIONADO ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m OBRAS DE CONCRETO CONCRETO f'c= 140 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 280 kg/cm2, PARA CÁMARAS ACERO fý = 4200 Kg/cm2, PARA CAMARA ROMPE PRESIÓN TIPO 6 ENCOFRADO Y DESENCOFRADO EMBOQUILLADO DE PIEDRA, CONCRETO f'c=140 kg/cm2, e=0.15 m. PIEDRA CHANCADA 1/2" PARA SUMIDERO ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/ IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURA, 2 manos	m2 m3 m2 m3 m3 m3 m3 m3 m3 m3 m2 m2 m2	3.75 2.99 3.72 1.24 2.09 0.25 0.01 0.85 43.18 11.84 0.05 0.01 8.66 3.52	34.82 5.54 18.01 18.08 430.30 697.83 6.01 33.59 381.34 125.91 30.56 32.52	184.66 104.04 20.61 22.40 37.60 1,280.17 4.56 5.16 593.16 259.51 397.71 19.07 1.01 458.91 264.65 114.47 79.79

01.07.06	SUMINISTRO E INSTALACION DE ACCESORIOS EN CRP6				417.92
01.07.06.01	SUMINISTRO E INSTALACIÓN DE INGRESO EN CRP6				171.27
	suministro e instalación de válvula compuerta de bronce de 1"	Und.	1.00	57.08	
	suministro e instalación de niple con rosca PVC 1 x 4"	Und.	2.00	14.45	
	suministro e instalación de unión universal F° G° de 1"	Und.	2.00	42.29	
	suministro e instalación de adaptador UPR PVC 1"	Und.	2.00	29.16	
	suministro e instalación de codo SP PVC 1"	Und.	3.00	20.41	
	suministro e instalación de tubería PVC C-10 D=1"	ml	1.00	7.88	
01 07 06 02	SUMINISTRO E INSTALACIÓN DE LIMPIEZA Y REBOSE EN CRP6		1.00	7.00	90.09
01.07.06.02			4.00	***	89.08
	suministro e instalación de reducción SP PVC 4 x 2"	Und.	1.00	35.89	
	suministro e instalación de tubería PVC C-10 D=2"	m	4.00	11.50	
	suministro e instalación de codo SP PVC 2"	Und.	2.00	22.48	
	suministro e instalación de unión SP PVC de 2"	Und.	1.00	6.50	
	suministro e instalación de tapón SP PVC 2" con perforación de 3/16"	Und.	1.00	12.71	
01.07.06.03	SUMINISTRO E INSTALACIÓN DE SALIDA EN CRP6				73.71
	suministro e instalación de canastilla de PVC 1"	Und.	1.00	55.77	
	suministro e instalación de tubería PVC C-10 D=1"	ml	0.30	7.88	
	suministro e instalación de unión SOQUET PVC de 1"	Und.	1.00	10.06	
01.07.06.04	SUM INISTRO E INSTALACIÓN DEVENTILACIÓN EN CRP6				83.86
	suministro e instalación de brida rompe agua de F° G° 2", Niple F° G° (L=0.25m) con rosca"	Und.	1.00	32.43	
	suministro e instalación de codo 90° F° G° 2", NTP ISO 49:1997	Und.	1.00	22.48	
	suministro e instalación de codo 90 °F G 2 , NTF 180 49.1997 suministro e instalación de niple Fo Go (L=0.10m) de 2", ISO - 65 serie I	Und.	1.00	10.18	
	*	Und.	1.00	18.77	
	suministro e instalación de codo de 90° F° G° 2", con malla soldada, NTP 49:1997	Und.	1.00	10.77	
01.08	VÁLVULA DE AIRE AUTOMÁTICA 0.8 x 0.8 m (2 UND)				2,393.87
01.08.01	TRABAJOS PRELIMINARES				10.18
01.08.01.01	LIMPIEZA DE TERRENO MANUAL	m2	3.90	1.15	4.49
01.08.01.02	TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS	m2	3.90	1.46	5.69
01.08.02	MOVIMIENTO DE TIERRAS				74.51
01.08.02.01	EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N	m3	1.28	34.82	44.57
01.08.02.02	REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS	m2	1.28	5.54	7.09
01.08.02.03		•	1.10	20.21	22.05
	ELIMINACIÓN DE MATERIAL EXCEDENTE D= 30 m	m2	1.13	20.31	22.85
01.08.03	OBRAS DE CONCRETO				917.71
01.08.03 01.08.03.01	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS	m2	1.28	18.01	917.71 23.05
01.08.03 01.08.03.01 01.08.03.02	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS	m2 m3	1.28 0.02	18.01 430.30	917.71 23.05 10.33
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS	m2 m3 m3	1.28 0.02 0.58	18.01 430.30 610.91	917.71 23.05 10.33 351.88
01.08.03 01.08.03.01 01.08.03.02	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS	m2 m3	1.28 0.02	18.01 430.30	917.71 23.05 10.33
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04	OBRAS DE CONCRETO CONCRETO f´c= 100 kg/cm2, PARA SOLADOS CONCRETO f´c= 140 kg/cm2, PARA DADOS CONCRETO f´c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60	m2 m3 m3 kg	1.28 0.02 0.58 33.71	18.01 430.30 610.91 6.01	917.71 23.05 10.33 351.88 202.60
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO	m2 m3 m3 kg m2	1.28 0.02 0.58 33.71 9.76	18.01 430.30 610.91 6.01 33.59	917.71 23.05 10.33 351.88 202.60 327.84
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05 01.08.03.06	OBRAS DE CONCRETO CONCRETO f´c= 100 kg/cm2, PARA SOLADOS CONCRETO f´c= 140 kg/cm2, PARA DADOS CONCRETO f´c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1"	m2 m3 m3 kg m2	1.28 0.02 0.58 33.71 9.76	18.01 430.30 610.91 6.01 33.59	917.71 23.05 10.33 351.88 202.60 327.84 2.01
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.06 01.08.03.06	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS	m2 m3 m3 kg m2 m3	1.28 0.02 0.58 33.71 9.76 0.02	18.01 430.30 610.91 6.01 33.59 125.91	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05 01.08.03.06 01.08.04 01.08.04.01	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm.	m2 m3 m3 kg m2 m3	1.28 0.02 0.58 33.71 9.76 0.02	18.01 430.30 610.91 6.01 33.59 125.91 30.56	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05 01.08.03.06 01.08.04 01.08.04.01 01.08.04.01	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm.	m2 m3 m3 kg m2 m3	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05 01.08.04 01.08.04.01 01.08.04.02 01.08.04.03	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS	m2 m3 m3 kg m2 m3	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05 01.08.04.01 01.08.04.01 01.08.04.02 01.08.04.03	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS EQUIPAMIENTO	m2 m3 m3 kg m2 m3 m2 m2	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08 5.68	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52 14.56	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70 1,127.19
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05 01.08.04.01 01.08.04.01 01.08.04.02 01.08.04.03 01.08.05.01 01.08.05.01	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS EQUIPAMIENTO TAPA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA ACCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2"	m2 m3 m3 kg m2 m3 m2 m2 m2	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08 5.68	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52 14.56	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70 1,127.19 419.76 707.43
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.06 01.08.04 01.08.04.01 01.08.04.02 01.08.04.03 01.08.05 01.08.05	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS EQUIPAMIENTO TAPA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA	m2 m3 m3 kg m2 m3 m2 m2 m2	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08 5.68	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52 14.56	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70 1,127.19 419.76
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05 01.08.04.01 01.08.04.01 01.08.04.02 01.08.04.03 01.08.05.01 01.08.05.01	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/ IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS EQUIPAMIENTO TAPA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA ACCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2" VÁLVULA DE PURGA 0.8 x 0.8 m (3 UND)	m2 m3 m3 kg m2 m3 m2 m2 m2	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08 5.68	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52 14.56	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70 1,127.19 419.76 707.43
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05 01.08.04.01 01.08.04.01 01.08.04.02 01.08.04.03 01.08.05.01 01.08.05.01 01.08.05.02	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS EQUIPAMIENTO TAPA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA ACCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2" VÁLVULA DE PURGA 0.8 x 0.8 m (3 UND) TRABAJOS PRELIMINARES	m2 m3 m3 kg m2 m3 m2 m2 Und Und	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08 5.68 2.00 3.00	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52 14.56	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70 1,127.19 419.76 707.43 1,068.54 3.39
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.05 01.08.04.01 01.08.04.01 01.08.04.03 01.08.05 01.08.05.01 01.08.05.01 01.09.01	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS EQUIPAMIENTO TAPA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA ACCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2" VÁLVULA DE PURGA 0.8 x 0.8 m (3 UND) TRABAJOS PRELIMINARES LIMPIEZA DE TERRENO MANUAL	m2 m3 m3 kg m2 m3 m2 m2 Und Und	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08 5.68 2.00 3.00	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52 14.56 209.88 235.81	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70 1,127.19 419.76 707.43 1,068.54 3.39 1.50
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.06 01.08.04.01 01.08.04.02 01.08.04.03 01.08.05 01.08.05 01.08.05 01.09 01.09.01 01.09.01.01 01.09.01.02 01.09.02 01.09.02	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS EQUIPAMIENTO TAPA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA ACCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2" VÁLVULA DE PURGA 0.8 x 0.8 m (3 UND) TRABAJOS PRELIMINARES LIMPIEZA DE TERRENO MANUAL TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N	m2 m3 m3 kg m2 m3 m2 m2 Und Und Und	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08 5.68 2.00 3.00 1.30 1.30 0.66	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52 14.56 209.88 235.81	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70 1,127.19 419.76 707.43 1,068.54 3.39 1.50 1.90 43.93 22.91
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.06 01.08.04.01 01.08.04.02 01.08.04.03 01.08.05 01.08.05.01 01.08.05.02 01.09.01 01.09.01.01 01.09.01.02 01.09.02 01.09.02.01 01.09.02.02	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS EQUIPAMIENTO TAPA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA ACCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2" VÁLVULA DE PURGA 0.8 x 0.8 m (3 UND) TRABAJOS PRELIMINARES LIMPIEZA DE TERRENO MANUAL TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N REFINE Y COMPACTACIÓN MANUAL EN T.N PARA ESTRUCTURAS	m2 m3 m3 kg m2 m3 m2 m2 Und Und Und	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08 5.68 2.00 3.00 1.30 1.30 0.66 1.05	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52 14.56 209.88 235.81 1.15 1.46 34.82 5.54	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70 1,127.19 419.76 707.43 1,068.54 3.39 1.50 1.90 43.93 22.91 5.82
01.08.03 01.08.03.01 01.08.03.02 01.08.03.03 01.08.03.04 01.08.03.06 01.08.04.01 01.08.04.02 01.08.05 01.08.05 01.08.05 01.08.05 01.09.01 01.09.01 01.09.01.01 01.09.02 01.09.02	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO f'c= 210 kg/cm2, PARA CÁJAS ACERO fý = 4200 Kg/cm2 GRADO 60 ENCOFRADO Y DESENCOFRADO GRAVA D.MAX = 1" ACABADOS TARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm. TARRAJEO INTERIOR C/IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. PINTURA LATEX EN ESTRUCTURAS, 2 MANOS EQUIPAMIENTO TAPA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA ACCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2" VÁLVULA DE PURGA 0.8 x 0.8 m (3 UND) TRABAJOS PRELIMINARES LIMPIEZA DE TERRENO MANUAL TRAZO Y REPLANTEO PRELIMINAR DE ESTRUCTURAS MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL PARA ESTRUCTURAS EN T.N	m2 m3 m3 kg m2 m3 m2 m2 Und Und Und	1.28 0.02 0.58 33.71 9.76 0.02 1.60 4.08 5.68 2.00 3.00 1.30 1.30 0.66	18.01 430.30 610.91 6.01 33.59 125.91 30.56 32.52 14.56 209.88 235.81	917.71 23.05 10.33 351.88 202.60 327.84 2.01 264.28 48.90 132.68 82.70 1,127.19 419.76 707.43 1,068.54 3.39 1.50 1.90 43.93 22.91

01.09.03.01 CC 01.09.03.02 CC 01.09.03.03 CC 01.09.03.04 CC 01.09.03.05 AC 01.09.03.06 EN 01.09.03.07 GI	OBRAS DE CONCRETO CONCRETO f'c= 100 kg/cm2, PARA SOLADOS CONCRETO f'c= 140 kg/cm2, PARA DADOS CONCRETO CICLOPEO f'c= 140 kg/cm2, PARA EMBOQUILLADO CONCRETO f'c= 210 kg/cm2, PARA CÁJAS	m2 m3 m3	0.10 0.04	18.08 430.30	490.59 1.81
01.09.03.02 CC 01.09.03.03 CC 01.09.03.04 CC 01.09.03.05 Ac 01.09.03.06 EN 01.09.03.07 GI	ONCRETO f´c= 140 kg/cm2, PARA DADOS ONCRETO CICLOPEO f´c= 140 kg/cm2, PARA EMBOQUILLADO	m3			
01.09.03.03 CC 01.09.03.04 CC 01.09.03.05 AC 01.09.03.06 EN 01.09.03.07 GI 01.09.04 AC	ONCRETO CICLOPEO f´c= 140 kg/cm2, PARA EMBOQUILLADO		0.01		15.49
01.09.03.04 CC 01.09.03.05 A4 01.09.03.06 EN 01.09.03.07 GI 01.09.04 A6	•		0.03	381.34	9.53
01.09.03.05 A0 01.09.03.06 EN 01.09.03.07 GI 01.09.04 A0		m3	0.30	610.91	181.44
01.09.03.06 EN 01.09.03.07 GI 01.09.04 Ac	CERO fý = 4200 Kg/cm2 GRADO 60	kg	16.85	6.01	101.27
01.09.03.07 Gl 01.09.04 A0	NCOFRADO Y DESENCOFRADO	m2	5.36	33.59	180.04
01.09.04 A	GRAVA D.MAX = 1"	m3	0.01	125.91	1.01
		IIIS	0.01	123.91	
	CABADOS				136.22
	ARRAJEO DE EXTERIORES C:A 1:4, e= 1.5 cm.	m2	0.64	30.56	19.56
	'ARRAJEO INTERIOR C/ IMPERMEABILIZANTE C:A 1:2, e= 1.5 cm. INTURA LATEX EN ESTRUCTURAS, 2 MANOS	m2 m2	2.28 2.92	32.52 14.56	74.15 42.52
		1112	2.92	14.50	
	QUIPAMIENTO				394.41
	APA METALICA 0.60 x 0.60 m, CON LLAVETIPO BUJIA	Und.	1.00	209.88	209.88
01.09.05.02 A	CCESORIOS DE VÁLVULA DE AIRE D=1" EN TUBERÍA DE DN= 1 1/2"	Und.	1.00	184.53	184.53
01.10 RI	ESERVORIO DE ALMACENAMIENTO (10 M3)				36,896.57
01.10.01 TI	RABAJOS PRELIMINARES				156.813
01.10.01.01 TI	RAZO Y REPLANTEO INICIALES	m2	27.24	3.00	81.72
01.10.01.02 TI	RAZO Y REPLANTEO FINALES	m2	27.24	2.72	74.09
101 10 01 03	RANSPORTE DE MATERIALES, HER-EQUIPOS EN ZONA SIN ACCESO EHICULAR P/INSTAL	Glb	1.00	1.00	1.00
01.10.02 M	IOVIMIENTO DE TIERRAS				11,931.52
01.10.02.01 EX	XCAVACIONES EN T-NORMAL (C. MAQUINARIA)	m3	100.00	12.86	1,286.00
01.10.02.02 EX	XCAVACIONES TERRENO NORMAL A PULSO HASTA 1.00 M PROF.	m3	5.71	41.31	235.96
01.10.02.03 RI	EFINE, NIVELACIÓN Y COMPACTACIÓN EN TERRENO NORMAL A PULSO	m2	27.24	5.54	150.91
01.10.02.04 RI	ELLENO C/MATERIAL PROPIO COMPACTADO	m3	1.00	18.01	18.01
01.10.02.05 A	CARREO Y ACOMODO EN ZONA ALEDANA DESMONTE - PULSO	m3	125.65	20.31	2,551.99
101 10 02 06	LIMINACIÓN DE DESMONTE EN TERRENO NORMAL R=10 KM CON 1 AQUINARIA	m3	125.65	61.19	7,688.65
01.10.03 O	DBRAS DE CONCRETO SIMPLE				289.659
01.10.03.01 CO	ONCRETO f´c= 100 kg/cm2, PARA SOLADOS Y/O SUB BASES (CEMENTO P-1)	m3	0.81	359.20	289.66
01.10.04 O	DBRAS DE CONCRETO ARMADO				16,875.771
01.10.04.01 C	ONCRETO F´C= 280 kg/cm2, PARA ZAPATAS (CEMENTO P-1)	m3	3.47	697.93	2,421.82
01.10.04.02 CO	ONCRETO F´C= 280 kg/cm2, PARA LOSAS DE FONDO-PISO (CEMENTO P-1)	m3	1.15	697.93	804.02
01.10.04.03 CO	CONCRETO F'C= 280 kg/cm2, PARA MUROS REFORZADOS (CEMENTO P-1)	m3	4.38	697.93	3,055.26
101 10 04 04	NCOFRADO (INCL. HABILITACIÓN DE MADERA) PARA MUROS TIPO PARAVISTA	m2	43.78	155.88	6,823.80
	ONCRETO F'C 280 kg/cm2 PARA LOSAS MACIZAS (CEMENTO P-1)	m3	1.36	697.93	946.74
1	NCOFRADO (INCL. HABILITACIÓN DE MADERA) PARA LOSAS MACIZAS	m2	13.06	155.64	2,032.66
01.10.04.07 CU	URADO DE CONCRETO CON ADITIVO	m2	59.98	3.36	201.52
01.10.04.08 Al	DITIVO DESMOLDADOR PARA ENCOFRADO TIPO CARAVISTA	m2	56.84	10.38	589.96
01.10.05 RI	EVOQUES, ENCLUIDOS Y MOLDURAS				973.658
T.	ARRAJEO C/IMPERMEABILIZANTE LOSA FONDO-PISO RESERVORIO E=20mm				
	:A 1:3 ARRAJEO C/IMPERMEABILIZANTE MUROS P/RESERVORIO APOYADO E= 20	m2	9.21	32.75	301.63
101 10 05 02	mr C:A 1:3	m2	20.52	32.75	672.03
01.10.06 PI	ISOS Y PAVIMENTOS				957.908
101.10.06.01	'EREDA DE CONCRETO F'C= 175 kg/cm2, E= 0.10 m PASTA 1:2 (C-1) C/EMPLEO DE 1EZCLADORA (INCL.)	m2	16.00	50.57	809.12
	NCOFRADO (I/ HABILITACIÓN DE MADERA) P/ VEREDAS Y AMPAS	m2	1.76	45.55	80.17
01.10.06.03 SE	ELLADO DE JUNTAS EN VEREDAS E= 1"	m	14.60	4.70	68.62
01.10.07 C	ARPINTERIA METALICA Y HERRERA				506.339
01.10.07.01 ES	SCALERA DE TUBO Fo G o CON PARANTES DE 1 1/2 " PELADAÑOS 1"	m	1.78	88.73	157.94
T	APA METALICA SANITARIA C/PLANCA ESTRAIDA DE ACERO E= 3/16" (0.60 mm	XX1	1.00	200.00	
	0.60 mm)	Und.	1.00	209.88	209.88
	'ENTILACIÓN C/TUBERÍA DE ACERO S/DISEÑO DE 2"	Und.	2.00	69.26	138.52
	CERRAJERIA		4		16.100
	ANDADO INCLUYENDO ALDABAS	Und.	1.00	16.10	16.10
	INTURA				363.923
101 10 09 01	INTADO EXTERIOR C/TERNOMATE O SIMILAR DE RESERVORIO APOYADO NCL. MENSAJE	m2	24.66	14.76	363.92
	DITAMIENTOS VARIOS				749.491
	ROVISIÓN Y COLOCACIÓN DE JUNTA WATER STOP DE PVC E=6"	m	13.20	54.66	721.51
	UNTA DE DILATACIÓN CON SELLO ELASTOMÉRICO 328	m2	1.74	16.08	27.98
	4 /X		l		,

01.10.11	PRUEBAS DE CALIDAD				774.300
01.10.11.01	PRUEBA DE CALIDAD DEL CONCRETO (PRUEBA A LA COMPRESIÓN)	Und.	5.00	40.00	200.00
01.10.11.02	PRUEBA HIDRÁULICA CON EMPLEO DE CISTERNA Y EQUIPO DE BOMBEO PARA EL LLENADO	m3	10.00	57.43	574.30
01.10.12	OTROS				348.217
01.10.12.01	EVACUACIÓN DE AGUA DE PRUEBA CÆMPLEO DE LÍNEA DE SALIDA	m3	10.00	0.87	8.70
01.10.12.02	LIMPIEZA Y DESINFECCIÓN DE RESERVORIOS APOYADOS	m2	29.73	11.42	339.52
01.10.13	EQUIPAMIENTO HIDRÁULICO DEL RESERVORIO APOYADO (10M3)				2,952.872
01.10.13.01	TUBERÍA Y NIPLES				605.152
	Tubería fie. galvanizado ISO=65 serie I 2" i/elemento unión + 2% desp.	m	1.20	40.74	48.89
	Tubería fie. galvanizado ISO=65 serie I 1" i/elemento unión + 2% desp. Tubería fie. galvanizado ISO=65 serie I 1/2" i/elemento unión + 2% desp.	m m	0.50 5.00	22.83 28.97	11.42 144.85
	Tubería PVC SAP SP NTP ISO 399.002 C - 10 Ø 2" + 2% desp.	m	10.20	7.38	75.28
	Tubería PVC SAP SP NTP ISO 399.002 C - 10 Ø 1" + 2% desp.	m	1.50	5.76	8.64
	Tubería PVC SAP SP NTP ISO 399.002 C - 10 Ø 1/2" + 2% desp.	m	12.80	2.46	31.49
	Niple roscado ambos lados de F ^o G ^o de 1" x 0.07 m	pza.	5.50	7.89	43.40
	Niple roscado ambos lados de F ^o G ^o de 1" x 0.35 m Niple roscado ambos lados de F ^o G ^o de 2" x 0.10 m	pza. pza.	1.00 5.00	8.74 10.18	8.74 50.90
	Niple roscado ambos lados de F G de 2 x 0.10 m Niple roscado ambos lados de Fº Gº de 2" x 0.25 m	pza. pza.	1.00	15.94	15.94
	Niple roscado ambos lados de F ^o G ^o de 2" x 0.45 m	pza.	1.00	18.48	18.48
	Niple roscado ambos lados de F ^o G ^o de 2" x 0.50 m	pza.	7.00	21.02	147.14
01.10.13.02	UNIONES, ADAPTADORES Y SOPORTES				226.430
	Adaptadot unión presión - rosca PVC SAP Ø 2" Adaptadot unión presión - rosca PVC SAP Ø 1"	Und. Und.	1.00	21.55 11.98	21.55 35.94
	Adaptadot unión presión - rosca PVC SAP Ø 1" Adaptadot unión presión - rosca PVC SAP Ø 1/2"	Und.	3.00 2.00	5.04	10.08
	Adaptadot unión presión - rosca hembra PVC SAP Ø 1"	Und.	1.00	11.98	11.98
	Unión roscada de fierro galvanizado de 2"	Und.	1.00	18.48	18.48
	Unión universal de fierro galvanizado de 2"	Und.	4.00	23.58	94.32
04.40.40.00	Unión universal de fierro galvanizado de 1"	Und.	2.00	17.04	34.08
01.10.13.03	ACCESORIOS Codo de 90º de fierro galvanizado unión roscada Ø 3"	Und.	2.00	38.00	477.070 76.00
	Codo de 90º de fierro galvanizado unión roscada Ø 2"	Und.	2.00	18.77	37.54
	Codo de 90° de fierro galvanizado unión roscada Ø 1/2"	Und.	2.00	6.66	13.32
	Codo de 45° de fierro galvanizado unión roscada Ø 1"	Und.	1.00	19.92	19.92
	Codo de 90° de fierro galvanizado unión roscada Ø 2" c/malla soldada	Und.	2.00	13.73	27.46
	Suministro codo PVC SAP SP Ø 2" 90°	Und. Und.	2.00 2.00	38.34 12.58	76.68 25.16
	Suministro codo PVC SAP SP Ø 1/2" 90° Suministro codo PVC SAP SP Ø 2" 90°	Und.	2.00	6.22	12.44
	Suministro codo PVC SAP SP Ø 2" 45°	Und.	3.00	12.41	37.23
	Suministro codo PVC SAP SP Ø 1" 45°	Und.	2.00	12.41	24.82
	Tee de fierro galvanizado unión roscada Ø 1"	Und.	2.00	17.90	35.80
	Suministro tee PVC SAP SP Ø 2" - 2"	Und.	1.00	21.36	21.36
	Reducción Fº Gº de 1" a 1/2" roscado Suministro reducción PVC SAP SP Ø 2" - 1"	Und. Und.	1.00 2.00	13.73 19.67	13.73 39.34
	Suministro tapón PVC SAP SP Ø 2"	Und.	1.00	16.27	16.27
01.10.13.04	VÁLVULAS				373.030
	Válvula compuerta NTP 350.084 DE 2"	Und.	1.00	83.93	83.93
	Válvula compuerta NTP 350.084 DE 1"	Und.	2.00	64.01	128.02
	Válvula flotadora de bronce de control directo Ø 1" Grifo D= 1/2" NTP 350.084	Und. Und.	1.00 1.00	122.07 39.01	122.07 39.01
01.10.13.05	INSTALACIÓN	Ond.	1.00	37.01	1,271.190
	Montaje de instalación hidráulica de reservorio V= 10 m3	Glb.	1.00	1271.19	1,271.19
01.11	CASETA DE CLORACIÓN PARA RESERVORIO (10M3)				2,000.678
01.11.01	OBRAS DE CONCRETO				437.081
01.11.01.01	CONCRETO F´C= 210 kg/cm2, PARA DADOS (CEMENTO P-1)	m3	0.05	610.91	31.67
01.11.01.02	ENCOFRADO (INCL. HABILITACIÓN DE MADERA) PARA DADOS	m2	0.29	33.59	9.67
01.11.01.03	CONCRETO F'C= 210 kg/cm2, PARA MUROS REFORZADOS (CEMENTO P-1)	m3	0.31	610.91	188.59
01.11.01.04	ENCOFRADO (INCL. HABILITACIÓN DE MADERA) PARA MUROS TIPO CARAVISTA	m2	6.17	33.59	207.15
01.11.02	REVOQUES, ENCLUIDOS Y MOLDURAS				282.986
01.11.02.01	TARRAJEO EN CIELO RASO	m2	1.01	30.56	30.71
01.11.02.02	TARRAJEO EN EXTERIOR	m2	5.41	30.56	165.39
01.11.02.03	TARRAJEO EN INTERIOR	m2	2.84	30.56	86.88
01.11.03	CARPINTERIA METALICA Y HERRERA				655.060
01.11.03.01	PUERTA METALICA TIPO REJA CON MARCO DE "L" 1" x 1" x 3/16". 0.85 m x 1.2 m S/DETALLE	Und.	1.00	655.06	655.06
01.11.04	CERRAJERIA				64.020
01.11.04.01	CANDADO INCLUYENDO ALDABAS	Und.	1.00	16.10	16.10
01.11.04.02	BISAGRAS	Und.	4.00	11.98	47.92
01.11.05	PINTURA				121.531
01.11.05.01	PINTURA EN CIELO RASO 320	m2	1.46	11.04	16.06

01.11.05.02	PINTURA EXTERIOR C/TEKNOMATE O SIMILAR	m2	5.41	14.76	79.88
01.11.05.03	PINTURA INTERIOR C/TEKNOMATE O SIMILAR	m2	2.84	9.00	25.59
01.11.06	PRUEBAS DE CALIDAD				40.000
01.11.06.01	PRUEBA DE CALIDAD DEL CONCRETO (PRUEBA A LA COMPRESIÓN)	Und.	1.00	40.00	40.00
01.11.06	EQUIPAMIENTO HIDRÁULICO DE SISTEMA DE CLORACIÓN				400.000
01.11.06.03	EQUIPOS DE CLORACIÓN Y ACCESORIOS DE CLORACIÓN S/PLANO	Glb.	1.00	400.00	400.00
01.12	CERCO PERIMÉTRICO (INCL. PUERTA DE INGRESO)				4,581.12
01.12.01	TRABAJOS PRELIMINARES				139.194
01.12.01.01	TRAZO INICIAL, NIVELACIÓN Y REPLANTEO PARA CERCO PERIMÉTRICO	m	33.30	1.46	48.62
01.12.01.02	REPLANTEO FINAL DE OBRA, PARA CERCO PERIMÉTRICO (CON EQUIPO)	m	33.30	2.72	90.58
01.12.02	MOVIMIENTO DE TIERRAS				248.900
01.12.02.01	EXCAVACIONES EN T-NORMAL A PULSO HASTA 1.00 M DE PROF.	m3	3.62	42.11	152.23
01.12.02.02	RELLENO C/M ATERIAL PROPIO COMPACTADO	m3	0.10	15.44	1.54
01.12.02.03	ACARREO Y ACOMODO EN ZONA ALEDANA DESMONTE - PULSO	m3	4.40	21.62	95.13
01.12.03	OBRAS DE CONCRETO SIMPLE				1,796.700
01.12.03.01	CONCRETO f´c= 175 kg/cm2 + 30% P.G PARA CIMENTACIONES (CEMETO P -1)	m3	3.39	530.00	1,796.70
01.12.04	OBRAS DE CONCRETO ARMADO				330.151
01.12.04.01 01.12.04.02	CONCRETO F'C= 210 kg/cm2, PARA COLUMNAS (CEMENTO P-1) ENCOFRADO (INCL. HABILITACIÓN DE MADERA) PARA COLUMNAS	m3 m2	0.29 4.60	610.91 33.59	175.64 154.51
01.12.04.02	REVOQUES, ENCLUIDOS Y MOLDURAS	1112	4.00	33.39	140.576
01.12.05.01	TARRAJEO DE SUPERFICIE DE COLUMNAS CON CEMENTO - ARENA	m2	4.60	30.56	140.58
01.12.06	CARPINTERIA METÁLICA Y HERRERA				1,802.580
01.12.06.01	PUERTA METÁLICA DE TUBO Fo Go Ø 2" CON MALLA DE FIERRO GALVANIZADO COCADA 2" x 2" - CALIBRE BWG=12 (1.60 de ancho x 2.3 de largo	Und.	1.00	744.12	744.12
01.12.06.02	CERCO METALICO MARCO ANGULO Fo TIPO L DE 1 1/4" x 1 1/4" x 1/8", PARANTE TUBO Fo Go Ø 2". MALLA COCADA 2" x 2" CON FIERRO	m	31.20	33.93	1,058.46
01.12.07	CERRAJERIA				110.000
01.12.07.01	CANDADO INCLUYENDO ALDABAS	Und.	1.00	16.10	16.10
01.12.07.02	BISAGRAS Fo Go Ø 2 1/2 " Y PL 1/4" 0.04 x 0.10 m PARA PUERTA METÁLICA	pza.	6.00	11.98	71.88
01.12.07.03	PICAFORTE DE FIERRO REDONDO DE 3/4" x 0.65 m.	und	2.00	11.01	22.02
01.12.08 01.12.08.01	OTROS ANCLAJE DE 5/8" L=0.25m PARA ANCLAJES DE TUBO EN CIMENTACIÓN	kg	3.88	3.36	13.020 13.02
01.13	LÍNEA DE ADUCCIÓN (L=155.034MTS)	Kg.	3.00	3.30	17,214.993
01.13.01	TRABAJOS PRELIMINARES				1,492.656
01.13.01	DESBROCE Y LIMPIEZA MANUAL EN ZONAS BOSCOSA . OBRAS LINEALES	m	155.03	5.45	844.94
01.13.01.02	DESBROCE Y LIMPIEZA MANUAL EN ZONAS NO BOSCOSAS. OBRAS LINEALES	m	155.03	3.61	559.67
01.13.01.03	TRAZO Y REPLANTEO C/EQUIPO DE OBRAS LINEÁLES	Km	0.16	567.93	88.05
01.13.02	MOVIMIENTO DE TIERRAS				13,094.172
01.13.02.01 01.13.02.02	EXCAVACIÓN MANUAL EN MATERIAL SUELTO REFINE Y NIVELACIÓN DE FONDO DE ZANJA B=0.6 m T.N	m m	155.03 155.03	36.02 0.92	5,584.32 142.63
01.13.02.02	CAMA DE APOYO PARA TUBERÍA CON MAT. PRESTAMO E=0.10 m., B=0.60 m	m	155.03	19.08	2,958.05
01.13.02.04	RELLENO COMPACT. C/EQUIPO C/MAT. PROPIO SELECCIONADO EN ZANJA DE	m	155.03	8.13	1,260.43
	0.60 X 0.70 M ELIMINACIÓN MANUAL DE MAT. EXCEDENTE DE ZANJA EN T.N DE 0.60 x 0.70				
01.13.02.05	M. (Dm=30 m)	m	155.03	20.31	3,148.74
01.13.03	TUBERÍAS Y ACCESORIOS				2,628.165
01.13.03.01	SUMINISTRO DE TUBERÍA PVC NTP 339.002 DN 1"	m	155.03	7.88	1,221.67
01.13.03.02	SUM INISTRO E INSTALACIÓN DE CODO PVC NTP 339.002/ NTP 399.019 C - 10 SP 22.50 D=1"	Und.	2.00	26.02	52.04
01.13.03.03	SUMINISTRO E INSTALACIÓN DE CODO PVC NTP 339.002/NTP 399.019 C - 10 SP 450 D=1"	Und.	0.00	26.02	0.00
01.13.03.04	PRUEBA HIDRÁHULICA + DESINFECCIÓN EN TUBERÍA DE AGUA POTABLE DN 25 - 63	m	620.14	2.04	1,265.08
01.13.03.05	DADOS DE ANCLAJE PARA ACCESORIOS PVC DE 1" A 1"	Und.	2.00	44.69	89.38
	RED DE DISTRIBUCIÓN				88,864.76
01.14					15,496.871
01.14	TRABAJOS PRELIMINARES				
01.14.01 01.14.01.01	TRAZO Y REPLANTEO C/INICIAL PARA LÍNEAS DE AGUA	m	699.95	11.07	7,748.44
01.14.01 01.14.01.01 01.14.01.02	TRAZO Y REPLANTEO C/INICIAL PARA LÍNEAS DE AGUA TRAZO Y REPLANTEO C/FINAL PARA LÍNEAS DE AGUA	m m	699.95 699.95	11.07 11.07	7,748.44
01.14.01 01.14.01.01 01.14.01.02 01.14.02	TRAZO Y REPLANTEO C/INICIAL PARA LÍNEAS DE AGUA TRAZO Y REPLANTEO C/FINAL PARA LÍNEAS DE AGUA MOVIMIENTO DE TIERRAS	m	699.95	11.07	7,748.44 59,117.693
01.14.01 01.14.01.01 01.14.01.02	TRAZO Y REPLANTEO C/INICIAL PARA LÍNEAS DE AGUA TRAZO Y REPLANTEO C/FINAL PARA LÍNEAS DE AGUA				7,748.44
01.14.01 01.14.01.01 01.14.01.02 01.14.02 01.14.02.01	TRAZO Y REPLANTEO C/INICIAL PARA LÍNEAS DE AGUA TRAZO Y REPLANTEO C/FINAL PARA LÍNEAS DE AGUA MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL EN MATERIAL DE ZANJA DE 0.60 x 0.70 m EN T.N	m m	699.95 699.95	11.07 36.02	7,748.44 59,117.693 25,212.16
01.14.01 01.14.01.01 01.14.01.02 01.14.02 01.14.02.01 01.14.02.02	TRAZO Y REPLANTEO C/INICIAL PARA LÍNEAS DE AGUA TRAZO Y REPLANTEO C/FINAL PARA LÍNEAS DE AGUA MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL EN MATERIAL DE ZANJA DE 0.60 x 0.70 m EN T.N REFINE Y NIVELACIÓN DE FONDO DE ZANJA B=0.6 m T.N CAMA DE APOYO PARA TUBERÍA CON MAT. PRESTAMO E=0.10 m., B=0.60 m RELLENO COMPACT. C/EQUIPO C/MAT. PROPIO SELECCIONADO EN ZANJA DE 0.60 X 0.70 M	m m m	699.95 699.95 699.95	36.02 0.92	7,748.44 59,117.693 25,212.16 643.95
01.14.01 01.14.01.01 01.14.01.02 01.14.02 01.14.02.01 01.14.02.02 01.14.02.03	TRAZO Y REPLANTEO C/INICIAL PARA LÍNEAS DE AGUA TRAZO Y REPLANTEO C/ FINAL PARA LÍNEAS DE AGUA MOVIMIENTO DE TIERRAS EXCAVACIÓN MANUAL EN MATERIAL DE ZANJA DE 0.60 x 0.70 m EN T.N REFINE Y NIVELACIÓN DE FONDO DE ZANJA B=0.6 m T.N CAMA DE APOYO PARA TUBERÍA CON MAT. PRESTAMO E=0.10 m., B=0.60 m RELLENO COMPACT. C/EQUIPO C/MAT. PROPIO SELECCIONADO EN ZANJA DE	m m m m	699.95 699.95 699.95	36.02 0.92 19.08	7,748.44 59,117.693 25,212.16 643.95 13,355.03

01.14.03	TUBERÍAS Y ACCESORIOS				9,860.354
01.14.03.01	SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC CLASE 10 DN 3/4" NTP 339.002 (2015)	m	433.49	7.88	3,415.90
01.14.03.02	SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC CLASE 10 DN 1" NTP 339.002 (2015)	m	266.46	7.88	2,099.70
01.14.03.03	PRUEBA HIDRÁHULICA + DESINFECCIÓN EN TUBERÍA DE AGUA POTABLE DN 25 - 63	m	699.95	2.04	1,427.90
01.14.03.04	SUMINISTRO E INSTALACIÓN DE ACCESORIOS PARA CONEXIÓN DN 3/4" NTP PARA RED DN 1"				1,229.140
	Tee SP PVC 3/4"	Und	8.00	37.62	300.96
	Adaptador UPR PVC 3/4"	Und	8.00	18.75	150.00
	Codo SP PVC 3/4" x 45°	Und	7.00	20.06	140.42
	Unión universal con rosca PVC 3/4"	Und	13.00	32.00	416.00
	Niple con rosca PVC 3/4" x 1/2"	Und	12.00	18.48	221.76
01.14.03.05	SUMINISTRO E INSTALACIÓN DE ACCESORIOS PARA CONEXIÓN DN 1" NTP PARA RED DN 1"				1,687.720
	Tee SP PVC 1"	Und	18.00	37.62	677.16
	Adaptador UPR PVC 1"	Und	18.00	20.17	363.06
	Codo SP PVC 1" x 22.5°	Und	1.00	21.14	21.14
	Codo SP PVC 1" x 45°	Und	2.00	21.14	42.28
	Unión universal con rosca PVC 1"	Und	12.00	32.14	385.68
	Niple con rosca PVC 1" x 1/2"	Und	10.00	19.84	198.40
01.14.04	CAJA Y TAPA				4,389.838
01.14.04.01	EXCAVACIÓN EN MATERIAL CONGLOMERADO	m3	1.98	63.16	125.06
01.14.04.02	REFINE Y COMPACTACIÓN MANUAL PARA ESTRUCTURAS	m2	4.95	5.54	27.42
01.14.04.03	SOLADO DE CONCRETO f´c= 100 kg/cm2, e=4"	m3	1.98	18.08	35.80
01.14.04.04	SUMI. E INSTAL. CAJA REGISTRO C/TAPA TERMOPLASTICA	Und	33.00	127.32	4,201.56

COSTO DIRECTO	317,147.709
GASTOS GENERALES (15% CD)	47,572.156
UTILIDADES (10% CD)	31,714.771
PRESUPUESTO TOTAL DE OBRA CIVIL	396,434.636
SUPERVISIÓN	23,000.000
SUB TOTAL	419,434.636
IMPUESTO IGV (18%)	75,498.234
PRESUPUESTO TOTAL	S/. 494,932.870

Anexo 10: Panel fotográfico

Imagen 13. Captación Santa María (Cámara húmeda y seca deterioradas)

Imagen 14. Tubería de la línea de conducción

Imagen 15. Reservorio de almacenamiento del caserío Santa María

Imagen 16. Conexión entre la red de distribución y la conexión domiciliaria existente.

Imagen 17. Realizando encuesta a los pobladores del caserío de Santa María

Imagen 18. Levantamiento topográfico en la red de distribución del caserío Santa María

Anexo 11: Reglamentos aplicados en el diseño del sistema de abastecimiento de agua potable

MINISTERIO DE VIVIENDA CONSTRUCCIÓN Y SANEAMIENTO DIRECCIÓN DE SANEAMIENTO

DIRECCIÓN GENERAL DE POLÍTICAS Y REGULACIÓN EN CONSTRUCCIÓN Y SANEAMIENTO

NORMA TÉCNICA DE DISEÑO: OPCIONES TECNOLÓGICAS PARA SISTEMAS DE SANEAMIENTO EN EL ÁMBITO RURAL

Abril de 2018

PERIODO DE DISEÑO

1. CRITERIOS DE DISEÑO PARA SISTEMAS DE AGUA PARA CONSUMO HUMANO

1.1. Parámetros de diseño

a. Período de diseño

El período de diseño se determina considerando los siguientes factores:

- · Vida útil de las estructuras y equipos.
- Vulnerabilidad de la infraestructura sanitaria
- · Crecimiento poblacional.
- Economía de escala

Como año cero del proyecto se considera la fecha de inicio de la recolección de información e inicio del proyecto, los periodos de diseño máximos para los sistemas de saneamiento deben ser los siguientes:

Tabla Nº 03.01. Periodos de diseño de infraestructura sanitaria

ESTRUCTURA	PERIODO DE DISEÑO
✓ Fuente de abastecimiento	20 años
✓ Obra de captación	20 años
✓ Pozos	20 años
✓ Planta de tratamiento de agua para consumo humano (PTAP)	20 años
Reservorio	20 años
✓ Líneas de conducción, aducción, impulsión y distribución	20 años
✓ Estación de bombeo	20 años
✓ Equipos de bombeo	10 años
✓ Unidad Básica de Saneamiento (arrastre hidráulico, compostera y para zona inundable	10 años
 ✓ Unidad Básica de Saneamiento (hoyo seco ventilado) 	5 años

POBLACIÓN FUTURA

b. Población de diseño

Para estimar la población futura o de diseño, se debe aplicar el método aritmético, según la siguiente formula:

$$P_d = P_i * (1 + \frac{r * t}{100})$$

Donde:

P_i: Población inicial (habitantes)

P_d: Población futura o de diseño (habitantes)

r : Tasa de crecimiento anual (%) t : Período de diseño (años)

Es importante indicar:

- ✓ La tasa de crecimiento anual debe corresponder a los períodos intercensales, de la localidad específica.
- ✓ En caso de no existir, se debe adoptar la tasa de otra población con características similares, o en su defecto, la tasa de crecimiento distrital rural.
- En caso, la tasa de crecimiento anual presente un valor negativo, se debe adoptar una población de diseño, similar a la actual (r = 0), caso contrario, se debe solicitar opinión al INEI.

DOTACIÓN

c. Dotación

La dotación es la cantidad de agua que satisface las necesidades diarias de consumo de cada integrante de una vivienda, su selección depende del tipo de opción tecnológica para la disposición sanitaria de excretas sea seleccionada y aprobada bajo los criterios establecidos en el Capítulo IV del presente documento, las dotaciones de agua según la opción tecnológica para la disposición sanitaria de excretas y la región en la cual se implemente son:

Tabla Nº 03.02. Dotación de agua según opción tecnológica y región (l/hab.d)

	DOTACIÓN SEGÚN TIPO DE OPCION TECNOLÓGICA (I/hab.d)			
REGIÓN	SIN ARRASTRE HIDRÁULICO (COMPOSTERA Y HOYO SECO VENTILADO)	CON ARRASTRE HIDRÁULICO (TANQUE SÉPTICO MEJORADO)		
COSTA	60	90		
SIERRA	50	80		
SELVA	70	100		

Fuente: Elaboración propia

Para el caso de piletas públicas se asume 30 l/hab.d. Para las instituciones educativas en zona rural debe emplearse la siguiente dotación:

Tabla Nº 03.03. Dotación de agua para centros educativos

DESCRIPCIÓN	DOTACIÓN (I/alumno.d)
Educación primaria e inferior (sin residencia)	20
Educación secundaria y superior (sin residencia)	25
Educación en general (con residencia)	50

Fuente: Elaboración propia

TIPO DE ESTABLECIMIENTO	DOTACIÓN
Cines, teatros y auditorios	3 lt/asiento
Discotecas, casino y salas de baile y similares	30 lt/m2 de área
Estadios, velódromos, autódromos, plaza de toros y similares.	1 lt/espectador
Circos, hipódromos, parques de atracción y similares	1 lt/espec, + Dot de anim.

La dotación de agua para áreas verdes será de 2 L/d por m2. No se requerirá incluir áreas pavimentadas, enripiadas u otras no sembradas para los fines de esta dotación.

VARIACIONES DE CONSUMO

d. Variaciones de consumo

d.1. Consumo máximo diario (Q_{md})

Se debe considerar un valor de 1,3 del consumo promedio diario anual, Qp de este modo:

$$Q_p = \frac{\text{Dot} \times P_d}{86400}$$

$$Q_{md} = 1.3 \times Q_p$$

Donde:

Q_p : Caudal promedio diario anual en l/s Q_{md} : Caudal máximo diario en l/s

Dot : Dotación en l/hab.d

P_d : Población de diseño en habitantes (hab)

d.2. Consumo máximo horario (Q_{mh})

Se debe considerar un valor de 2,0 del consumo promedio diario anual, Qp de este modo:

$$Q_p = \frac{Dot \times P_d}{86400}$$

$$Q_{mh} = 2 \times Q_p$$

Donde:

Q_p : Caudal promedio diario anual en l/s Q_{mh} : Caudal máximo horario en l/s

Dot : Dotación en l/hab.d

P_d : Población de diseño en habitantes (hab)

CÁMARA DE CAPTACIÓN

Determinación del ancho de la pantalla

Para determinar el ancho de la pantalla es necesario conocer el diámetro y el número de orificios que permitirán fluir el agua desde la zona de afloramiento hacia la cámara húmeda.

$$Q_{max} = V_2 \times C_d \times A$$

$$A = \frac{Q_{max}}{V_2 \times C_d}$$

Q_{max} : gasto máximo de la fuente (l/s)

C_d : coeficiente de descarga (valores entre 0.6 a 0.8)

g : aceleración de la gravedad (9.81 m/s²)

H : carga sobre el centro del orificio (valor entre 0.40m a 0.50m)

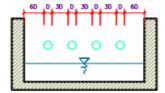
· Cálculo de la velocidad de paso teórica (m/s):

$$V_{2t} = C_d \times \sqrt{2gH}$$

Velocidad de paso asumida: v₂ = 0.60 m/s (el valor máximo es 0.60m/s, en la entrada a la tubería)

Por otro lado:

$$D = \sqrt{\frac{4A}{\pi}}$$


Donde:

D : diámetro de la tubería de ingreso (m)

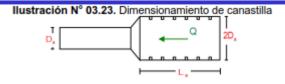
Cálculo del número de orificios en la pantalla:

$$\begin{split} N_{ORIF} &= \frac{\text{\'A}rea \ del \ di\'ametro \ te\'orico}{\text{\'A}rea \ del \ di\'ametro \ asumido} + 1 \\ N_{ORIF} &= \left(\frac{Dt}{Da}\right)^2 + 1 \end{split}$$

Ilustración Nº 03.21. Determinación de ancho de la pantalla

Conocido el número de orificios y el diámetro de la tubería de entrada se calcula el ancho de la pantalla (b), mediante la siguiente ecuación:

$$b = 2 \times (6D) + N_{ORIF} \times D + 3D \times (N_{ORIF} - 1)$$


Cálculo de la distancia entre el punto de afloramiento y la cámara húmeda

$$H_f = H - h_o$$

H : carga sobre el centro del orificio (m)
 h_o : pérdida de carga en el orificio (m)

Hf : pérdida de carga afloramiento en la captación (m)

Determinamos la distancia entre el afloramiento y la captación:

Diámetro de la Canastilla

El diámetro de la canastilla debe ser dos veces el diámetro de la línea de conducción

Longitud de la Canastilla

Se recomienda que la longitud de la canastilla sea mayor a 3Da y menor que 6Da:

$$3D_a < L_a < 6D_a$$

Debemos determinar el área total de las ranuras (A_{TOTAL}):

$$A_{TOTAL} = 2A$$

El valor de Atotal debe ser menor que el 50% del área lateral de la granada (Ag)

$$A_g = 0.5 \times D_g \times L$$

Determinar el número de ranuras:

$$N_{ranuras}^{o} = \frac{\text{Área total de ranura}}{\text{Área de ranura}}$$

<u>Dimensionamiento de la tubería de rebose y limpia</u> En la tubería de rebose y de limpia se recomienda pendientes de 1 a 1,5%

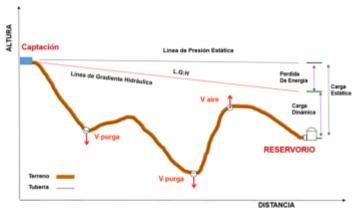
Cálculo de la tubería de rebose y limpia tienen el mismo diámetro:

$$D_{r} = \frac{0.71 \times Q^{0.38}}{{h_{f}^{\ 0.21}}}$$

Tubería de rebose

Donde:

Qmax : gasto máximo de la fuente (l/s)


: perdida de carga unitaria en (m/m) - (valor recomendado: 0.015 m/m)

Dr : diámetro de la tubería de rebose (pulg)

LÍNEA DE CONDUCCIÓN

Es la estructura que permite conducir el agua desde la captación hasta la siguiente estructura, que puede ser un reservorio o planta de tratamiento de agua potable. Este componente se diseña con el caudal máximo diario de agua; y debe considerar: anclajes, válvulas de purga, válvulas de aire, cámaras rompe presión, cruces aéreos, sifones. El material a emplear debe ser PVC; sin embargo, bajo condiciones expuestas, es necesario que la tubería sea de otro material resistente.

Ilustración Nº 03.31. Línea de Conducción

✓ Caudales de Diseño

La Línea de Conducción debe tener la capacidad para conducir como mínimo, el caudal máximo diario (Q_{md}), si el suministro fuera discontinuo, se debe diseñar para el caudal máximo horario (Q_{mh}).

La Línea de Aducción debe tener la capacidad para conducir como mínimo, el caudal máximo horario (Q_{mh}).

✓ <u>Velocidades admisibles</u>

Para la línea de conducción se debe cumplir lo siguiente:

- · La velocidad mínima no debe ser inferior a 0,60 m/s.
- La velocidad máxima admisible debe ser de 3 m/s, pudiendo alcanzar los 5 m/s si se justifica razonadamente.

✓ Criterios de Diseño

Para las tuberías que trabajan sin presión o como canal, se aplicará la fórmula de Manning, con los coeficientes de rugosidad en función del material de la tubería.

$$v = \frac{1}{n} * R_h^{2/3} * i^{1/2}$$

Donde:

V : velocidad del fluido en m/s

n : coeficiente de rugosidad en función del tipo de material

Hierro fundido dúctil 0,015
 Cloruro de polivinilo (PVC) 0,010
 Polietileno de Alta Densidad (PEAD) 0,010

R_h: radio hidráulico

: pendiente en tanto por uno

Cálculo de diámetro de la tubería:

Para tuberías de diámetro superior a 50 mm, Hazen-Williams:

$$H_f = 10,674 * [Q^{1.852}/(C^{1,852} * D^{4.86})] * L$$

Donde:

H_f: pérdida de carga continua, en m.

Q : Caudal en m3/s D : diámetro interior en m

C : Coeficiente de Hazen Williams (adimensional)

-	Acero sin costura	C=120
-	Acero soldado en espiral	C=100
-	Hierro fundido dúctil con revestimiento	C=140
-	Hierro galvanizado	C=100
-	Polietileno	C=140
_	PVC	C=150

: Longitud del tramo, en m.

Para tuberías de diámetro igual o menor a 50 mm, Fair - Whipple:

$$H_f = 676,745 * [Q^{1,751}/(D^{4,753})] * L$$

Donde:

H_f : pérdida de carga continua, en m.

: Caudal en I/min

: diámetro interior en mm

Salvo casos fortuitos debe cumplirse lo siguiente:

- La velocidad mínima no será menor de 0,60 m/s.
- La velocidad máxima admisible será de 3 m/s, pudiendo alcanzar los 5 m/s si se iustifica razonadamente.
- · Cálculo de la línea de gradiente hidráulica (LGH), ecuación de Bernoulli

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2 * g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2 * g} + H_f$$

Donde:

Z : cota altimétrica respecto a un nivel de referencia en m

 $^{P}\!/_{\!\gamma}$: Altura de carga de presión, en m, P es la presión y $_{\!\gamma}$ el peso específico del fluido

: Velocidad del fluido en m/s

H_f: Pérdida de carga, incluyendo tanto las pérdidas lineales (o longitudinales) como las locales.

Si como es habitual, V₁=V₂ y P1 está a la presión atmosférica, la expresión se reduce a:

$$\frac{P_2}{\gamma} = Z_1 - Z_2 - H_f$$

La presión estática máxima de la tubería no debe ser mayor al 75% de la presión de trabajo especificada por el fabricante, debiendo ser compatibles con las presiones de servicio de los accesorios y válvulas a utilizarse.

Se deben calcular las pérdidas de carga localizadas ΔH_i en las piezas especiales y en las válvulas, las cuales se evaluarán mediante la siguiente expresión:

$$\Delta H_i = K_i \frac{V^2}{2g}$$

ΔH_i: Pérdida de carga localizada en las piezas especiales y en las válvulas, en m.

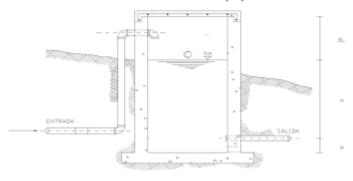
: Coeficiente que depende del tipo de pieza especial o válvula (ver Tabla N° 03.14)

: Máxima velocidad de paso del agua a través de la pieza especial o de la válvula

: aceleración de la gravedad (9,81 m/s2)

RANGO DE DISEÑO

RANGO	Qmd REAL	SE DISEÑA CON:
1	< de 0.50 l/s	0.50 l/s
2).50 l/s hasta 1.00 l/	1.00 l/s
3	> de 1.00 l/s	1.50 l/s
Fuente: RM - 192	- 2018 VIVIENDA	


CÁMARA ROMPE PRESIÓN PARA CONDUCCIÓN

La diferencia de nivel entre la captación y uno o más puntos en la línea de conducción, genera presiones superiores a la presión máxima que puede soportar la tubería a instalar. Es en estos casos, que se sugiere la instalación de cámaras rompe-presión cada 50 m de desnivel.

Para ello, se recomienda:

- ✓ Una sección interior mínima de 0,60 x 0,60 m, tanto por facilidad constructiva como para permitir el alojamiento de los elementos.
- ✓ La altura de la cámara rompe presión se calcula mediante la suma de tres conceptos:
 - Altura mínima de salida, mínimo 10 cm
 - Resguardo a borde libre, mínimo 40 cm
 - Carga de agua requerida, calculada aplicando la ecuación de Bernoulli para que el caudal de salida pueda fluir.
- ✓ La tubería de entrada a la cámara estará por encima de nivel del agua.
- ✓ La tubería de salida debe incluir una canastilla de salida, que impida la entrada de objetos en la tubería.
- ✓ La cámara dispondrá de un aliviadero o rebose.
- ✓ El cierre de la cámara rompe presión será estanco y removible, para facilitar las operaciones de mantenimiento.

Ilustración Nº 03.36. Cámara rompe presión

✓ Cálculo de la Cámara Rompe Presión

Del gráfico:

A : altura mínima (0.10 m)

H : altura de carga requerida para que el caudal de salida pueda fluir

BL: borde libre (0.40 m)

Ht : altura total de la Cámara Rompe Presión

$$H_t = A + H + B_L$$

✓ Para el cálculo de carga requerida (H)

$$H = 1,56 \times \frac{V^2}{2g}$$

Con menor caudal se necesitan menor dimensión de la cámara rompe presión, por lo tanto, la sección de la base debe dar facilidad del proceso constructivo y por la

instalación de accesorios, por lo que se debe considerar una sección interna de 0,60 x 0,60 m.

√ Cálculo de la Canastilla

Se recomienda que el diámetro de la canastilla sea 2 veces el diámetro de la tubería de salida.

$$D_c = 2D$$

La longitud de la canastilla (L) debe ser mayor 3D y menor que 6D

Área de ranuras:

$$A_s = \frac{\pi D_s^2}{4}$$

Área de At no debe ser mayor al 50% del área lateral de la granada (Ag)

$$A_g = 0.5 \times D_g \times L$$

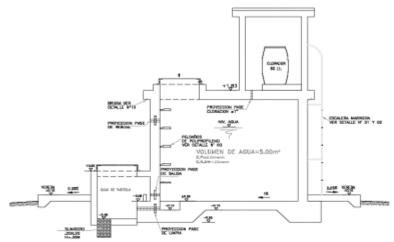
El número de ranuras resulta:

✓ Rebose

La tubería de rebose se calcula mediante la ecuación de Hazen y Williams (C= 150)

$$D = 4,\!63 \times \! \frac{{Q_{md}}^{0,38}}{C^{0,38} \times S^{0,21}}$$

Donde:


D : diámetro (pulg)

Qmd : caudal máximo diario (l/s) S : pérdida de carga unitaria (m/m)

RESERVORIO DE ALMACENAMIENTO

El reservorio debe ubicarse lo más próximo a la población y en una cota topográfica que garantice la presión mínima en el punto más desfavorable del sistema.

Ilustración Nº 03.54. Reservorio de 5 m3

Aspectos generales

El reservorio se debe diseñar para que funcione exclusivamente como reservorio de cabecera. El reservorio se debe ubicar lo más próximo a la población, en la medida de lo posible, y se debe ubicar en una cota topográfica que garantice la presión mínima en el punto más desfavorable del sistema.

Debe ser construido de tal manera que se garantice la calidad sanitaria del agua y la total estanqueidad. El material por utilizar es el concreto, su diseño se basa en un criterio de estandarización, por lo que el volumen final a construir será múltiplo de 5 m³. El reservorio debe ser cubierto, de tipo enterrado, semi enterrado, apoyado o elevado. Se debe proteger el perímetro mediante cerco perimetral. El reservorio debe disponer de una tapa sanitaria para acceso de personal y herramientas.

Criterios de diseño

El volumen de almacenamiento debe ser del 25% de la demanda diaria promedio anual (Q_p) , siempre que el suministro de agua de la fuente sea continuo. Si el suministro es discontinuo, la capacidad debe ser como mínimo del 30% de Q_p .

Se deben aplicar los siguientes criterios:

- Disponer de una tubería de entrada, una tubería de salida una tubería de rebose, así
 como una tubería de limpia. Todas ellas deben ser independientes y estar provistas de
 los dispositivos de interrupción necesarios.
 - La tubería de entrada debe disponer de un mecanismo de regulación del llenado, generalmente una válvula de flotador.
 - La tubería de salida debe disponer de una canastilla y el punto de toma se debe situar
 10 cm por encima de la solera para evitar la entrada de sedimentos.
 - La embocadura de las tuberías de entrada y salida deben estar en posición opuesta para forzar la circulación del agua dentro del mismo.
 - El diámetro de la tubería de limpia debe permitir el vaciado en 2 horas.
- Disponer de una tubería de rebose, conectada a la tubería de limpia, para la libre descarga del exceso de caudal en cualquier momento. Tener capacidad para evacuar el máximo caudal entrante.
- Se debe instalar una tubería o bypass, con dispositivo de interrupción, que conecte las tuberías de entrada y salida, pero en el diseño debe preverse sistemas de reducción de presión antes o después del reservorio con el fin de evitar sobre presiones en la distribución. No se debe conectar el bypass por períodos largos de tiempo, dado que el agua que se suministra no está clorada.
- La losa de fondo del reservorio se debe situar a cota superior a la tubería de limpia y siempre con una pendiente mínima del 1% hacia esta o punto dispuesto.
- Los materiales de construcción e impermeabilización interior deben cumplir los requerimientos de productos en contacto con el agua para consumo humano. Deben contar con certificación NSF 61 o similar en país de origen.
- Se debe garantizar la absoluta estanqueidad del reservorio.
- El reservorio se debe proyectar cerrado. Los accesos al interior del reservorio y a la cámara de válvulas deben disponer de puertas o tapas con cerradura.
- Las tuberías de ventilación del reservorio deben ser de dimensiones reducidas para impedir el acceso a hombres y animales y se debe proteger mediante rejillas que dificulten la introducción de sustancias en el interior del reservorio.
- Para que la renovación del aire sea lo más completa posible, conviene que la distancia del nivel máximo de agua a la parte inferior de la cubierta sea la menor posible, pero no inferior a 30 cm a efectos de la concentración de cloro.
- Se debe proteger el perímetro del reservorio mediante cerramiento de fábrica o de valla metálica hasta una altura mínima de 2,20 m, con puerta de acceso con cerradura.
- Es necesario disponer una entrada practicable al reservorio, con posibilidad de acceso de materiales y herramientas. El acceso al interior debe realizarse mediante escalera de peldaños anclados al muro de recinto (inoxidables o de polipropileno con fijación mecánica reforzada con epoxi).
- Los dispositivos de interrupción, derivación y control se deben centralizar en cajas o casetas, o cámaras de válvulas, adosadas al reservorio y fácilmente accesibles.
- La cámara de válvulas debe tener un desagüe para evacuar el agua que pueda verterse.
- Salvo justificación razonada, la desinfección se debe realizar obligatoriamente en el reservorio, debiendo el proyectista adoptar el sistema más apropiado conforme a la ubicación, accesibilidad y capacitación de la población.

Recomendaciones

- Solo se debe usar el bypass para operaciones de mantenimiento de corta duración, porque al no pasar el agua por el reservorio no se desinfecta.
- En las tuberías que atraviesen las paredes del reservorio se recomienda la instalación de una brida rompe-aguas empotrado en el muro y sellado mediante una impermeabilización que asegure la estanquidad del agua con el exterior, en el caso de que el reservorio sea construido en concreto.
- Para el caso de que el reservorio sea de otro material, ya sea metálico o plástico, las tuberías deben fijarse a accesorios roscados de un material resistente a la humedad y la exposición a la intemperie.
- La tubería de entrada debe disponer de un grifo que permita la extracción de muestras para el análisis de la calidad del agua.
- Se recomienda la instalación de dispositivos medidores de volumen (contadores) para el registro de los caudales de entrada y de salida, así como dispositivos eléctricos de control del nivel del agua. Como en zonas rurales es probable que no se cuente con

suministro de energía eléctrica, los medidores en la medida de lo posible deben llevar baterías de larga duración, como mínimo para 5 años.

CASETA DE VÁLVULAS EN RESERVORIO

La caseta de válvulas es una estructura de concreto y/o mampostería que alberga el sistema hidráulico del reservorio, en el caso reservorios el ambiente es de paredes planas, salvo el reservorio de 70 m³, en este caso el reservorio es de forma cilíndrica, en este caso, una de las paredes de la caseta de válvulas es la pared curva del reservorio.

La puerta de acceso es metálica y debe incluir ventanas laterales con rejas de protección.

En el caso del reservorio de 70 m³, desde el interior de la caseta de válvulas nace una escalera tipo marinera que accede al techo mediante una ventana de inspección y de allí se puede ingresar al reservorio por su respectiva ventana de inspección de 0,60 x 0,60 m con tapa metálica y dispositivo de seguridad.

Las consideraciones por tener en cuenta son las siguientes:

Techos

Los techos serán en concreto armado, pulido en su superficie superior para evitar filtración de agua en caso se presenten lluvias, en el caso de reservorios de gran tamaño, el techo acabara con ladrillo pastelero asentados en torta de barro y tendrán junta de dilatación según el esquema de techos.

Paredes

Los cerramientos laterales serán de concreto armado en el caso de los reservorios de menor tamaño, en el caso del reservorio de 70 m³, la pared estará compuesto por ladrillo K.K. de 18 huecos y cubrirán la abertura entre las columnas estructurales del edificio. Éstos estarán unidos con mortero 1:4 (cemento: arena gruesa) y se prevé el tarrajeo frotachado interior y exterior con revoque fino 1:4 (cemento: arena fina).

Las paredes exteriores serán posteriormente pintadas con dos manos de pintura látex para exteriores, cuyo color será consensuado entre el Residente y la Supervisión. El acabado de las paredes de la caseta será de tarrajeo frotachado pintado en látex y el piso de cemento pulido bruñado a cada 2 m.

Pisos

Los pisos interiores de la caseta serán de cemento pulido y tendrán un bruñado a cada 2 m en el caso de reservorios grandes.

· Pisos en Veredas Perimetrales

En vereda el piso será de cemento pulido de 1 m de ancho, bruñado cada 1 m y, tendrá una junta de dilatación cada 5 m.

El contrazócalo estará a una altura de 0,30 m del nivel del piso acabado y sobresaldrá 1 cm al plomo de la pared. Estos irán colocados tanto en el interior como en el exterior de la caseta de válvulas.

Escaleras

En el caso sea necesario, la salida de la caseta hacia el reservorio, se debe colocar escaleras marineras de hierro pintadas con pintura epóxica anticorrosivas con pasos espaciados a cada 0.30 m.

Escaleras de Acceso

Las escaleras de acceso a los reservorios (cuando sean necesarias), serán concebidas para una circulación cómoda y segura de los operadores, previendo un paso aproximado

a los 0,18 m. Se han previsto descansos intermedios cada 17 pasos como máximo, cantidad de escalones máximos según reglamento.

Veredas Perimetrales

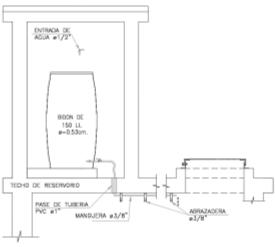
Las veredas exteriores serán de cemento pulido, bruñado cada 1 m y junta de dilatación cada 5 m.

Aberturas

Las ventanas serán metálicas, tanto las barras como el marco y no deben incluir vidrios para así asegurar una buena ventilación dentro del ambiente, sólo deben llevar una malla de alambre N°12 con cocada de 1".

La puerta de acceso a la caseta (en caso sea necesaria) debe ser metálica con plancha de hierro soldada espesor 3/32" con perfiles de acero de 1.½" x 1.½" y por 6 mm de espesor.

SISTEMA DE DESINFECCIÓN EN RESERVORIO


Este sistema permite asegurar que la calidad del agua se mantenga un periodo más y esté protegida durante su traslado por las tuberías hasta ser entregado a las familias a través de las conexiones domiciliarias. Su instalación debe estar lo más cerca de la línea de entrada de agua al reservorio y ubicado donde la iluminación natural no afecte la solución de cloro contenido en el recipiente.

El cloro residual activo se recomienda que se encuentre como mínimo en 0,3 mg/l y máximo a 0,8 mg/l en las condiciones normales de abastecimiento, superior a este último son detectables por el olor y sabor, lo que hace que sea rechazada por el usuario consumidor.

Para su construcción debe utilizarse diferentes materiales y sistemas que controlen el goteo por segundo o su equivalente en ml/s, no debiéndose utilizar metales ya que pueden corroerse por el cloro.

Sistema de Desinfección por Goteo

Ilustración Nº 03.57. Sistema de desinfección por goteo

· Cálculo del peso de hipoclorito de calcio o sodio necesario

$$P = Q * d$$

Donde:

P : peso de cloro en gr/h

Q : caudal de agua a clorar en m³/h d : dosificación adoptada en gr/m³

Cálculo del peso del producto comercial en base al porcentaje de cloro

$$P_c = P * 100/r$$

Donde:

P_c : peso producto comercial gr/h

r : porcentaje del cloro activo que contiene el producto comercial (%)

 Cálculo del caudal horario de solución de hipoclorito (qs) en función de la concentración de la solución preparada. El valor de "qs" permite seleccionar el equipo dosificador requerido

$$q_s = P_c * \frac{100}{c}$$

Donde:

P_c : peso producto comercial gr/h

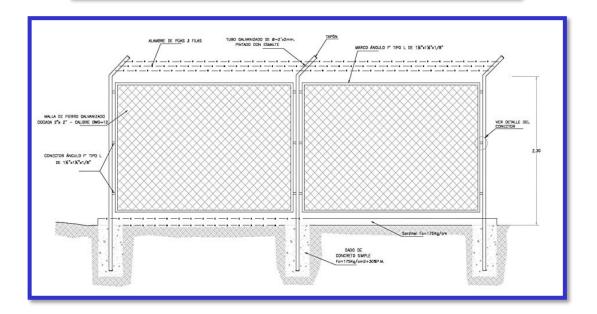
q_s : demanda horaria de la solución en l/h, asumiendo que la densidad de 1 litro de solución pesa 1 kg

c : concentración solución (%)

 Calculo del volumen de la solución, en función del tiempo de consumo del recipiente en el que se almacena dicha solución

$$Vs = qs * t$$

Donde:


V_s : volumen de la solución en lt (correspondiente al volumen útil de los recipientes de preparación).

t : tiempo de uso de los recipientes de solución en horas h
t se ajusta a ciclos de preparación de: 6 horas (4 ciclos), 8 horas (3 ciclos) y 12
horas (2 ciclos) correspondientes al vaciado de los recipientes y carga de nuevo
volumen de solución

CERCO PERIMETRICO PARA RESERVORIO

El cerco perimétrico idóneo en zonas rurales para reservorios por su versatilidad, durabilidad, aislamiento al exterior y menor costo es a través de una malla de las siguientes características:

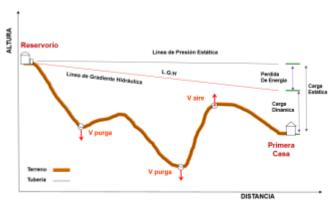
- Con una altura de 2,30 m dividido en paños con separación entre postes metálicos de 3,00 m y de tubo de 2" F°G°.
- Postes asentados en un dado de concreto simple f'c = 175 kg/cm² + 30% de P.M.
- Malla de F°G° con cocada de 2" x 2" calibre BWG = 12, soldadas al poste metálico con un conector de Angulo F tipo L de 1 ½" x 1 ½" x 1/8".
- Los paños están coronados en la parte superior con tres hileras de alambres de púas y en la parte inferior estarán sobre un sardinel de f'c= 175 kg/cm².

LÍNEA DE ADUCCIÓN

Para el trazado de la línea debe tenerse en cuenta lo siguiente:

- √ Se debe evitar pendientes mayores del 30% para evitar altas velocidades, e inferiores al 0,50%, para facilitar la ejecución y el mantenimiento.
- ✓ Con el trazado se debe buscar el menor recorrido, siempre y cuando esto no conlleve excavaciones excesivas u otros aspectos. Se evitarán tramos de difícil acceso, así como zonas vulnerables.
- ✓ En los tramos que discurran por terrenos accidentados, se suavizará la pendiente del trazado ascendente pudiendo ser más fuerte la descendente, refiriéndolos siempre al sentido de circulación del agua.
- ✓ Evitar cruzar por terrenos privados o comprometidos para evitar problemas durante la construcción y en la operación y mantenimiento del sistema.
- ✓ Mantener las distancias permisibles de vertederos sanitarios, márgenes de ríos, terrenos aluviales, nivel freático alto, cementerios y otros servicios.
- ✓ Utilizar zonas que sigan o mantengan distancias cortas a vías existentes o que por su topografía permita la creación de caminos para la ejecución, operación y mantenimiento.
- ✓ Evitar zonas vulnerables a efectos producidos por fenómenos naturales y antrópicos.
- ✓ Tener en cuenta la ubicación de las canteras para los préstamos y zonas para la disposición del material sobrante, producto de la excavación.
- Establecer los puntos donde se ubicarán instalaciones, válvulas y accesorios, u otros accesorios especiales que necesiten cuidados, vigilancia y operación.

Diseño de la línea de aducción


Caudal de diseño

La Línea de Aducción tendrá capacidad para conducir como mínimo, el caudal máximo horario (Qmh).

Carga estática y dinámica

La carga estática máxima aceptable será de 50 m y la carga dinámica mínima será de 1 m.

Ilustración Nº 03.60. Línea gradiente hidráulica de la aducción a presión.

Diámetros

El diámetro se diseñará para velocidades mínima de 0,6 m/s y máxima de 3,0 m/s. El diámetro mínimo de la línea de aducción es de 25 mm (1") para el caso de sistemas rurales.

Dimensionamiento

Para el dimensionamiento de la tubería, se tendrán en cuenta las siguientes condiciones:

✓ La línea gradiente hidráulica (L.G.H.)

La línea gradiente hidráulica estará siempre por encima del terreno. En los puntos críticos se podrá cambiar el diámetro para mejorar la pendiente.

✓ Pérdida de carga unitaria (h₁)

Para el propósito de diseño se consideran:

- Ecuaciones de Hazen y Williams para diámetros mayores a 2", y
- Ecuaciones de Fair Whipple para diámetros menores a 2".

Cálculo de diámetro de la tubería podrá realizarse utilizando las siguientes fórmulas:

Para tuberías de diámetro superior a 50 mm, Hazen-Williams:

$$H_f = 10,\!674 \times \! \frac{Q^{1,852}}{C^{1,852} \times D^{4,86}} \! \times L$$

Donde:

H_f : pérdida de carga continua (m)

Q : caudal en (m3/s)

D : diámetro interior en m (ID)

: coeficiente de Hazen Williams (adimensional)

- Acero sin costura C=120
- Acero soldado en espiral C=100
- Hierro fundido dúctil con revestimiento C=140
- Hierro galvanizado C=100
- Polietileno C=140
- PVC C=150

L : longitud del tramo (m)

· Para tuberías de diámetro igual o inferior a 50 mm, Fair-Whipple:

$$H_f = 676,745 \times \frac{Q^{1,751}}{D^{4,753} \times L}$$

Donde:

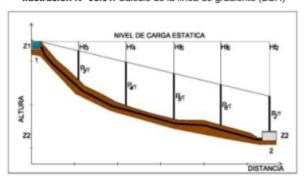
H_f: pérdida de carga continua (m)

Q : caudal en (l/min)
D : diámetro interior (mm)

L : longitud (m)

Salvo casos excepcionales que deberán ser justificados, la velocidad de circulación del agua establecida para los caudales de diseño deberá cumplir lo siguiente:

- La velocidad mínima no será menor de 0,60 m/s.
- La velocidad máxima admisible será de 3 m/s, pudiendo alcanzar los 5 m/s si se justifica razonadamente.


✓ Presión

En la línea de aducción, la presión representa la cantidad de energía gravitacional contenida en el agua.

Para el cálculo de la línea de gradiente hidráulica (LGH), se aplicará la ecuación de Remoulli

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2 * g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2 * g} + H_f$$

Ilustración Nº 03.61. Cálculo de la línea de gradiente (LGH)

Donde:

Z : cota altimétrica respecto a un nivel de referencia en m.

P/
γ : altura de carga de presión, en m, P es la presión y γ el peso específico del fluido.

V : velocidad del fluido en m/s.

Hf, pérdida de carga de 1 a 2, incluyendo tanto las pérdidas lineales (o longitudinales) como las locales.

Si como es habitual, V₁=V₂ y P₁ está a la presión atmosférica, la expresión se reduce a:

$$P_2/_V = Z_1 - Z_2 - H_f$$

La presión estática máxima de la tubería no debe ser mayor al 75% de la presión de trabajo especificada por el fabricante, debiendo ser compatibles con las presiones de servicio de los accesorios y válvulas a utilizarse.

Se calcularán las pérdidas de carga localizadas ΔHi en las piezas especiales y en las válvulas, las cuales se evaluarán mediante la siguiente expresión:

$$\Delta H_i = K_i \frac{V^2}{2g}$$

Dónde:

ΔH_i : pérdida de carga localizada en las piezas especiales y en las válvulas (m)

K_i : coeficiente que depende del tipo de pieza especial o válvula (ver Tabla).

V : máxima velocidad de paso del agua a través de la pieza especial o de la

válvula (m/s)

g : aceleración de la gravedad (m/s²)

CÁMARA ROMPE PRESIÓN PARA ADUCCIÓN Y REDES DE DISTRIBUCIÓN

- En caso exista un fuerte desnivel entre el reservorio y algunos sectores o puntos de la red de distribución, pueden generarse presiones superiores a la presión máxima que puede soportar la tubería. Es por ello que se sugiere la instalación de cámaras rompe presión (CRP) cada 50 m de desnivel.
- Se recomienda una sección interior mínima de 0,60 x 0,60 m, tanto por facilidad constructiva como para permitir el alojamiento de los elementos.
- La altura de la cámara se calculará mediante la suma de tres conceptos:
 - Altura mínima de salida, mínimo 10 cm.
 - Resguardo a borde libre, mínimo 40 cm.
 - Carga de agua requerida, calculada aplicando la ecuación de Bernoulli para que el caudal de salida pueda fluir.
- ✓ La tubería de entrada a la cámara estará por encima de nivel del agua y debe preverse de un flotador o regulador de nivel de aguas para el cierre automático una vez que se encuentre llena la cámara y para periodos de ausencia de flujo.
- La tubería de salida dispondrá de una canastilla de salida, que impida la entrada de objetos en la tubería.
- ✓ La cámara debe incluir un aliviadero o rebose.
- ✓ El cierre de la cámara debe ser estanco y removible, para facilitar las operaciones de
- Cálculo de la altura de la Cámara Rompe Presión (H_t)

$$H_t = A + H + BL$$

$$H = 1,56 \times \frac{Q_{mh}^2}{2g \times A^2}$$

Donde:

g : aceleración de la gravedad (9,81 m/s²)

: altura hasta la canastilla (se recomienda como mínimo 10 cm)

BL : borde libre (se recomienda 40 cm)

Q_{mh}: caudal máximo horario (l/s)

$$A_o = \pi \frac{D_c^2}{4}$$

 D_c : diámetro de la tubería de salida a la red de distribución (pulg) A_o : área de la tubería de salida a la red de distribución (m^2)

- Dimensionamiento de la sección de la base de la cámara rompe presión
 - El tiempo de descarga por el orificio; el orificio es el diámetro calculado de la red de distribución que descarga una altura de agua desde el nivel de la tubería de rebose hasta el nivel de la altura del orificio.
 - El volumen de almacenamiento máximo de la CRP es calculado multiplicando el valor del área de la base por la altura total de agua (m3).
- Cálculo de la altura total de agua almacenado en la CRP hasta la tubería de rebose (H_t)

$$H_t = A + H$$

Donde:

A : altura de la canastilla (cm)

: altura de agua para facilitar el paso de todo el caudal a la línea de conducción (cm)

Ht : altura total de agua almacenado en la CRP hasta el nivel de la tubería de rebose

 Cálculo del tiempo de descarga a la red de distribución, es el tiempo que se demora en descargar la altura H

$$t = \frac{2A_b \times H^{0,5}}{C_d \times A_o \times \sqrt{2g}}$$

H : altura de agua para facilitar el paso de todo el caudal a la línea de conducción (cm)

C_d: coeficiente de distribución o de descarga de orificios circulares (0,8) A_o : área del orificio de salida (área de la tubería de la línea de conducción

g : aceleración de la gravedad (m/s²) Ab : área de la sección interna de la base (m²)

$$A_b = a \times b$$

Donde:

: lado de la sección interna de la base (m) : lado de la sección interna de la base (m)

Cálculo del volumen

$$V_{max} = A_b \times H$$

$$V_{max} = L \times A \times H$$

Dimensionamiento de la canastilla

Debe considerarse lo siguiente:

$$D_{canastilla} = 2 \times D_{c}$$

$$3D_c < L_{diseño} < 6D_c$$

Donde:

D_{canastilla}: diámetro de la canastilla (pulg)

: diámetro de la tubería de salida a la red de distribución (pulg)

: longitud de diseño de la canastilla (cm), 3Dc y 6Dc (cm)

$$A_{t}=2\times A_{c} \\$$

$$A_c = \pi \times \frac{{D_c}^2}{4}$$

Donde:

At : área total de las ranuras (m²)
 Ac : área de la tubería de salida a la línea de distribución (m²)

$$A_r = AR \times LR$$

Donde:

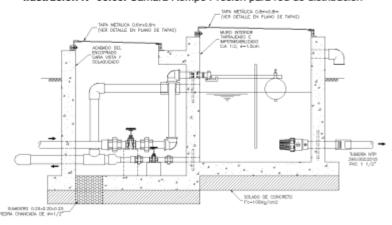
AR : área de la ranura (mm²) AR : ancho de la ranura (mm) LR : largo de la ranura (mm)

$$A_g = 0.5\pi \times D_c \times L_{diseño}$$

A_g : área lateral de la canastilla (m²) NR : número de ranuras de la canastilla (und)

Cálculo del diámetro de tubería del cono de rebose y limpieza El rebose se instala directamente a la tubería de limpia que realizar la limpieza y evacuación del agua de la cámara húmeda. La tubería de rebose y limpia tienen el mismo diámetro y se calcula mediante la siguiente ecuación:

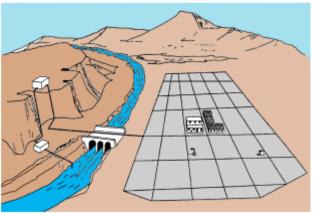
$$D = 0.71 \times \frac{{Q_{mh}}^{0.38}}{{h_f}^{0.21}}$$


Donde:

D : diámetro del tubo de rebose y limpia (pulg)

Q_{mh} : caudal de la salida de la red de distribución (caudal máximo horario) (l/s)

hr : pérdida de carga unitaria (m/m)


Ilustración Nº 03.63. Cámara Rompe Presión para red de distribución

REDES DE DISTRIBUCIÓN

Es un componente del sistema de agua potable, el mismo que permite llevar el agua tratada hasta cada vivienda a través de tuberías, accesorios y conexiones domiciliarias.

Ilustración Nº 03.62. Redes de distribución

Aspectos Generales

Para la red de distribución se debe cumplir lo siguiente:

- Las redes de distribución se deben diseñar para el caudal máximo horario (Q_{mh}).
- Los diámetros mínimos de las tuberías principales para redes cerradas deben ser de 25 mm (1"), y en redes abiertas, se admite un diámetro de 20 mm (¾") para ramales.
- En los cruces de tuberías no se debe permitir la instalación de accesorios en forma de cruz y se deben realizar siempre mediante piezas en tee de modo que forme el tramo recto la tubería de mayor diámetro. Los diámetros de los accesorios en tee, siempre que existan comercialmente, se debe corresponder con los de las tuberías que unen, de forma que no sea necesario intercalar reducciones.
- La red de tuberías de abastecimiento de agua para consumo humano debe ubicarse siempre en una cota superior sobre otras redes que pudieran existir de aguas grises.

Velocidades admisibles

Para la red de distribución se debe cumplir lo siguiente:

- La velocidad mínima no debe ser menor de 0,60 m/s. En ningún caso puede ser inferior a 0.30 m/s
- La velocidad máxima admisible debe ser de 3 m/s.

Trazado

El trazado de la red se debe ubicar preferentemente en terrenos públicos siempre que sea posible y se deben evitar terrenos vulnerables.

Materiales

El material de la tubería que conforma la red de distribución debe ser de PVC y compatible con los accesorios que se instale para las conexiones prediales.

Presiones de servicio.

Para la red de distribución se deberá cumplir lo siguiente:

- La presión mínima de servicio en cualquier punto de la red o línea de alimentación de agua no debe ser menor de 5 m.c.a. y
- La presión estática no debe ser mayor de 60 m.c.a.

De ser necesario, a fin de conseguir las presiones señaladas se debe considerar el uso de cámaras distribuidora de caudal y reservorios de cabecera, a fin de sectorizar las zonas de presión.

Criterios de Diseño

Existen dos tipos de redes:

a. Redes malladas

Son aquellas redes constituidas por tuberías interconectadas formando circuitos cerrados o mallas. Cada tubería que reúna dos nudos debe tener la posibilidad de ser seccionada y desaguada independientemente, de forma que se pueda proceder a realizar una reparación en ella sin afectar al resto de la malla. Para ello se debe disponer a la salida de los dos nudos válvulas de corte.

El diámetro de la red o línea de alimentación debe ser aquél que satisfaga las condiciones hidráulicas que garanticen las presiones mínimas de servicio en la red.

Para la determinación de los caudales en redes malladas se debe aplicar el método de la densidad poblacional, en el que se distribuye el caudal total de la población entre los "i" nudos proyectados.

El caudal en el nudo es:

$$Q_i = Q_p * P_i$$

Donde:

Q_i: Caudal en el nudo "i" en l/s.

Q_p : Caudal unitario poblacional en l/s.hab.

$$Q_p = \frac{Q}{H}$$

Donde:

Qt : Caudal máximo horario en l/s. Pt : Población total del proyecto en hab.

P₁: Población de área de influencia del nudo "i" en hab.

Para el análisis hidráulico del sistema de distribución, puede utilizarse el método de Hardy Cross o cualquier otro equivalente.

El dimensionamiento de redes cerradas debe estar controlado por dos condiciones:

- El flujo total que llega a un nudo es igual al que sale.
- La pérdida de carga entre dos puntos a lo largo de cualquier camino es siempre la misma.

Estas condiciones junto con las relaciones de flujo y pérdida de carga nos dan sistemas de ecuaciones, los cuales pueden ser resueltos por cualquiera de los métodos matemáticos de balanceo.

En sistemas anillados se deben admitir errores máximos de cierre:

- De 0,10 mca de pérdida de presión como máximo en cada malla y/o simultáneamente debe cumplirse en todas las mallas.
- De 0,01 l/s como máximo en cada malla y/o simultáneamente en todas las mallas.

Se recomienda el uso de un caudal mínimo de 0,10 l/s para el diseño de los ramales. La presión de funcionamiento (OP) en cualquier punto de la red no debe descender por debajo del 75% de la presión de diseño (DP) en ese punto.

Tanto en este caso como en las redes ramificadas, se debe adjuntar memoria de cálculo, donde se detallen los diversos escenarios calculados:

- Para caudal mínimo.
- Caudal máximo.
- Presión mínima.
- Presión máxima.

b. Redes ramificadas

Constituida por tuberías que tienen la forma ramificada a partir de una línea principal; aplicable a sistemas de menos de 30 conexiones domiciliarias

En redes ramificadas se debe determinar el caudal por ramal a partir del método de probabilidad, que se basa en el número de puntos de suministro y en el coeficiente de simultaneidad. El caudal por ramal es:

$$Q_{ramal} = K * \sum Q_g$$

Donde:

Q_{ramal}: Caudal de cada ramal en I/s.

K : Coeficiente de simultaneidad, entre 0,2 y 1.

$$K = \frac{1}{\sqrt{(x-1)}}$$

Donde:

x : número total de grifos en el área que abastece cada ramal.

Q_a : Caudal por grifo (l/s) > 0,10 l/s.

Si se optara por una red de distribución para piletas públicas, el caudal se debe calcular con la siguiente expresión:

$$Q_{pp} = N * \frac{D_c}{24} * C_p * F_u \frac{1}{E_f}$$

Donde:

 Q_{pp}

: Caudal máximo probable por pileta pública en l/h. : Población a servir por pileta. Un grifo debe abastecer a un número máximo de Ν

: Dotación promedio por habitante en l/hab.d. D_0

: Porcentaje de pérdidas por desperdicio, varía entre 1,10 y 1,40. C_p

E : Eficiencia del sistema considerando la calidad de los materiales y accesorios. Varía entre 0,7 y 0,9.

F_u : Factor de uso, definido como Fu = 24/t. Depende de las costumbres locales, horas de trabajo, condiciones climatológicas, etc. Se evalúa en función al tiempo real de horas de servicio (t) y puede variar entre 2 a 12 horas.

En ningún caso, el caudal por pileta pública debe ser menor a 0,10 l/s.

El Dimensionamiento de las redes abiertas o ramificadas se debe realizar según las fórmulas del ítem 2.4 Línea de Conducción (Criterios de Diseño) del presente Capítulo, de acuerdo con los siguientes criterios:

- Se puede admitir que la distribución del caudal sea uniforme a lo largo de la longitud de cada tramo.
- La pérdida de carga en el ramal puede ser determinada para un caudal igual al que se verifica en su extremo.
- Cuando por las características de la población se produzca algún gasto significativo en la longitud de la tubería, éste debe ser considerado como un nudo más.

Se recomienda el uso de un caudal mínimo de 0,10 l/s para el diseño de los ramales.

Anexo 12: PLANOS

CAPTACIÓN SANTA MARÍA LÍNEA DE CONDUCCIÓN

LÍNEA DE CONDUCCIÓN

El sistema de conducción es por gravedad.

Esta compuesta desde el km 0+000 hasta el km 0+563.951

Su tubería es de tipo PVC de clase 7.5, estando fuera de los parámetros que dictan los reglamentos.

Todo el tramo esta compuesto con un diámetro de tubería de 1 1/2", cuando calculando nos dice que puede tener un diámetro de 1".

Según lo calculado al tener un diametro de tubería de 1 1/2 " no cumple las velocidades recomendadas por la Resolución Magisterial -192 ya que el caudal de la fuente no es muy alto.

La tuberia se encuentra al aire libre y no enterrada en ciertos tramos estando expuesta a contaminación.

No cuenta con valvulas de aire y de purga, se realizo el criterio de que si necesita debido a que el terreno es accidentado.

LÍNEA DE ADUCCIÓN

El sistema de línea de aducción es por gravedad.

Esta compuesta desde el reservorio en el km 0+000 hasta el comienzo de la red de distribución en el km 0+154.034.

Su tubería es de tipo PVC de clase 7.5, estando fuera de los parámetros que dicta la Resolución Ministerial - 192 (líneas de aducción y conducción deben ser de tipo PVC y de clase 10).

Todo el tramo esta compuesto con un diámetro de tubería de 1".

Según lo calculado al tener un diametro de tubería de 1" cumple las velocidades recomendadas por la Resolución Ministerial 192, pero necesita mejoramiento ya que tiene fugas de agua.

La tubería encuentra al aire libre y no enterradas en ciertos tramos estando expuesta a contaminación.

No cuenta con un cálculo exacto en los diametros de las tuerias principales y secundarias perjudicando la distribución del caudal maximo horario y caudal unitario a las viviendas del caserío de Huargopata.

(ramificado).

Cuenta con una sola llave de control la cual esta colocada sin algún tipo de cálculo.

RED DE DISTRIBUCIÓN

El sistema de la red de distribución es abierto

Al no tener un cálculo exacto en los diámetros de las tuberias principales y secundarias no cumple con las presiones y velocidades estimadas por la Resolución Ministerial - 192.

El tipo de tubería es de PVC y de clase 7.5 el cual no es adecuado para redes de distribución en zonas rurales.

Las tuberias principales y secundarias se encuentran al aire libre y no enterradas en ciertos tramos estando expuesta a contaminación.

CÁMARA ROMPE PRESIÓN TIPO 6

CÁMARA ROMPE PRESIÓN TIPO 6

Es una caja con dimensión de 0.90 mt x 0.90 mt,

La tapa sanitária que cubre la camara húmeda se

Cuenta con caseta de válvulas pero le hace falta

varios accesorios (válvulas de control de entrada

y salida del flujo de agua) tiene válvulas de

La tapa sanitária que cubre la cámara húmeda se

Tiene un tiempo de construcción de 10 años.

la cual se encuentra en malas condiciones.

No cuenta con caseta de válvulas.

encuentra en pesimas condiciones.

control de defogue o limpieza.

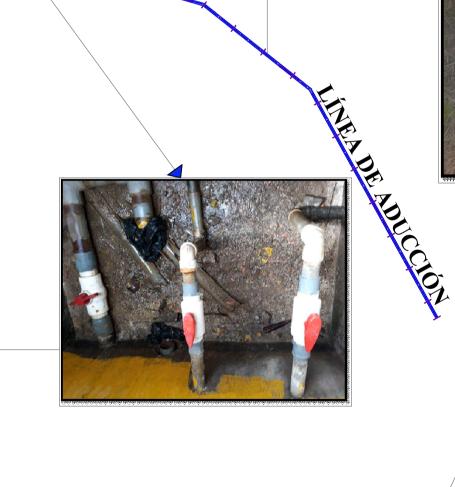
encuentra en estado regular.

RESERVORIO DE **ALMACENAMIENTO**

Es una estructura de concreto armado con dimensiónes de 3.00 mt x 3.00 mt y 1.21 mt de alto, se presenta en buenas condiciones.

Tiene un volumen de almacenamineto de 10 m³ el cual cumple con el calculado determinado en la investigación.

No cuenta con un sistema de cloración debido al mal manejo de la persona encarga la cual perjudico dicho sistema, no cuenta con una caseta de cloración para la mejora del control del sistema de cloración del reservorio acutual.


Las tapas sanitarias son de concreto armado y se encuentran en un estado mal.

Tiene un cerco perimétrico rustico.

No cuenta con varios accesorios ni tuberías (tuberia de limpieza o defogue y llave de control para su mantenimiento).

Tiene accesibilidad de llegada de la población hacia el reservorio.

Tiene un tiempo de construcción de 10 años.

L E Y E N D A		
SÍMBOLO	DESCRIPCIÓN	
	CÁMARA DE CAPTACIÓN	
	RESERVORIO DE ALMACENAMIENTO	
	CÁMARA ROMPE PRESIÓN TIPO 6	
	LÍNEA DE CONDUCCIÓN	
	LÍNEA DE ADUCCIÓN	
	RED DE DISTRIBUCIÓN	

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIEN POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA UNIVERSIDAD CATÓLICA LOS ÁNGELES DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021

TESISTA: CASERÍO: SANTA MARÍA BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY SAN MIGUEL **DISTRITO: ASESOR:** MGTR. LEÓN DE LOS RÍOS, GONZALO MIGUEL PROVINCIA: **REGIÓN:**

EVALUACIÓN DEL SISTEMA

LÁMINA:

DIMENSIÓN:

CAPTACIÓN SANTA MARÍA

Es una captación de tipo ladera con una dimensión de 1.00 mt x 1.00 mt el cual capta el agua desde un manantial, esta se encuentra en malas condiciones.

Se encuentra semi enterrada debido al fenómeno del niño costero el cual perjudico la estructura enterrandola en gran parte.

No cuenta con sello de protección (aletas) el cual impide la contaminación del agua a captar.

La cámara humeda de la captación se encuentra se encuentra deteriorada (los orificios que se encuentran en la pantalla estan captando agua en malas condiciones).

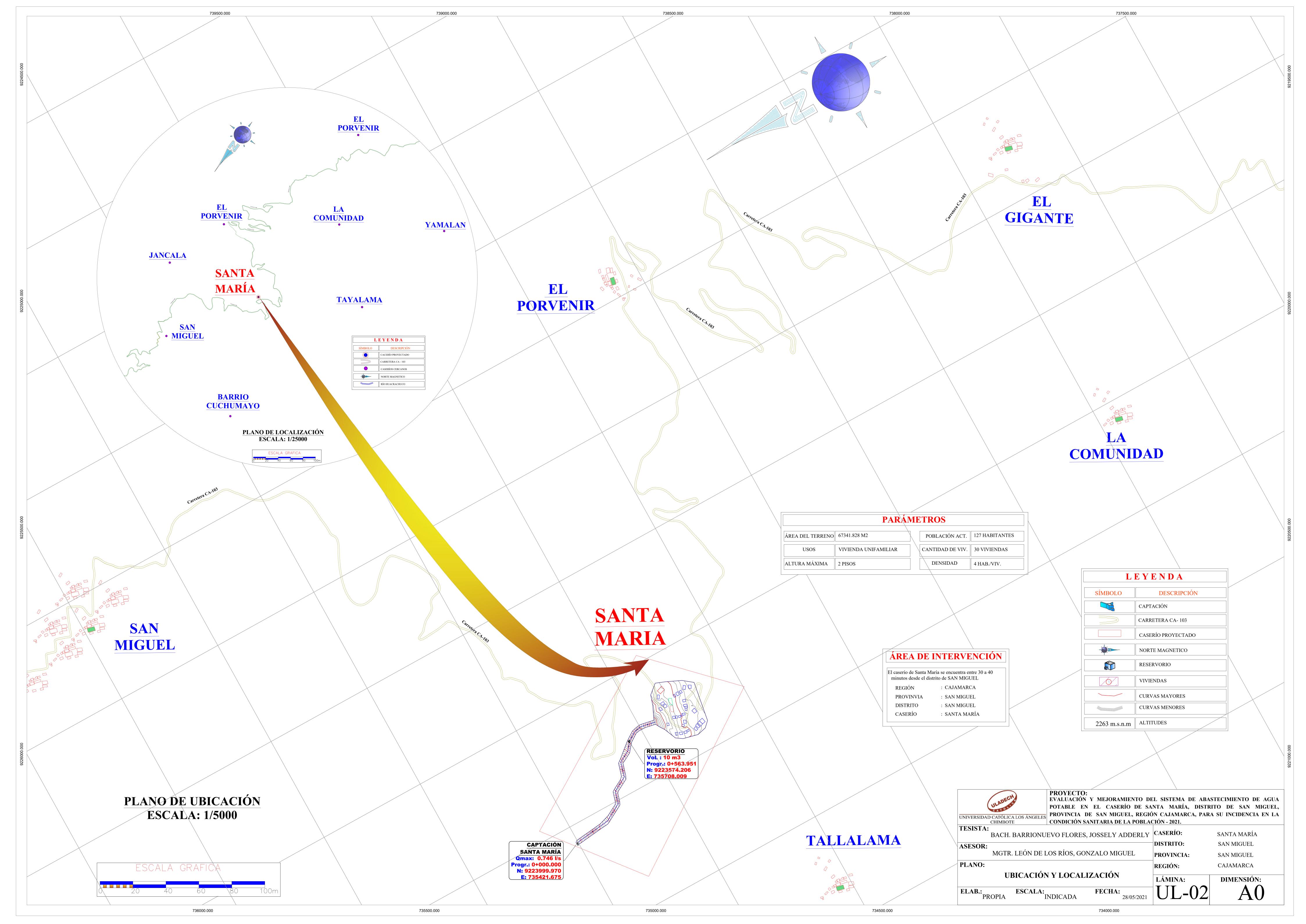
No cuenta con tubería de limpieza o defogue.

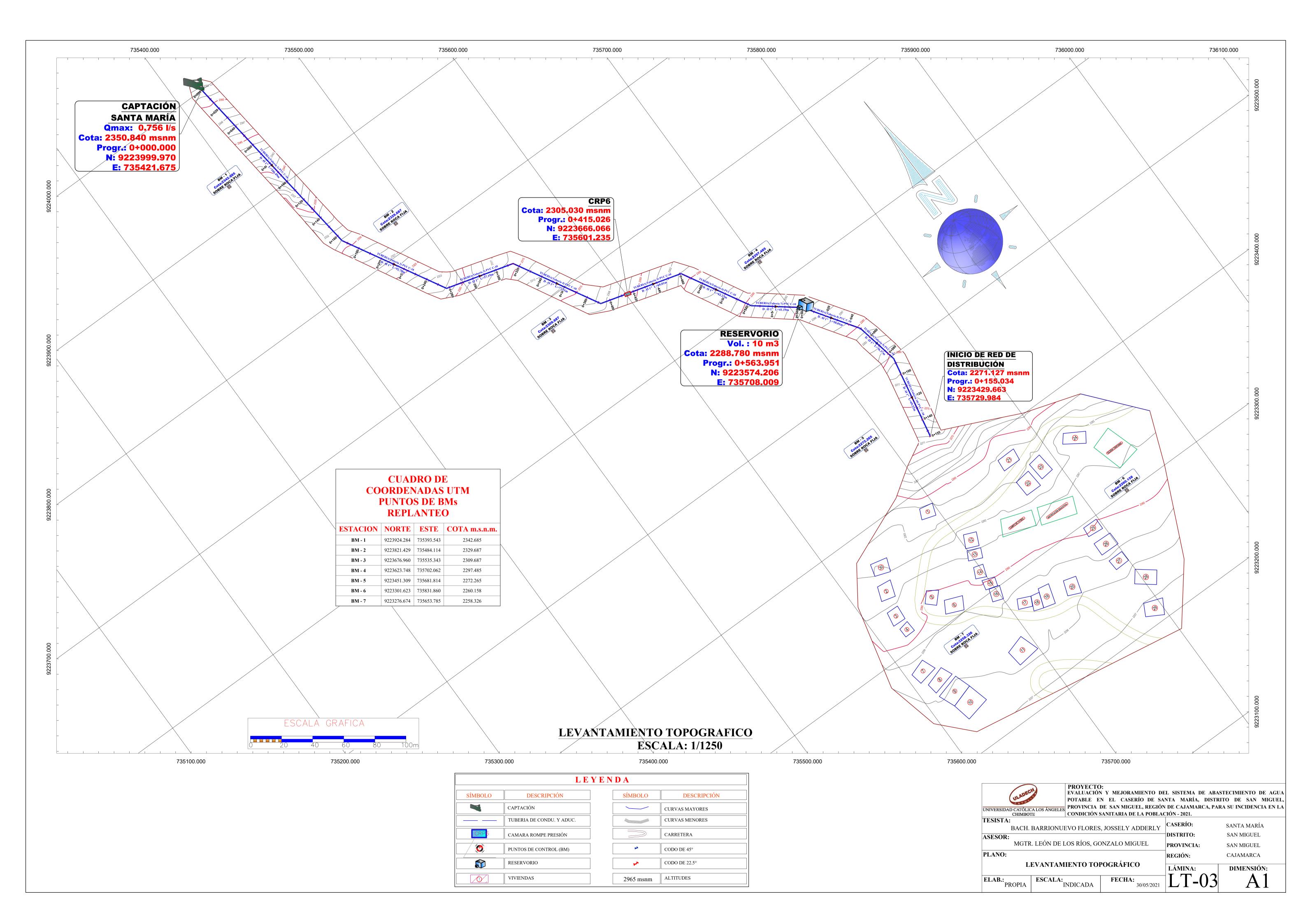
No cuenta con cerco perimétrico.

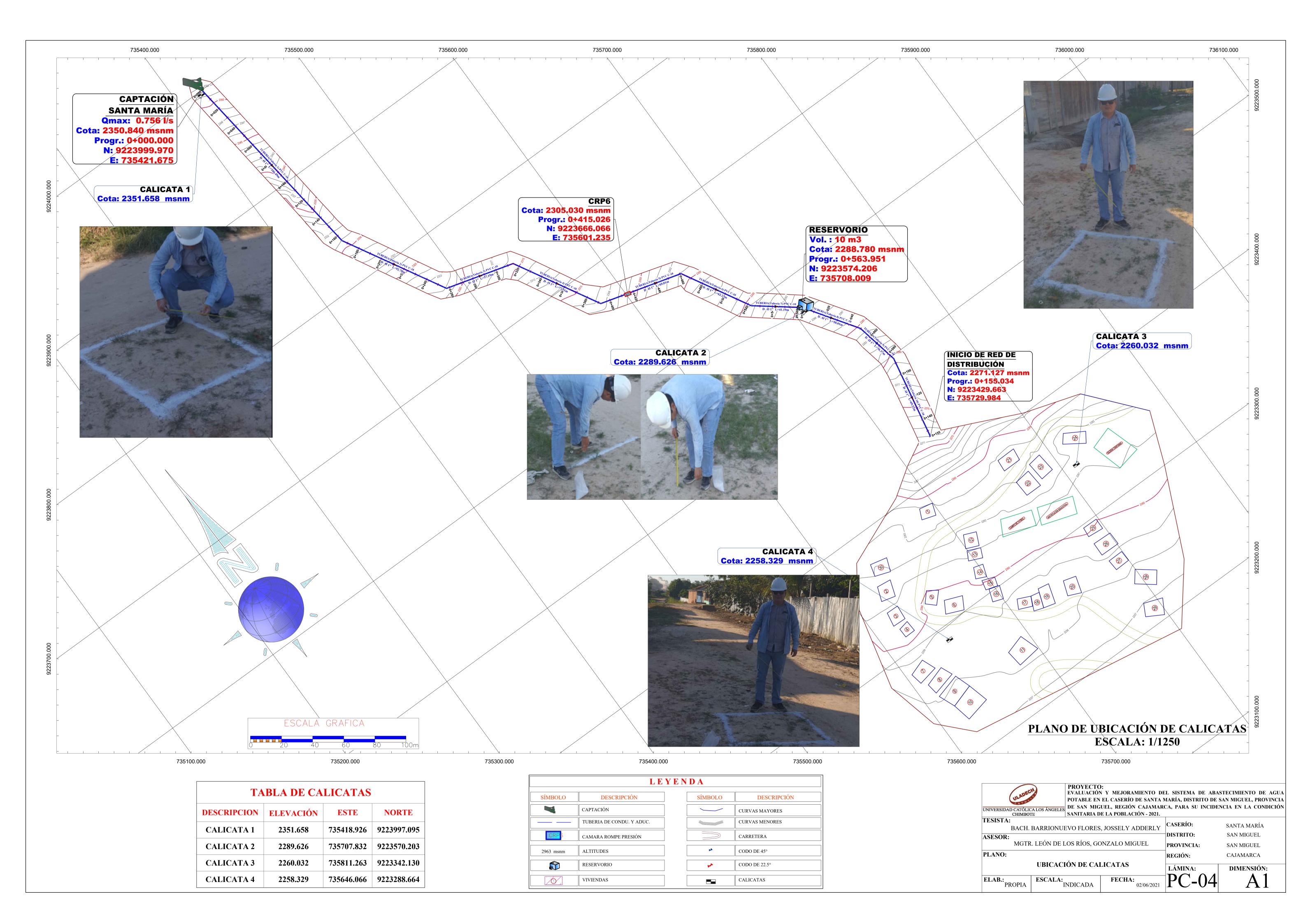
Esta expuesta a cualquier tipo de contaminación.

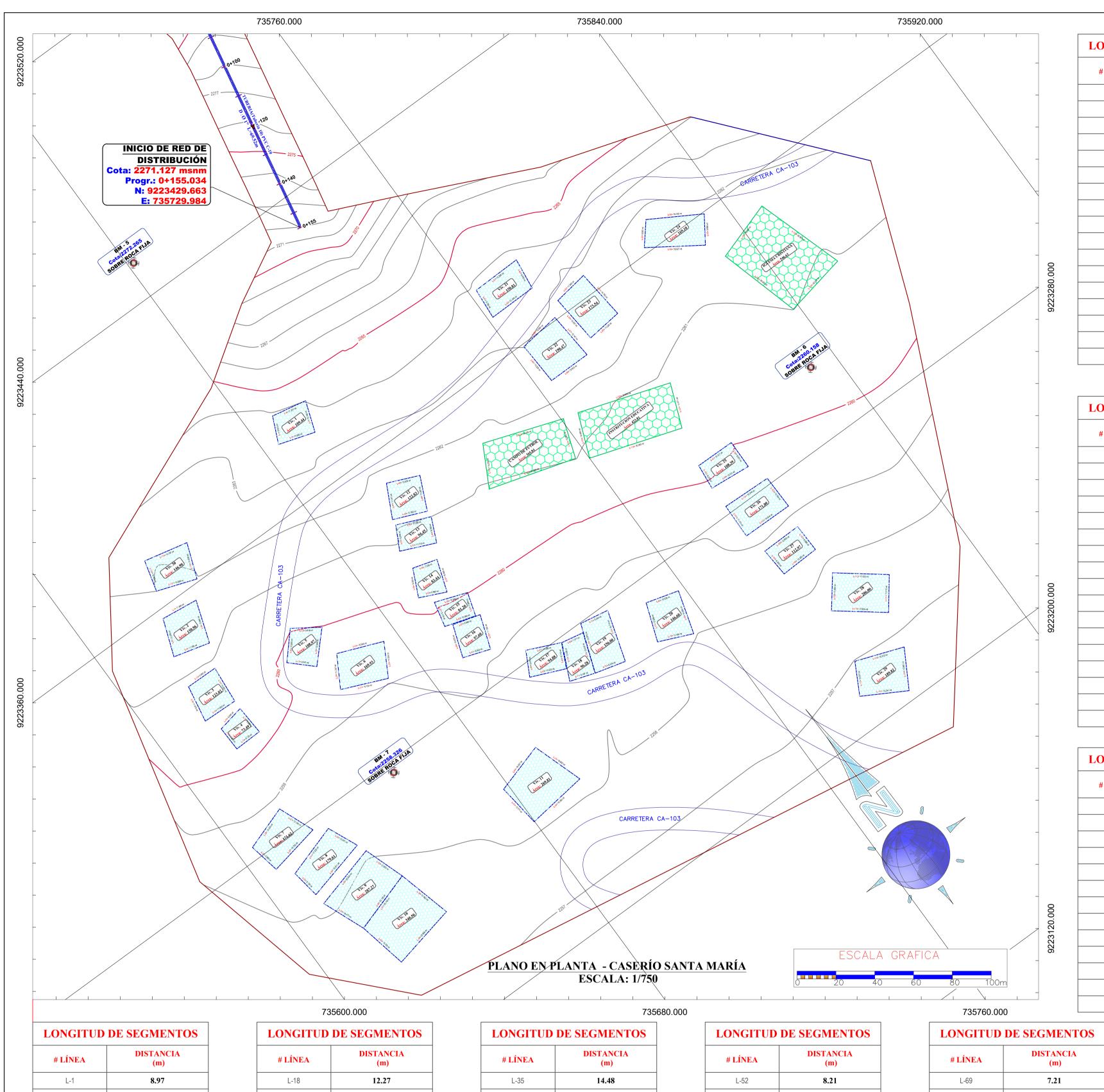
No cuenta con los accesorios requeridos (canastilla, tuberia de ventilación, cono de rebose).

Tiene una antiguedad de construcción de 21 años.




PLANO: ESCALA: 1:1000 ELAB.: PROPIA FECHA:


SAN MIGUEL CAJAMARCA


ES-01

Al

LONGITUD DE SEGMENTOS		
# LÍNEA	DISTANCIA (m)	
L-86	13.52	
L-87	15.15	
L-88	13.09	
L-89	15.34	
L-90	11.23	
L-91	15.79	
L-92	11.08	
L-93	8.66	
L-94	18.93	
L-95	9.69	
L-96	18.11	
L-97	12.32	
L-98	9.05	
L-99	13.04	
L-100	8.08	
L-101	11.10	
L-102	15.94	

LONGITUD DE SEGMENTOS		
# LÍNEA	DISTANCIA (m)	
L-103	10.78	
L-104	15.48	
L-105	9.24	
L-106	12.26	
L-107	8.96	
L-108	12.58	
L-109	11.69	
L-110	17.68	
L-111	11.71	
L-112	17.52	
L-113	10.92	
L-114	15.34	
L-115	13.56	
L-116	15.87	
L-117	13.09	
L-118	11.61	
L-119	14.20	

LONGITUD DE SEGMENTOS		
# LÍNEA	DISTANCIA (m)	
L-120	10.00	
L-121	14.30	
L-122	26.06	
L-123	12.85	
L-124	28.33	
L-125	14.49	
L-126	29.99	
L-127	14.47	
L-128	30.04	
L-133	19.21	
L-134	28.96	
L-135	20.22	
L-136	26.65	

Viv1	109.44	42.254	11.223 10.166 11.893 8.973
Viv2	150.96	49.548	12.239 11.685 13.844 11.780
Viv3	123.02	44.584	9.940 11.831 11.000 11.813
Viv4	73.49	34.376	8.536 9.266 8.720 7.854
Viv5	108.97	42.052	10.624 9.818 12.269 9.341
Viv6	169.93	52.909	11.157 15.064 11.534 15.154
Viv7	171.62	53.382	14.533 12.159 16.702 9.988
Viv8	179.61	56.712	17.323 10.321 19.911 9.156
Viv9	287.27	69.131	20.930 13.625 20.100 14.477
Viv10	340.50	74.272	15.704 20.100 17.562 20.906
Viv11	269.81	66.191	16.247 16.803 19.365 13.777
Viv12	122.83	44.371	11.371 10.636 11.300 11.064
Viv13	94.45	39.445	8.206 11.256 8.268 11.715
Viv14	83.44	36.729	9.330 7.926 10.484 8.990
Viv15	81.20	36.448	8.119 10.680 7.589 10.060

CUADRO DE ÁREAS EN VIVIENDAS

VIVIENDA ÁREA (m2) PERÍMETRO LONGITUD DE SEGMENTOS (ml)

CUADRO DE ÁREAS EN VIVIENDAS				
# VIVIENDA	ÁREA (m2)	PERÍMETRO (ml)	LONGITUD DE SEGMENTOS (ml)	
Viv16	97.60	39.729	10.670 8.946 11.160 8.953	
Viv17	94.88	39.507	8.179 11.623 8.416 11.289	
Viv18	96.28	40.663	12.236 7.211 13.018 8.197	
Viv19	156.00	51.901	15.975 9.240 16.712 9.974	
Viv20	146.60	48.718	10.628 14.060 11.464 12.566	
Viv21	150.81	50.482	9.796 15.565 9.976 15.145	
Viv22	190.47	55.297	13.092 15.147 13.523 13.535	
Viv23	173.54	53.442	11.083 15.793 11.228 15.337	
Viv24	169.10	55.380	18.106 9.686 18.927 8.661	
Viv25	108.39	42.484	8.075 12.317 9.051 13.041	
Viv26	171.80	53.305	15.476 10.784 15.944 11.101	
Viv27	112.97	43.044	12.583 8.958 12.259 9.243	
Viv28	206.00	58.613	17.523 11.713 17.684 11.692	
Viv29	189.82	55.692	15.872 13.561 15.341 10.917	
Viv30	146.90	48.895	10.000 14.197 11.608 13.089	

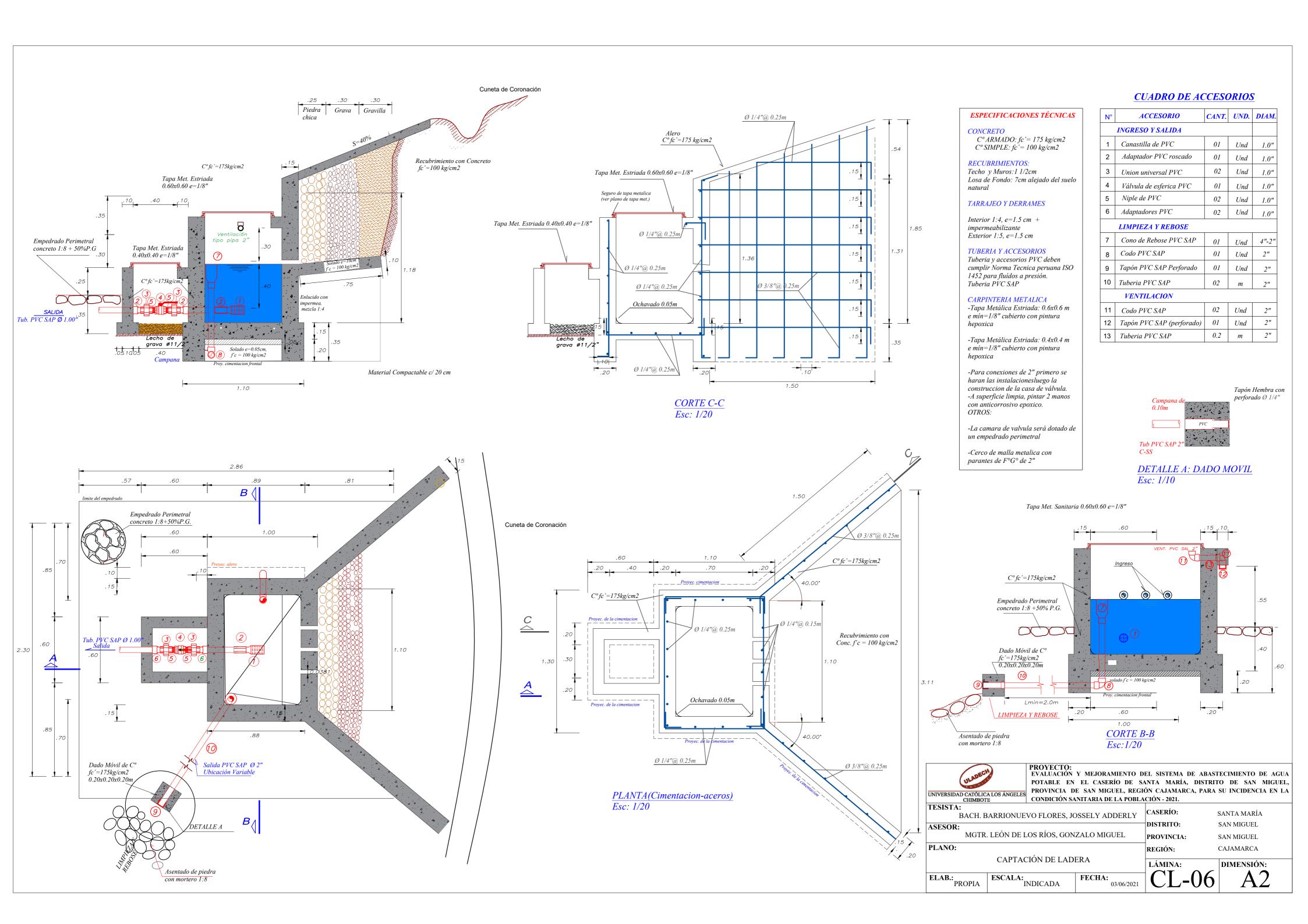
LONGITUD	DE SEGMENTOS
# LÍNEA	DISTANCIA (m)
L-1	8.97
L-2	11.89
L-3	10.17
L-4	11.22
L-5	11.78
L-6	13.84
L-7	11.68
L-8	12.24
L-9	11.81
L-10	11.00
L-11	11.83
L-12	9.94
L-13	7.85
L-14	8.72
L-15	9.27
L-16	8.54
1.47	0.24

# LÍNEA	DISTANCIA (m)
L-35	14.48
L-36	20.93
L-37	20.10
L-38	17.56
L-39	20.91
L-40	15.70
L-41	13.78
L-42	19.36
L-43	16.80
L-44	16.25
L-45	11.06
L-46	11.30
L-47	11.37
L-48	10.64
L-49	11.26
L-50	8.27
L-51	11.72

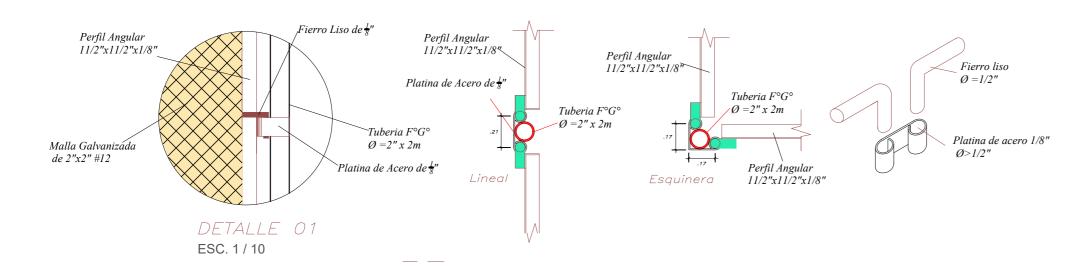
LONGITUD	DE SEGMENTOS
# LÍNEA	DISTANCIA (m)
L-52	8.21
L-53	8.99
L-54	10.48
L-55	7.93
L-56	9.33
L-57	8.12
L-58	10.68
L-59	7.59
L-60	10.06
L-61	8.95
L-62	11.16
L-63	8.95
L-64	10.67
L-65	11.62
L-66	8.42
L-67	11.29
L-68	8.18

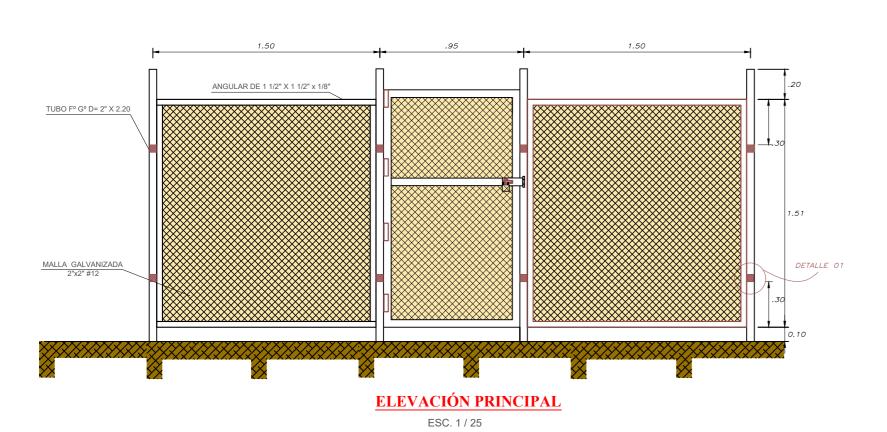
# LÍNEA	DISTANCIA (m)
L-69	7.21
L-70	13.02
L-71	8.20
L-72	12.24
L-73	9.24
L-74	16.71
L-75	9.97
L-76	15.97
L-77	12.57
L-78	11.46
L-79	14.06
L-80	10.63
L-81	15.57
L-82	9.98
L-83	15.14
L-84	9.80

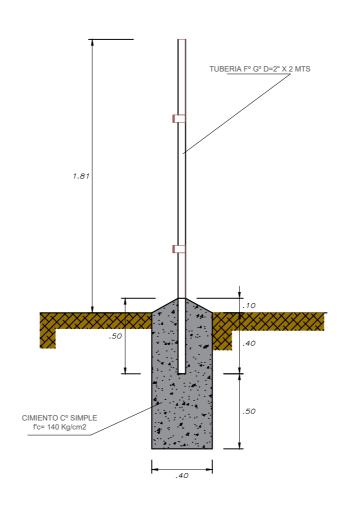
13.54

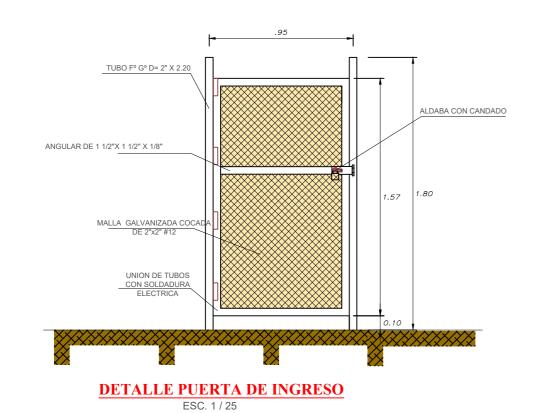

L-85

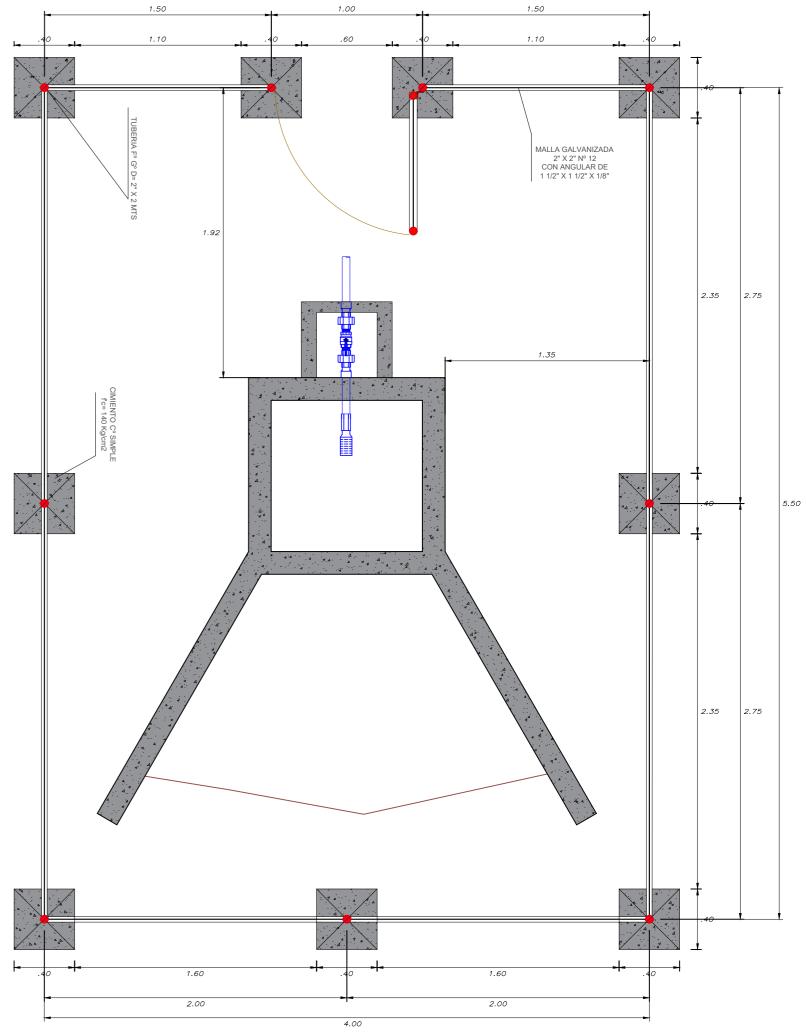
LEYENDA			
SÍMBOLO DESCRIPCIÓN			
(0)	PUNTOS DE CONTROL (BM)		
	CARRETERA CA - 103		
- Z	NORTE MAGNETICO		
	VIVIENDAS		
2965 msnm	ALTITUD		
	CURVAS MAYORES		
	CURVAS MENORES		
	LUGARES PÚBLICOS		


CUADRO DE ÁREAS EN LUGARES PÚBLICOS					
LUGAR PÚBLICO	ÁREA (m2)	PERÍMETRO (ml)	LONGITUD DE SEGMENTOS (ml)		
CAMPO DE FUTBOL	365.84	81.537	28.328 14.300 26.059 12.850		
IGLESIA CRISTIANA	546.63	95.038	26.650 19.206 28.963 20.219		
INSTRITUCIÓN EDUCATIVA	433.81	88.997	29.993 14.471 30.043 14.490		


UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE	PROYECTO: EVALUACIÓN Y MEJORAMIENTO DE POTABLE EN EL CASERÍO DE SA PROVINCIA DE SAN MIGUEL, REGIÓ CONDICIÓN SANITARIA DE LA POBLAC	NTA MARÍA, DIS ON CAJAMARCA, PA	TRITO DE SAN MIGUEL,
TESISTA: BACH. BARRIONUI	EVO FLORES, JOSSELY ADDERLY	CASERÍO:	SANTA MARÍA
ASESOR: MGTR. LEÓN DE I	LOS RÍOS, GONZALO MIGUEL	DISTRITO: PROVINCIA:	SAN MIGUEL SAN MIGUEL
PLANO: PARCELA	CIÓN Y LOTIZACIÓN	REGIÓN: LÁMINA:	CAJAMARCA DIMENSIÓN:

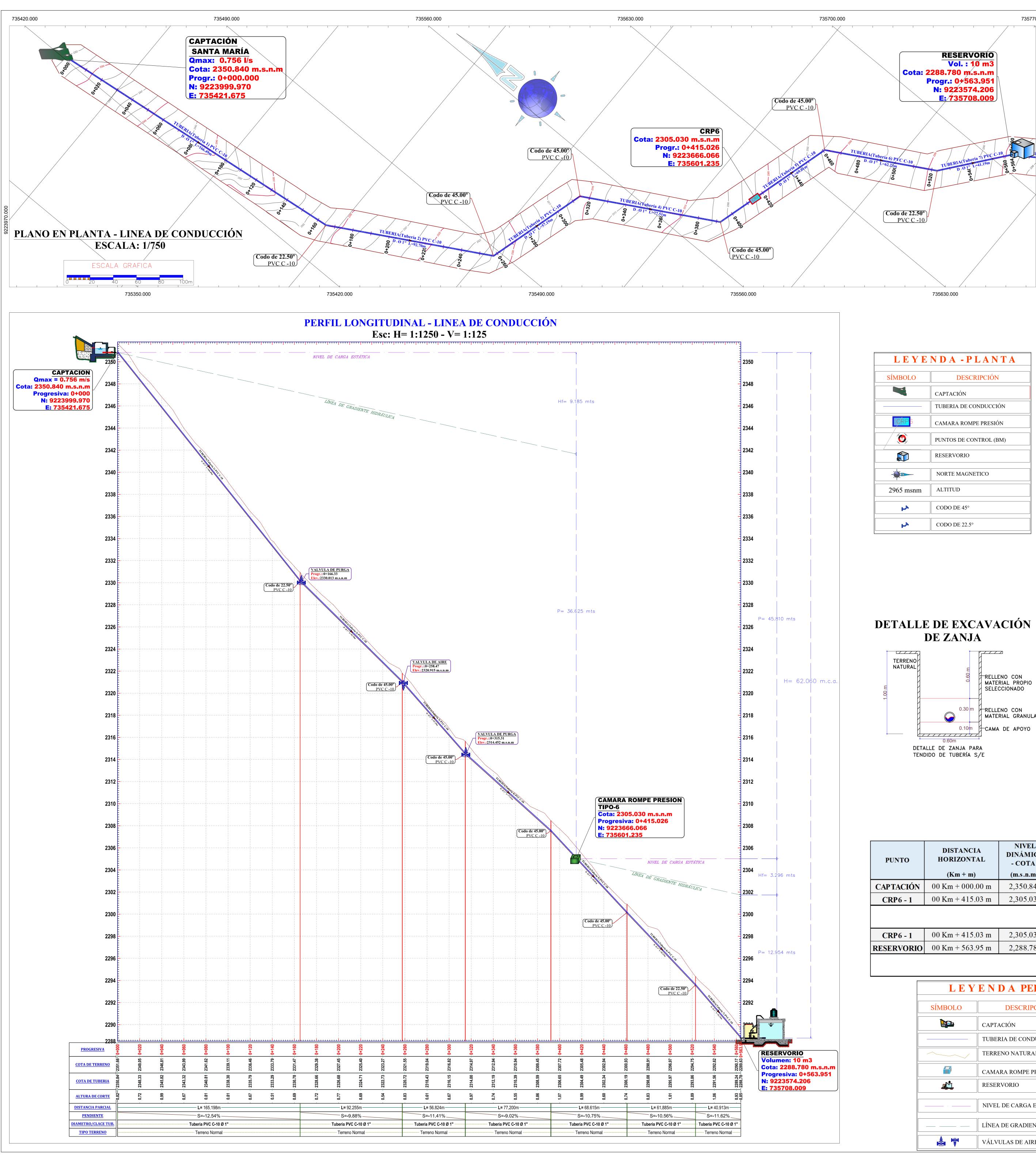

ELAB.: PROPIA ESCALA: INDICADA


DETALLE DEL ENSAMBLAJE



DETALLE CIMENTACION
ESC. 1/25

ESPECIFICACIONES TECNICAS


CONCRETO CIMIENTOS fc= 140 Kg/cm2
MALLA DE CERCO GALVANIZADA 2" X 2" № 12
ANGULAR DE 1 1/2" X 1 1/2" X 1/8"
TUBERIA DE FIERRO GALVANIZADO Ø 2"
UNION DE TUBERIAS, MALLA CON ANGULARES DEBEN SER ELECTROSOLDADAS
SISTEMA DE SEGURIDAD: ALDABA DE FIERRO CON CANDADO

PLANTA CERCO PROTECCION CAPTACIÓN SANTA MARÍA

ESC. 1 / 25

CH)	PROYECTO: EVALUACIÓN	Y MEJORAMIENTO DI	EL SISTEMA DE ABASTI	ECIMIENTO DE AGUA
ULAULICA	POTABLE EN	EL CASERÍO DE SA	NTA MARÍA, DISTRITO	O DE SAN MIGUEL,
UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE	9	E SAN MIGUEL, REGIÓ NITARIA DE LA POBLA	ÓN CAJAMARCA, PARA S CIÓN - 2021.	SU INCIDENCIA EN LA
TESISTA: BACH. BARRIONUI	EVO FLORES, JO	OSSELY ADDERLY	CASERÍO:	SANTA MARÍA
ASESOR:			DISTRITO:	SAN MIGUEL
MGTR. LEÓN DE I	LOS RÍOS, GON	ZALO MIGUEL	PROVINCIA:	SAN MIGUEL
PLANO:	MÉTRICO C	A PEA CIÓN	REGIÓN:	CAJAMARCA
CERCO PERI	METRICO - C	CAPTACION	LÁMINA:	DIMENSIÓN:
ELAB.: PROPIA ESCALA:	INDICADA	FECHA: 05/06/2021	CPC-07	A2

METRADO DE CAMA DE APOYO

VOLUMEN

(m3)

0.00

0.60

VOLUMEN

ACUMULADO (m3)

0.00

0.60

1.20

PROGRESIVA (Km)	ÁREA (m2)	VOLUMEN (m3)	VOLUMEN ACUMULADO (m3)
0+400.00	0.06	0.60	24.00
0+410.00	0.06	0.60	24.60
0+420.00	0.06	0.60	25.20
0+430.00	0.06	0.60	25.80
0+440.00	0.06	0.60	26.40
0+450.00	0.06	0.60	27.00
0+460.00	0.06	0.60	27.60
0+470.00	0.06	0.60	28.20
0+480.00	0.06	0.60	28.80
0+490.00	0.06	0.60	29.40
0+500.00	0.06	0.60	30.00
0+510.00	0.06	0.60	30.60
0+520.00	0.06	0.60	31.20
0+530.00	0.06	0.60	31.80
0+540.00	0.06	0.60	32.40
0+550.00	0.06	0.60	33.00
0+560.00	0.06	0.60	33.60
0+563.95	0.00	0.12	33.72

CUADRO DE TUBERIAS A PRESIÓN					
# TUBERIA	DIÁMETRO DE TUBERÍA	LONGITUD (mts)	MATERIAL		
Tubería 1	Ø 1"	165.198 mts	PVC - CLASE 10		
Tubería 2	Ø 1"	92.255 mts	PVC - CLASE 10		
Tubería 3	Ø 1"	56.824 mts	PVC - CLASE 10		
Tubería 4	Ø 1"	77.200 mts	PVC - CLASE 10		
Tubería 5	Ø 1"	68.615 mts	PVC - CLASE 10		
Tubería 6	Ø 1"	61.885 mts	PVC - CLASE 10		
Tubería 7	Ø 1"	40.913 mts	PVC - CLASE 10		

CUADRO DE CODOS					
# CODOS	DIAMETRO DEL CODO	MATERIAL	ANGULO		
Codo 1	Ø 1"	PVC - CLASE 10	22.50°		
Codo 2	Ø 1"	PVC - CLASE 10	45.00°		
Codo 3	Ø 1"	PVC - CLASE 10	45.00°		
Codo 4	Ø 1"	PVC - CLASE 10	45.00°		
Codo 5	Ø 1"	PVC - CLASE 10	45.00°		
Codo 6	Ø 1"	PVC - CLASE 10	22.50°		

CÁLCULO HIDRÁULICO - LINEA DE CONDUCCIÓN

0.60

0.60

0.60

0.60

0.60

19.80

20.40

21.00

21.60

22.20

23.40

MÉTODO DIRECTO

PUNTO	DISTANCIA HORIZONTAL (Km + m)	NIVEL DINÁMICO - COTA - (m.s.n.m.)	DESNIVEL (m)	LONG. DE TUBERÍA (m)	CAUDAL (m³/Seg.)	DIÁMETRO CALCULADO (mm)	DIÁMETRO ASUMIDO (mm)	VELOCIDAD CALCULADA → (m/Seg.)	VELOCIDAD REAL → (m/Seg.)	PERDIDA DE CARGA UNITARIA (m/Km)	$\begin{array}{c c} H_f \\ \textbf{ACUMULADA} \\ \rightarrow \textbf{(m)} \end{array}$	ALTURA PIESOMETR COTA - (m.s.n.m.)	PRESIÓN (m) ↑
CAPTACIÓN	00 Km + 000.00 m	2,350.840	()	0.00	0.00050	(====)	()	((()	()	2,350.840	0.000
CAPTACION	00 Km + 000.00 m	2,330.040		U.UU	0.00030				<u></u>			2,330.040	0.000
CRP6 - 1	00 Km + 415.03 m	2,305.030	45.810	415.026	0.00050	21.138	29.4	1.425 m/Seg.	0.737 m/Seg.	9.1849	9.1849	2,341.655	36.625
							[Pérdida	de carga en el tr	amo:	9.185 m		
CRP6 - 1	00 Km + 415.03 m	2,305.030		0.00	0.00050							2,305.030	0.000
RESERVORIO	00 Km + 563.95 m	2,288.780	16.250	148.925	0.00050	21.188	29.4	1.418 m/Seg.	0.737 m/Seg.	3.2959	3.2959	2,301.734	12.954

LEY	ENDA PERFIL
SÍMBOLO	DESCRIPCIÓN
	CAPTACIÓN
	TUBERIA DE CONDUCCIÓN
	TERRENO NATURAL
	CAMARA ROMPE PRESIÓN TIPO 6
ı <u>t</u>	RESERVORIO
	NIVEL DE CARGA ESTÁTICA
	LÍNEA DE GRADIENTE HIDRÁULICA
	VÁLVULAS DE AIRE Y PURGA

RELLENO CON MATERIAL PROPIO SELECCIONADO

0.30 m RELLENO CON MATERIAL GRANULAR

0.10m CAMA DE APOYO

0+330.00

0+340.00

0+350.00

0+360.00

0+370.00

0+380.00

0+390.00

735770.000

(Km)

0+000.00

0+010.00

0+020.00

RESERVORIO

Vol. : 10 m3

DESCRIPCIÓN

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA

3.296 m

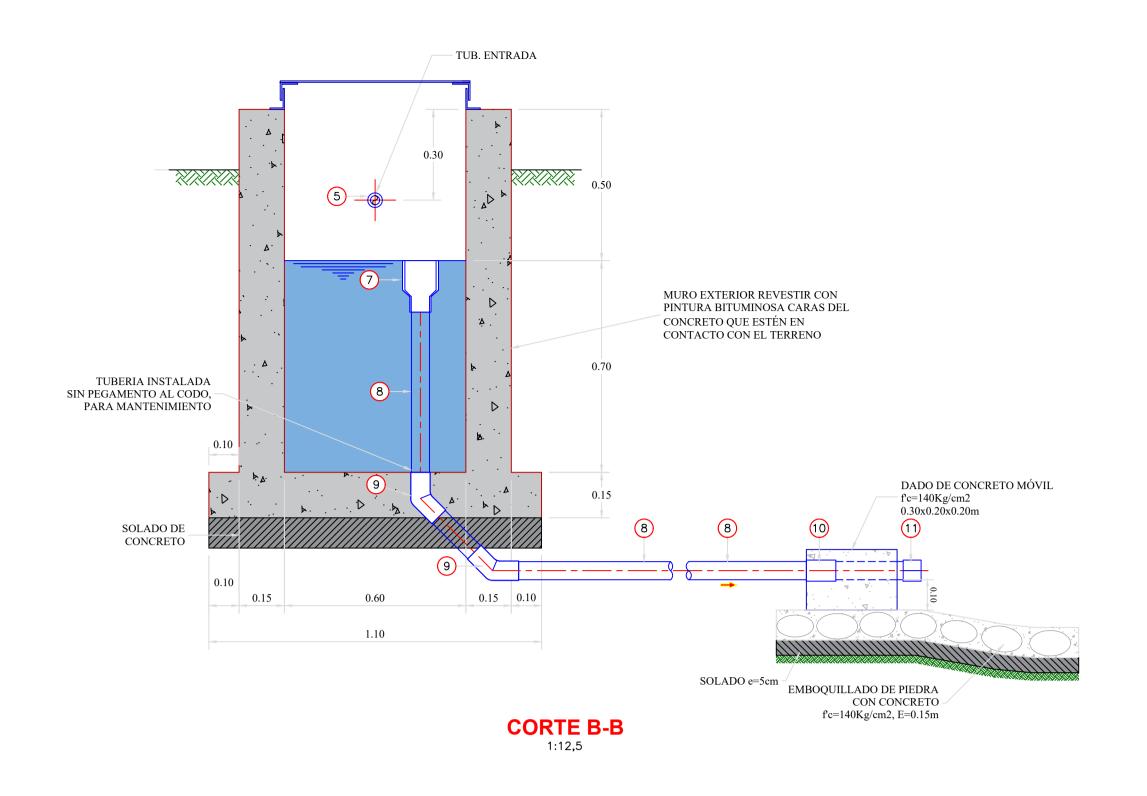
UNIVERSIDAD CATÓLICA LOS ÁNGELES DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021. **CHIMBOTE TESISTA:**

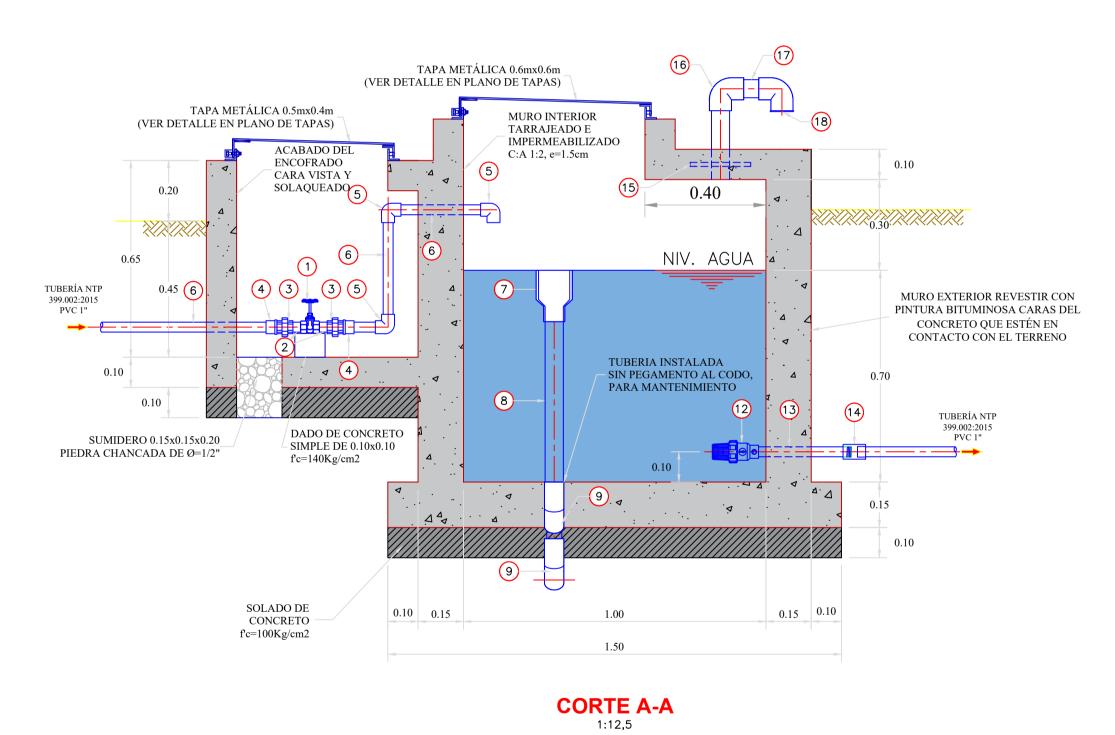
ESCALA: INDICADA

Pérdida de carga en el tramo:

CASERÍO: BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY DISTRITO:

MGTR. LEÓN DE LOS RÍOS, GONZALO MIGUEL **PROVINCIA:** PERFIL LONGITUDINAL - LINEA DE CONDUCCIÓN

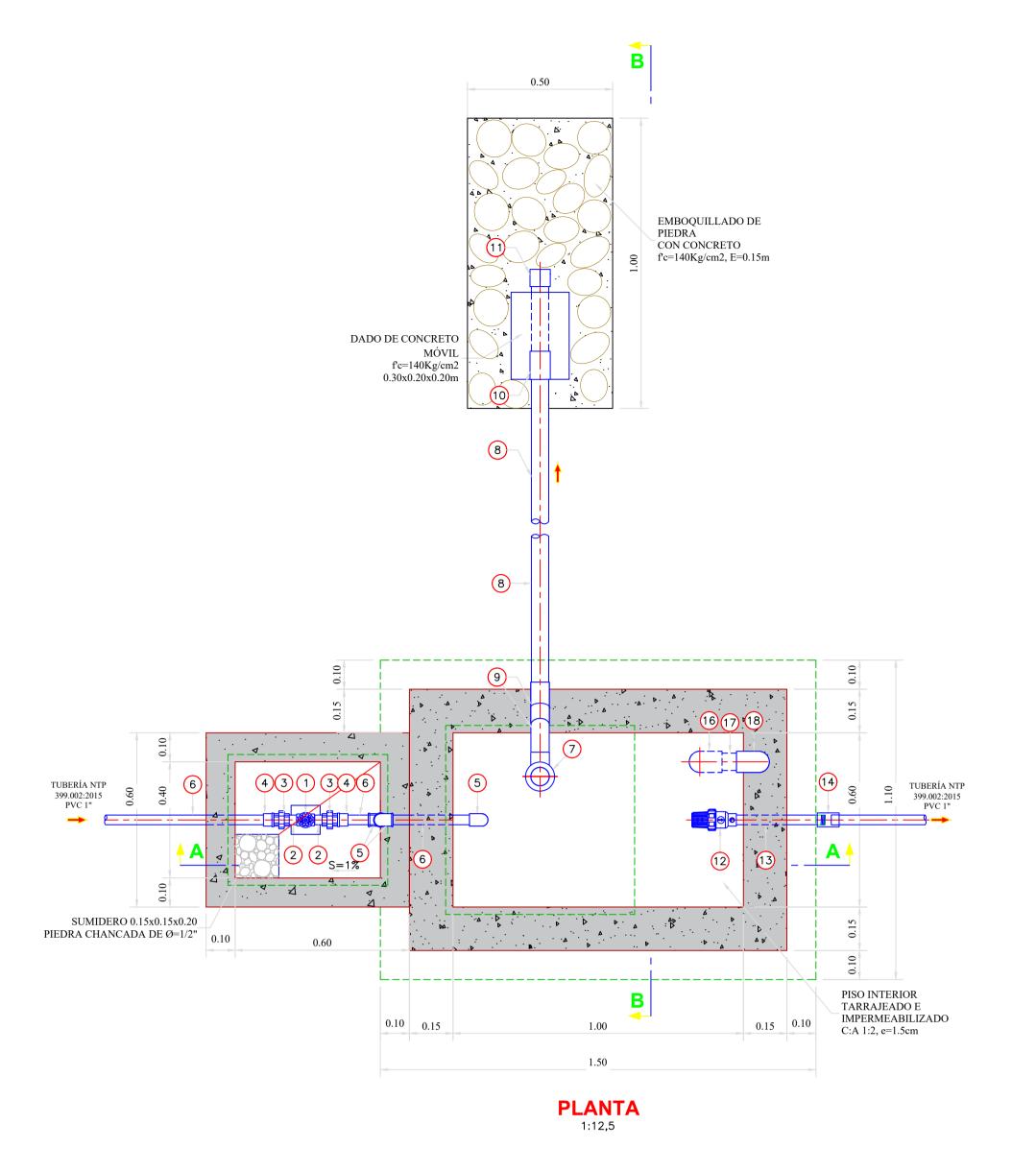

DIMENSIÓN:

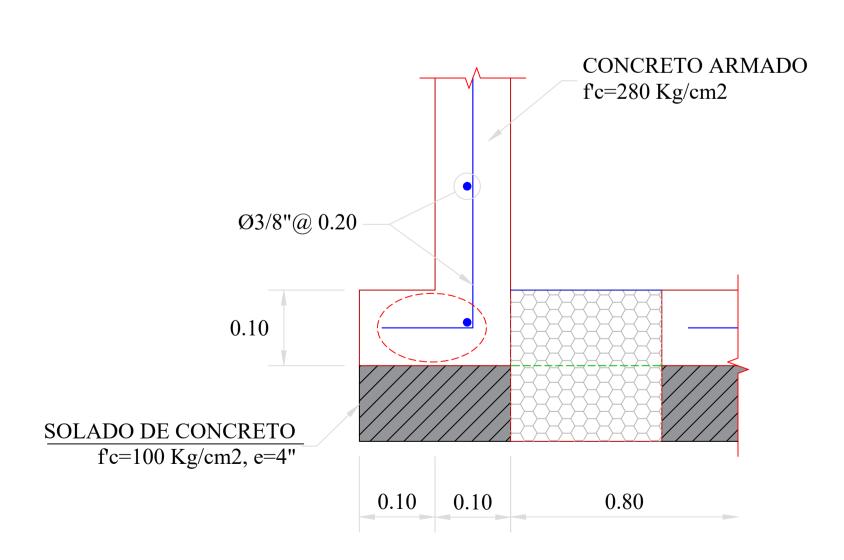

SANTA MARÍA

SAN MIGUEL

SAN MIGUEL

CAJAMARCA

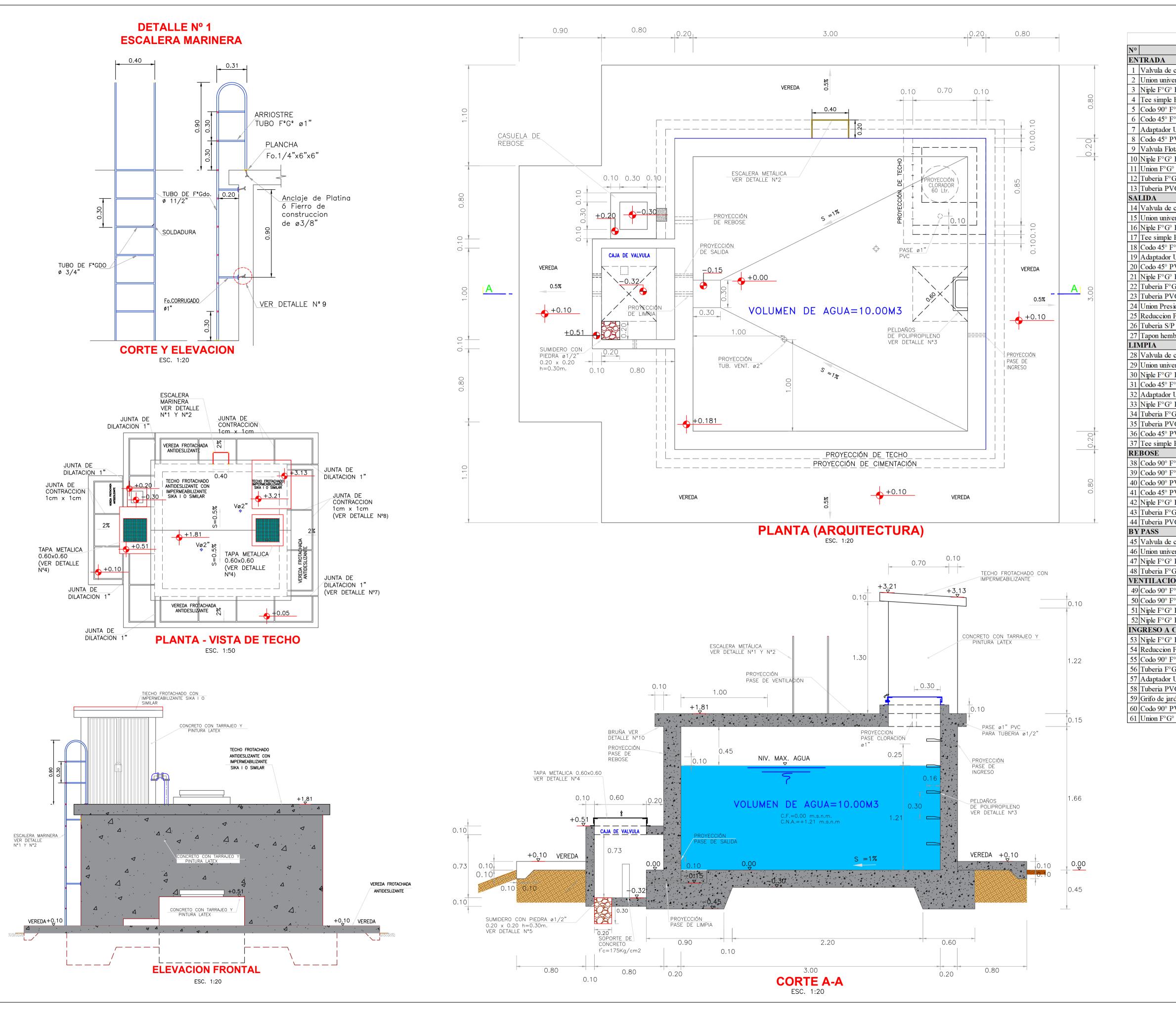

NORMAS TÉCNICAS VIGENTES				
PRODUCTO	NORMA/ESPECIFICACIÓN TÉCNICA			
TUBERÍA Y ACCESORIOS GALVANIZADA	DIAMETROS Y ESPESORES SEGUN NORMA ISO 65 ERW.			
SERIE I (ESTÁNDAR)	EXTREMOS ROSCADOS NPT ASME B1.20.1			
TUBERÍA Y ACCESORIOS PVC PARA AGUA FRÍA PRESION	CLASE 10, NTP 399.002 : 2015 / NTP 399.019 : 2004 / NTE 002			
ACCESORIOS PVC PARA AGUA FRÍA CON ROSCA	CLASE 10, NTP 399.019 : 2004 / NTE 002			
TUBERÍA Y CONEXIONES DE PVC UF	CLASE 10, NTP ISO 1452 : 2011			
CEMENTO DISOLVENTE PARA TUBOS Y CONEXIONES DE POLI (CLORURO DE VINILO) NO PLASTIFICADO (PVC-U)	NTP 399.090 : 2015			
VÁLVULA COMPUERTA DE BRONCE	NTP 350.084 1998, VÁLVULAS DE COMPUERTA Y RETENCIÓN DE ALEACIÓN COBRE-ZINC Y COBRE-ESTAÑO PARA AGUA.			


NOTAS:

1. DIMENSIONES EN METROS, SALVO INDICADO.

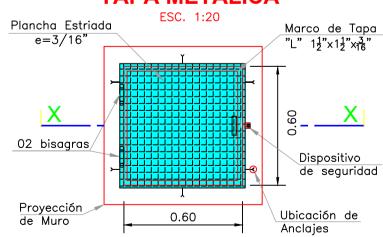
2. LA ESCALA MOSTRADA ES PARA FORMATO A1, PARA A3 CONSIDERAR EL DOBLE.

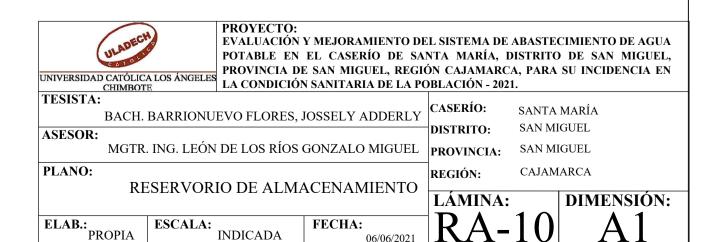
3. LA CLASE DE LA TUBERÍA SE INDICARÁ EN EL PLANO GENERAL DE RED DE AGUA



SECCIÓN 1-1

	ACIONES TÉCNICA	S
CONCRETO SIMPLE:		
SOLADO (NIVELACION NO ESTRUC	URAL) fc= 10 MPa (100Kg/cm2)	
CONCRETO SIMPLE	fc= 14 MPa (140Kg/cm2)	
CONCRETO ARMADO:	· · · ·	
EN GENERAL	fc= 27 MPa (280Kg/cm2)	
CEMENTO:	(4 2)	
EN GENERAL	CEMENTO PORTLAND TIPO I	[
ACERO DE REFUERZO:		
EN GENERAL	fy=4200 Kg/cm2	
RECUBRIMIENTOS:		
CIMENTACION	50 mm	
MURO	40 mm	
LOSA	20 mm	
REVESTIMIENTO, PINTU	RA:	
EXTERIOR - TARRAJEO	C:A, 1:4 e=15 mm	
INTERIOR - TARRAJEO CON IMPERMEABILIZANTE (SUPERFICIE CONTACTO CON AGUA)	EN C:A, 1:2+SDITV. IMP. e=15 mm	1
INTERIOR - ACABADO DEL ENCONF 1:2 e=15 mm, PREVIA AUTORIZACION	RADO CARAVISTA Y SOLAQUEADO O DEL SUPERVISOR)	TARRAJEO (C:A,
EXTERIOR - ACABADO CON PINTUE	A LATEX EN ESTRUCTURA EXPUESTA,	. 2 MANOS
		,
EXTERNOR DEVECTOR CONTRIBUTION	DITTID (DIOCAL CADAC DEL CONCEDETO	OUE ECTÉMEN
EXTERIOR - REVESTIR CON PINTUR CONTACTO CON EL TERRENO	A BITUMINOSA CARAS DEL CONCRETO	O QUE ESTÉN EN
CONTACTO CON EL TERRENO		
CONTACTO CON EL TERRENO	DE EMPALMES POR TRA	
CONTACTO CON EL TERRENO		
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS		
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA	DE EMPALMES POR TRA	
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 "	DE EMPALMES POR TRA 300 mm	
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 "	DE EMPALMES POR TRA 300 mm 400 mm	
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 "	DE EMPALMES POR TRA 300 mm 400 mm 500 mm	
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 "	DE EMPALMES POR TRA 300 mm 400 mm 500 mm	SLAPE:
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d)	DE EMPALMES POR TRA 300 mm 400 mm 500 mm 600 mm	SLAPE:
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d) 3/8 "	DE EMPALMES POR TRA 300 mm 400 mm 500 mm 600 mm DIÁMETRO MÍNIMO DE DOBLADO 60 mm	SLAPE:
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d)	DE EMPALMES POR TRA 300 mm 400 mm 500 mm 600 mm DIÁMETRO MÍNIMO DE DOBLADO	SLAPE:
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d) 3/8 " 1/2 "	DE EMPALMES POR TRA 300 mm 400 mm 500 mm 600 mm DIÁMETRO MÍNIMO DE DOBLADO 60 mm 80 mm	SLAPE:
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d) 3/8 " 1/2 " 5/8 "	300 mm 400 mm 500 mm 600 mm DIÁMETRO MÍNIMO DE DOBLADO 60 mm 80 mm 100 mm	SLAPE:
CONTACTO CON EL TERRENO LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d) 3/8 " 1/2 " 5/8 " 3/4 "	300 mm 400 mm 500 mm 600 mm DIÁMETRO MÍNIMO DE DOBLADO 60 mm 80 mm 100 mm	SLAPE:
LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d) 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR:	300 mm 400 mm 500 mm 600 mm DIÁMETRO MÍNIMO DE DOBLADO 60 mm 80 mm 100 mm 115 mm	SLAPE:
LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d) 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR:	300 mm 400 mm 500 mm 600 mm DIÁMETRO MÍNIMO DE DOBLADO 60 mm 80 mm 100 mm 115 mm	SLAPE:
LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d) 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d)	DE EMPALMES POR TRA 300 mm 400 mm 500 mm 600 mm DIÁMETRO MÍNIMO DE DOBLADO 60 mm 80 mm 100 mm 115 mm LONGITUD MÍNIMO DE DOBLEZ (L) 90° 180°	SLAPE:
LONGITUDES MÍNIMAS BARRA 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d) 3/8 " 1/2 " 5/8 " 3/4 " GANCHO ESTANDAR: DIAMETRO DE LA BARRA (d) 3/8 "	DE EMPALMES POR TRA 300 mm 400 mm 500 mm 600 mm DIÁMETRO MÍNIMO DE DOBLADO 60 mm 80 mm 100 mm 115 mm LONGITUD MÍNIMO DE DOBLEZ (L) 90° 180° 60 mm 65 mm	SLAPE:

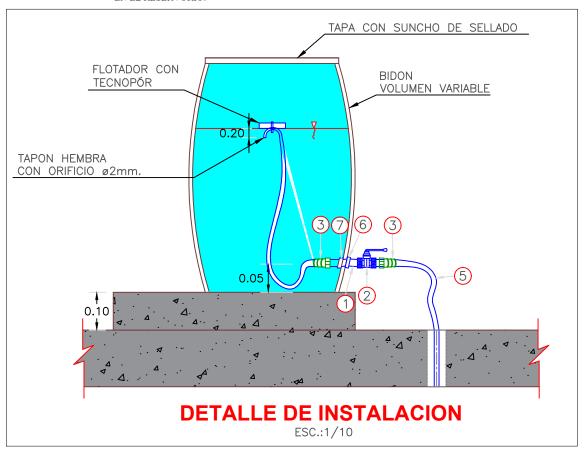

	LISTADO DE ACCESORIOS	
	INGRESO	
ITEM	DESCRIPCIÓN	CANT
1	VÁLVULA COMPUERTA DE BRONCE 1", 250 lbs	1 UND.
2	NIPLE CON ROSCA PVC 1" x 4"	2 UND.
3	UNIÓN UNIVERSAL CON ROSCA PVC 1"	2 UND.
4	ADAPTADOR UPR PVC 1"	2 UND.
5	CODO SP PVC 1" x 90°	3 UND.
6	TUBERIA PVC CLASE 10 Ó 7,5 DE 1", NTP 399.002:2015 (VER NOTA 3)	1.00 ml.
	LIMPIA Y REBOSE	
ITEM	DESCRIPCIÓN	CANT
7	REDUCCIÓN SP PVC 4" x 2"	1 UND
8	TUBERÍA PVC CLASE 10 Ó 7,5 DE 2", NTP 399.002:2015 (VER NOTA 3)	4.00 m
9	CODO SP PVC 2" x 45°	2 UND
10	UNIÓN SP PVC 2"	1 UND
11	TAPÓN SP PVC 2" CON PERFORACION DE 3/16"	1 UND
	SALIDA	
ITEM	DESCRIPCIÓN	CANT
12	CANASTILLA DE PVC 1"	1 UND.
13	TUBERÍA PVC CLASE 10 DE 1" PARA ROSCA, NTP 399.166:2008	0.30 ml.
14	UNIÓN SOQUET PVC 1"	1 UND.
	VENTILACIÓN	
ITEM	DESCRIPCIÓN	CANT
15	BRIDA ROMPE AGUA DE F°G° 2", NIPLE F°G° (L=0.25 m) CON ROSCA A UN LADO, ISO - 65 Serie I (Standart)	1 UND.
16	CODO 90° F°G° 2", NTP ISO 49:1997	1 UND.
17	NIPLE F°G° (L=0.10 m) DE 2", ISO - 65 Serie I (Standart)	1 UND.
18	CODO 90° F°G° 2" CON MALLA SOLDADA, NTP ISO 49:1997	1 UND.

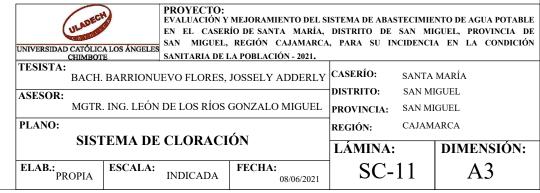

ULADECH		PROYECTO: EVALUACIÓN Y	MEJOIRAMIENTO DEL SIS	STEMA DE ABAS	ГЕСІМІЕΝТО	DE AGUA POTABLE
ULALOUS		EN EL CASERÍO	DE SANTA MARÍA, DI	STRITO DE SAN	MIGUEL,	PROVINCIA DE SAN
NIVERSIDAD CATÓLICA	LOS ÁNGELES	MIGUEL, REGIÓN	N CAJAMARCA, PARA SU	INCIDENCIA EN L	A CONDICIÓ	ON SANITARIA DE LA
CHIMBOTE		POBLACIÓN - 2021				
ESISTA: BACH. I	BARRIONUI	EVO FLORES, J	OSSELY ADDERLY	CASERÍO:	SANTA M	ARÍA
SESOR:				DISTRITO:	SAN MIG	UEL
	ING. LEÓN	DE LOS RÍOS (GONZALO MIGUEL	PROVINCIA:	SANTA M	ARÍA
PLANO:	ADA DO	ADE DDEGL		REGIÓN:	CAJAMAI	RCA
CAM	ARA RO	MPE PRESI	ÓN TIPO - 6	LÁMINA:		DIMENSIÓN:
ELAB.: PROPIA	ESCALA:	INDICADA	FECHA: 05/06/2021	CRPT	5-09	A1

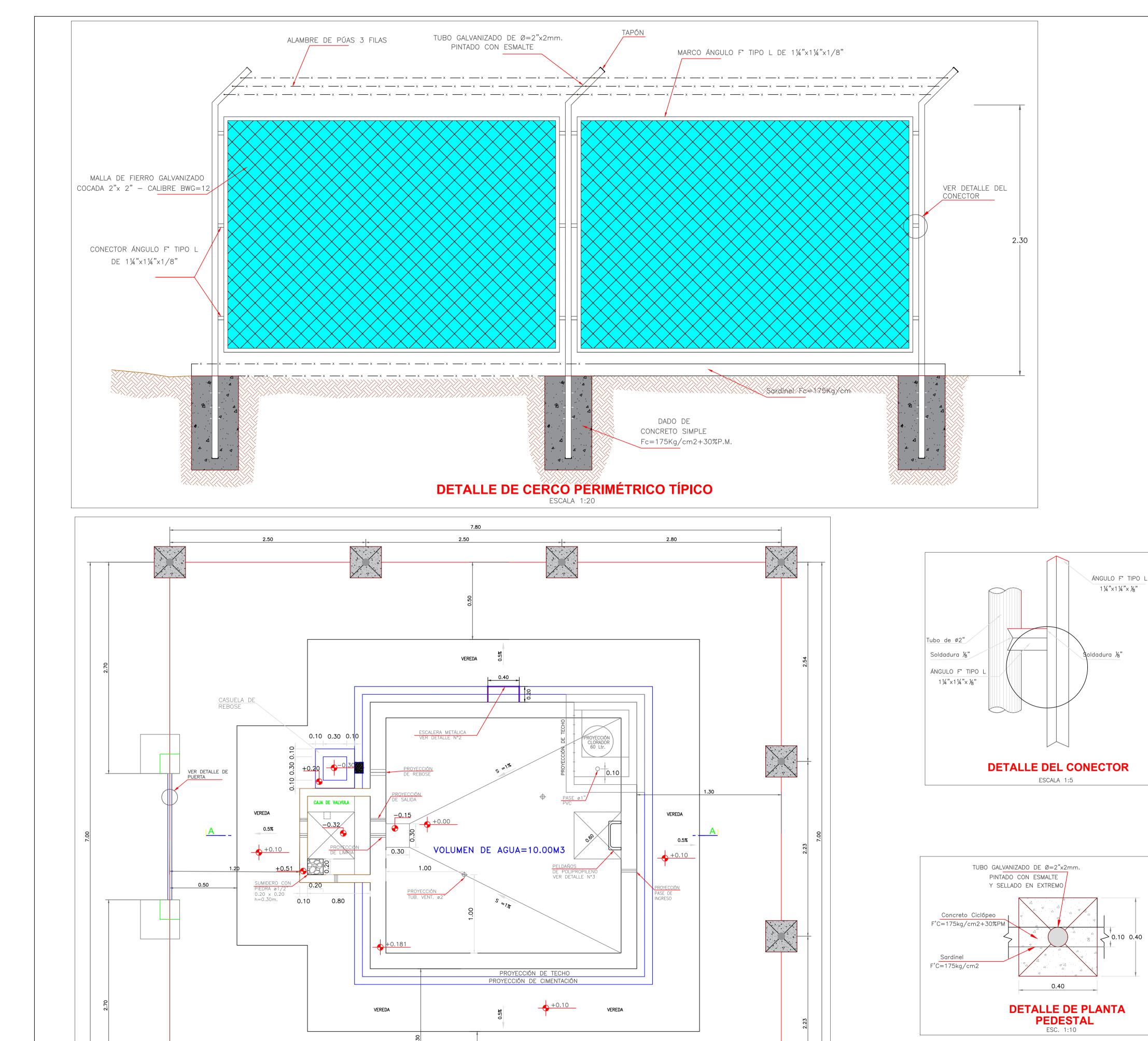
	CUADRO DE VALVULAS, ACCESO	ORIOS Y	TUBER	IAS V =	10 m3
No	DESCRIPCION	DIAMETE	CANTIDA	UNIDAD	NORMA TECNICA
EN'	ГRADA				
	Valvula de compuerta de cierre esferico C/Manija	1"	1	Und.	NTP 350.084:1998
	Union universal F°G°	1"	2	Und.	NTP ISO 49:1997
	Niple F°G° R (L=0.07 m) con rosca ambos lados	1"	6	Und.	ISO - 65 Serie I (Standart)
	Tee simple F°G°	1"	2	Und.	NTP ISO 49:1997
	Codo 90° F°G° Codo 45° F°G°	1" 1"	2	Und.	NTP ISO 49:1997
_		1"	1	Und.	NTP ISO 49:1997 NTP 399.019:2004
	Adaptador Union presion rosca PVC PN 10 Codo 45° PVC S/P PN 10	1"	1	Und. Und.	NTP 399.019:2004
	Valvula Flotadora de Bronce	1"	1	Und.	NTP 350.090:1997
	Niple F°G° R (L=0.35 m) con rosca ambos lados con B.R.A	1"	1	Und.	ISO - 65 Serie I (Standart)
	Union F°G°	1"	1	Und.	ISO - 65 Serie I (Standart)
	Tuberia F°G°	1"	0.4	m.	ISO - 65 Serie I (Standart)
13	Tuberia PVC S/P PN 10	1"	1.2	m.	NTP 399.002:2015
SAI	LIDA				
_	Valvula de compuerta de cierre esferico C/Manija	1"	1	Und.	NTP 350.084:1998
	Union universal F°G°	1"	2	Und.	NTP ISO 49:1997
	Niple F°G° R (L=0.07 m) con rosca ambos lados	1"	3	Und.	ISO - 65 Serie I (Standart)
_	Tee simple F°G°	1"	1	Und.	NTP ISO 49:1997
	Codo 45° F°G° Adaptador Union presion rosca PVC PN 10	1" 1"	1	Und.	NTP ISO 49:1997 NTP 399.019:2004
	Codo 45° PVC S/P PN 10	1"	1	Und. Und.	NTP 399.019:2004 NTP 399.019:2004
_	Niple F°G° R (L=0.35 m) con rosca ambos lados con B.R.A	1"	1	Und.	ISO - 65 Serie I (Standart)
	Tuberia F°G°	1"	0.5	m.	ISO - 65 Serie I (Standart)
	Tuberia PVC S/P PN 10	1"	1.15	m.	NTP 399.002:2015
	Union Presion Rosca (Rosca hembra) PVC PN 10	1"	1	Und.	NTP 399.019:2004
	Reduccion PVC S/P PN 10	2" a 1"	1	Und.	NTP 399.019:2004
26	Tuberia S/P PN 10 con agujeros	2"	0.2	m.	NTP 399.002:2015
27	Tapon hembra PVC S/P PN 10 con agujeros	2"	1	Und.	NTP 399.019:2004
	ИРІА				
	Valvula de compuerta de cierre esferico C/Manija	2"	1	Und.	NTP 350.084:1998
	Union universal F°G°	2"	2	Und.	NTP ISO 49:1997
	Niple F°G° R (L=0.10 m) con rosca ambos lados	2"	3	Und.	ISO - 65 Serie I (Standart)
	Codo 45° F°G°	2"	1	Und. Und.	NTP ISO 49:1997 NTP 399.019:2004
	Adaptador Union presion rosca PVC PN 10 Niple F°G° R (L=0.45 m) con rosca a un lado con B.R.A	2"	1	Und.	ISO - 65 Serie I (Standart)
$\overline{}$	Tuberia F°G°	2"	0.3	m.	ISO - 65 Serie I (Standart)
_	Tuberia PVC S/P PN 10	2"	6	m.	NTP 399.002:2015
$\overline{}$	Codo 45° PVC S/P PN 10	2"	2	Und.	NTP 399.019:2004
	Tee simple PVC S/P PN 10	2"	1	Und.	NTP 399.019:2004
RE	BOSE				
38	Codo 90° F°G°	2"	2	Und.	NTP ISO 49:1997
39	Codo 90° F°G° con malla soldada	2"	1	Und.	NTP ISO 49:1997
-	Codo 90° PVC S/P PN 10	2"	2	Und.	NTP 399.019:2004
	Codo 45° PVC S/P PN 10	2"	1	Und.	NTP 399.019:2004
$\overline{}$	Niple F°G° R (L=0.25 m) con rosca a un lado con B.R.A	2"	1	Und.	ISO - 65 Serie I (Standart)
	Tuberia F°G° Tuberia PVC S/P PN 10	2"	1.3	m.	ISO - 65 Serie I (Standart)
_	Tuberia PVC S/P PN 10 PASS	2"	1.2	m.	NTP 399.002:2015
	Valvula de compuerta de cierre esferico C/Manija	1"	1	Und.	NTP 350.084:1998
	Union universal F°G°	1"	2	Und.	NTP ISO 49:1997
	Niple F°G° R (L=0.07 m) con rosca ambos lados	1"	3	Und.	ISO - 65 Serie I (Standart)
	Tuberia F°G°	1"	0.3	m.	ISO - 65 Serie I (Standart)
	NTILACION				, ,
49	Codo 90° F°G°	2"	1	Und.	NTP ISO 49:1997
	Codo 90° F°G° con malla soldada	2"	1	Und.	NTP ISO 49:1997
	Niple F°G° R (L=0.50 m) con rosca a un lado con B.R.A	2"	1	Und.	ISO - 65 Serie I (Standart)
	Niple F°G° R (L=0.10 m) con rosca ambos lados	2"	1	Und.	ISO - 65 Serie I (Standart)
	GRESO A CLORACION	10		TT 4	100 (50 1 1 (0) 1
-	Niple F°G° R (L=0.07 m) con rosca ambos lados	1"	1	Und.	ISO - 65 Serie I (Standart)
	Reduccion F°G°	1" a 1/2" 1/2"	1	Und.	NTP ISO 49:1997
_	Codo 90° F°G° Tuberia F°G°	1/2"	3.9	Und.	NTP ISO 49:1997 ISO - 65 Serie I (Standart)
	Adaptador Union presion rosca PVC	1/2"	2	m. Und.	NTP 399.019:2004
	Tuberia PVC S/P PN 10	1/2"	3.6	m.	NTP 399.002:2015
	Grifo de jardin	1/2"	1	Und.	NTP 350.084:1998
	Codo 90° PVC S/P PN 10	1/2"	2	Und.	NTP 399.019:2004
$\overline{}$	Union F°G°	1/2"	1	Und.	ISO - 65 Serie I (Standart)

DETALLE N° 1 TAPA METALICA

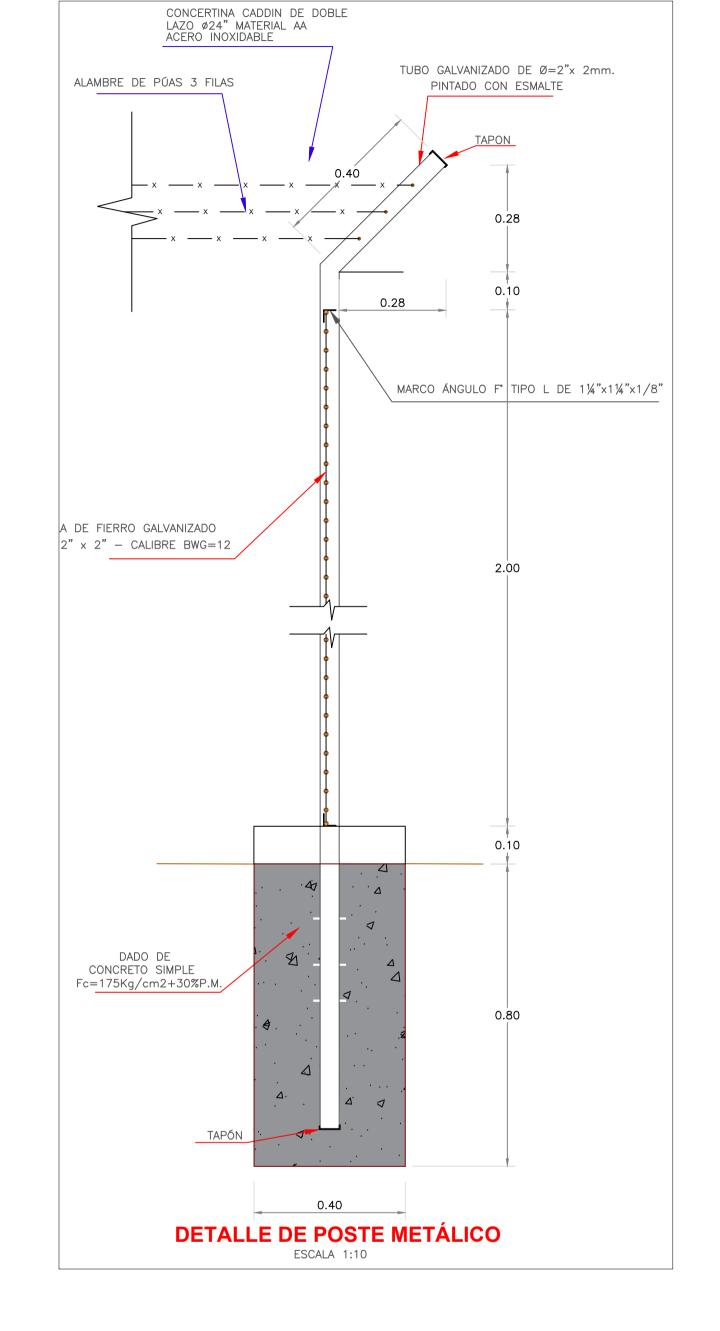
DETALLE DE PUERTA METALICA 0.100.10 0.100.10 0.70 0.20 0.10 0.10 0.50 0.10 PUERTA DE REJA DOS PAÑOS 4 4 4 0.20 1.22 BIDON DE 60 Ltr. DADO DE CONCRETO 0.100.10 f'c=210 kg/cm2SALE A RESERVOR **PLANTA** MANGUERA ø3/8 ESC. 1:25 0.10 0.70 CORTE X-X ESC. 1:25 0.10 0.10 0.10 0.85 ENTRADA DE AGUA "x 1"x3/16" 1"x 1"x3/16" 0.10 0.12 1.27 1.22 BISAGRA SOLDABLE 0.92 BIDON DE CANDADO VER DETALLE 60 Lt. $\phi = 0.40 cm$ TECHO DE RESERVORIO 1.22 ANGULAR I 1"x 1"x3/16" BISAGRA SOLDABLE+ TECHO DE PASE DE TUBERIA FIERRO DE ANCLAJE-PVC ø1 **0** 10 DADO DE CONCRETO f'c=210 kg/cm2 MANGUERA ø3/8' _ANGULAR L 1"x 1"x3/16" CORTE Y-Y ESC. 1:25 PORTACANDADO SOLDADO -EN PUERTA PARA CANDADO Nº 40 0.07 N° 40 DETALLE FLOTADOR CON TECNOPOR PARED DEL BIDON S/E **DETALLE DE CANDADO-PORTACANDADO** 600 1000mm 1:10 200 400 800 1:25 500 1000 1500 2000 2500mm ESCALA GRÁFICA

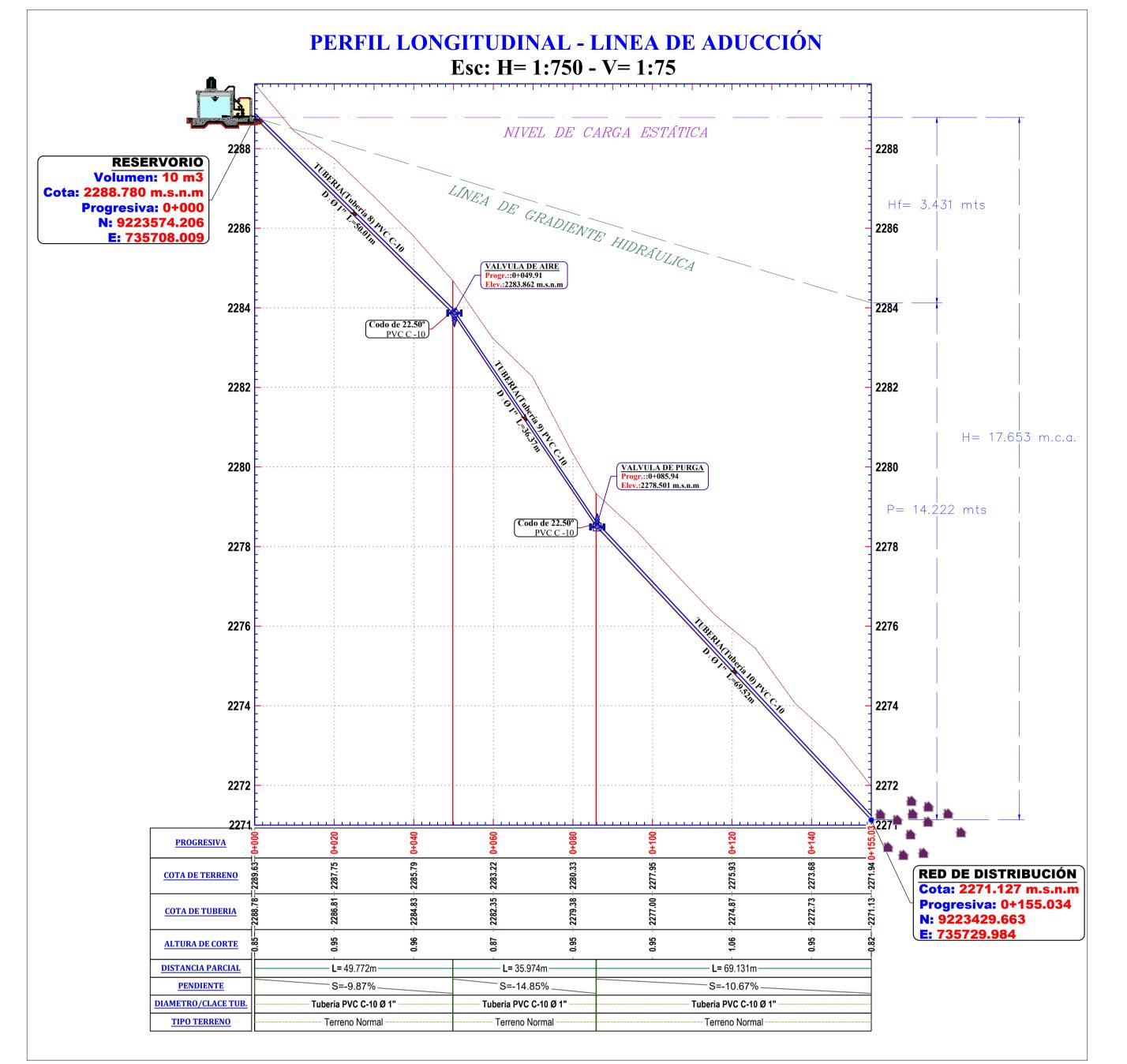

CUADRO DE ACCESORIOS DE CLORACIÓN

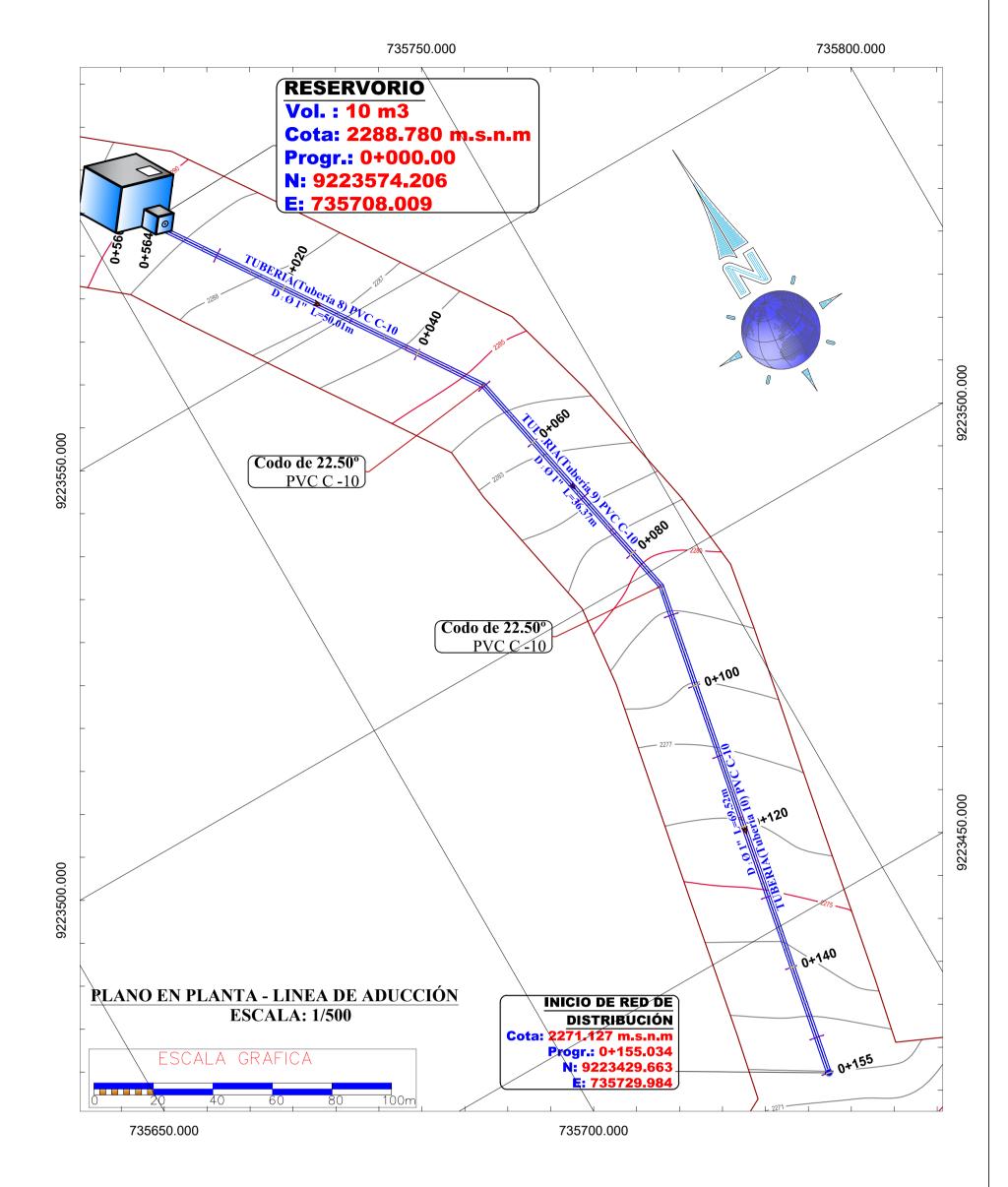

N°	DESCRIPCION	CANT.	UNIDAD
1	NIPLE PVC 1/2" x 2" ROSCA CONTINUA	01	und.
2	VALVULA DE COMPUERTA ESFERICA PVC	01	und.
3	PITORRA 1/2" A 3/8" BRONCE	01	und.
4	MANGUERA Ø1/2" TRANSPARENTE	1.50	m.
5	MANGUERA Ø3/8" TRANSPARENTE	5.00 (1)	m.
6	HUACHA PLANA DE BRONCE C/ROSCA Ø1/2" + EMPAQUETADURA	01	und.
7	HUACHA PLANA DE PVC C/ROSCA Ø1/2" + EMPAQUETADURA	01	und.
8	FLOTADOR DE TECNOPORT SEGUN DETALLE	01	und.
9	TAPON HEMBRA CON ORIFICIO Ø2mm.	01	und.
10	BIDON (VOLUMEN VARIABLE) (2)	01	und.


- (1) LA LONGITUD ES PROMEDIO, VARIA Y DEPENDE DE LA UBICACION FINAL DEL SITEMA DE CLORACION INCLUYE LAS ABRAZADERAS.
- ABRAZADIKAS.

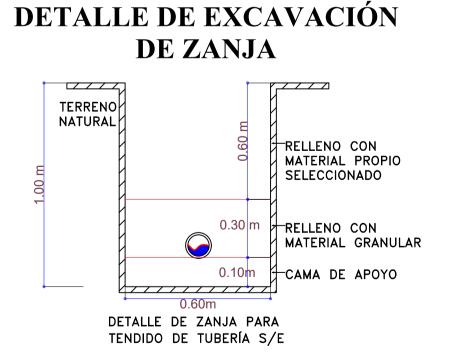
 (2) EL VOLUMEN DEPENDE DEL CAUDAL DEL PROYECTO.


 (3) EL METRADO DE ACCESORIOS DE ENTRADA ESTA CONSIDERADO EN EL RESERVORIO.


PLANTA - CERCO PERIMETRICO
ESC. 1:25


EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DEL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.

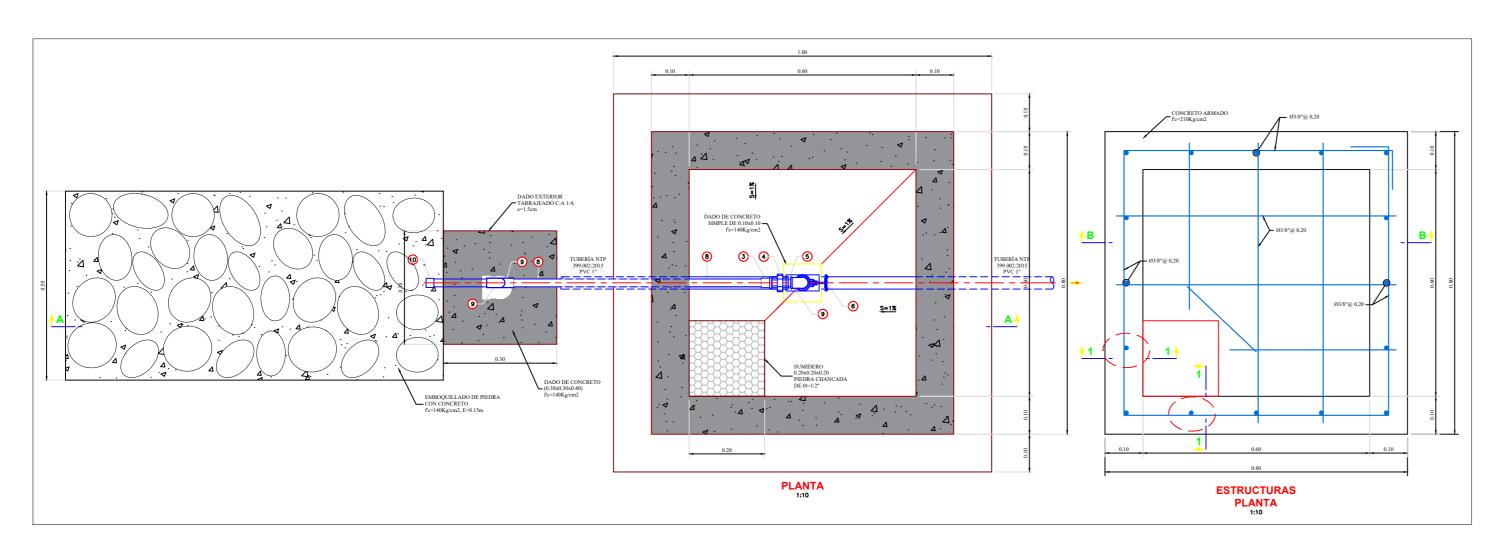
CERCO PERIME	TRICO - RESERVORIO	LÁMINA:		DIMENSIÓN:
PLANO:	TRICO - RESERVORIO	REGIÓN:	CAJAMAI	RCA
MGTR. ING. LEÓN	N DE LOS RÍOS GONZALO MIGUEL	PROVINCIA:	SAN MIG	UEL
ASESOR:		DISTRITO:	SAN MIG	UEL
TESISTA: BACH. BARRIONU	JEVO FLORES, JOSSELY ADDERLY	CASERÍO:	SANTA M	ARÍA
UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE	SANITARIA DE LA POBLACIÓN - 2021.			
CAL	DE SAN MIGUEL, REGIÓN CAJAMAR	CA. PARA SU IN	NCIDENCIA	EN LA CONDICIÓN

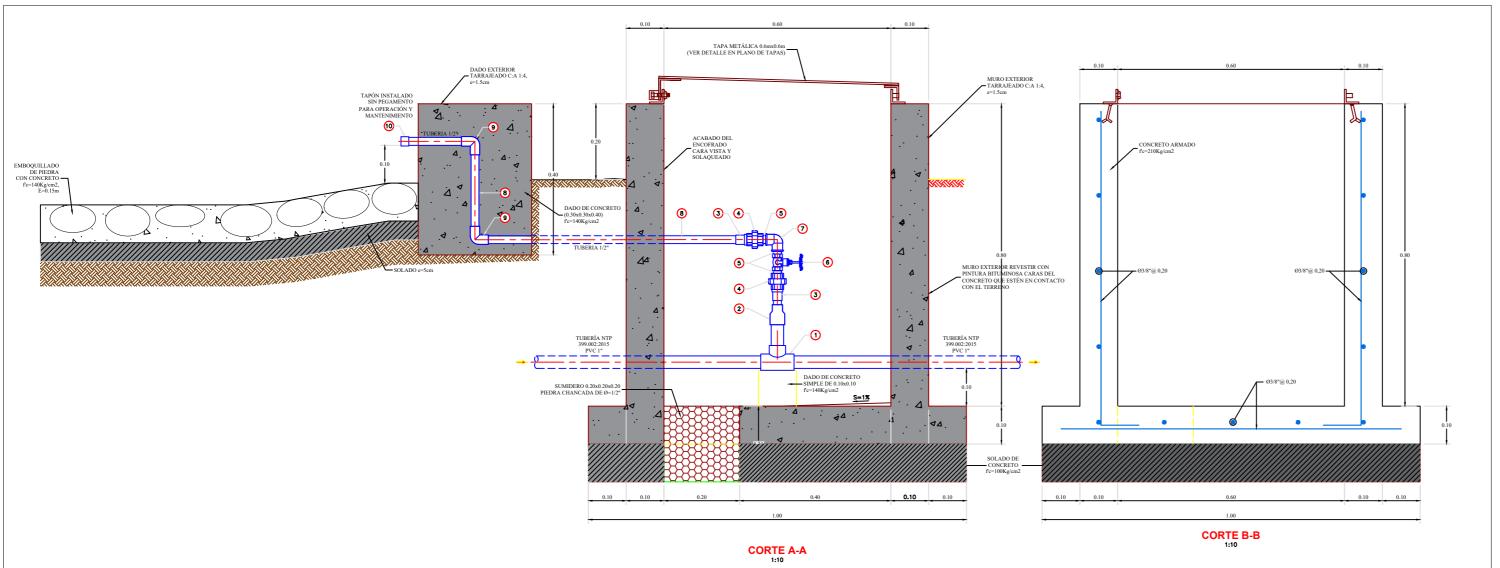


METRADO DE CAMA DE APOYO				
PROGRESIVA (Km)	ÁREA	VOLUMEN (m3)	VOLUMEN ACUMULADO (m3)	
(KIII)	(m2)	(1113)	ACUMULADO (III3)	
0+000.00	0.06	0.00	0.00	
0+010.00	0.06	0.60	0.60	
0+020.00	0.06	0.60	1.20	
0+030.00	0.06	0.60	1.80	
0+040.00	0.06	0.60	2.40	
0+050.00	0.06	0.60	3.00	
0+060.00	0.06	0.60	3.60	
0+070.00	0.06	0.60	4.20	
0+080.00	0.06	0.60	4.80	
0+090.00	0.06	0.60	5.40	
0+100.00	0.06	0.60	6.00	
0+110.00	0.06	0.60	6.60	
0+120.00	0.06	0.60	7.20	
0+130.00	0.06	0.60	7.80	
0+140.00	0.06	0.60	8.40	
0+150.00	0.06	0.60	9.00	
0+155.03	0.06	0.30	9.30	

CUADRO DE TUBERIAS A PRESIÓN				
# TUBERIA	DIÁMETRO DE TUBERÍA	LONGITUD (mts)	MATERIAL	
Tubería 8	Ø 1"	49.772 mts	PVC - CLASE 1	
Tubería 9	Ø 1"	35.974 mts	PVC - CLASE 1	
Tubería 10	Ø 1"	69.131 mts	PVC - CLASE 1	

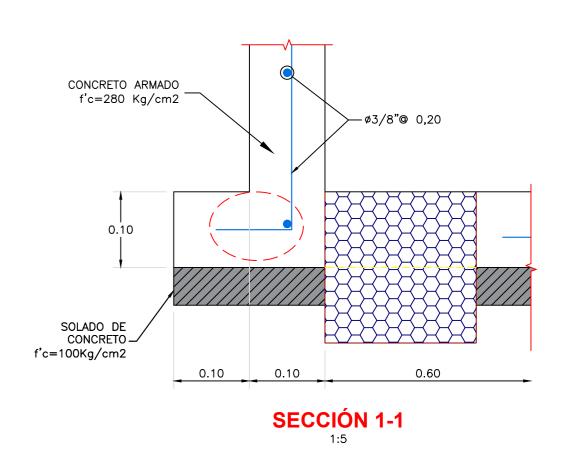
L E Y E N D A- PLANTA				
SÍMBOLO	DESCRIPCIÓN			
	TUBERIA DE ADUCCIÓN			
	CODO DE 22.5°			
(5)	PUNTOS DE CONTROL (BM)			
	RESERVORIO			
	NORTE MAGNETICO			
1	VIVIENDAS			
2696 msnm	ALTITUD			


LEYENDA PERFIL						
SÍMBOLO DESCRIPCIÓN						
RESERVORIO						
TUBERIA DE ADUCCIÓN						
TERRENO NATURAL						
I	VÁLVULA DE AIRE					
ı <u>≜</u> ı	VÁLVULA DE PURGA					
	NIVEL DE CARGA ESTÁTICA					
	LÍNEA DE GRADIENTE HIDRÁULICA					
	INICIO DE RED					


CUADRO DE CODOS				
# CODOS DIAMETRO DEL CODO MATERIAL ANGULO				
Codo 1	Ø 1"	PVC - CLASE 10	22.50°	
Codo 2	Ø 1"	PVC - CLASE 10	22.50°	

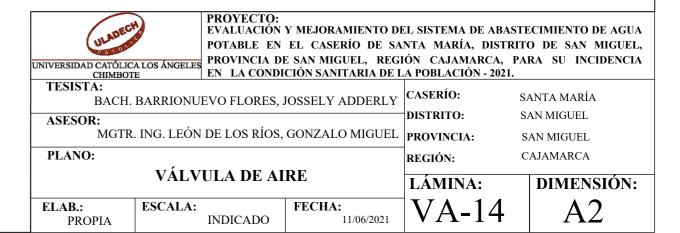
CÁLCULO HIDRÁULICO - LINEA DE ADUCCIÓN MÉTODO DIRECTO

PUNTO	DISTANCIA HORIZONTAL	NIVEL DINÁMICO - COTA -	DESNIVEL	LONG. DE TUBERÍA	CAUDAL	DIÁMETRO CALCULADO		VELOCIDAD CALCULADA	VELOCIDAD REAL	PERDIDA DE CARGA UNITARIA	H _f ACUMULADA	ALTURA PIESOMETR. - COTA -	PRESIÓN
	(Km + m)	(m.s.n.m.)	(m)	(m)	(m³/Seg.)	(mm)	(mm)	\rightarrow (m/Seg.)	\rightarrow (m/Seg.)	(m/Km)	\rightarrow (m)	(m.s.n.m.)	(m) ↑
RESERVORIO	00 Km + 000.00 m	2,288.780		0.00	0.00050							2,288.780	0.000
RED	00 Km + 155.03 m	2,271.127	17.653	155.034	0.00050	21.003	29.4	1.443 m/Seg.	0.737 m/Seg.	3.4311	3.4311	2,285.349	14.222
_								Pérdida	de carga en el tr	amo:	3.431 m		


EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, UNIVERSIDAD CATÓLICA LOS ÁNGELES PROVINCIA DE SAN MIGUEL, REGIÓN DE CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021. TESISTA: CASERÍO: SANTA MARÍA BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY DISTRITO: SAN MIGUEL **ASESOR:** MGTR. LEÓN DE LOS RÍOS, GONZALO MIGUEL PROVINCIA: SAN MIGUEL **PLANO: REGIÓN:** CAJAMARCA PERFIL LONGITUDINAL - LINEA DE ADUCCIÓN LÁMINA: DIMENSIÓN: ESCALA: INDICADA

LONGITUDES MÍNIM	IAS DE E	MPALMES P	OR
TRASLAPE:			
BARRA			
3/8 "	300 mm		
1/2 "	400 mm		
5/8 "	500 mm		
3/4 "	600 mm		
GANCHO ESTANDAR			
DIAMETRO DE LA BARRA (d)	DIÁMETRO	MÍNIMO DE DOBL	ADO (D)
3/8 "	60 mm		6
1/2 "	80 mm		Ъ
5/8 "	100 mm		(A)
3/4 "	115 mm		
GANCHO ESTANDAR			O
DIAMETRO DE LA BARRA (d)	LONGITUD N	MÍNIMO DE DOBLEZ (I	<u>L)</u>
	90°	180°	
3/8 "	60 mm	65 mm	d
1/2 "	80 mm	65 mm	L d
5/8 "	100 mm	65 mm	L
3/4 "	115 mm	80 mm	

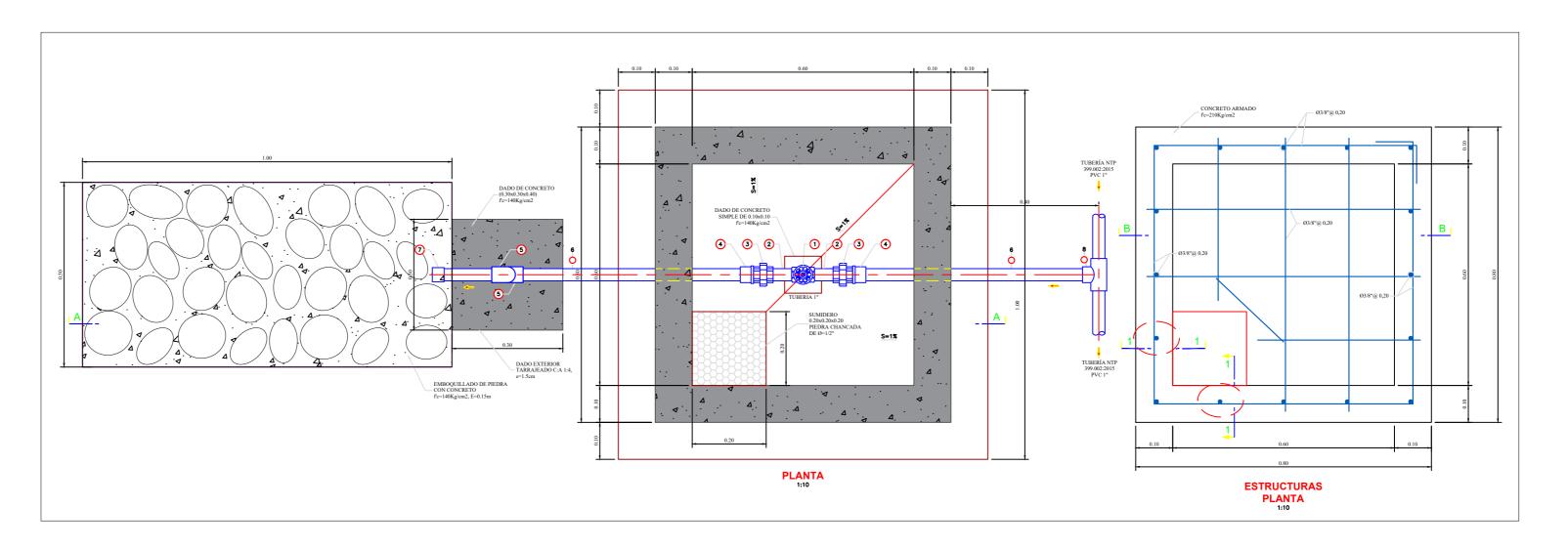
ESPECIFICACIONES TÉCNICAS			
CONCRETO SIMPLE:			
SOLADO (NIVELACION NO ESTRUCTURAL)	fc= 10 MPa (100Kg/cm2)		
CONCRETO SIMPLE	fc= 14 MPa (140Kg/cm2)		
CONCRETO ARMADO:			
EN GENERAL	fc= 20 MPa (210Kg/cm2)		
CEMENTO:			
EN GENERAL	CEMENTO PORTLAND TIPO I		
ACERO DE REFUERZO:			
EN GENERAL	fy=4200 Kg/cm2		
RECUBRIMIENTOS:			
CIMENTACION	50 mm		
MURO	40 mm		
LOSA	20 mm		
REVESTIMIENTO, PINTURA:	:		
EXTERIOR - TARRAJEO	C:A, 1:4 e=15 mm		
INTERIOR - ACABADO DEL ENCONFRADO C. 1:2 e=15 mm, PREVIA AUTORIZACIÓN DEL SU	ARAVISTA Y SOLAQUEADO O TARRAJEO (C:A PERVISOR)		
EXTERIOR - ACABADO CON PINTURA LATEZ	X EN ESTRUCTURA EXPUESTA, 2 MANOS		

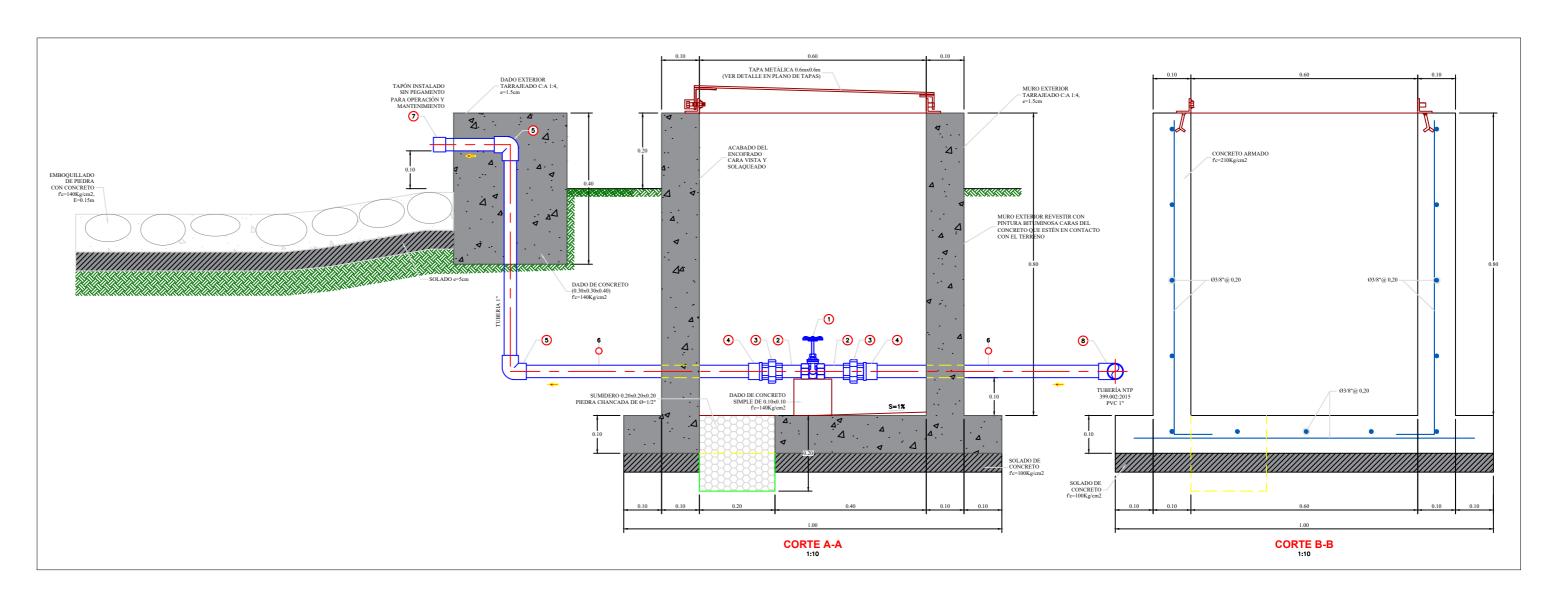

	LISTADO DE ACCESORIOS				
ITEM	DESCRIPCIÓN	CANT.			
1	TEE SP PVC 1"	1 UND.			
2	REDUCCIÓN SP PVC 1" A 1/2"	1 UND.			
3	ADAPTADOR UPR PVC 1/2"	2 UND.			
4	UNIÓN UNIVERSAL CON ROSCA PVC 1/2"	2 UND.			
5	NIPLE CON ROSCA PVC 1/2" X 1 1/2"	3 UND.			
6	VÁLVULA COMPUERTA DE BRONCE 1/2", 250 lbs	1 UND.			
7	CODO ROSCADO PVC 1/2" x 90°	1 UND.			
8	TUBERÍA PVC CLASE 10 DE 1/2", NTP 399.002:2015	1.20 ml.			
9	CODO SP PVC 1/2" X 90°	2 UND.			
10	TAPÓN SP PVC 1/2"	1 UND.			

NOTAS:

DIMENSIONES EN METROS, SALVO INDICADO.

2. LA ESCALA MOSTRADA ES PARA FORMATO A1, PARA A3 CONSIDERAR EL DOBLE.

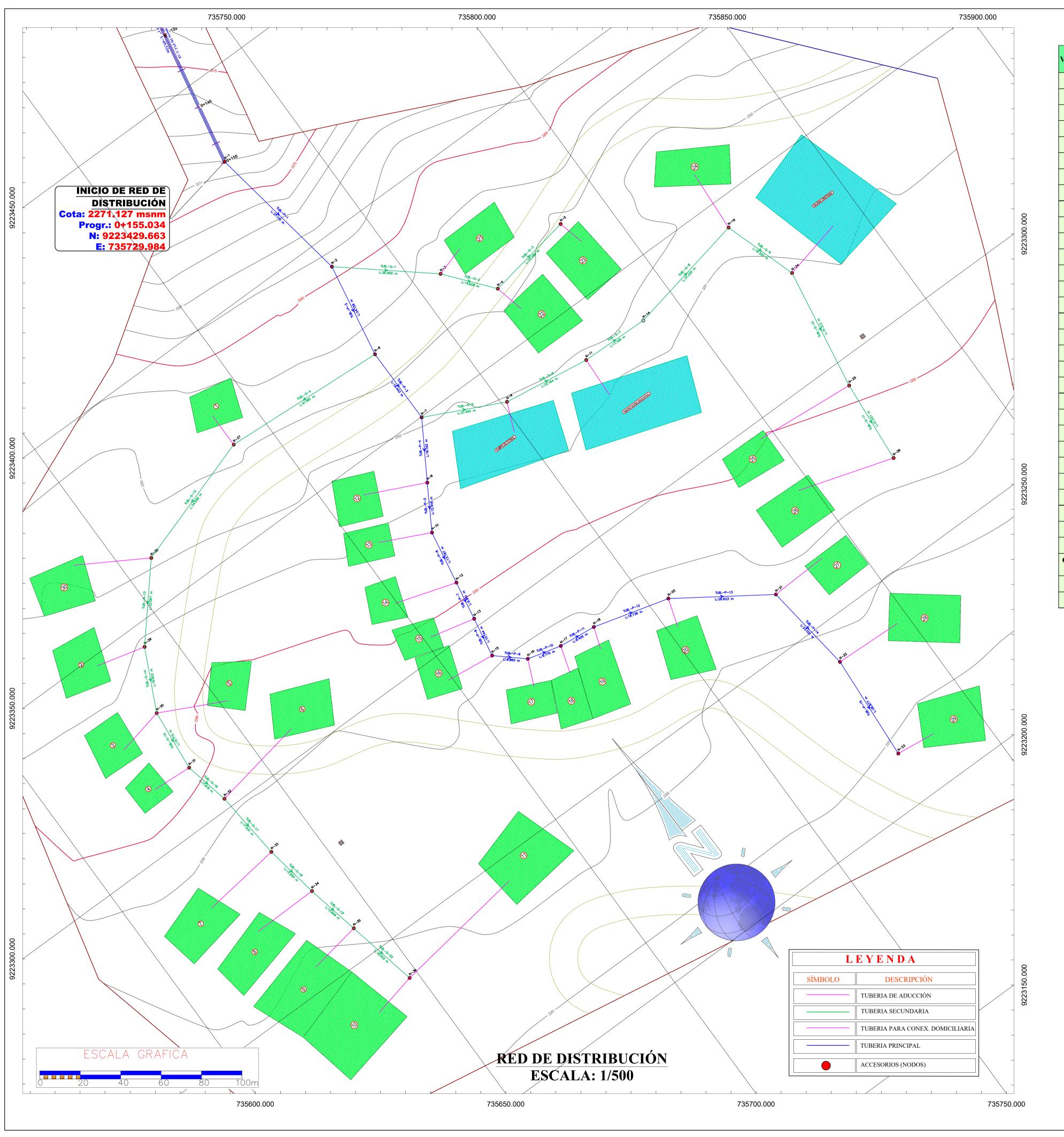

NORMAS TÉCNICAS VIGENTES				
PRODUCTO	NORMA/ESPECIFICACIÓN TÉCNICA			
TUBERÍA Y ACCESORIOS PVC PARA AGUA FRÍA PRESION	CLASE 10, NTP 399.002 : 2015 / NTP 399.019 : 2004 / NTE 002			
ACCESORIOS PVC PARA AGUA FRÍA CON ROSCA	CLASE 10, NTP 399.019 : 2004 / NTE 002			
TUBERÍA Y CONEXIONES DE PVC UF	CLASE 10, NTP ISO 1452 : 2011			
CEMENTO DISOLVENTE PARA TUBOS Y CONEXIONES DE POLI (CLORURO DE VINILO) NO PLASTIFICADO (PVC-U)	NTP 399.090 : 2015			
VÁLVULA COMPUERTA DE BRONCE	NTP 350.084 1998, VÁLVULAS DE COMPUERTA Y RETENCIÓN DE ALEACIÓN COBRE-ZINC Y COBRE-ESTAÑO PARA AGUA.			



LONGITUDES MÍNIMA	S DE EMP	AT MES POR	
TRASLAPE:	IS DL LIVII	ALMESTOR	
BARRA			
3/8 "	300 mm		
1/2 "	400 mm		
5/8 "	500 mm		
3/4 "	600 mm		
GANCHO ESTANDAR:			
DIAMETRO DE LA BARRA (d)		MNIMO DE DODI ADO	(D)
	DIAMETRO	MÍNIMO DE DOBLADO	(D)
3/8 "	60 mm		
1/2 "	80 mm		
5/8 "	100 mm		
3/4 "	115 mm		
GANCHO ESTANDAR:			
DIAMETRO DE LA BARRA (d)	LONGITUD MÍN	NIMO DE DOBLEZ (L)	
	90°	180°	
3/8 "	60 mm	65 mm	C d
1/2 "	80 mm	65 mm	d d
5/8 "	100 mm	65 mm	L
3/4 "	115 mm	80 mm	

	LISTADO DE ACCESORIOS				
ITEM	DESCRIPCIÓN	CANT.			
1	VALVULA COMPUERTA DE BRONCE 1", 250 lbs	1 UND.			
2	NIPLE CON ROSCA PVC 1" x 4"	2 UND.			
3	UNION UNIVERSAL CON ROSCA PVC 1"	2 UND.			
4	ADAPTADOR UPR PVC 1"	2 UND.			
5	CODO SP PVC 1" x 90°	2 UND.			
6	TUBERIA PVC CLASE 10 DE 1", NTP 399.002:2015	2.10 ml.			
7	TAPÓN SP PVC 1"	1 UND.			
8	TEE SP PVC 1"	1 UND.			

SOLADO (NIVELACION NO ESTRUCTURAL)	fc= 10 MPa (100Kg/cm2)
CONCRETO SIMPLE	fc= 14 MPa (140Kg/cm2)
CONCRETO ARMADO:	
EN GENERAL	fc= 20 MPa (210Kg/cm2)
CEMENTO:	
EN GENERAL	CEMENTO PORTLAND TIPO I
ACERO DE REFUERZO:	
EN GENERAL	fy=4200 Kg/cm2
RECUBRIMIENTOS:	
CIMENTACION	50 mm
MURO	40 mm
LOSA	20 mm
REVESTIMIENTO, PINTURA:	
EXTERIOR - TARRAJEO	C:A, 1:4 e=15 mm
NTERIOR - ACABADO DEL ENCONFRADO C. :2 e=15 mm, PREVIA AUTORIZACIÓN DEL SU	ARAVISTA Y SOLAQUEADO O TARRAJEO (C:A JPERVISOR)
EXTERIOR - ACABADO CON PINTURA LATE	X EN ESTRUCTURA EXPUESTA, 2 MANOS
:2 e=15 mm, PREVIA AUTORIZACIÓN DEL SU	JPERVISOR) X EN ESTRUCTURA E



NORMAS TÉCNICAS VIGENTES			
PRODUCTO	NORMA/ESPECIFICACIÓN TÉCNICA		
TUBERÍA Y ACCESORIOS PVC PARA AGUA FRÍA PRESION	CLASE 10, NTP 399.002 : 2015 / NTP 399.019 : 2004 / NTE 002		
ACCESORIOS PVC PARA AGUA FRÍA CON ROSCA	CLASE 10, NTP 399.019 : 2004 / NTE 002		
TUBERÍA Y CONEXIONES DE PVC UF	CLASE 10, NTP ISO 1452 : 2011		
CEMENTO DISOLVENTE PARA TUBOS Y CONEXIONES DE POLI (CLORURO DE VINILO) NO PLASTIFICADO (PVC-U)	NTP 399.090 : 2015		
VÁLVULA COMPUERTA DE BRONCE	NTP 350.084 1998, VÁLVULAS DE COMPUERTA Y RETENCIÓN DE ALEACIÓN COBRE-ZINC Y COBRE-ESTAÑO PARA AGUA.		

PROYECTO: EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.						
TESISTA: BACH. BARRIONUEVO FLORES,		ANTA MARÍA AN MIGUEL				
ASESOR: MGTR. LEÓN DE LOS RÍOS, O	GONZALO MIGUEL	District.	AN MIGUEL			
PLANO:		REGIÓN: C	AJAMARCA			
VÁLVULA DE PU	LÁMINA:	DIMENSIÓN:				
ELAB.: PROPIA ESCALA: INDICADA	FECHA: 11/06/2021	VP-15	A2			

Viv1 0.015 2263.641 20.520 Viv2 0.015 2261.311 22.326 Viv3 0.015 2260.637 22.887 Viv4 0.015 2260.254 23.204 Viv5 0.015 2259.759 23.766 Viv6 0.015 2259.281 24.138 Viv7 0.015 2258.377 24.641 Viv8 0.015 2258.376 24.981 Viv9 0.015 2257.984 25.360 Viv10 0.015 2257.934 25.402 Viv11 0.015 2258.206 25.131 Viv12 0.015 2258.206 25.131 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.333 24.512 Viv16 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015	
Viv3 0.015 2260.637 22.887 Viv4 0.015 2260.254 23.204 Viv5 0.015 2259.759 23.766 Viv6 0.015 2259.281 24.138 Viv7 0.015 2258.737 24.641 Viv8 0.015 2258.376 24.981 Viv9 0.015 2257.984 25.360 Viv10 0.015 2257.934 25.402 Viv11 0.015 2258.206 25.131 Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.852 23.549 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015	
Viv4 0.015 2260.254 23.204 Viv5 0.015 2259.759 23.766 Viv6 0.015 2259.281 24.138 Viv7 0.015 2258.737 24.641 Viv8 0.015 2258.376 24.981 Viv9 0.015 2257.984 25.360 Viv10 0.015 2257.934 25.402 Viv11 0.015 2258.206 25.131 Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015	
Viv5 0.015 2259.759 23.766 Viv6 0.015 2259.281 24.138 Viv7 0.015 2258.737 24.641 Viv8 0.015 2258.376 24.981 Viv9 0.015 2257.984 25.360 Viv10 0.015 2257.934 25.402 Viv11 0.015 2258.206 25.131 Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.482 25.811 Viv20 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv6 0.015 2259.281 24.138 Viv7 0.015 2258.737 24.641 Viv8 0.015 2258.376 24.981 Viv9 0.015 2257.984 25.360 Viv10 0.015 2257.934 25.402 Viv11 0.015 2258.206 25.131 Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv7 0.015 2258.737 24.641 Viv8 0.015 2258.376 24.981 Viv9 0.015 2257.984 25.360 Viv10 0.015 2257.934 25.402 Viv11 0.015 2258.206 25.131 Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv8 0.015 2258.376 24.981 Viv9 0.015 2257.984 25.360 Viv10 0.015 2257.934 25.402 Viv11 0.015 2258.206 25.131 Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv9 0.015 2257.984 25.360 Viv10 0.015 2257.934 25.402 Viv11 0.015 2258.206 25.131 Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv10 0.015 2257.934 25.402 Viv11 0.015 2258.206 25.131 Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv11 0.015 2258.206 25.131 Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv12 0.015 2261.450 22.988 Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv13 0.015 2260.852 23.549 Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv14 0.015 2260.331 24.036 Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv15 0.015 2259.833 24.512 Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv16 0.015 2259.310 25.019 Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv17 0.015 2258.761 25.556 Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv18 0.015 2258.709 25.599 Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv19 0.015 2258.820 25.482 Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv20 0.015 2258.482 25.811 Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv21 0.015 2263.742 21.318 Viv22 0.015 2262.847 22.207	
Viv22 0.015 2262.847 22.207	
Viv23 0.015 2262.645 22.406	
Viv24 0.015 2261.933 22.369	
Viv25 0.015 2260.038 24.232	
Viv26 0.015 2259.467 24.799	
Viv27 0.015 2258.803 25.483	
Viv28 0.015 2257.714 26.568	
Viv29 0.015 2257.175 27.104	
Viv30 0.015 2262.203 21.617	
Campo de futbol 0.015 2261.485 22.941	
Colegio 0.015 2261.014 23.361	
Iglesia 0.015 2261.169 23.116	

NODO	ELEVACIÓN (mts)	PRESIÓN (m H2O)
N-1	2285.349	14.222
N-2	2265.458	19.63
N-3	2263.606	21.455
N-4	2263.188	21.866
N-5	2262.878	22.173
N-6	2263.531	21.105
N-7	2262.155	22.34
N-8	2261.251	23.187
N-9	2261.925	22.501
N-10	2260.721	23.68
N-11	2261.774	22.601
N-12	2260.176	24.191
N-13	2259.694	24.652
N-14	2261.686	22.663
N-15	2259.148	25.181
N-16	2258.914	25.403
N-17	2258.872	25.437
N-18	2258.928	25.374
N-19	2261.272	23.03
N-20	2258.737	25.556
N-21	2258.647	25.639
N-22	2257.727	26.554
N-23	2257.081	27.199
N-24	2260.909	23.376
N-25	2260.132	24.138
N-26	2259.311	24.955
N-27	2263.202	20.959

TRAZO	LONGITUD (mts)	DIÁMETRO (mm)	MATERIAL	COEFICIENTE DE RUGOCIDAD "C"	CAUDAL (L/s)	VELOCIDAD (m/s)
Linea de Aducción	155.034	29.4	PVC	150	0.500	0.74
TUBP-1	37.110	29.4	PVC	150	0.500	0.74
TUBP-2	24.159	29.4	PVC	150	0.455	0.67
TUBS-1	26.955	22.9	PVC	150	0.045	0.11
TUBS-2	14.608	22.9	PVC	150	0.030	0.07
TUBS-3	22.286	22.9	PVC	150	0.015	0.04
TUBP-3	19.403	29.4	PVC	150	0.273	0.40
TUBS-4	41.481	22.9	PVC	150	0.182	0.44
TUBP-4	16.192	29.4	PVC	150	0.182	0.27
TUBS-5	21.454	22.9	PVC	150	0.091	0.22
TUBP-5	12.416	29.4	PVC	150	0.167	0.25
TUBS-6	22.164	22.9	PVC	150	0.076	0.18
TUBP-6	13.787	29.4	PVC	150	0.152	0.22
TUBS-7	17.168	22.9	PVC	150	0.061	0.15
TUBP-7	9.951	29.4	PVC	150	0.136	0.20
TUBP-8	10.144	29.4	PVC	150	0.121	0.18
TUBS-8	31.220	22.9	PVC	150	0.061	0.15
TUBP-9	8.860	29.4	PVC	150	0.106	0.16
TUBP-10	8.775	29.4	PVC	150	0.091	0.13
TUBP-11	9.405	29.4	PVC	150	0.076	0.11
TUBP-12	19.736	29.4	PVC	150	0.061	0.09
TUBS-9	19.320	22.9	PVC	150	0.045	0.11
TUBP-13	26.623	29.4	PVC	150	0.045	0.07
TUBP-14	23.021	29.4	PVC	150	0.030	0.04
TUBP-15	26.877	29.4	PVC	150	0.015	0.02
TUBS-10	31.212	22.9	PVC	150	0.030	0.07
TUBS-11	21.037	22.9	PVC	150	0.015	0.04
TUBS-12	34.690	22.9	PVC	150	0.167	0.40
TUBS-13	22.067	22.9	PVC	150	0.152	0.37
TUBS-14	16.653	22.9	PVC	150	0.136	0.33
TUBS-15	15.715	22.9	PVC	150	0.106	0.26
TUBS-16	11.618	22.9	PVC	150	0.091	0.22
TUBS-17	17.541	22.9	PVC	150	0.076	0.18
TUBS-18	13.950	22.9	PVC	150	0.061	0.15
TUBS-19	13.849	22.9	PVC	150	0.045	0.11
TUBS-20	18.502	22.9	PVC	150	0.030	0.07

NODO	ELEVACIÓN (mts)	PRESIÓN (m H2O)
N-28	2262.166	21.655
N-29	2260.899	22.738
N-30	2260.491	23.034
N-31	2260.144	23.314
N-32	2259.365	24.054
N-33	2258.653	24.726
N-34	2258.343	25.014
N-35	2258.09	25.254
N-36	2257.954	25.382

L E Y E N D A		
SÍMBOLO	DESCRIPCIÓN	
- (Park) ZA	NORTE MAGNETICO	
	TUBERIA	
CRP6	CAMARA ROMPE PRESIÓN	
(6)	PUNTOS DE CONTROL (BM)	
	RESERVORIO	
	VIVIENDAS	
	CURVAS MAYORES	
	CURVAS MENORES	

PROYECTO: EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE SANTA MARÍA, DISTRITO DE SAN MIGUEL, PROVINCIA UNIVERSIDAD CATÓLICA LOS ÁNGELES CHIMBOTE

DE SAN MIGUEL, REGIÓN CAJAMARCA, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2021.

CASERÍO: BACH. BARRIONUEVO FLORES, JOSSELY ADDERLY **ASESOR:**

MGTR. LEÓN DE LOS RÍOS, GONZALO MIGUEL **PLANO:** RED DE DISTRIBUCIÓN

SANTA MARÍA DISTRITO: SAN MIGUEL PROVINCIA: SAN MIGUEL **REGIÓN:** CAJAMARCA LÁMINA: DIMENSIÓN:

ESCALA: INDICADA ELAB.: PROPIA