

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUANUCO, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN – 2019.

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

VEGA MAMANI, JOSE LUIS

ORCID: 0000-0003-0589-5141

ASESOR:

LEON DE LOS RIOS, GONZALO MIGUEL

ORCID: 0000-0002-1666-830X

CHIMBOTE – PERÚ

2021

1. Título de la tesis:

Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición Sanitaria de la Población – 2019.

2. Equipo de trabajo

Autor

Bach. Vega Mamani, Jose Luis

Orcid: 0000-0003-0589-5141

Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú

Asesor

Ms. León De los ríos, Gonzalo Miguel

Orcid: 0000-0002-1666-830X

Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú.

Escuela Profesional de Ingeniería Civil, Chimbote, Perú.

Jurado

Mgtr. Sotelo Urbano, Johanna del Carmen

Orcid: 0000-0001-9298-4059

Presidente

Mgtr. Córdova Córdova, Wilmer Oswaldo

Orcid: 0000-0003-2435-5642

Miembro

Mgtr. Bada Alayo, Delva Flor

Orcid: 0000-0002-8238-679X

Miembro

3. Hoja de firma del jurado y asesor:

Mgtr. Sotelo Urbano, Johanna del Carmen

Orcid: 0000-0001-9298-4059

Presidente

Mgtr. Córdova Córdova, Wilmer Oswaldo

Orcid: 0000-0003-2435-5642

Miembro

Mgtr. Bada Alayo, Delva Flor

Orcid: 0000-0002-8238-679X

Miembro

Ms. León de los Ríos, Gonzalo Miguel

ORCID: 0000-0002-1666-830X

Asesor

4. Hoja de agradecimiento y/o dedicatoria

Agradecimiento

Agradezco en primer lugar a Dios por la vida, por la fortaleza y bendiciones que me ha brindado, siempre estando conmigo y con mi familia.

Les doy las gracias a mi madre Margarita Mamani Pila por todo el apoyo incondicional, por enseñarme a tomar las decisiones correctas e inculcarme valores, son admirables.

Agradezco a mis hermanos Alfredo Trujillo Mamani y Solimar Juliana Baltazar Mamani por su cariño y su apoyo incondicional hacia mi persona.

Gracias a todos ellos seguiré siempre adelante porque en cada dificultad que se me presente contaré con ellos y serán mi gran fortaleza, teniendo presente en todo a Dios.

Dedicatoria

Se le dedico a Dios por iluminar mis pasos y por estar conmigo cuando más lo necesito, siempre he contado con él en todo lo que he realizado.

Dedicado para mi madre Margarita Mamani Pila por haberme forjado como persona, por demostrarme su apoyo incondicional, por brindarme el tiempo necesario para realizarme profesionalmente y a mis hermanos Alfredo Trujillo Mamani y Solimar Juliana Baltazar Mamani, siempre me apoyaron desde un inicio, son quienes me dieron ánimos de salir adelante y la oportunidad de poder ejercer una carrera profesional.

En especial va dedicado para mis abuelos Juliana Pila y Bartolomé Mamani, siempre están presente en mi corazón y son el gran motivo por el cual sigo siempre adelante.

5. Resumen y Abstract

Resumen

El presente trabajo de investigación tuvo como problema ¿La evaluación y

mejoramiento del sistema de abastecimiento de agua potable en el Caserío de

Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de

Pachitea, Región Huánuco; mejorara la Condición Sanitaria de la Población?; se tuvo

como objetivo general; Desarrollar la evaluación y mejoramiento del sistema de

abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de

Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su

Incidencia en la Condición Sanitaria de la Población – 2019. En la metodología se

empleó las siguientes características. El tipo descriptivo correlacional, el nivel

cuantitativo y cualitativo, el diseño fue descriptiva no experimental porque se realizó

de manera transversal. Se concluye que el sistema de abastecimiento de agua potable

del caserío de Allpamarca se encuentra en un estado no sostenible, afectando las

condiciones de salud de la población por lo que se tuvo que mejorar la cámara de

captación Damaciopuquio y la captación Matacaballo, incluyendo cerco perimétrico;

02 Líneas de conducción; 02 reservorios rectangulares de 10 m³ y 15 m³, con su cerco

perimétrico; 02 líneas de aducción,; 02 redes de distribución que dotará de agua potable

a 112 viviendas del caserío de Allpamarca.

Palabras clave: Abastecimiento agua, mejoramiento del sistema, evaluación potable.

vii

Abstract

The present research work had as a problem: The evaluation and improvement of the

drinking water supply system in the Allpamarca Village of the Tayagasha Population

Center, Panao District, Pachitea Province, Huánuco Region; improve the Health

Condition of the Population ?; it was had as a general objective; Develop the evaluation

and improvement of the drinking water supply system in the Allpamarca Village of the

Tayagasha Population Center, Panao District, Pachitea Province, Huánuco Region, for

its Impact on the Sanitary Condition of the Population - 2019. In the methodology the

following characteristics were used. The correlational descriptive type, the quantitative

and qualitative level, the design was descriptive and not experimental because it was

carried out in a transversal way. It is concluded that the drinking water supply system

of the village of Allpamarca is in an unsustainable state, affecting the health conditions

of the population, which is why the Damaciopuquio catchment chamber and the

Matacaballo catchment had to be improved, including perimeter fence; 02 Driving

lines; 02 rectangular reservoirs of 10 m3 and 15 m3, with its perimeter fence; 02

adduction lines; 02 distribution networks that will provide drinking water to 112 homes

in the village of Allpamarca.

Keywords: Water supply, system improvement, drinking evaluation.

viii

6. Contenido

	Pagina
1.	Título de Tesisii
2.	Equipo de Trabajoiii
3.	Hoja de firma de jurado y asesoriv
4.	Hoja de agradecimiento y/o dedicatoriav
5.	Resumen y abstractvii
6.	Contenidoix
7.	Índice de Gráficos, tablas y cuadrosxiii
I.	Introducción
II	Revisión de literatura3
	2.1. Antecedentes
	2.1.1. Antecedentes Locales
	2.1.2. Antecedentes Nacionales
	2.1.3. Antecedentes Internacionales
	2.2. Bases teóricas de la investigación
	2.2.1. Condición sanitaria
	2.2.1.1. Calidad de Agua Potable
	2.2.1.2. Cantidad de Agua Potable
	2.2.1.3. Cobertura de Servicio
	2.2.1.4. Índice de sostenibilidad

2.2.1.5. Factores de sostenibilidad	16
2.2.2. Mejoramiento	14
2.2.3. Sistemas de abastecimiento de agua potable en el ámbito rural	15
2.2.3.1. Tipos de Sistemas de Agua Potable	15
2.2.4. Agua Potable	16
2.2.5. Afloramiento	17
2.2.6. Fuente de Agua	17
2.2.6.1. Tipos de fuentes de Agua	17
2.2.7. Demanda de Agua	19
2.2.8. Periodo de Diseño	19
2.2.9. Población Futura	20
2.2.9.1. Métodos de estimación de la población futura	24
2.2.10. Dotación	25
2.2.11. Captación	28
2.2.11.1. Tipo de Captación	28
2.2.11.2. Componentes de la captación	30
2.2.12. Línea de Conducción	32
2.2.12.1. Criterios de Diseño:	32
2.2.12.2.Clase de tubería	36
2.2.12.3. Diámetro de tubería	37
2.2.12.4. Estructuras complementarias	52
2.2.13 Reservorio	40

2.2.13.1. Tipos de reservorios
2.2.13.2. Casetas de Válvulas
2.2.13.3. Volumen de almacenamiento
2.2.14. Línea de Aducción
2.2.14.1. Diámetro
2.2.14.2. Velocidad
2.2.14.3.Presión
2.2.15. Red de Distribución
2.2.15.1. Tipos de Tuberías
2.2.15.2.Tipos de Tuberías
2.2.15.3. Velocidad
2.2.15.4. Presión de red de distribución
2.3. Hipótesis
2.4. Variables
2.4.1. Evaluación y mejoramiento del sistema de abastecimiento de agua
potable 52
2.4.2. Incidencia de la condición sanitaria de la población
III. Metodología
3.1. El tipo y el nivel de la investigación
3.2. Diseño de la investigación
3.3. Población y muestra

3.3.1. Población	54
3.3.2. Muestra	54
3.4. Definición y operacionalización de las variables e investigadores	55
3.5. Técnicas e instrumentos	57
3.5.1. Técnicas de recolección de datos	57
3.5.2. Instrumentos de recolección de datos	57
3.6. Plan de análisis	58
3.7. Plan de análisis	59
3.8. Principios éticos	60
3.8.1. Ética para inicio de la evaluación	60
3.8.2. Ética de la recolección de datos	60
3.8.3. Técnicas de recolección de datos	60
IV. Resultados	61
4.1. Resultados	61
4.2. Análisis de los resultados	116
4.2.1. Evaluación del sistema de agua potable existente	117
4.2.2. Propuesta de mejoramiento de la infraestructura del sistema	118
4.2.3. Determinación de la incidencia en la condición sanitaria	119
V. Conclusiones y recomendaciones	121
5.1. Conclusiones	121
5.2. Recomendaciones	124
Referencia Bibliográficas	130
Anexos	135

Anexo N° 01: registro fotográfico	137
Anexo N° 02: análisis de agua	142
Anexo Nº 03: estudios de suelos	145
Anexo Nº 04: ficha de evaluación	164
Anexo Nº 05: sustento de cálculos hidráulicos	173
Anexo Nº 06: reglamento aplicado al diseño	195
Anexo N° 07: planos	217

7. Índice de gráficos, tablas y cuadros

Índice de Gráficos

Pagina
Gráfico 1 Evaluación del estado de los componentes de la captación
Damaciopuquio63
<i>Gráfico</i> 2 Evaluación del estado de los componentes de la captación Matacaballo
00
Gráfico 3 Evaluación del estado de la línea de conducción del Área nº 01 del
caserío de Allpamarca
Gráfico 4 Evaluación del estado de la línea de conducción del Área nº 02 del
caserío de Allpamarca
<i>Gráfico 5</i> Evaluación del estado del reservorio del área nº 01 del caserío de
Allpamarca73
Gráfico 6 Evaluación del estado del reservorio del área nº 02 del caserío de
Allpamarca76
Gráfico 7 Evaluación del estado de la línea de aducción y red de distribución del
área nº 01 del caserío de Allpamarca79
Gráfico 8 Evaluación del estado de la línea de aducción y red de distribución del
área nº 02 del caserío de Allpamarca
Gráfico 9 Resumen de los estados de componentes del sistema de abastecimiento de
agua potable del área nº 01 del caserío de Allpamarca

<i>Gráfico 10</i> Resumen de los estados de componentes del sistema de abastecimiento
de agua potable del área nº 02 del caserío de Allpamarca
<i>Gráfico 11</i> Estado de la cobertura del área nº 01 del caserío de Allpamarca 98
<i>Gráfico 12</i> Estado de la cobertura del área nº 02 del caserío de Allpamarca 100
Gráfico 13 Estado de la cantidad de agua potable del área nº 01 del caserío de
Allpamarca
Gráfico 14 Estado de la cantidad de agua potable del área nº 02 del caserío de
Allpamarca
Gráfico 15 Estado de la continuidad del área nº 01
Gráfico 16 Estado de la continuidad del área nº 02
Gráfico 17 Estado de la calidad del agua del área nº 01
Gráfico 18 Estado de la calidad del agua del área nº 02
Gráfico 19 Estados de las condiciones sanitarias del sistema de agua potable del
área nº 01
Gráfico 20 Resumen de la condición sanitaria del caserío de Allpamarca – área nº
01113
Gráfico 21 Estados de las condiciones sanitarias del sistema de agua potable del
área n° 02
Gráfico 22 Resumen de la condición sanitaria del caserío de Allpamarca – área nº
02

Índice de Tablas

Pagina
Tabla 1 Periodos de diseño de infraestructura sanitaria 20
Tabla 2 Dotación de agua según opción tecnológica y región (l/hab.d) 24
Tabla 3 Dotación de agua para centros educativos 25
Tabla 4 Determinación del Qmd para diseño
Tabla 5 Clase de tubería según la resistencia en metros de columna de agua
Tabla 6 Diseño hidráulico de la obra de captación Damaciopuquio del área nº 01 del
caserío de Allpamarca
Tabla 7 Diseño hidráulico de la obra de captación Matacaballo del área nº 02 del
caserío de Allpamarca
Tabla 8 Diseño hidráulico de la línea de conducción del área nº 01 del caserío de
Allpamarca89
<i>Tabla 9</i> Diseño hidráulico de la línea de conducción del área nº 02 del caserío de
Allpamarca90
Tabla 10 Diseño hidráulico reservorio de almacenamiento de agua potable del área
nº 01 del caserío de Allpamarca
Tabla 11 Diseño hidráulico reservorio de almacenamiento de agua potable del área
nº 02 del caserío de Allpamarca92

Tabla 12 Diseño hidráulico línea de aducción del área nº 01 del caserío de
Allpamarca93
Tabla 13 Diseño hidráulico línea de aducción del área nº 02 del caserío de
Allpamarca94
Tabla 14 Diseño hidráulico red de distribución del área nº 01 del caserío de
Allpamarca95
Tabla 15 Diseño hidráulico red de distribución del área nº 02 del caserío de
Allpamarca96
Tabla 16 Ficha 01: Evaluación de la cobertura de agua del área nº 01
Tabla 17 Ficha 01: Evaluación de la cobertura de agua del área nº 02
Tabla 18 Ficha 02: Evaluación de la cobertura de agua del área nº 01 101
Tabla 19 Ficha 02: Evaluación de la cobertura de agua del área nº 02 103
Tabla 20 Ficha 03: Evaluación de la continuidad del servicio de agua del área nº
01105
Tabla 21 Ficha 03: Evaluación de la continuidad del servicio de agua del área nº
02107
Tabla 22 Ficha 04: Evaluación de la calidad del agua del área nº 01
Tabla 23 Ficha 04: Evaluación de la calidad del agua del área nº 02 111

Índice de Figuras

	Pagina
Figura 1 Acceso al recurso hídrico no saludable.	10
Figura 2 Poca disponibilidad del recurso hídrico	11
Figura 3 Recolección del recurso hídrico	12
Figura 4 Sistema de agua potable por gravedad	15
Figura 5 Sistema de agua potable por bombeo	16
Figura 6 Variaciones máximas diarias de consumo.	27
Figura 7 Variaciones máximas horarias de consumo	27
Figura 8 Bocatoma de fondo	29
Figura 9 Captación de manantial de Ladera	30
Figura 10 Línea de conducción de agua por gravedad	32
Figura 11 Equilibrio de presiones dispersas	34
Figura 12 Línea de gradiente hidráulica, carga dinámica y carga estática	35
Figura 13 Perfil de la combinación de tuberías.	36
Figura 14 Presiones de trabajo para diferentes clases de tubería de PVC	37
Figura 15 Válvula de Aire.	38
Figura 16 Válvula de Purga	39
Figura 17 Cámara Rompe Presión tipo 6	39
Figura 18 Reservorio elevado de agua potable	40

Figura 19 Reservorio apoyado de agua potable	41
Figura 20 Reservorio enterrado o cisterna	42
Figura 21 Línea de aducción	45
Figura 22 Conexión domiciliaria	47
Figura 23 Red ramificada	48
Figura 24 Red mallada	49
Figura 25 Red Mixta	49

Índice de Imagen

	Pagina
Imagen	1 Captación artesanal Damaciopuquio del caserío de Allpamarca – Área 1
	62
Imagen	2 Captación artesanal Matacaballo del caserío de Allpamarca – Área 2 65
Imagen	3 Evaluación de la línea de conducción del caserío de Allpamarca – Área nº
	1
Imagen	4 Evaluación de la línea de conducción del caserío de Allpamarca – Área nº
	2
Imagen	5 Evaluación de Reservorio del Área Nº 1, del caserío de Allpamarca 72
Imagen	6 Reservorio del Área Nº 1, del caserío de Allpamarca presenta grietas y
	fisuras en su estructura
Imagen	7 Evaluación de Reservorio del Área Nº 2, del caserío de Allpamarca 75
Imagen	8 Reservorio del Área Nº 2, del caserío de Allpamarca presenta grietas y
	fisuras en su estructura por su antigüedad
Imagen	9 Pileta publica del Área Nº 1, del caserío de Allpamarca
Imagen	10 Viviendas beneficiadas con la red de distribución existente del área nº
	01, del caserío de Allpamarca
Imagen	11 Pileta publica Nº 01 dentro de la red de distribución del área nº 02, del
	caserío de Allpamarca
Imagen	12 Pileta publica Nº 02 dentro de la red de distribución del área nº 02, del
	caserío de Allpamarca

<i>Imagen 13</i> Viviendas beneficiadas con la red de distribución existente del área nº
02, del caserío de Allpamarca
Imagen 14 Viviendas beneficiadas con la red de distribución existente del área nº
02 - 1, del caserío de Allpamarca
Imagen 15 Vista panorámica del Caserío de Allpamarca, Área 01
<i>Imagen 16</i> Vista panorámica del Caserío de Allpamarca, Área 02
Imagen 17 Reunión con los pobladores del Caserío de Allpamarca
Imagen 18 Cámara rompe presión existente del Caserío de Allpamarca 141
Imagen 19 Tubería HDPE de la línea de conducción existente del Caserío de
Allpamarca
<i>Imagen 20</i> Proyección de la ubicación del reservorio de 15 m ³ del área n01, del
Caserío de Allpamarca

I. Introducción

El sistema de abastecimiento de agua potable es un conjunto de estructuras hidráulicas, accesorios, válvulas y tuberías que van a tener como objetivo abastecer del recurso hídrico desde una fuente hasta las conexiones domiciliarias, cumpliendo normas de diseño especificadas en la Resolución Ministerial 192-2018.

El presente proyecto de investigación tuvo como finalidad, evaluar y mejorar el sistema de abastecimiento de agua potable del caserío de Allpamarca y así permitir un sistema de agua potable sostenible, brindando cantidad, calidad continuidad y estructuras hidráulicas en buen estado para mejorar las condiciones de salud de la población, donde la problemática fue ¿La evaluación y mejoramiento del sistema de abastecimiento de agua potable en el caserío de Allpamarca del centro poblado de Tayagasha, distrito de Panao, provincia de Pachitea, región Huánuco; mejorará la condición sanitaria de la población - 2019?. Teniendo como objetivo general: Desarrollar la evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco; mejorará la Condición Sanitaria de la Población - 2019. Debido a ello se planteó los siguientes **objetivos específicos:** Evaluar el sistema de abastecimiento de agua potable en el caserío de Allpamarca del centro poblado de Tayagasha, distrito de Panao, provincia de Pachitea, Región Huánuco - 2019; Elaborar el mejoramiento del sistema de abastecimiento de agua potable en el caserío de Allpamarca del centro poblado de Tayagasha, distrito de Panao, provincia de Pachitea, región Huánuco – 2019; Obtener la incidencia en la condición sanitaria en el caserío de Allpamarca del centro poblado de Tayagasha, distrito de Panao, provincia de Pachitea, región

Huánuco – 2019. Como **justificación**, surgió de la necesidad de mejorar las deficiencias que presenta el anti técnico sistema de abastecimiento de agua potable del cual se suministra mediante manantial, por consiguiente, el abastecimiento es escaso hacia las viviendas del caserío de Allpamarca, afectando las condiciones de salud de los ciudadanos, en la **metodología** se empleó las siguientes características. El tipo descriptivo correlacional, el **nivel** cuantitativo y cualitativo, el **diseño** fue no experimental porque se realizó de manera transversal. La población y muestra estuvo compuesta por el sistema de abastecimiento de agua potable del caserío de Allpamarca, Tayagasha, Pachitea, Panao, Huánuco, comprendida en el periodo de agosto 2021 - diciembre 2021 y la delimitación espacial fue el caserío de Allpamarca, Tayagasha, Pachitea, Panao, Huánuco. Tal que, se tuvo uso la **técnica**, en donde se hizo visitas y observaciones directas a la zona de investigación; y como instrumento se emplearon fichas técnicas y cuestionarios, como resultado se obtuvo que las estructuras hidráulicas, tuberías se encuentran en mal estado y las condiciones de salud de la población regular. En conclusión se determina que el sistema de abastecimiento de agua potable del caserío de Allpamarca, es un sistema anti técnico realizado por los pobladores, afectando las condiciones de salud de la propia población; por la cual se realizó el mejoramiento, mediante la proyección de 02 captaciones de ladera, 02 líneas de conducción, 02 reservorios rectangulares de 10 m³ y 15 m³ respectivamente, 02 líneas de aducción, 02 redes de distribución, 19 cámaras rompe presión Tipo 7, 22 válvulas de aire, 32 válvulas de purga, 07 Válvulas de control y regulación, 01 pase aéreo, 05 piletas públicas, 103 conexiones domiciliarias y 101 conexiones Intradomiciliarias; el cual, permitirá mejorar las condiciones de salud de la población del caserío de Allpamarca.

II. Revisión de literatura

2.1. Antecedentes

2.1.1. Antecedentes Locales

Según Gil ¹, en su tesis Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío El Porvenir, distrito Santa Rosa, provincia de Pallasca, región Áncash -2020. Tuvo como objetivo Desarrollar la evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío El Porvenir, Santa Rosa, Pallasca, Áncash, 2020, su metodología que aplicó el autor fue de tipo descriptivo correlacional, de nivel cuantitativo y cualitativo, el cual obtuvo como **resultado** que el estado de los componentes se encuentran en un estado entre "muy bajo"-"bajo", ya que los componentes del sistema no cumplen con lo que indica el reglamento, en la obra de captación no cuenta con algunos accesorios, ni cerco perimétrico y la caseta de válvulas está mal estado; en la línea de conducción no cuenta con cámara rompe presión tipo 6, válvula de purga y aire, las tuberías son de pvc y no se encuentren totalmente enterradas; en el reservorio de igual forma no presenta algunos accesorios, no cuenta con caseta de desinfección y cerco perimétrico; las línea de aducción y red de distribución no se encuentran totalmente enterradas, conclusión en la tesis se concluyó que el caserío El Porvenir, el sistema de abastecimiento de agua potable existente presenta deficiencias tanto en las estructuras como en las tuberías, como son: la captación debido a la vida útil se encontró deteriorado, además de no contar con un cerco

perimétrico en la que proteja la fuente; la línea de conducción porque ciertos tramos se encontraron expuestas, el reservorio por el periodo de vida útil se encuentra en mal estado, no cuenta con un sistema de cloración y con un cerco perimétrico que proteja a la estructura; la tubería de aducción se encuentra expuesta al terreno por lo que se expone al peligro tanto en el deterioro por ser de PVC como a las roturas y ello conlleva a la contaminación del agua, por otro lado, la red de distribución se encuentra en algunas partes las tuberías colapsadas y no conecta con todas las viviendas.

Según Quispe ², en su tesis Evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío de Asay, distrito Huacrachuco, provincia Marañón, región Huánuco y su incidencia en la condición sanitaria de la población – 2019, tuvo como **objetivo** Desarrollar la evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío de Asay, distrito Huacrachuco, provincia Marañón, región Huánuco para la mejora de la condición sanitaria de la población –2019, su **metodología** que aplicó el autor fue de tipo correlacional y transversal de nivel de la investigación de carácter cualitativo y cuantitativo, el cual los **resultados** obtenidos indicaron que el estado del sistema fue regular y de la infraestructura estuvo entre malo y regular y en **conclusión** el sistema de abastecimiento de agua potable en el caserío de Asay se encontró en condiciones ineficientes. En cuanto al mejoramiento del sistema de agua potable, consistió en mejorar la

captación, línea de conducción, CRP tipo 6 y 7, el reservorio y la red de distribución para beneficiar al 100 % de la población del caserío de Asay.

2.1.2. Antecedentes Nacionales

Según Herrera ³, en su tesis Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay, provincia de Recuay, región de Áncash, agosto – 2019, tuvo como **objetivo** desarrollar la evaluación y mejoramiento del sistema de abastecimiento de agua potable para la mejora de la condición sanitaria del centro poblado Huancapampa, distrito Recuay, provincia de Recuay, región de Áncash. Conjuntamente a ello, la **metodología** utilizada fue del tipo correlacional y de un nivel cualitativo y cuantitativo. Según la evaluación, se obtuvo como resultados, que la captación se encuentra en un estado de restricción de funcionamiento, debido a las agresiones externas de carácter natural, y que la JASS no cuenta con las herramientas necesarias para la operación y mantenimiento del sistema, y respecto a la elaboración del mejoramiento se obtuvo como resultados: el rediseño de la nueva captación, la línea de conducción, CRP-6 y el nuevo reservorio, las cuales cumplen con las exigencias de la normativa vigente. Por lo cual se concluye, según la evaluación, que el estado del sistema de abastecimiento presenta irregularidades en sus componentes, que se hallaron tramos de tubería expuestas al ambiente. Además, se concluye respecto a la elaboración del mejoramiento, que consiste en el rediseño de la nueva captación y su reubicación, línea de conducción, CRP-6 y el

reservorio; la cual permitirán incidencia en la condición sanitaria del sistema de abastecimiento de agua potable del centro poblado de Huancapampa.

Según Mejia ⁴, en su tesis Evaluación y Mejoramiento del sistema de abastecimiento de agua potable del caserío Racrao Bajo, distrito de Pariacoto, provincia de Huaraz, región Áncash; y su incidencia en la condición sanitaria de la población - 2019, se tuvo como objetivo general: desarrollar la evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío Racrao bajo, distrito de Pariacoto, provincia de Huaraz, región Áncash y su incidencia en la condición sanitaria de la población., la **metodología** que se empleó, tiene las siguientes características. El tipo es descriptivo. El nivel de la investigación es cualitativo. Se tuvo como resultados de la evaluación que arrojaron un sistema medianamente sostenible, de esta manera al proponer un mejoramiento en su sistema de abastecimiento de agua potable actual, se cubrieron falencias y de manera positiva incidió en su condición sanitaria de la población. Tuvo como conclusiones que en la evaluación del estado actual del sistema de abastecimiento de agua potable cuenta con deficiencias, debido al paso del tiempo y a la falta de mantenimiento en las tuberías y estructuras. Se clasificó al Estado del sistema incluyendo la condición sanitaria las cuales se denominan como: cobertura del servicio el cual se encuentra en óptimas condiciones al igual que la cantidad del servicio y continuidad del servicio, el único que difiere en la condición sanitaria es la calidad del servicio que debido a su

deficiencia necesita un mejoramiento. Se concluye de igual manera que en el estado de las infraestructuras que mediante la evaluación y tomando como punto crítico al tiempo de funcionamiento, se optó por rediseñar totalmente el sistema de abastecimiento de agua potable

2.1.3. Antecedentes Internacionales

Según Chavarría ⁵, en su tesis Evaluación y propuesta de mejora del sistema de abastecimiento de agua potable de la ASADA Paquera de Puntarenas, tuvo como **objetivo** Proponer mejoras para el sistema de abastecimiento de agua potable y saneamiento administrado por la ASADA Paquera en la Provincia de Puntarenas, Costa Rica. La **metodología** que utilizó fue descriptiva correlacional. Los **resultados** se evaluó la oferta y demanda de agua potable, y se determinaron dotaciones que varían desde los 188 L/(p*d) hasta sectores con 856,18 L/(p*d), se estima que la oferta de agua actual, no es suficiente para abastecer el caudal máximo diario requerido para la demanda de la población del año 2045; se **concluyó** que la oferta actual de agua no es suficiente para abastecer el caudal máximo diario de la población abastecida por medio del sistema Paquera y Laberinto para el año 2045. Por lo que se justifica la búsqueda de fuentes alternativas, especialmente fuentes que funcionen por gravedad.

Según Carrillo, et all ⁶, en la tesis con el título, Rediseño y Optimización hidráulica del sistema de agua potable de los Barrios Mushuñan e Inchalillo Alto, parroquia Sangolquí, cantón Rumiñahui, provincia de pichincha. (2018) Se tuvo los siguientes **objetivos**, Evaluar y rediseñar

las características hidráulicas del sistema de agua potable existente de los barrios Mushuñan e Inchalillo Alto, Parroquia Sangolquí, Cantón Rumiñahui, Provincia de Pichincha. Realizar el catastro de la red de abastecimiento que brinda servicio de agua potable a los barrios en mención. Establecer caudales de aportes que ayuden a mejorar la demanda actual y futura del sistema de agua potable. Plantear diferentes propuestas para mejorar el sistema de agua potable y seleccionar la más óptima. Diseñar a nivel definitivo el sistema de agua potable. Elaborar la documentación técnica del proyecto. La metodología empleada fue de nivel de diseño definitivo, para ello se tuvo como base el análisis técnico y socio-económico de los barrios, con el objetivo de ejecutar el proyecto en el futuro y proveer un mejor servicio de agua potable para los usuarios. Se llegaron a las siguientes conclusiones, el sistema actual de abastecimiento de agua potable de los barrios Mushuñan e Inchalillo Alto fue construido sin planificación oportuna y debido a las modificaciones realizadas a través de los años y por las diferentes necesidades que se presentan por el crecimiento poblacional han ocasionado problemas en el funcionamiento hidráulico de la red, es por ello que se realiza el rediseño del sistema para optimizar las características hidráulicas y sanitarias para satisfacer con las necesidades actuales y futuras de la población. El rediseño de las características hidráulicas de la red de agua potable presenta condiciones favorables en cuanto a presión mínima de 15 mca y presión máxima de 70 mca, además el flujo en las tuberías no supera una velocidad de 2.5 m/s, permitiendo satisfacer las demandas de

consumo máximo que permite el funcionamiento adecuado de la red ofreciendo a los usuarios un servicio de calidad, en cantidad y continuidad.

2.2. Bases teóricas de la investigación

2.2.1. Condición sanitaria

Según Ávila, et all⁷, La condición sanitaria de los ciudadanos depende de varios factores como: la satisfacción humana y su bienestar de salud que fundamentalmente constituyen el buen vivir de las personas. La condición sanitaria del ser humano es una condición no observable a simple vista, sino que se puede verificar por medio de encuestas, datos tabulados de acuerdo a la calidad de agua y su sostenible sistema de agua potable

2.2.1.1. Calidad de Agua Potable

Según el Organización mundial de la salud⁸, La calidad del agua potable es un asunto que inquieta en países de todo el mundo, en progreso y desarrollo, que en caso no sea pura o limpia, por consecuencia afecta en la salud de la población. Son factores de peligro, los agentes infecciosos, los productos químicos tóxicos y la contaminación radiológica; la práctica pone de manifiesto el valor de los enfoques de gestión preparatorio que comprenden desde los recursos hídricos al consumidor.

a) Acceso a agua no saludable

Al no contar con acceso de agua segura, las personas que lo consumen están propensas a contraer enfermedades diarreicas

agudas y parasitosis; además que los niños padecen de desnutrición infantil.

Figura 1: Acceso al recurso hídrico no saludable.

Fuente: Programa nacional de saneamiento rural.

2.2.1.2. Cantidad de Agua Potable

Según Agüero⁹, La mayoría de sistemas de abastecimientos de agua potable en las poblaciones rurales demuestro país, tiene como fuente los manantiales. La carencia de registros hidrológicos nos obliga a realizar una concienzuda investigación de las fuentes. Lo ideal sería que los aforos se efectuaran en la temporada crítica de rendimientos que corresponde a los meses de estiaje y lluvias, con la finalidad de conocerlos caudales mínimos y máximos. El valor del caudal mínimo debe ser mayor que el consumo máximo diario (Qmd) con la finalidad de cubrir la demanda de agua de la población futura.

a) Poca disponibilidad del recurso hídrico

La poca disponibilidad del recurso hidrico en zonas rurales trae como consecuencia que los pobladores consuman sus alimentos sin haberlos lavado; además que, sin agua, no podrán asearse ni poder la ropa.

Figura 2: Poca disponibilidad del recurso hídrico

Fuente: Programa nacional de saneamiento rural

2.2.1.3. Cobertura de Servicio

Según el Instituto Nacional de Estadística¹⁰, en el año móvil febrero 2017 – enero 2018, en el área rural del país, del total de la población que consume agua por red pública y que tienen agua a diario, el 10,1% tienen agua por horas. Así, el 3,8% tienen entre 1 a 3 horas diarias, el 2,7% entre 4 y 7 horas, el 2,3% entre 8 a 12 horas, el 1,0% entre 13 a 17 horas y el 0,3% entre 18 a 23 horas diarias.

a) Recolección del recurso hídrico

La problemática al no tener acceso a un sistema de abastecimiento de agua potable permite que los mismos

pobladores recolecten agua, muchas veces el afloramiento se encuentra lejos y los pobladores tienen que perder horas para poder recolectar agua, y ello conlleva a que los pobladores tengan menos tiempo para poder realizar otras actividades y los niños tengan menos tiempo para poder estudiar, jugar y ayudar en el hogar.

Figura 3 Recolección del recurso hídrico

Fuente: Programa nacional de saneamiento rural

2.2.1.4. Índice de sostenibilidad

a) Sistema sostenible

En este índice de sostenibilidad, el sistema brinda un servicio aceptable a la población, tanto en calidad, cantidad continuidad y cobertura; además que las estructuras hidráulicas del sistema se encuentran en buen estado, sin presentar deterioro; siendo operado y administrado adecuadamente, cumpliendo con la mejora de las condiciones de salud y calidad de vida de la población.

b) Sistema medio sostenible

En este índice de sostenibilidad, los componentes del sistema comienzan a mostrar deterioro, afectando en los servicios de agua tanto en continuidad, cantidad o calidad.

c) Sistema no sostenible

En este índice de sostenibilidad, los componentes del sistema muestran fallas muy notorias afectando el uso sostenible de los servicios de agua, tanto en cantidad, calidad y continuidad.

d) Sistema colapsado

En este índice de sostenibilidad, el sistema de abastecimiento de agua potable se encuentra totalmente abandonado sin ningún uso, que no brindan ningún servicio de agua a la población.

2.2.1.5. Factores de sostenibilidad

Para que el sistema de abastecimiento de agua potable sea sostenible será necesario tener en cuenta los siguientes factores: El estado del sistema, la gestión y administración de los servicios y la operación y mantenimiento del sistema.

a) Estado del sistema

Este factor refiere al estado en la que se encuentra la infraestructura (estructuras hidráulicas, tuberías, accesorios, válvulas) y al servicio que brinda, abarcando los índices de continuidad, cantidad, calidad y cobertura; esos servicios dependen del estado mismo de la infraestructura (no exclusivamente).

El estado de la infraestructura, hace referencia al estado en que se encuentra cada componente del sistema, evaluando las partes dañadas por la cual deberá ser mejorada.

La continuidad, es cuando la demanda de agua del sistema satisface de forma continua y permanente. Siendo ideal disponer de agua durante las 24 horas o tener el suministro por horas.

La cantidad, está dado por la cantidad de agua que sale del manantial y se realiza a través de los aforos en época de estiaje y de lluvia, para poder determinar los caudales mínimo y máximo. La calidad; este índice, deberá cumplir con los límites permisibles establecido en el Reglamento de calidad de agua para consumo humano para que el agua sea potable.

La cobertura, es el porcentaje de la población con servicio de agua potable respecto a la población total.

b) Gestión y administración de los servicios

El Programa Nacional de Saneamiento Rural junto al Programa Nacional Tambos del Ministerio de Vivienda, vienen tomando acciones coordinadas de comunicación y educación sanitaria para la población rural, promocionando prácticas saludables y de higiene permitiendo así mejorar las condiciones de salud de la población.

2.2.2. Mejoramiento

Es el proceso de renovar una cosa u objeto que se encuentra en estado deficiente, derivándolo hacia un estado eficiente.

2.2.3. Sistemas de abastecimiento de agua potable en el ámbito rural.

Según Deutsche Gesellschaft für Internationale Zusammenarbeit¹¹, Los sistemas de agua potable tienen por objetivo dotar de agua potable a una población determinada; pueden ser convencionales y no convencionales. Los sistemas convencionales son los que brindan acceso al agua potable a nivel domiciliario y cuentan con un sistema de tratamiento y distribución del agua potable en cantidad y calidad establecida por las normas de diseño. Cada una de las viviendas se abastece a través de una conexión domiciliaria.

2.2.3.1. Tipos de Sistemas de Agua Potable

El sistema varía de acuerdo a su ubicación y naturaleza de la fuente de abastecimiento, así como a la topografía del terreno:

a) Sistema de agua potable por Gravedad

Según la Organización Mundial de la Salud⁸, La fuente está ubicada en la cota mayor de la comunidad del cual el agua fluye a través de las tuberías, usando sólo la fuerza de la gravedad.

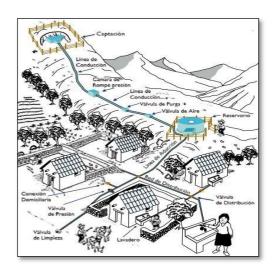


Figura 4 Sistema de agua potable por gravedad.

Fuente: Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el Ámbito Rural. (2017)

b) Sistema de agua potable por Bombeo

Según la Organización Mundial de la Salud⁸, La fuente de agua se encuentra en la parte baja de la comunidad, por lo que necesariamente se requiere de un equipo de bombeo para elevar el agua hasta un reservorio y dar presión en la red de distribución.

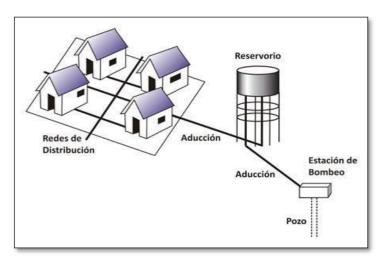


Figura 5 Sistema de agua potable por bombeo.

Fuente: Guía de orientación en saneamiento Básico para alcaldías de municipios rurales y pequeñas comunidades (2009).

2.2.4. Agua Potable

Según La Superintendencia Nacional de Servicios de Saneamiento¹², El agua potable, también llamada agua para consumo humano, es aquella que llega al consumidor y puede usarse de manera segura para beber, cocinar los alimentos y realizar la higiene personal.

Según el Ente Provincial del Agua y Saneamiento¹³, Es el agua que puede ser consumida sin restricción debido a un proceso de potabilización, por ende, no representa un riesgo para la salud. El término se aplica al agua que cumple con las normas de calidad promulgadas por las autoridades locales e internacionales.

2.2.5. Afloramiento

Según Lopez¹⁴, define como punto o zona por donde fluye el manantial hacia la superficie.

Según Collazo, et all¹⁵, define el Afloramiento como el proceso donde el recurso hídrico rico en nutrientes, asciende a la superficie.

2.2.6. Fuente de Agua

Según Fair, et all¹⁶, Las fuentes comunes de aguas dulces determina, comúnmente, la naturaleza de las obras, de captación, purificación, conducción y distribución.

2.2.6.1. Tipos de fuentes de Agua

a) Aguas de Lluvia

Según la Organización Mundial de la Salud⁸, El agua de lluvia se emplea en aquellos casos en que no es posible obtener agua superficial de buena calidad y cuando el régimen de lluvia sea importante. Para ello se utilizan los techos de las casas o algunas superficies impermeables para captar el agua y conducirla a sistemas cuya capacidad depende del gasto requerido y del régimen pluviométrico.

Según Ulacia¹³, El agua de lluvia puede ser interceptada, colectada y almacenada en depósitos especiales para su uso posterior. Esto ayudaría durante el tiempo de secas para sobrellevarlas y también durante épocas de lluvias fuertes que desencadenan inundaciones que afectan la localidad.

b) Aguas Superficiales

Según la Organización Mundial de la Salud⁸, Las aguas superficiales están constituidas por los arroyos, ríos, lagos, etc. que discurren naturalmente en la superficie terrestre. Estas fuentes no son tan deseables, especialmente si existen zonas habitadas o de pastoreo animal aguas arriba. Sin embargo, no existe otra fuente alternativa en la comunidad, siendo necesario para su utilización, contar con la información detallada y completa que permita visualizar su estado sanitario, caudales disponibles y calidad de agua. Según Loeches, et all¹⁷, define como aguas superficiales a toda aquella proveniente de las precipitaciones, que no llega a infiltrarse ni regresa a la atmósfera por evaporación o la que proviene de manantiales o nacimientos que se originan de las aguas subterráneas.

c) Aguas Subterráneas

Según Fornes, et all¹⁸, define el agua subterránea como una parte importante de la masa de agua presente en cada

momento en los continentes. Esta se aloja en los acuíferos bajo la superficie de la Tierra.

Según la Organización Mundial de la Salud⁸, Parte de las precipitaciones en la cuenca se infiltra en el suelo hasta la zona de saturación, formando así las aguas subterráneas. La explotación de éstas dependerá de las características hidrológicas y de la formación geológica del acuífero. La captación de aguas subterráneas se puede realizar a través de manantiales, galerías filtrantes y pozos (excavados y tubulares).

2.2.7. Demanda de Agua

Según Lopez¹⁴, La determinación de la demanda de agua que debe suministrar el sistema de agua es la base de diseño de éste. En razón de que los sistemas de agua están constituidos por estructuras relativamente grandes, tales como presas, plantas de tratamiento, conducciones, etc., los diseños deberán satisfacer las necesidades de la población durante un periodo suficientemente grande. Para cumplir con lo dicho anteriormente, hay que tener factores tales como: Periodo de diseño, Población de diseño, Área de Estudio, Hidrología de diseño, Usos de agua e Inversión de capital.

2.2.8. Periodo de Diseño

Según Lopez¹⁴, Se entiende por periodo de diseño, en cualquier obra de la ingeniería civil, el número de años durante los cuales una obra

determinada ha de prestar con eficiencia el servicio para el que se diseñó.

Tabla 01: Periodos de diseño de infraestructura sanitaria

ESTRUCTURA	PERIODO DE DISEÑO
Fuente de abastecimiento	20 años
Obra de captación	20 años
Pozos	20 años
Planta de tratamiento de agua	20 años
para consumo humano (PTAP)	
Reservorio	20 años
Líneas de conducción,	20 años
aducción, impulsión y	
distribución	
Estación de bombeo	20 años
Equipos de bombeo	10 años

Fuente: Ministerio de Vivienda, Construcción y Saneamiento (RM 192-2018).

2.2.9. Población Futura

Según Lopez¹⁴, es la determinación del número de pobladores para los cuales ha de diseñarse el acueducto es un parámetro básico en el cálculo del caudal de diseño para la comunidad. Con el fin de poder estimar la población futura es necesario estudiar las características sociales, culturales y económicas de sus pobladores en el pasado y en el presente, y hacer predicciones sobre su futuro desarrollo.

Según El Centro Latinoamericano de Demografia¹⁶, define como población futura como factor más importante y monumental en un proyecto de abastecimiento de agua viene a ser el número de personas beneficiadas con éste, es decir la población, la cual se determina estadísticamente proyectada hacia el futuro (población futura) así como también la clasificación de su nivel socioeconómico dividido en tres tipos: popular, media y residencial.

2.2.9.1. Métodos de estimación de la población futura

a) Método de comparación grafica

Según Lopez¹⁴, El método de comparación grafica consiste en hacer una comparación de manera gráfica de la población en estudio y de otras tres poblaciones del país con determinadas características. El método supone que la población en cuestión tendrá una tendencia de crecimiento similar al promedio del crecimiento de las otras tres, después de que se haya sobrepasado el límite de la población base (Último censo de la población estudiada).

b) Método de crecimiento Lineal

Según Lopez¹⁴, El método de crecimiento Lineal es un método completamente teórico y se da en una localidad que tenga un aumento constante e independiente de población. Por lo Tanto, la ecuación de proyección de población será:

$$P_f = P_{uc} + K_a (T_f - T_{uc})$$
 (1)

En donde:

P_f: Población Futura

Puc: Población de último censo

Ka: Pendiente de la recta

T_f: Año de proyección

Tuc: Año de último censo

c) Método de crecimiento geométrico

Según Lopez¹⁴, El crecimiento será geométrico si el aumento de población es proporcional al tamaño de esta. En este caso, el patrón de crecimiento es el mismo que el de interés compuesto, el cual se expresa así:

$$P_{f\,=}\,P_{uc}\ \, (1\,+\,r)^{\,\,Tf\,-\,\,Tuc}.....(2)$$

En donde:

Pf: Población Futura

Puc: Población de último censo

r: Tasa de crecimiento

T_{f:} Año de proyección

Tuc: Año de último censo

d) Método de crecimiento logarítmico o exponencial

Según Lopez¹⁴, Si el crecimiento de la población es de tipo exponencial. la aplicación de este método requiere el conocimiento de por lo menos tres censos ya que para el cálculo del valor de k promedio se requieren al menos de dos valores.

$$P \quad P \quad x \, e^{Kg \, (\, Tf - Tci)} \qquad \qquad (3)$$

En donde:

P_f: Población Futura

Pci: Población actual

Kg: Constante

T_{f:} Año de proyección

Tuc: Año de último censo

e) Método de Wappus

Según Lopez¹⁴, La ecuación de proyección de población por el método de Wappus es la siguiente:

$$P_f = P_{\dot{\mathbf{c}}} \left[\frac{200 + i \times (T_f - T_{ci})}{200 - i \times (T_f - T_{ci})} \right] \dots (4)$$

En donde:

P_f: Población Futura

Pci: Población actual

i: Tasa de crecimiento

T_f: Año de proyección

Tuc: Año de último censo

f) Método de Análisis de sensibilidad

Según Lopez¹⁴, Los modelos lineales, geométrico y de Wappus, determinan las tasas de crecimiento entre el último censo y el censó inicial. El análisis de sensibilidad pretende dar una información más completa al tener en cuenta censos intermedios disponibles. Consiste en calcular las tasas de crecimiento entre el último censo y cada uno de los censos

posteriores al censo inicial y hacer una proyección de la población para ellas.

g) Métodos Estadísticos

Según Lopez¹⁴,Se usa para ajustar valores históricos a la ecuación de regresión para una curva lineal, exponencial, potencial o logarítmica. El coeficiente de correlación para el ajuste seleccionado está dado por:

$$R^{2} = \frac{A \sum Y_{i} + B \sum X_{i} Y_{i} + \frac{1}{2} (\sum Y_{i})^{2}}{\sum (Y_{i})^{2} - \frac{1}{n} (\sum Y_{i})^{2}}...(5)$$

En donde:

A, B: Coeficientes de regresión

Xi, Yi: número de parejas

R: coeficiente de correlaciona

n: número de censos disponible.

2.2.10. Dotación

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, La dotación es la cantidad de agua que satisface las necesidades diarias de consumo de cada integrante de una vivienda, para el caso de piletas se asume 30 l/hab.d .En caso de instituciones educativas en zona rural debe emplearse diferentes dotaciones.

Tabla 02: Dotación de agua según opción tecnológica y región (l/hab.d)

DOTACIÓN SEGÚN TIPO DE OPCION TECNOLÓGICA (l/hab.d)

REGION	Sin Arrastre Hidráulico	Con Arrastre Hidráulico
	(Compostera y Hoyo Seco	(Tanque Séptico
	Ventilado)	Mejorado)
COSTA	60	90
SIERRA	50	80
SELVA	70	100

Fuente: Ministerio de Vivienda, Construcción y Saneamiento (2018).

Tabla 03: Dotación de agua para centros educativos

DESCRIPCIÓN	DOTACIÓN (l/alumno. d)
Educación primaria e inferior (sin	20
residencia)	
Educación secundaria y superior	25
(sin residencia)	
Educación en general (con	30
residencia)	

Fuente: Ministerio de Vivienda, Construcción y Saneamiento (2018).

a) Variación de consumo

Según Agüero⁹, Para suministrar eficientemente agua a la comunidad, es necesario que cada una de las partes que constituyen el sistema satisfaga las necesidades reales de la población; diseñando cada estructura de tal forma que las cifras de consumo y variaciones sean las mismas, no desarticulen todo el sistema, sino que permitan un servicio de agua eficiente y continuo. La variación del consumo está influenciada por diversos factores tales como:

tipo de actividad, hábitos de la población, condiciones de clima, etc.

b) Consumo máximo diario

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, El consumo máximo diario se define como el día de máximo consumo de una serie de registros observados durante los 365 días del año. Se debe considerar un valor de 1.3 del consumo promedio anual, Q_p de este modo:

$$Q_p = \frac{Dot \times P_d}{86400}....(6)$$

$$Q_{md} = 1.3 \times Q_p \tag{7}$$

Donde:

Q_p: Caudal promedio diario anual en l/s

Q_{md}: Caudal máximo diario en l/s

Dot: Dotación en l/hab.d

P_d: Población de diseño en habitantes (hab)

Tabla 04: Determinación del Qmd para diseño

RANGO	Qmd (REAL)	SE DISEÑA CON:
1	< de 0,50 l/s	0,50 l/s
2	0,50 l/s hasta 1,0 l/s	1,0 l/s
3	> de 1,0 l/s	1,5 l/s

Fuente: Ministerio de Vivienda, Construcción y Saneamiento (2018).

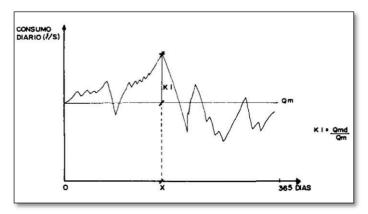


Figura 6 Variaciones máximas diarias de consumo.

Fuente: Agua potable para poblaciones Rurales. (1997)

c) Consumo máximo horario

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, El consumo máximo horario, se define como la hora de máximo consumo del día de máximo consumo. Se debe considerar un valor del consumo promedio anual, Q_p de este modo:

$$Q_{mh} = 2 \times Q_p \tag{7}$$

Donde:

Q_p: Caudal promedio diario anual en l/s

Q_{mh}: Caudal máximo horario en l/s

Dot: Dotación en l/hab.d

P_d: Población de diseño en habitantes (hab)

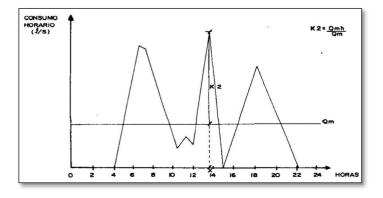


Figura 7 Variaciones máximas horarias de consumo.

Fuente: Agua potable para poblaciones Rurales. (1997)

2.2.11. Captación

Según Valdez²⁰, Las obras de captación son las obras civiles y/o equipos electromecánicos que se utilizan para reunir y disponer adecuadamente del agua superficial o subterránea de la fuente de abastecimiento. Dichas obras varían de acuerdo a la naturaleza de la fuente de Abastecimiento, su localización y magnitud.

2.2.11.1. Tipo de Captación

Como la captación depende del tipo de fuente y de la calidad y cantidad de agua, el diseño de cada estructura tendrá características típicas.

a) Captación de Agua Superficial:

Según Lopez⁹, Se entiende que son obras de captación de derivación o toma en ríos, es Bocatoma. Por medio de esta estructura se puede derivar el caudal de diseño que, por lo general, corresponde al caudal máximo diario. Existen diversos tipos de bocatomas, tales como: Toma lateral con muro transversal, Bocatoma de fondo, Bocatoma lateral de bombeo, Bocatoma lateral por gravedad, Toma mediante estabilización del lecho, toma en embalses o lagos, estaciones de bombeo flotantes y deslizantes.

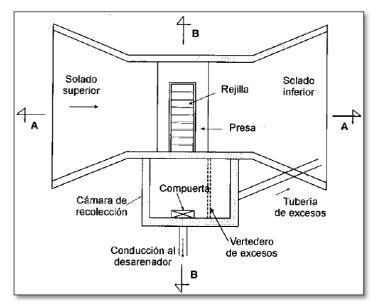


Figura 8 Bocatoma de fondo.

Fuente: Elementos de diseño para acueductos y alcantarillado (2003).

b) Captación de Agua Subterránea:

Según Lopez¹⁴, La captación de aguas subterráneas no requieren de un tratamiento complicado y las cantidades disponibles son más seguras. En algunos casos, el descenso de los niveles de agua en los pozos ha causado su abandono; pero en la actualidad, los modernos métodos de investigación que permiten una aproximación muy segura de los recursos de agua subterránea para una prolongada producción. Las posibles obras de captación para este tipo de agua son: Cajas de Manantial, Pozos y Galerías filtrante.

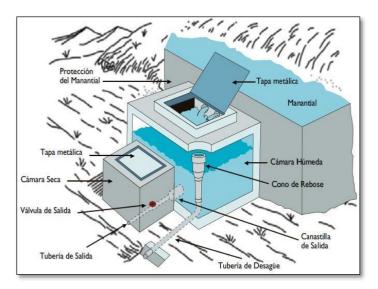


Figura 9 Captación de Ladera.

Fuente: Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el Ámbito Rural. (2017).

2.2.11.2. Componentes de la captación

a) Caudal

Según Vierendel²¹, Caudal es la cantidad de fluido que circula a través de una sección del ducto (tubería, cañería, oleoducto, río, canal) por unidad de tiempo. Normalmente se identifica con el flujo volumétrico o volumen que pasa por un área dada en la unidad de tiempo. Menos frecuentemente, se identifica con el flujo másico o masa que pasa por un área dada en la unidad de tiempo.

b) Cantidad de agua:

Según Agüero⁹, Esta medición de agua se hace con el fin de ver si el caudal va a satisfacer las necesidades de la población.

c) Método Volumétrico:

Según Agüero⁹, El método volumétrico mide la velocidad del agua subterránea, el cual, consta en encauzar el agua proporcionando una corriente del fluido de tal manera que se pueda provocar un chorro. Dicho método consta en tomar el tiempo que demora en llenarse un recipiente de volumen conocido.

$$Q = V/t$$
....(8)

Donde:

Q: Caudal en I/s.

V: Volumen del recipiente en litros.

T: Tiempo promedio en seg.

d) Método de Velocidad - Área:

Según Agüero⁹, El método volumétrico mide la velocidad del agua superficial que discurre del manantial tomando el tiempo que demora un objeto flotante en llegar de un punto a otro en una sección uniforme, habiéndose previamente definido la distancia entre ambos puntos.

$$Q = 800 x V x A$$
...(9)

Donde:

Q: Caudal en I/s.

V: Volumen del recipiente en litros.

A: Área de sección transversal en m2.

2.2.12. Línea de Conducción

Según la Deutsche Gesellschaft für Internationale Zusammenarbeit¹¹, Conformado por tuberías, estaciones reductoras de presión, válvulas de aire y otras estructuras que tienen como función conducir el agua captada desde el manantial hasta la unidad de tratamiento de agua (planta de tratamiento en caso exista). La línea de conducción puede ser por gravedad o por bombeo.

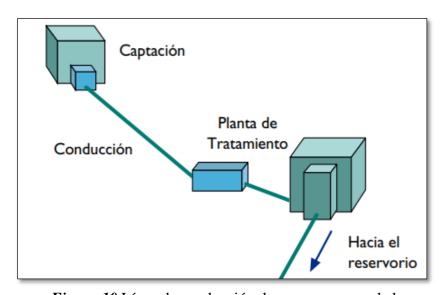


Figura 10 Línea de conducción de agua por gravedad.

Fuente: Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el Ámbito Rural. (2017)

2.2.12.1. Criterios de Diseño:

a) Línea de Gradiente Hidráulica:

Según Agüero⁹, La línea de gradiente Hidráulica indica la presión de agua a lo largo de la tubería bajo condiciones de operación. Cuando se traza la línea piezométrica para un caudal que descarga libremente en la atmosfera (como

dentro de un tanque) puede resultar que la presión residual en el punto de descarga se vuelva positiva o negativa.

b) Carga dinámica:

Según la Organización Mundial de la Salud⁸, En cualquier punto de la línea, representa la diferencia de la carga estática y la pérdida de carga por fricción en la tubería.

c) Nivel de carga estática:

Según la Organización Mundial de la Salud⁸, Representa la carga máxima a la que puede estar sometida una tubería al agua cuando se interrumpe bruscamente el flujo.

d) Pérdida de carga unitaria (hf):

Según la Organización Mundial de la Salud⁸, Es la pérdida de energía en la tubería por unidad de longitud debida al resistencia del material del conducto al flujo del agua. Se expresa en m/km o m/m.

$$Q = 0.0004264 \ x \ C \ x \ D^{2.64} \ x \ hf^{0.54} \cdots (10)$$

Donde:

Q: Caudal en I/s.

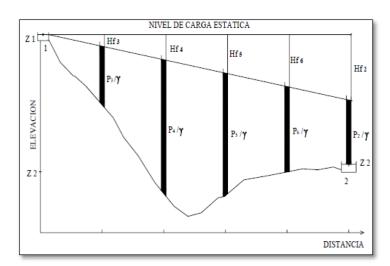
D: Diámetro de la tubería (pulg).

hf: perdida de carga unitaria (m/km).

C: Coeficiente de Hazen y Willians

e) Presión:

Según la Organización Mundial de la Salud⁸, En la línea de conducción, la presión representa la cantidad de energía gravitacional contenida en el agua. Se determina mediante la ecuación de Bernoulli.


$$Z_{1}+P_{1}/\gamma+V1^{2}/2g=Z_{2}+P_{2}/\gamma+V2^{2}/2g+Hf \qquad (11)$$

Donde:

Z: Cota de cota respecto a un nivel de referencia arbitraria. P/γ : Altura de carga de presión "P es la presión y γ el peso Especifico del fluido" (m)

V: Velocidad media del punto considerado (m/s).

Hf: Es la pérdida de carga que se produce de 1 a 2.

Figura 11 Equilibrio de presiones dispersas.

Fuente: Guía de Diseño para Líneas de Conducción e Impulsión de Sistemas de Abastecimiento de Agua Rural. (2004).

f) Pérdida por tramo (Hf):

Según la Organización Mundial de la Salud⁸, Viene a representar el producto de pérdida de carga unitaria por la longitud del tramo de tubería.



Figura 12 Línea de gradiente hidráulica, carga dinámica y carga estática.

Fuente: Guía de Diseño para Líneas de Conducción e
Impulsión de Sistemas de Abastecimiento de Agua
Rural. (2004)

g) Combinación de tuberías

Según la Organización Mundial de la Salud⁸, Es posible diseñar la línea de conducción mediante la combinación de tuberías, tiene la ventaja de optimizar las pérdidas de carga, conseguir presiones dentro de los rangos admisibles y disminuir los costos del proyecto.

$$Hf = hf_2 \times X + hf_1 \times (L-X)...$$
 (12)

Donde:

Hf: Pérdida de carga total (m).

L: Longitud total de tubería (m).

X: Longitud de tubería de diámetro menor (m).

L-X: Longitud de tubería de diámetro mayor (m).

hf1: Pérdida de carga unitaria de la tubería de mayor diámetro.

hf2: Pérdida de carga unitaria de la tubería de menor diámetro.

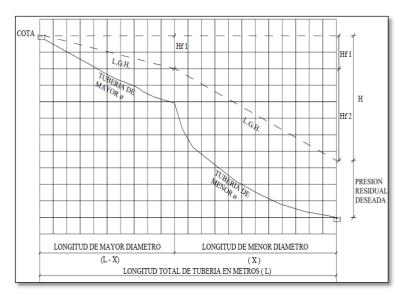


Figura 13 Perfil de la combinación de tuberías.

Fuente: Guía de Diseño para Líneas de Conducción e Impulsión de Sistemas de Abastecimiento de Agua Rural. (2004).

2.2.12.2. Clase de tubería

Según la Organización Mundial de la Salud⁸, Se deberá seleccionar el tipo de tubería en base a la agresividad del suelo y al intemperismo.

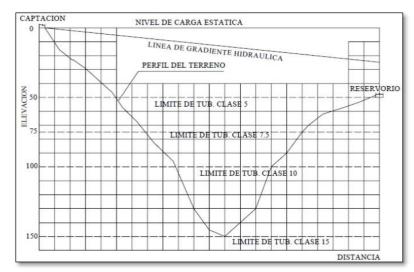


Figura 14 Presiones de trabajo para diferentes clases de tubería de PVC.

Fuente: Guía de Diseño para Líneas de Conducción e Impulsión de Sistemas de Abastecimiento de Agua Rural. (2004).

Tabla 05: Clase de tubería según la resistencia en metros de columna de agua.

Clase	Presión Máxima De	Presión Máxima De
	Prueba (M)	Trabajo (M.)
5	50	35
7.5	75	50
10	105	70
15	150	100

Fuente: NTP 399.002. (2015)

2.2.12.3. Diámetro de tubería

Según la Organización Mundial de la Salud⁸, El diámetro se diseñará para velocidades mínima de 0,6 m/s y máxima de 3,0 m/s. El diámetro mínimo de la línea de conducción es de 3/4" para el caso de sistemas rurales.

2.2.12.4. Estructuras complementarias

a) Cámara de Válvula de Aire:

Según la Organización Mundial de la Salud⁸, El aire acumulado en los puntos altos provoca la reducción del área del flujo del agua, produciendo un aumento de pérdida de carga y una disminución del gasto. Para evitar esta acumulación es necesario instalar válvulas de aire automáticas (ventosas) o manuales.

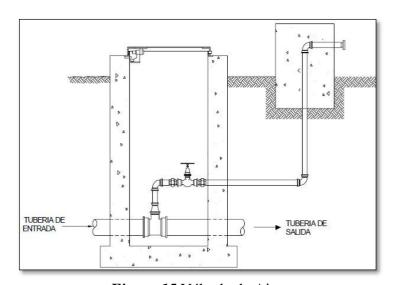


Figura 15 Válvula de Aire.

Fuente: Guía de Diseño para Líneas de Conducción e
Impulsión de Sistemas de Abastecimiento de Agua
Rural. (2004)

b) Cámara de válvula de Purga:

Según la Organización Mundial de la Salud⁸, Los sedimentos acumulados en los puntos bajos de la línea de conducción con topografía accidentada, provocan la reducción del área de flujo del agua, siendo necesario

instalar válvulas de purga que permitan periódicamente la limpieza de tramos de tuberías.

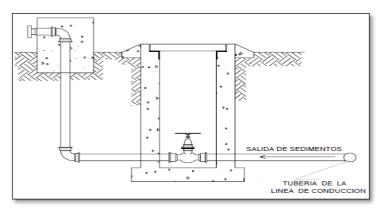


Figura 16 Válvula de Purga.

Fuente: Guía de Diseño para Líneas de Conducción e
Impulsión de Sistemas de Abastecimiento de Agua
Rural. (2004)

c) Cámara Rompe Presión Tipo 6:

Según la Organización Mundial de la Salud⁸,, Al existir fuerte desnivel entre la captación y algunos puntos a lo largo de la línea de conducción, pueden generarse presiones superiores a la máxima que puede soportar la tubería. En este caso se sugiere la instalación de cámaras rompe-presión cada 50 m de desnivel.

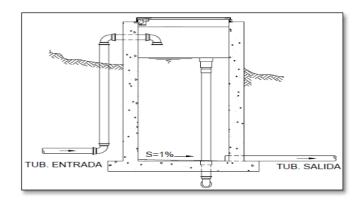


Figura 17 Cámara Rompe Presión tipo 6.

Fuente: Guía de Diseño para Líneas de Conducción e
Impulsión de Sistemas de Abastecimiento de Agua
Rural. (2004)

2.2.13. Reservorio

Según la Deutsche Gesellschaft für Internationale Zusammenarbeit¹¹, Estructura denominada reservorio de almacenamiento. Su función es almacenar una cantidad de agua suficiente para satisfacer la demanda de la población durante paradas en la producción y regular las presiones en la red de distribución. Cuando no existe planta de tratamiento, aquí se puede realizar la desinfección directa.

2.2.13.1. Tipos de reservorios

a) Reservorios elevados

Según Valdez²⁰, El "Reservorio elevado" se refiere a la estructura integral que consiste en el tanque, la torre y la tubería elevadora. Los más comunes se construyen de acero, aunque los hay también de concreto reforzado, tanto el tanque como la torre.

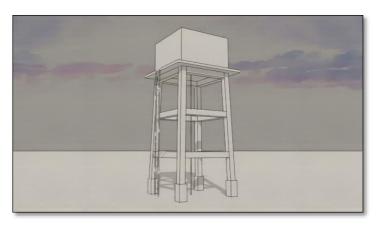


Figura 18 Reservorio elevado de agua potable.

Fuente: 3Dwarehouse. (2018)

b) Reservorios apoyados

Según Valdez²⁰, Estos depósitos se construyen bajo el nivel del suelo o balanceando cortes y rellenos. Sus paredes pueden construirse con mampostería de piedra o con concreto reforzado, revistiéndolas en ambos casos con un impermeabilizante integral al concreto.

Los reservorios apoyados se sitúan en una elevación natural en la proximidad de la zona a que servirán de manera que la diferencia de altura entre el nivel del tanque estando lleno y el punto más bajo por abastecer sea de 50 m.

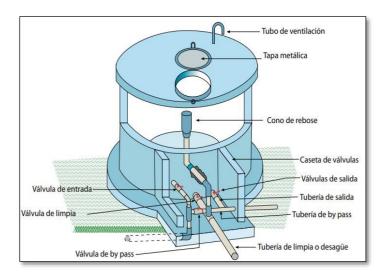


Figura 19 Reservorio apoyado de agua potable.

Fuente: Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el Ámbito Rural.

(2017).

c) Reservorios enterrados

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, Los reservorios enterrados tienen dos ambientes una donde se almacena el volumen útil de agua para consumo humano y otro ambiente de caseta de bombeo que albergará al sistema de bombeo y tableros eléctricos.

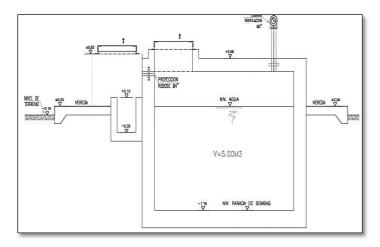


Figura 20 Reservorio enterrado o cisterna.

Fuente: Ministerio de Vivienda, Construcción y Saneamiento (2018).

2.2.13.2. Casetas de Válvulas

a) Tubería de llegada

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, Está definida por la línea de conducción, para el caso se ha estimado teniendo en cuenta una velocidad no menor de 0.6 m/s y una gradiente de acuerdo a la topografía de la zona. Por la dimensión del reservorio el trazo de esta línea ingresa por el mismo lado que la de salida, considerando una válvula de interrupción, una

válvula flotadora, la tubería y accesorios son de fierro galvanizado para facilitar su desinstalación y mayor durabilidad.

b) Tubería de salida

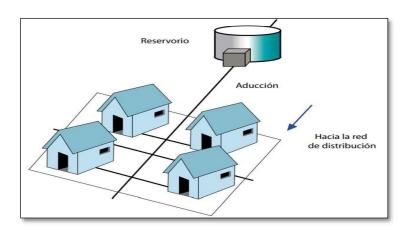
Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, Está definida por tubería de la línea de aducción (que sale del reservorio). Para el caso, se ha estimado teniendo en cuenta una velocidad no menor de 0.6 m/s y una gradiente de acorde a la topografía del área de estudio. La tubería a la salida de la Caseta de Válvulas, considera una válvula de interrupción, una canastilla de salida de bronce, la tubería y accesorios son de fierro galvanizado para facilitar su desinstalación y mayor durabilidad en el tiempo proyectado.

c) Tubería de limpieza

Según el Ministerio de Vivienda, Construcción y Saneamiento⁹, Se ha considerado un vaciado de 0.5 horas, por la capacidad del reservorio y facilitar al operador en la desinfección. La tubería y accesorios son de fierro galvanizado para facilitar su desinstalación y mayor durabilidad.

d) Tubería de Rebose

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, Se ha estimado según el Reglamento


Nacional de Edificaciones Norma IS. 010. El trazo considera una descarga libre y directa a una cajuela de concreto con una brecha libre de 0.10 m para facilitar la inspección de perdida de agua y revisión de la válvula flotadora, la tubería y accesorios son de fierro galvanizado para facilitar su desinstalación y mayor durabilidad.

2.2.13.3. Volumen de almacenamiento

Según el Ministerio de Vivienda, Construcción y Saneamiento 19, El volumen de almacenamiento debe ser del 25% de la demanda diaria promedio anual (Qp), siempre que el suministro de agua de la fuente sea continuo. Si el suministro es discontinuo, la capacidad debe ser como mínimo del 30% de Qp.

2.2.14. Línea de Aducción

Según la Deutsche Gesellschaft für Internationale Zusammenarbeit¹¹, Está conformado por sistemas de tuberías, válvulas y otros componentes que en su conjunto sirven para conducir el agua potable desde el reservorio de almacenamiento hacia la red de distribución.

Figura 21 Línea de aducción

Fuente: Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el Ámbito Rural. (2017)

2.2.14.1. Diámetro

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, El diámetro se diseñará para velocidades mínima de 0,6 m/s y máxima de 3,0 m/s. El diámetro mínimo de la línea de aducción es de 25 mm (1") para el caso de sistemas rurales.

2.2.14.2. Velocidad

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, La Línea de Aducción tendrá capacidad para conducir como mínimo, el caudal máximo horario (Qmh). La carga estática máxima aceptable será de 50 m y la carga dinámica mínima será de 1 m.

2.2.14.3. Presión

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, En la línea de aducción, la presión representa la cantidad de energía gravitacional contenida en el agua.

2.2.15. Red de Distribución

Según la Deutsche Gesellschaft für Internationale Zusammenarbeit¹¹, Sistema de tuberías que incluye válvulas de control, estaciones reductoras de presión y otros componentes, que en su conjunto distribuyen el agua potable a cada una de las viviendas de la población usuaria.

2.2.15.1. Tipos de Tuberías

a) Red principal o matriz

Según Lopez¹⁴, Es el conjunto de tuberías con el diámetro nominal mayor o igual 12" (300mm). Es la red encargada de distribuir el agua en las diferentes zonas de la población y sobre ella se deben garantizar los caudales y presiones, según la norma exigida. No debe realizarse ninguna conexión domiciliaria a partir de la red matriz.

b) Red secundaria

Según Lopez¹⁴, Se clasifica como red secundaria al conjunto de tuberías con diámetros menores de 12" (300mm) hasta los mayores o iguales a 4" (100mm). Se abastecen de las tuberías principales y alimentan las redes terciarias o menores. No se deben realizar ninguna conexión domiciliaria, salvo el caso de grandes consumidores con conexiones superiores a 3" (75mm).

c) Red terciaria o menor

Según Lopez¹⁴, La red terciaria es alimentada por la red secundaria y es la encargada de realizar conexiones domiciliarias. Sus diámetros son menores o iguales a 3" (75mm) y el diámetro mínimo depende del uso del agua

(comercial, industrial o institucional), pero nunca debería ser menor de ½".

d) Conexión Domiciliaria

Según la Deutsche Gesellschaft für Internationale Zusammenarbeit¹¹, Ubicado generalmente en la vereda de la vivienda abastecida, la conexión domiciliaria brinda el acceso al servicio de agua potable. Está conformada por los elementos de toma, medición y caja de protección.

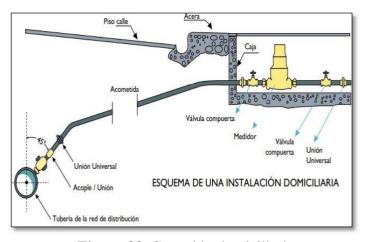


Figura 22 Conexión domiciliaria

Fuente: Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el Ámbito Rural. (2017).

2.2.15.2. Tipos de redes de distribución

a) Redes ramificadas

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, Constituida por tuberías que tienen la forma ramificada a partir de una línea principal;

aplicable a sistemas de menos de 30 conexiones domiciliarias. En redes ramificadas se debe determinar el caudal por ramal a partir del método de probabilidad, que se basa en el número de puntos de suministro y en el coeficiente de simultaneidad.

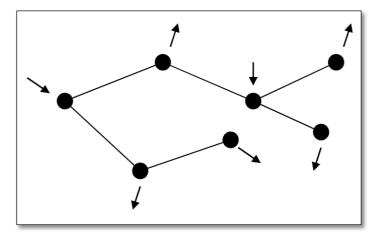


Figura 23 Red ramificada

Fuente: Análisis y diseño hidráulico. (2015)

b) Redes malladas

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, Son aquellas redes constituidas por tuberías interconectadas formando circuitos cerrados o mallas. Cada tubería que reúna dos nudos debe tener la posibilidad de ser seccionada y desaguada independientemente, de forma que se pueda proceder a realizar una reparación en ella sin afectar al resto de la malla. Para ello se debe disponer a la salida de los dos nudos válvulas de corte.

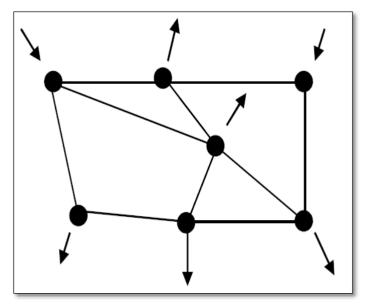


Figura 24 Red mallada

Fuente: Análisis y diseño hidráulico. (2015)

c) Redes mixtas

Las redes mixtas son la combinación de las redes ramificadas y las redes malladas. Este tipo de redes se pueden presentar en diferentes tipos de zonas, dadas por la característica del terreno y ubicación.

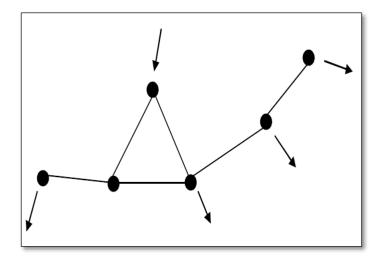


Figura 25 Red Mixta.

Fuente: Análisis y diseño hidráulico. (2015)

2.2.15.3. Velocidad

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, Para la red de distribución se debe cumplir lo siguiente: La velocidad mínima no debe ser menor de 0,60 m/s. En ningún caso puede ser inferior a 0,30 m/s. La velocidad máxima admisible debe ser de 3 m/s.

2.2.15.4. Presión de red de distribución

Según el Ministerio de Vivienda, Construcción y Saneamiento¹⁹, La presión mínima de servicio en cualquier punto de la red o línea de alimentación de agua no debe ser menor de 5 m.c.a. y la presión estática no debe ser mayor de 60 m.c.a. De ser necesario, a fin de conseguir las presiones señaladas se debe considerar el uso de cámaras distribuidora de caudal y reservorios de cabecera, a fin de sectorizar las zonas de presión.

2.3. Hipótesis

No aplica.

2.4. Variables

2.4.1. Evaluación y mejoramiento del sistema de abastecimiento de agua potable.

La evaluación y mejoramiento del sistema de abastecimiento de agua potable es la variable independiente y tiene como finalidad determinar el estado en la que se encuentra el sistema de abastecimiento de agua potable para poder determinar el mejoramiento que requiere el sistema para que sea sostenible y pueda cumplir con las condiciones de salud de la población.

2.4.2. Incidencia de la condición sanitaria de la población.

La incidencia de la condición sanitaria de la población es la variable dependiente de la presente tesis. Según El Programa Nacional de Saneamiento Rural través del Decreto Supremo Nº 002-2012-VIVIENDA, esta variable dependiente tiene por objetivo ampliar la cobertura. mejorar la calidad y promover el uso sostenible de los servicios de agua y saneamiento en las poblaciones rurales del Perú, a fin de mejorar sus condiciones de salud y de vida.

III. Metodología

3.1. El tipo y el nivel de la investigación.

El tipo de investigación fue descriptivo correlacional porque relaciona las dos variables empleando encuestas, fichas técnicas para conocer el estado de sistema de abastecimiento de agua potable y las condiciones de salud de la población.

El nivel de investigación fue de carácter cuantitativo y cualitativo porque obtuve resultados que expresan cantidades estadísticos evaluando el estado del sistema de abastecimiento de agua potable.

3.2.Diseño de la investigación.

El diseño de la investigación sobre la evaluación y mejoramiento del sistema de agua potable en el caserío de Allpamarca, es no experimental de tipo transversal, ya que se hizo uso de los instrumentos y herramientas que se empleó en una sola ocasión, sin manipular las variables.

Leyenda de diseño:

M1: Sistema de abastecimiento de agua potable en el caserío de Allpamarca del centro poblado de Tayagasha, distrito de Panao, provincia de Pachitea, región Huánuco.

Xi: Evaluación y mejoramiento del sistema de abastecimiento de agua Potable.

Oí: Resultados.

Yi: Incidencia en la condición sanitaria de la población.

3.3.Población y muestra.

3.3.1. Población

La población estuvo conformada por el sistema de abastecimiento de agua potable en zonas rurales.

3.3.2. Muestra

La muestra en esta investigación estuvo compuesta por el sistema de abastecimiento de agua potable del caserío de Allpamarca, Tayagasha, Panao, Pachitea, Huánuco.

3.4. Definición y operacionalización de las variables e investigadores

Cuadro 1. Cuadro de definición y operacionalización de las variables e investigadores.

VARIABLE	TIPO DE VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	INVESTIGADORES	SUBDIMENSIONES	INVESTIGAL	OORES		LA DE ICIÓN
O DE AGUA POTABLE			Se realizará la evaluación del		Captación	*Tipo captación afloramiento *Caudal máximo de la fuente. la fuente *Antigüedad. *Clase de tubería. tubería. *Cerco perimétrico. *Cámara húmeda.	*Protección del *Caudal mínimo de *Tipo de tubería. *Diámetro de *Cámara seca. *Accesorios.	*Nominal * Intervalo *Intervalo *Nominal *Nominal *Nominal	* Ordinal *Intervalo *Nominal *Ordinal *Nominal *Nominal
ABASTECIMIENTO	TE	Tiene como finalidad determinar el estado en la que se encuentra el sistema de	sistema de abastecimiento de agua potable mediante fichas técnicas, encuestas	Evaluación del sistema de	Línea de conducción	*Tipo de línea de conducción. *Tipo de tubería. *Diámetro de tubería.	*Antigüedad. *Clase de tubería. *Válvulas.	*Nominal *Nominal *Nominal	*Intervalo *Nominal * Nominal
SISTEMA DE ABA	VARIABLE INDENPEDIENTE	agua potable para poder determinar el mejoramiento que requiere el sistema para que sea sostenible y pueda	población para ver el estado en que se encuentra la	abastecimiento de agua potable	Reservorio	*Tipo reservorio. reservorio. *Material de construcción. *Accesorios. *Tipo de tubería. *Diámetro de tubería. *Cerco perimétrico.	*Forma de *Antigüedad. *Volumen. *Clase de tubería. *Caseta de cloración *Caseta de válvulas	*Nominal *Ordinal *Nominal *Nominal *Nominal *Nominal	*Nominal *Intervalo *Ordinal *Nominal *Ordinal *Nominal
DEL	VARIAI	cumplir con las condiciones de salud de la población.	infraestructura y tuberías y según los resultados se optó por un mejoramiento en		Línea de Aducción	*Tipo de línea de conducción. *Tipo de tubería. *Diámetro de tubería.	*Antigüedad. *Clase de tubería. *Válvulas.	*Ordinal *Nominal	*Nominal *Nominal
ORAMIENTO			el sistema de abastecimiento de agua potable,		Red de Distribución	*Tipo sistema de red. *Clase de tubería. *Diámetro de tubería.	*Tipo de tubería. *Antigüedad.	*Nominal *Nominal *Nominal	*Nominal *Ordinal
Y MEJ			cumpliendo con la resolución Ministerial 192-2018.		Captación	*Tipo de tubería. *Clase de tubería. *Cerco perimétrico. *Accesorios	*Diámetro de tubería *Caseta de válvulas *Cámara húmeda	*Nominal *Nominal *Nominal *Nominal	*Ordinal *Nominal *Nominal
EVALUACIÓN				Mejoramiento del sistema de abastecimiento de agua potable	Línea de Conducción	*Clase de tubería. *Diámetro de tubería. *Presión. *Caudal máximo diario.	*Tipo de tubería. *Velocidad. *Pérdida de carga. *Válvulas.	*Nominal *Ordinal *Intervalo *Intervalo	*Nominal *Intervalo *Intervalo *Intervalo

		Reservorio	*Tipo de tubería. *Accesorios. *Caseta de cloración.	*Clase de tubería. *Cerco perimétrico. *Diámetro	*Nominal *Nominal *Nominal	*Nominal *Nominal *Ordinal
		Línea de Aducción	*Clase de tubería. *Diámetro de tubería. *Presión. *Caudal máximo horario.	*Tipo de tubería. *Velocidad. *Pérdida de carga.	*Nominal *Ordinal *Intervalo *Intervalo	*Nominal *Intervalo *Intervalo
		Red de Distribución	*Clase de tubería. *Diámetro de tubería. *Presión. *Caudal máximo horario.	*Tipo de tubería. *Velocidad. *Pérdida de carga.	*Nominal *Ordinal *Intervalo *Intervalo	*Nominal *Intervalo *Intervalo
SANITARIA	Se elaboró fichas técnicas empleando Según El Programa encuestas que se Nacional de aplicaron al caserío y	Cobertura	*Viviendas conectadas a la *Dotación utilizada *Caudal Mínimo	red	*Intervalo *Ordinal *Intervalo	
Saneamiento Rural a fichas que nos brinda través del Decreto el reglamento de Supremo Nº 002- Ministerio de 2012-VIVIENDA, Vivienda, tiene por objetivo Construcción y ampliar la cobertura, Saneamiento, mejorar la calidad y Dirección General de promover el uso Salud Ambiental sostenible de los (DIGESA). Se servicios de agua y verifico de acuerdo al saneamiento en las guía de asignación de poblaciones rurales puntajes según del Perú, a fin de (Dirección Regional mejorar sus de Vivienda condiciones de salud Construcción y Saneamiento, SIRAS	Cantidad	*Caudal en época de sequía *Conexión domiciliaria *Piletas	ı	*Intervalo *Ordinal *Intervalo		
	taria Continuidad	*Determinación del estado (*Tiempo de trabajo de la fu		*Nominal *Intervalo		
	Calidad del agua	*Colocan cloro *Nivel de cloro residual *Como es el líquido elemen *Análisis, químico y bacter *Supervisión del recurso hí	iológico del agua	*Intervalo *Intervalo *Nominal *Intervalo *Nominal		

3.5. Técnicas e instrumentos

3.5.1. Técnicas de recolección de datos

Se realizó visitas a la zona de estudio, donde obtuve información necesaria, haciendo uso de la observación directa para identificar el estado del sistema , mediante el uso de ficha de instrumentos y encuestas, la cual posteriormente se procesó en gabinete siguiendo una secuencia metodológica convencional, y así se pudo hallar las mejores opciones en cuanto a la infraestructura que permita satisfacer la demanda para los servicios de agua que resulten acordes con la solución económica, tecnología disponible y un nivel de servicio aceptable.

3.5.2. Instrumentos de recolección de datos

a) Encuesta

Este es un formato que se empleó para poder evaluar el estado del sistema y conocer las condiciones de salud en la que se encuentra la población mediante preguntas, obteniendo resultados mostrándonos que estructuras hidráulicas o componentes requiere realizar el mejoramiento del sistema de abastecimiento de agua potable del caserío de Allpamarca.

b) Fichas técnicas

Este es un formato que permitió determinar y detallar los datos del estado en la que se encuentra el sistema, además para calificar la condición sanitaria con respecto al servicio que este brinda tanto en cantidad, calidad, continuidad y cobertura del caserío de Allpamarca.

c) Protocolos

Se aplicó el estudio de suelo en cada parte del sistema tanto en la zona de la captación, línea de conducción, reservorio y red de distribución; además se realizó el análisis del estudio físico, químico y bacteriológico del agua.

3.6. Plan de análisis.

El tipo de investigación es descriptivo correlacional ya que el principal objetivo es desarrollar la evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío de Allpamarca, Tayagasha, Panao, Pachitea, Huánuco para la mejora de la condición sanitaria de la población y el nivel de investigación es mixta porque implican la recolección y el análisis de datos cuantitativos y cualitativos, se obtuvo datos con el instrumento en campo, en este caso encuestas, fichas técnicas y los protocolos; para luego recopilar datos para realizar el mejoramiento del sistema de abastecimiento de agua potable. Para el desarrollo de este proyecto se tomó todos los datos necesarios y se realizó los cálculos haciendo uso de programas informáticos como el Excel, S10, Watercad conection, AutoCAD civil del cual se realizó en base a la resolución Ministerial 192-2018-Vivienda (Norma técnica de diseño: Opciones tecnológicas para sistemas de saneamiento en el ámbito rural), Reglamento Nacional de Edificaciones (IS 010) y libros para el desarrollo del diseño del sistema de abastecimiento de agua potable en zonas rurales.

3.7. Matriz de consistencia

Cuadro 2 Matriz de consistencia.

DISTRITO DE PANAO PROVINCIA DE PACHITEA PECIÓN HUANUCO PARA SU INCIDENCIA EN LA CONDICIÓN SANITADIA DE LA PORLACIÓN 2010	EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA,
DISTRITO DE L'ANAO, I ROVINCIA DE L'ACITITEA, REGION HUANUCO, L'ARA SU INCIDENCIA EN LA CONDICION SANTIARIA DE LA L'OBLACION – 2017.	DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUANUCO, PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN – 2019.

DISTRITO DE PANAO, I	PROVINCIA DE PACHITEA, REGIÓ	ÓN HUANUCO, PARA SU INCI	IDENCIA EN LA CONDICIÓN SANITARIA DE
Caracterización de problema:	Objetivo general:	Agua Potable	Metodología
A consecuencia de la insalubridad del recurso	Desarrollar la evaluación y	Afloramiento	El tipo de investigación será descriptivo
hídrico, de la escasez de un sistema de	mejoramiento del sistema de	Fuente de Agua	correlacional porque relaciona las dos variables
abastecimiento de agua y de carencia de	abastecimiento de agua potable en el	Tipos de fuentes de Agua	empleando encuestas, fichas técnicas para conocer
educación sanitaria, a nivel mundial se estima	Caserío de Allpamarca del Centro	Demanda de Agua	el estado de sistema de abastecimiento de agua
que 842 000 personas mueren cada año por	Poblado de Tayagasha, Distrito de	Periodo de Diseño	potable y las condiciones de salud de la población.
enfermedades diarreicas.	Panao, Provincia de Pachitea, Región	Población Futura	El nivel de investigación será de carácter
	Huánuco, para su Incidencia en la	Métodos de Estimación de la	cuantitativo y cualitativas porque obtuvimos
El caserío de Allpamarca actualmente continua	Condición Sanitaria de la Población -	Población Futura	resultados que expresan cantidades estadísticos
con la carencia de suministro de agua potable	2019.	Dotación	evaluando el estado del sistema de abastecimiento
debido a que no tienen un sistema de	Objetivos específicos:	Variación de consumo	de agua potable. El diseño de la investigación sobre
abastecimiento de agua potable, de lo cual solo	Evaluar el sistema de abastecimiento	Sistemas de abastecimiento de	la evaluación y mejoramiento del sistema de agua
se abastecen de manantiales insitu cercanos a	de agua potable en el Caserío de	agua potable en el ámbito	potable en el caserío El Porvenir, será no
las viviendas y las viviendas que se encuentran	Allpamarca del Centro Poblado de	rural	experimental de tipo transversal, ya que hacen uso
alejados se abastecen de los sequias, afectando	Tayagasha, Distrito de Panao,	Tipos de Sistemas de Agua	de los instrumentos y herramientas que se emplearán
las condiciones de salud de la población.	Provincia de Pachitea, Región Huánuco	Potable	en una sola ocasión, sin manipular las variables.
	– 2019.	Captación	
Enunciado del problema:	Elaborar el mejoramiento del sistema	Línea de Conducción	El universo y la muestra estará conformada por el
¿La evaluación y mejoramiento del sistema de	de abastecimiento de agua potable en el	Reservorio	sistema de abastecimiento de agua potable del
abastecimiento de agua potable en el Caserío de	Caserío de Allpamarca del Centro	Línea de Aducción	Caserío de Allpamarca del Centro Poblado de
Allpamarca del Centro Poblado de Tayagasha,	Poblado de Tayagasha, Distrito de	Red de Distribución	Tayagasha, Distrito de Panao, Provincia de
Distrito de Panao, Provincia de Pachitea,	Panao, Provincia de Pachitea, Región	Condición Sanitaria	Pachitea, región Huánuco.
Región Huánuco; mejorara la Condición	Huánuco – 2019.	Calidad de Agua Potable	
Sanitaria de la Población?	Obtener la Incidencia en la Condición	Cantidad de Agua Potable	Definición y Operacionalización de las Variables
	Sanitaria en el Caserío de Allpamarca	Cobertura de Servicio	Técnicas e Instrumentos
	del Centro Poblado de Tayagasha,		Plan de Análisis
	Distrito de Panao, Provincia de		Matriz de consistencia

Pachitea, Región Huánuco – 2019.

- (1) Gil J. Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío El Porvenir, distrito Santa Rosa, provincia de Pallasca, región Áncash -2020. [Tesis para optar el título] pg: [215;01-28-35-40-85]. Chimbote Perú: Universidad Los Ángeles de Chimbote; 2020.
- (2) Quispe E. Evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío de Asay, distrito Huacrachuco, provincia Marañón, región Huánuco y su incidencia en la condición sanitaria de la población 2019. [Tesis para optar el título] pg: [104;01-24-25-30-45]. Chimbote Perú: Universidad Los Ángeles de Chimbote; 2019.
- (3) Herrera M. Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay, provincia de Recuay, región de Áncash, agosto 2019. [Tesis para optar el título] pg: [363;01-48-55-69-101]. Chimbote Perú: Universidad Los Ángeles de Chimbote; 2019

Fuente: Elaboración propia - 2021

Principios éticos.

3.8. Principios éticos.

3.8.1. Ética para inicio de la evaluación

Para dar inicio a la evaluación, se tuvo que pedir permiso a las autoridades a cargo del caserío de Allpamarca, indicándoles nuestros objetivos de nuestra investigación, de manera responsable y con mucha veracidad para evaluar a través de la observación directa el estado en la que presenta el sistema de abastecimiento de agua potable.

3.8.2. Ética de la recolección de datos

Para el procedimiento de recolección de datos tuvo que ser lo más honesto y responsable para luego desarrollar de manera adecuado análisis de datos y cálculos, de esta manera obtener un desarrollo auténtico de la presente tesis.

3.8.3. Ética en el mejoramiento del sistema de agua potable

Se mostró los resultados que nos brindó la evaluación para proceder a conocer los daños presentes en todo el sistema de abastecimiento de agua potable del caserío de Allpamarca, para luego identificar si concuerdan con los cálculos.

IV. Resultados

4.1. Resultados

1. Dando respuesta al primer objetivo específico:

Evaluar el sistema de abastecimiento de agua potable en el caserío de Allpamarca del centro poblado de Tayagasha, distrito de Panao, provincia de Pachitea, región Huánuco – 2019.

Cuadro 1: Evaluación del componente de la Captación Damaciopuquio

ESTRUCTUTRA	INDICADORES	DATOS RECOLECTADOS	DESCRIPCIÓN
	Tipo de captación	Artesanal	Se encuentra en un estado ineficiente, elaborado por los mismos pobladores.
	Material de construcción	Ladrillo y mortero	Información verificada mediante observación directa
	Caudal máximo de fuente	1.395 lt/s	El caudal es óptimo para el diseño y abastecimiento del pueblo
	Caudal máximo diario	0.880 L/s	Este es el caudal de diseño estandarizado el reglamento indica que son (0.50 - 1.00 y 1.50 lt/s)
CAPTACIÓN AREA 1	Antigüedad	21.00 años	Tiene una antigüedad superior a lo indicado en el cuadro 1 Periodos de diseño de infraestructura sanitaria, establecido en el RM 192-2018
	Tipo de tubería	PVC	Material recomendado, se encuentra expuesta al interperie.
	Clase de tubería	7.5	Lo recomendable es clase 10 en zonas rurales.
	Diámetro de tubería	2.00 plg.	Se elaborara el mejoramiento de la captación
	Cerco perimétrico	No cuenta	Se elaborara el mejoramiento de la captación
	Cámara seca	No cuenta	Se elaborara el mejoramiento de la captación
	Cámara húmeda	Mal estado	Se elaborara el mejoramiento de la captación
	Accesorios	No cuenta con varios accesorios	Se tendrá que determinar los accesorios en el mejoramiento de la captación

 ${\it Imagen~1}$ Captación artesanal Damaciopuquio del caserío de Allpamarca $- {\it \acute{A}rea~1}.$

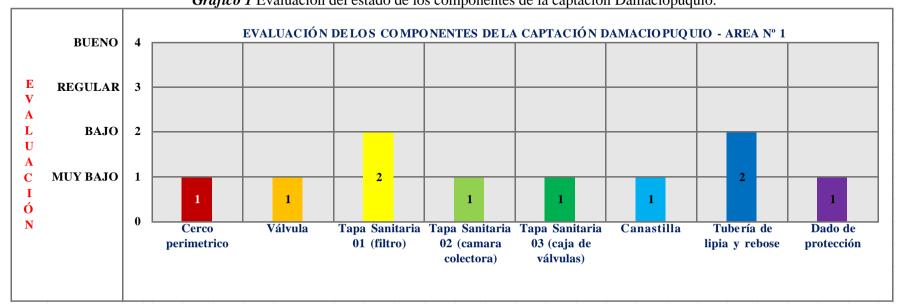


Gráfico 1 Evaluación del estado de los componentes de la captación Damaciopuquio.

Interpretación:

Los estados de los componentes de la obra de captación Damaciopuquio, presentan en gran proporción un estado "muy bajo". Como se presenta en el gráfico 1; seis componentes se encuentran en un estado muy bajo y dos en un estado "bajo".

Cuadro 2: Evaluación de los componentes de la Captación Matacaballo

ESTRUCTUTRA		DATOS	DESCRIPCIÓN
	Tipo de captación	Artesanal	Se encuentra en un estado ineficiente, elaborado por los mismos pobladores.
	Material de construcción	Concreto fc= 140 kg/cm ²	Información verificada mediante observación directa
	Caudal máximo de fuente	1.057 lt/s	El caudal es óptimo para el diseño y abastecimiento del pueblo
	Caudal máximo diario	0.42 L/s	Este es el caudal de diseño estandarizado el reglamento indica que son (0.50 - 1.00 y 1.50 lt/s)
CAPTACIÓN AREA 2	Antigüedad	20.00 años	Tiene una antigüedad superior a lo indicado en el cuadro 1 Periodos de diseño de infraestructura sanitaria, establecido en el RM 192- 2018
	Tipo de tubería	PVC	Material recomendado, se encuentra expuesta al interperie.
	Clase de tubería	7.5	Lo recomendable es clase 10 en zonas rurales.
	Diámetro de tubería	1 1/2 plg.	Se elaborara el mejoramiento de la captación
	Cerco perimétrico	No cuenta	Se elaborara el mejoramiento de la captación
	Cámara seca	No cuenta	Se elaborara el mejoramiento de la captación
	Cámara húmeda	No cuenta	Se elaborara el mejoramiento de la captación
	Accesorios	No cuenta con accesorios	Se tendrá que determinar los accesorios en el mejoramiento de la captación

Imagen 2 Captación artesanal Matacaballo del caserío de Allpamarca – Área 2.

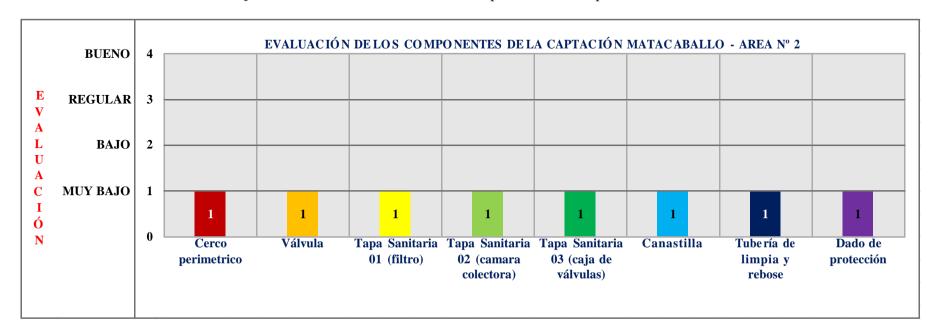
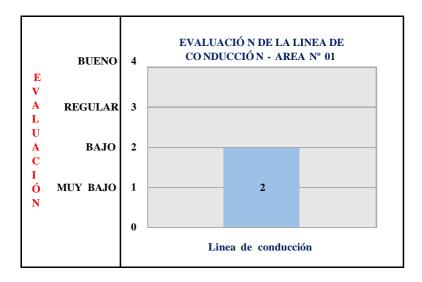


Gráfico 2 Evaluación del estado de los componentes de la captación Matacaballo.

Interpretación:

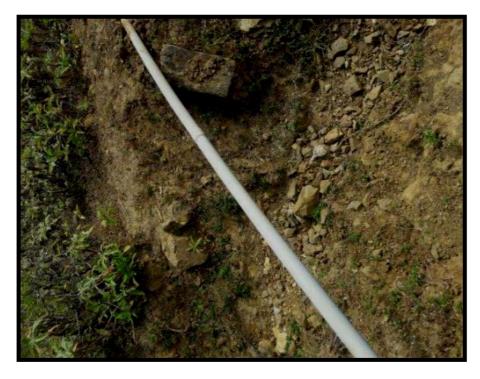
Los estados de los componentes de la obra de captación Matacaballo, presentan en gran proporción un estado "muy bajo". Como se presenta en el gráfico 2; los ocho componentes se encuentran en un estado "muy bajo".


Cuadro 3: Evaluación de los componentes de la Línea de conducción – Área Nº 1

ESTRUCTUTRA	INDICADORES	DATOS RECOLECTADOS	DESCRIPCIÓN
	Tipo de línea de conducción	Gravedad	Se aplica este sistema, debido a la gran pendiente que cuenta
	Antigüedad	21.00 años	Cumple con el reglamento RM 192-2018.
LINEA DE CONDUCCIÓN - AREA Nº 1	Tipo de tubería	HDPE y PVC	Material recomendado, se encuentra expuesta al interperie
	Clase de tubería	10	Se utiliza una tubería de dos tipos.
	Diámetro de tubería	2.00 plg	Se determinará en el mejoramiento de la línea de conducción
	Válvulas	No cuenta	No cuenta con válvula de purga, ni válvula de aire y cámara rompe presión, se determinará en el mejoramiento de la línea de conducción

Imagen 3 Evaluación de la línea de conducción del caserío de Allpamarca $- \acute{A} rea \ n^o \ 1.$

Gráfico 3 Evaluación del estado de la línea de conducción del Área nº 01 del caserío de Allpamarca.



Interpretación:

El estado de la línea de conducción del área Nº 01 del caserío de Allpamarca es "bajo", la tubería se encuentra expuesta al terreno por lo que se expone al peligro tanto en el deterioro por ser de HDPE y PVC como a las roturas y por consiguiente la contaminación del agua, además que no se tiene pases aéreos, válvulas de aire, válvulas de purga y cámaras rompe presión tipo 6 (CRP6).

Cuadro 4: Evaluación de los componentes de la Línea de conducción – Área Nº 2

ESTRUCTUTRA	INDICADORES	DATOS RECOLECTADOS	DESCRIPCIÓN
	Tipo de línea de conducción	Gravedad	Se aplica este sistema, debido a la gran pendiente que cuenta
	Antigüedad	20.00 años	Cumple con el reglamento RM 192-2018.
LINEA DE CONDUCCIÓN - AREA Nº 2	Tipo de tubería	PVC	Material recomendado, se encuentra expuesta al interperie
	Clase de tubería	7.5	Se recomienda usar clase 10.
	Diámetro de tubería	2.00 plg	Se determinará en el mejoramiento de la línea de conducción
	Válvulas	No cuenta	No cuenta con válvula de purga, ni válvula de aire y cámara rompe presión, se determinará en el mejoramiento de la línea de conducción

Imagen 4 Evaluación de la línea de conducción del caserío de Allpamarca – Área nº 2.

Gráfico 4 Evaluación del estado de la línea de conducción del Área nº 02 del caserío de Allpamarca.

Interpretación:

El estado de la línea de conducción del área Nº 02 del caserío de Allpamarca es "muy bajo y bajo", la tubería se encuentra expuesta al terreno por lo que se expone al peligro tanto en el deterioro por ser de PVC como a las roturas y por consiguiente la contaminación del agua, además que no se tiene pases aéreos, válvulas de aire, válvulas de purga y cámaras rompe presión tipo 6 (CRP6).

 $\label{eq:cuadro 5:} \mbox{Evaluación de los componentes de Reservorio del Área Nº 1,} \\ \mbox{del caser\'io de Allpamarca.}$

ESTRUCTUTRA	INDICADORES	DATOS RECOLECTADOS	DESCRIPCIÓN
	Tipo de reservorio	Apoyado	Es un reservorio de 2.50 m de ancho x 3.50 m largo y 1.75 de profundidad.
	Forma de reservorio	rectangular	La forma es rectangular
	Material de construcción	Concreto armado	Información brindado por el representante del caserío
	Antigüedad	21 años	No se encuentra dentro del período de diseño que indica el reglamento RM 192 - 2018
RESERVORIO – AREA Nº 1	Accesorios	No cuenta con ningún accesorio	Se tendrá que determinar los accesorios en el mejoramiento del reservorio
	Volumen	8.5 m3	El volumen es el indicado.
	Tipo de tubería	PVC	Material recomendado
	Clase de tubería	7.5	Se determinará en el mejoramiento del reservorio
	Diámetro de tubería	2.00 plg	Se determinará en el mejoramiento del reservorio
	Cerco perimétrico	No cuenta	Se determinará en el mejoramiento del reservorio
	Caseta de cloración	No cuenta	Se determinará en el mejoramiento del reservorio

 $\emph{Imagen 5}$ Evaluación de Reservorio del Área Nº 1, del caserío de Allpamarca.

Imagen 6 Reservorio del Área Nº 1, del caserío de Allpamarca presenta grietas y fisuras en su estructura.

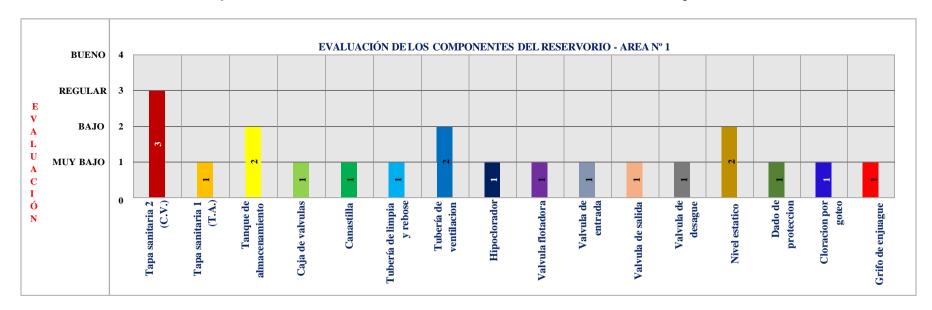


Gráfico 5 Evaluación del estado del reservorio del área nº 01 del caserío de Allpamarca.

Interpretación:

Los estados de los componentes del reservorio presentan en gran mayoría un estado "muy bajo". Como observamos en el gráfico 5; doce componentes se encuentran en un estado muy bajo, tres entre los estados "bajo" y uno en un estado "regular".

Cuadro 6: Evaluación de los componentes del Reservorio del área nº 2, del caserío de Allpamarca.

ESTRUCTUTRA	INDICADORES	DATOS RECOLECTADOS	DESCRIPCIÓN
	Tipo de reservorio	Apoyado	Es un reservorio de 2.20 m de ancho x 1.80 m largo y 1.30 de profundidad.
	Forma de reservorio	rectangular	La forma es rectangular
	Material de construcción	Concreto armado	Información brindado por el representante del caserío
	Antigüedad	20 años	No se encuentra dentro del período de diseño que indica el reglamento RM 192 - 2018
RESERVORIO – AREA Nº 2	Accesorios	No cuenta gran parte de accesorios	Se tendrá que determinar los accesorios en el mejoramiento del reservorio
	Volumen	4.5 m ³	El volumen es el indicado.
	Tipo de tubería	PVC	Material recomendado
	Clase de tubería	7.5	Se determinará en el mejoramiento del reservorio
	Diámetro de tubería	2 pulgadas	Se determinará en el mejoramiento del reservorio
	Cerco perimétrico	si cuenta	Se determinará en el mejoramiento del reservorio
	Caseta de cloración	No cuenta	Se determinará en el mejoramiento del reservorio

Imagen 7 Evaluación de Reservorio del Área Nº 2, del caserío de Allpamarca.

Imagen 8 Reservorio del Área Nº 2, del caserío de Allpamarca presenta grietas y fisuras en su estructura por su antigüedad.

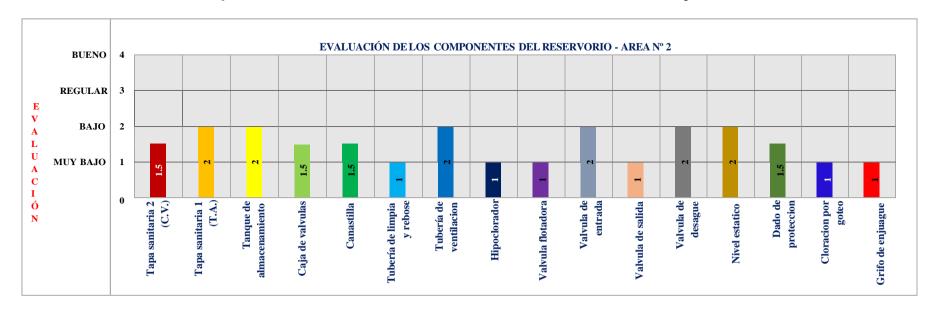


Gráfico 6 Evaluación del estado del reservorio del área nº 02 del caserío de Allpamarca.

Interpretación:

Los estados de los componentes del reservorio presentan en gran mayoría un estado "muy bajo y bajo". Como observamos en el gráfico 6; seis componentes se encuentran en un estado muy bajo, cuatro entre los estados "muy bajo y bajo" y seis en un estado "regular".

Cuadro7: Evaluación de los componentes de la línea de aducción del área nº 1, del caserío de Allpamarca.

ESTRUCTUTRA	INDICADORES	DATOS RECOLECTADOS	DESCRIPCIÓN
	Antigüedad	14 años	Se encuentra dentro del período de diseño del reglamento de la resolución ministerial 192-2018.
LÍNEA DE ADUCCIÓN - AREA Nº 01	Tipo de tubería	PVC	Material empleado, se encuentra enterrado parcialmente
	Clase de tubería	10	Se realizará en el mejoramiento de la línea de aducción
	Diámetro de tubería	1.00 pulg.	Se realizará en el mejoramiento de la línea de aducción

Cuadro 8: Evaluación de los componentes de la red de distribución del área nº 1, del caserío de Allpamarca.

ESTRUCTUTRA	INDICADORES	DATOS RECOLECTADOS	DESCRIPCIÓN
	Antigüedad	14 años	Se encuentra dentro del período de diseño del reglamento de la resolución ministerial 192-2018.
RED DE DISTRIBUCIÓN - ÁREA Nº 01	Tipo de sistema	Ramificado	Es un sistema aplicado para viviendas distribuidas, pero tiene conectividad con todas las viviendas del caserío de Allpamarca
	Tipo de tubería	PVC	Material empleado, se encuentra enterrado parcialmente
	Clase de tubería	10	Se realizará en el mejoramiento de la línea de aducción
	Diámetro de tubería	1.00 - 1/2 pulg	Se realizará en el mejoramiento de la línea de aducción

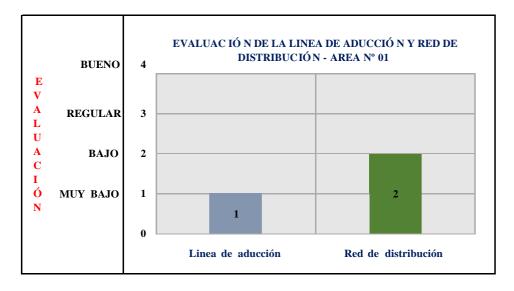


Imagen 9 Pileta publica del Área N° 1, del caserío de Allpamarca.

Imagen 10 Viviendas beneficiadas con la red de distribución existente del área nº 01, del caserío de Allpamarca.

Gráfico 7 Evaluación del estado de la línea de aducción y red de distribución del área nº 01 del caserío de Allpamarca.

Interpretación:

El estado de la línea de conducción y red de distribución del área nº 01 del caserío de Allpamarca, se encuentran "muy bajo y bajo", la tubería de aducción se encuentra expuesta al terreno por lo que se expone al peligro tanto en el deterioro por ser de PVC como a las roturas y ello conlleva a la contaminación del recurso hídrico, por otro lado, la red de distribución se encuentra en algunas partes las tuberías colapsadas.

Cuadro 9: Evaluación de los componentes de la línea de aducción del área nº 2, del caserío de Allpamarca.

ESTRUCTUTRA	INDICADORES	DATOS RECOLECTADOS	DESCRIPCIÓN	
LÍNEA DE ADUCCIÓN - AREA Nº 02	Antigüedad	14 años	Se encuentra dentro del período de diseño del reglamento de la resolución ministerial 192-2018.	
	Tipo de tubería	PVC	Material empleado, se encuentra enterrado parcialmente	
	Clase de tubería	7.5	Se realizará en el mejoramiento de la línea de aducción	
	Diámetro de tubería	1.00 pulg.	Se realizará en el mejoramiento de la línea de aducción	

Cuadro 10: Evaluación de los componentes de la red de distribución del área nº 2, del caserío de Allpamarca.

ESTRUCTUTRA	INDICADORES	DATOS RECOLECTADOS	DESCRIPCIÓN	
RED DE DISTRIBUCIÓN - ÁREA Nº 02	Antigüedad	14 años	Se encuentra dentro del período de diseño del reglamento de la resolución ministerial 192-2018.	
	Tipo de sistema	Ramificado	Es un sistema aplicado para viviendas distribuidas, pero tiene conectividad con todas las viviendas del caserío de Allpamarca	
	Tipo de tubería	PVC	Material empleado, se encuentra enterrado parcialmente	
	Clase de tubería	7.5	Se realizará en el mejoramiento de la línea de aducción	
	Diámetro de tubería	1.00 - 1/2 pulg	Se realizará en el mejoramiento de la línea de aducción	

Imagen 11 Pileta publica Nº 01 dentro de la red de distribución del área nº 02, del caserío de Allpamarca.

Imagen 12 Pileta publica Nº 02 dentro de la red de distribución del área nº 02, del caserío de Allpamarca.

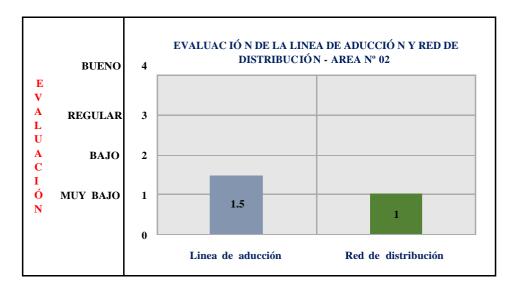
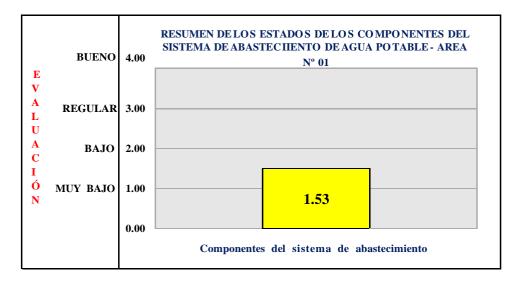


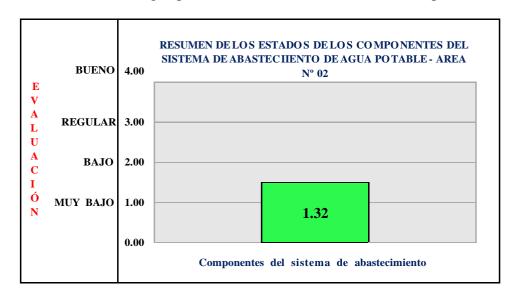
Imagen 13 Viviendas beneficiadas con la red de distribución existente del área nº 02, del caserío de Allpamarca.

Imagen 13 Viviendas beneficiadas con la red de distribución existente del área nº 02 - 1, del caserío de Allpamarca.


Gráfico 8 Evaluación del estado de la línea de aducción y red de distribución del área nº 02 del caserío de Allpamarca.

Interpretación:

El estado de la línea de conducción y red de distribución del área nº 02 del caserío de Allpamarca, se encuentran "bajo y muy bajo", la tubería de aducción se encuentra parcialmente enterrada por lo que se expone al peligro tanto en el deterioro por ser de PVC como a las roturas y ello conlleva a la contaminación del recurso hídrico, por otro lado, la red de distribución se encuentra en algunas partes las tuberías colapsadas y totalmente descuidada.


Gráfico 84 Resumen de los estados de componentes del sistema abastecimiento de agua potable del área nº 01 del caserío de Allpamarca.

Interpretación:

El estado de los componentes del sistema de abastecimiento de agua potable del área nº 01 del caserío de Allpamarca se encuentran en un estado entre "muy bajo"-"bajo", ya que los componentes del sistema no cumplen con lo que indica el reglamento, en la obra de captación no cuenta con la gran mayoría de accesorios, ni cerco perimétrico y ni caseta de válvulas; en la línea de conducción no cuenta con cámara rompe presión tipo 6, no existen válvulas de purga y aire, las tuberías son de PVC y no se encuentren totalmente enterradas; en el reservorio de igual forma no presenta accesorios ya que fue construido artesanalmente, no cuenta con caseta de desinfección y tampoco con cerco perimétrico; las línea de aducción y red de distribución no se encuentran totalmente enterradas.

Gráfico 85 Resumen de los estados de componentes del sistema de abastecimiento de agua potable del área nº 02 del caserío de Allpamarca.

Interpretación:

El estado de los componentes del sistema de abastecimiento de agua potable del área nº 02 del caserío de Allpamarca se encuentran en un estado entre "muy bajo"-"bajo", ya que los componentes del sistema no cumplen con lo que indica el reglamento y fueron realizados de manera artesanal, en la obra de captación no cuenta con la gran mayoría de accesorios, ni cerco perimétrico y ni caseta de válvulas; en la línea de conducción no cuenta con cámara rompe presión tipo 6, no existen válvulas de purga y aire, las tuberías son de PVC y no se encuentren totalmente enterradas; en el reservorio si presenta algunos accesorios ya que fue construido gracias a una donación de ONG, no cuenta con caseta de desinfección y si cuenta con cerco perimétrico; las línea de aducción y red de distribución no se encuentran totalmente enterradas.

2. Dando respuesta al primer objetivo específico:

Elaborar el mejoramiento del sistema de abastecimiento de agua potable en el caserío de Allpamarca del centro poblado de Tayagasha, distrito de Panao, provincia de Pachitea, región Huánuco – 2019.

Tabla 6 Diseño hidráulico de la obra de captación Damaciopuquio del área nº 01 del caserío de Allpamarca.

Id	Parámetros básicos de diseño	Código	Datos de diseño	Unidad		
01	Caudal máximo (Qmax)	Qmax	1.50	1/s		
02	Caudal mínimo (Qmin)	Qmin	1.30	1/s		
03	Caudal máximo diario (Qmd)	Qmd	1.00	1/s		
Deter	minación del ancho de pantalla					
04	Diámetro Tub. Ingreso (orificios)	Da	2	pulg		
		Norificio				
05	Número de orificios		2	Unidad		
06	Ancho de la pantalla	b	0.90	m		
Cálcı	Cálculo de la distancia entre el punto de afloramiento y la cámara					
húme	eda					
07	Longitud	L	1.25	m		
Altura de la cámara húmeda						
	Altura de la cámara húmeda					
08	asumida	hta	1.00	m		
09	Tubería de salida	Ts	1	pulg		
Dimensionamiento de la canastilla						
10	Diámetro de la canastilla	Dcanast	2	pulg		
11	Longitud de la canastilla	Lca	5	pulg		
12	Número de ranuras	Nranuras	115	Unidad		
Rebose y limpia						
13	Tubería de rebose	Tr	1.50	pulg		
14	Tubería de limpia	TL	1.50	pulg		

Fuente: Elaboración propia – 2021

Interpretación:

La obra de captación por manantial tipo ladera denominado

Damaciopuquio es el primer punto de inicio del sistema de

abastecimiento de agua potable del área nº 01, ubicada en las coordenadas

E: 398275.00 N: 8885759.00 en la altitud 3432.23 msnm; para realizar el diseño de la obra de captación se debe tener en cuenta los caudales de la fuente, obtenido a través del aforo en campo en época de lluvias (caudal máximo) y de estiaje (caudal mínimo) mediante el método volumétrico; además se tendrá en cuenta la verificación de la demanda de agua que requiere el sistema y para ello debemos saber que el caudal mínimo de la fuente deberá ser mayor al caudal máximo diario (Qmd); se realizó el cálculo del ancho de pantalla, cálculo de la distancia entre el punto de afloramiento y la cámara húmeda, la altura de la cámara húmeda, el dimensionamiento de la canastilla, rebose y limpia.

Tabla 7 Diseño hidráulico de la obra de captación Matacaballo del área nº 02 del caserío de Allpamarca.

Id	Parámetros básicos de diseño	Código	Datos de diseño	Unidad		
01	Caudal máximo (Qmax)	Qmax	0.75	1/s		
02	Caudal mínimo (Qmin)	Qmin	0.65	1/s		
03	Caudal máximo diario (Qmd)	Qmd	0.50	1/s		
Determinación del ancho de pantalla						
04	Diámetro Tub. Ingreso (orificios)	Da	2	pulg		
		Norificio				
05	Número de orificios		2	Unidad		
06	Ancho de la pantalla	b	0.90	m		
Cálculo de la distancia entre el punto de afloramiento y la cámara						
húme	eda					
07	Longitud	L	1.25	m		
Altura de la cámara húmeda						
	Altura de la cámara húmeda					
08	asumida	hta	1.00	m		
09	Tubería de salida	Ts	1	pulg		
Dimensionamiento de la canastilla						
10	Diámetro de la canastilla	Dcanast	2	pulg		
11	Longitud de la canastilla	Lca	5	pulg		
12	Número de ranuras	Nranuras	115	Unidad		

Rebose y limpia

13	Tubería de rebose	Tr	1.50	pulg
14	Tubería de limpia	TL	1.50	pulg

Fuente: Elaboración propia – 2021

Interpretación:

La obra de captación por manantial tipo ladera denominado Matacaballo es el primer punto de inicio del sistema de abastecimiento de agua potable del área nº 02, ubicada en las coordenadas E: 397732.00 N: 8883922.00 en la altitud 3269.79 msnm; para realizar el diseño de la obra de captación se debe tener en cuenta los caudales de la fuente, obtenido a través del aforo en campo en época de lluvias (caudal máximo) y de estiaje (caudal mínimo) mediante el método volumétrico; además se tendrá en cuenta la verificación de la demanda de agua que requiere el sistema y para ello debemos saber que el caudal mínimo de la fuente deberá ser mayor al caudal máximo diario (Qmd); se realizó el cálculo del ancho de pantalla, cálculo de la distancia entre el punto de afloramiento y la cámara húmeda, la altura de la cámara húmeda, el dimensionamiento de la canastilla, rebose y limpia

Tabla 89 Diseño hidráulico de la línea de conducción del área nº 01 caserío de Allpamarca.

Id	Parámetros básicos de diseño	Còdigo	Datos de diseño	Unidad
Tr	amo I: Captación 01 -Reservo	orio 01		
01	Carga estática	Ce	13.780	m
02	Longitud del tramo	L	63.46	m
03	Caudal máximo diario	Qmd	1.360	1/s
04	Clase		10	
05	Tipo tubería		PVC	
06	Diámetro nominal	Dn	1	pulg
07	Diámetro interno	Di	33	mm
08	Velocidad	V	1.60	m/s
09	Presión	P	6.47	m

Interpretación:

La línea de conducción del área nº 01 está conformada por tuberías, accesorios y estructuras complementarias que conducen el agua por gravedad desde la captación Damaciopuquio hasta el reservorio del área nº 01, la carga estática del punto de la captación al reservorio es de 13.78 m, por ende, Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192- 2018, el caudal de diseño para línea de conducción es el caudal máximo diario, la tubería en los tres tramos fue de PVC clase 10 y se obtuvo que enel primer tramo (Cap 1-Res 1) el diámetro de la tubería fue de 1 pulgada con una velocidad de 1.60 m/s y una presión dinámica de 6.47 m.

Tabla 90 Diseño hidráulico de la línea de conducción del área nº 02 caserío de Allpamarca.

Id	Parámetros básicos de diseño	Còdigo	Datos de diseño	Unidad
Tr	amo I: Captación 02 -Reservo	orio 02		
01	Carga estática	Ce	43.89	m
02	Longitud del tramo	L	772.00	m
03	Caudal máximo diario	Qmd	0.650	1/s
04	Clase		10	
05	Tipo tubería		PVC	
06	Diámetro nominal	Dn	1	pulg
07	Diámetro interno	Di	33	mm
08	Velocidad	V	0.76	m/s
09	Presión	P	21.30	m

Interpretación:

La línea de conducción del área nº 02 está conformada por tuberías, accesorios y estructuras complementarias que conducen el agua por gravedad desde la captación Matacaballo hasta el reservorio del área nº 02, la carga estática del punto de la captación al reservorio es de 43.89 m, por ende, Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192- 2018, el caudal de diseño para línea de conducción es el caudal máximo diario, la tubería en los tres tramos fue de PVC clase 10 y se obtuvo que enel primer tramo (Cap 2-Res 2) el diámetro de la tubería fue de 1 pulgada con una velocidad de 0.76 m/s y una presión dinámica de 21.30 m.

Tabla 10 Diseño hidráulico reservorio de almacenamiento de agua potable del área nº 01 del caserío de Allpamarca

Id	Parámetros básicos de diseño	Código	Datos de diseño	Unidad
0.1	C 11 1	0		1/.
01	Caudal promedio	Qp	0.69	1/s
02	%Regulación	Fr	25	%
03	Tiempo de reserva	T	2	hrs
Vol	umen de almacenamiento			
04	Volumen de regulación	Vreg	12.90	m3
05	Volumen de reserva	Vres	1.38	m3
06	Volumen de almacenamiento redondeado	Vt	15.00	m3
Din	nensionamiento del reservorio			
07	Ancho interno	b	3.60	m
08	Largo interno	1	3.60	m
09	Altura total	Н	1.25	m
Inst	talaciones hidráulicas			
10	Diámetro de tubería de ingreso	Di	2.00	pulg
11	Diámetro de tubería de salida	Ds	2.00	pulg
12	Diámetro de tubería rebose	Dr	2.00	pulg
13	Diámetro de tubería de limpia	Dl	2.00	pulg
14	Diámetro de tubería de ventilación	Dv	2.00	pulg
15	Cantidad de ventilación	Cv	1.00	cant
16	Diámetro de la canastilla	Dc	2.00	pulg
17	Longitud de la canastilla	Lc	147.00	mm
18	Número de ranuras de la canastilla	Nc	35	cant

Interpretación:

Se realizó el diseño para un reservorio rectangular apoyado de 15 m³ en el área nº 01 del caserío de Allpamarca, que se encuentra en las coordenadas E: 398276.00 N: 8885703.00en la altitud de 3417.52 msnm, se tomó en cuenta los criterios de diseños establecidos en el RM 192-2018; de los tres tipos de volúmenes, se consideró solo dos volúmenes (regulación y reserva), ya que tomar en cuenta volumen contra incendio para poblaciones menores a 10000 habitantes, no es

recomendable.

Tabla 11 Diseño hidráulico reservorio de almacenamiento de agua potable del área nº 02 del caserío de Allpamarca

Id	Parámetros básicos de diseño	Código	Datos de diseño	Unidad
01	Caudal promedio	Qp	0.325	1/s
02	%Regulación	Fr	25	%
03	Tiempo de reserva	T	2	hrs
Vol	umen de almacenamiento			
04	Volumen de regulación	Vreg	7.02	m3
05	Volumen de reserva	Vres	0.65	m3
06	Volumen de almacenamiento redondeado	Vt	10.00	m3
Din	nensionamiento del reservorio			
07	Ancho interno	b	3.00	m
08	Largo interno	1	3.00	m
09	Altura total	Н	1.50	m
Inst	talaciones hidráulicas			
10	Diámetro de tubería de ingreso	Di	2.00	pulg
11	Diámetro de tubería de salida	Ds	2.00	pulg
12	Diámetro de tubería rebose	Dr	2.00	pulg
13	Diámetro de tubería de limpia	Dl	2.00	pulg
14	Diámetro de tubería de ventilación	Dv	2.00	pulg
15	Cantidad de ventilación	Cv	1.00	cant
16	Diámetro de la canastilla	Dc	2.00	pulg
17	Longitud de la canastilla	Lc	147.00	mm
18	Número de ranuras de la canastilla	Nc	35	cant

Fuente: Elaboración propia – 2021

Interpretación:

Se realizó el diseño para un reservorio rectangular apoyado de 10 m³ en el área nº 02 del caserío de Allpamarca, que se encuentraen las coordenadas E: 398171.00 N: 8883766.00 en la altitud de 3218.00 msnm, se tomó en cuenta los criterios de diseños establecidos en el RM 192-2018; de los tres tipos de volúmenes, se consideró solo dos volúmenes

(regulación y reserva), ya que tomar en cuenta volumen contra incendio para poblaciones menores a 10000 habitantes, no es recomendable.

Tabla 12 Diseño hidráulico línea de aducción del área nº 01 del caserío de Allpamarca.

Id	Parámetros básicos de diseño	Código	Datos de diseño	Unidad
Tra	mo I: Reservorio 01 -inicio red dist	tribución 01		_
01	Carga estática	Ce	7.329	m
02	Longitud del tramo	L	44.48	m
03	Caudal máximo horario	Qmh	1.3600	1/s
04	Clase		10	
05	Tipo tubería		PVC	
06	Diámetro nominal	Dn	1 1/2	pulg
07	Diámetro interno	Di	50	mm
08	Velocidad	V	0.950	m/s
09	Presión	P	5.21	m

Fuente: Elaboración propia – 2021

Interpretación:

La línea de aducción está conformada por tuberías, accesorios y estructurascomplementarias que conducen el agua por gravedad desde el reservorio 01 del área nº 01 hasta el punto de inicio de la red de distribución 01, la carga estática del punto del reservorio al punto de inicio de la red de distribución es de 7.330 m, por ende, no cuenta con cámaras rompe presiones tipo 6, teniendo así un solo tramo. Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192- 2018, el caudal de diseño para línea de aducción es el caudal máximo horario, la tubería que se empleó fue de PVC clase 10 y se obtuvo que en el

tramo (Reservorio 01 - inicio red distribución 01) el diámetro de la tubería es de 1 1/2 pulgada con una velocidad de 0.950 m/s y una presión dinámica de 5.21 m.

. *Tabla 13* Diseño hidráulico línea de aducción del área nº 02 del caserío de Allpamarca.

Id	Parámetros básicos de diseño	Código	Datos de diseño	Unidad
Tra	amo I: Reservorio 02 -inicio red dis	stribución 02		_
01	Carga estática	Ce	25.337	m
02	Longitud del tramo	L	71.90	m
03	Caudal máximo horario	Qmh	0.650	1/s
04	Clase		10	
05	Tipo tubería		PVC	
06	Diámetro nominal	Dn	1	pulg
07	Diámetro interno	Di	32	mm
08	Velocidad	V	0.977	m/s
09	Presión	P	21.67	m

Fuente: Elaboración propia – 2021

Interpretación:

La línea de aducción está conformada por tuberías, accesorios y estructurascomplementarias que conducen el agua por gravedad desde el reservorio 02 del área nº 02 hasta el punto de inicio de la red de distribución 02, la carga estática del punto del reservorio al punto de inicio de la red de distribución es de 25.34m, por ende, no cuenta con cámaras rompe presiones tipo 6, teniendo así un solo tramo. Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192- 2018, el caudal de diseño para línea de aducción es el caudal máximo horario,

la tubería que se empleó fue de PVC clase 10 y se obtuvo que en el tramo (Reservorio 02 - inicio red distribución 02) el diámetro de la tubería es de 1 pulgada con una velocidad de 0.977 m/s y una presión dinámica de 21.67 m.

Tabla 14 Diseño hidráulico red de distribución del área nº 01 del caserío de Allpamarca.

Id	Parámetros básicos de diseño	Código	Datos de diseño	Unidad
01	Caudal máximo horario	Qmh	1.3600	1/s
02	Caudal unitario viviendas	Qu	0.000190	1/s
04	Tipo de red de distribución	TRD	mixta	
05	Viviendas	Viv.	71	
06	Diámetro principal	Dp	2	pulg
07	Diámetro ramal	Dr	3/4	pulg
08	Tipo de tubería		PVC	
09	Clase tubería		10	
10	Presión minima (nodo)	PminN	5.67	m
11	Presión máxima (nodo)	PmáxN	50.259	m
12	Presión minima (vivienda)	PminV	5.64	m
13	Presión máxima (vivienda)	PmáxV	50.12	m
14	Velocidad minima (tubería)	Vmin	0.651	m/s
15	Velocidad máxima (tubería)	Vmáx	0.813	m/s

Fuente: Elaboración propia – 2021

Interpretación:

Para el diseño de la red de distribución se hizo uso del software watercad conection para poder determinar las presiones y velocidades para una red abierta, ya que, las viviendas se encuentran esparcidas; el caudal de diseño fue el caudal máximo horario de 1.0385 l/s, determinando un caudal unitario de 0.000190 l/s para 71 viviendas; se emplearon diámetros comerciales clase 10 de 2 pulgadas para la red

principal y $^{3}4$ pulgada para los ramales. La presión mínima en la vivienda fue de 5.67 m.c.a y la presión máxima fue de 50.12 m.c.a , las velocidades en la tubería fue como mínimo de 0.651 m/s - y la velocidad máxima de 0.813m/s.

Tabla 15 Diseño hidráulico red de distribución del área nº 02 del caserío de Allpamarca.

Id	Parámetros básicos de diseño	Código	Datos de diseño	Unidad
01	Caudal máximo horario	Qmh	0.650	1/s
02	Caudal unitario viviendas	Qu	0.000177	1/s
04	Tipo de red de distribución	TRD	mixta	
05	Viviendas	Viv.	37	
06	Diámetro principal	Dp	2	pulg
07	Diámetro ramal	Dr	3/4	pulg
08	Tipo de tubería		PVC	
09	Clase tubería		10	
10	Presión minima (nodo)	PminN	12.33	m
11	Presión máxima (nodo)	PmáxN	48.127	m
12	Presión minima (vivienda)	PminV	5.280	m
13	Presión máxima (vivienda)	PmáxV	48.710	m
14	Velocidad minima (tubería)	Vmin	0.759	m/s
15	Velocidad máxima (tubería)	Vmáx	1.557	m/s

Fuente: Elaboración propia – 2021

Interpretación:

Para el diseño de la red de distribución se hizo uso del software watercad conection para poder determinar las presiones y velocidades para una red abierta, ya que, las viviendas se encuentran esparcidas; el caudal de diseño fue el caudal máximo horario de 0.650 l/s, determinando un caudal unitario de 0.000177 l/s para 37 viviendas; se emplearon diámetros comerciales clase 10 de 2 pulgadas para la red

principal y $\frac{3}{4}$ pulgada para los ramales. La presión mínima en la vivienda fue de 5.280 m.c.a y la presión máxima fue de 47.71 m.c.a , las velocidades en la tubería fue como mínimo de 0.759 m/s – y la velocidad máxima de 1.557m/s.

3. Dando respuesta al primer objetivo específico:

Obtener la Incidencia en la Condición Sanitaria en el caserío de Allpamarca del centro poblado de Tayagasha, distrito de Panao, provincia de Pachitea, región Huánuco – 2019.

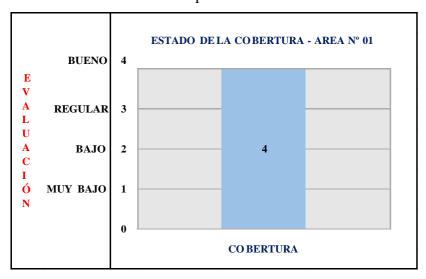
Tabla 16 Ficha 01: Evaluación de la cobertura de agua

Región Si Costa Sierra Selva	• / / / :					
Región Si Costa Sierra Selva	71 Dotación según tipo de opción tecnológica (l/hab.d)					
Sierra Selva						
Selva	60	90				
	50	80				
El ni	70	100				
El puntaje de V1 "COBERTURA" será:						
Si A > B = Bueno	= 4 puntos	Si A = B = Regular = 3 puntos Si B = 0 = Muy malo = 1 puntos				
Si A < B > 0 = Mal	o = 2 puntos	Si $B = 0 = Muy malo = 1 puntos$				
Datos: Qn	in: Densi	idad: Dotación:				
0.62	24 1/s 2.65 ha	ab*viv 80 l/hab*d				
Para el cálculo de	Para el cálculo de la variable "cobertura" (V1) se utilizará la siguiente fórmula: Fórmula:					

N°. de personas atendibles
$$\frac{Q\min x \, 86,400}{D} = 673$$
 A (personas)

N°. de personas atendidas

Cob = $\frac{P}{D}$


N°. de personas atendidas

 $\frac{P}{D}$

V1 = 4

Fuente: (Sistema de Información Regional en Agua y Saneamiento).

Gráfico 11 Estado de la cobertura del área nº 01 del caserío de Allpamarca.

Fuente: Elaboración propia – 2021

Interpretación:

Para evaluar la cobertura del servicio se tuvo que conocer la cantidad de familias que se abastecen con el agua potable que fue de 71 familias; el caudal mínimo de la fuente (caudal en época de estiaje), lo cual fue de 0.625/s; la dotación que fue de 80 l/hab*dia y la densidad que fue de 2.65 hab*vivienda; aplicando las fórmulas que nos indica la ficha 01, se determinó la cantidad de personas atendibles de 673 y la cantidad de personas atendidas 212, mostrando así una calificación "Bueno" de 4

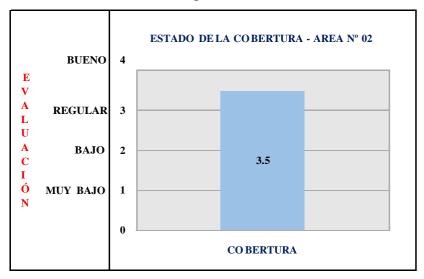

puntos.

Tabla 17 Ficha 01: Evaluación de la cobertura de agua del área nº 02

FICHA 01	ABASTECIA CASERÍO POBLADO : PROVINCIA PARA SU	MIENTO DE AGU DE ALLPAMAR DE TAYAGASHA, A DE PACHITEA,	RCA DEL CENT DISTRITO DE PANA REGIÓN HUANU EN LA CONDICI	EL TRO AO, CO,
		BACH. VEGA MA		
	ASESOR:		OS RÍOS GONZALO	
1 • 0		B) COBERTURA as se benefician con	al agua natahla?	
1. ¿C	uantas tannii	as se benefician con 37	ei agua potable:	
	Dotación	• ,	n tecnológica (l/hab.d)
Región	Dotacion	begun upo ue opcioi		
Kegion	Sin arra	stre hidráulico	Con arrastre	
Costa		60	90	
Sierra		50	80	
Selva		70	100	
	El puntaje	de V1 "COBERTUI	RA" será:	
$\operatorname{Si} A > B =$	Bueno = 4 pu	$ \begin{array}{ccc} \text{Intos} & \text{Si A} = \mathbf{I} \\ \text{Si B} & \text{Si A} \end{array} $	B = Regular = 3 puntos = Muy malo = 1 punto	3
Si A < B > 0				OS
Datos:	Qmin:	Densidad:	Dotación:	
	0.757 l/s	2.61 hab*viv	80 l/hab*d	
Para el cálculo de la variable "cobertura" (V1) se utilizará la siguiente				
fórmula:				
		Fórmula:		
N°. de personas atendibles $\frac{\text{Qmin x 86,400}}{\text{Cob}} = 817 \qquad \textbf{A (personas)}$				
N°. de person	nas atendidas			,
Со	b =	densidad x Familia	$\mathbf{as} = 96 \qquad \mathbf{B} \text{ (personal)}$	as)

Fuente: (Sistema de Información Regional en Agua y Saneamiento).

Gráfico 12 Estado de la cobertura del área nº 02 del caserío de Allpamarca.

Interpretación:

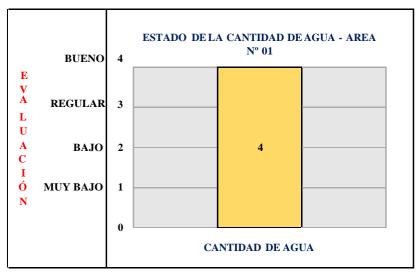

Para evaluar la cobertura del servicio se tuvo que conocer la cantidad de familias que se abastecen con el agua potable que fue de 37 familias; el caudal mínimo de la fuente (caudal en época de estiaje), lo cual fue de 0.757 l/s; la dotación que fue de 80 l/hab*dia y la densidad que fue de 2.61 hab*vivienda; aplicando las fórmulas que nos indica la ficha 01, se determinó la cantidad de personas atendibles de 817 y la cantidad de personas atendidas 96, mostrando así una calificación "Regular y Bueno" de 3.5 puntos.

Tabla 18 Ficha 02: Evaluación de la cobertura de agua del área nº 01

Volumen ofertado	Sequia x 86,400	=	54568	respuesta	D		
	Sumar $(3) + (4)$	=	12107.2	respuesta	С		
Pile. x (Fami. –	Conex.) x Prome. x Dot x	1,3 =	0	respuesta	4		
Volumen demandado	Conex. x Prome. x Dot x	1,3 =	12107.2	respuesta	3		
Fórmula:							
Para el cálculo se utilizará la dotación "D"							
	Caudal mínimo	0.62	Piletas p		0		
	Dotación	80	Famil benific		71		
Datos:	Conexiones domiciliarias	40	integra	intes	2.67		
S1 D < C =	Si D = 0 = Muy malo = 1 puntos Promedio de			ountos			
Si D > C = Bueno = 4 puntos $Si D = C = Regular = 3 puntos$ $Si D < C = Malo = 2 puntos$ $Si D = 0 = Muy malo = 1 puntos$							
El puntaje de V2 "CANTIDAD" será:							
0							
I .	A Cuántas piletas públic			9			
4. ¿El sistema tiene piletas públicas? Marque con una X. Si X No							
45							
3. ¿Cuántas conexiones domiciliarias tiene su sistema?							
2. ¿Cuál es el caudal de la fuente en época de sequía? 0.624 l/s							
2 . C	C) CANTIDAD			~wio 9			
	ASESOR: MS. LEÓ			GONZAL	.O		
	TESISTA: BACH. VE	EGA MA	MANI JOS	SE LUIS			
FICHA 02	DE ABASTECIMIENT CASERÍO DE AL	TO DE A LPAMA AYAGAS IA DE SU INCI	GUA POT RCA DE SHA, DIS PACHITE DENCIA	ABLE E L CEN STRITO EA, REG EN LA	N EL NTRO DE GIÓN		
	EVALUACIÓN Y ME	ZIOD A NA	HENTO D	EL CIOT			

Fuente: (Sistema de Información Regional en Agua y Saneamiento)

Gráfico 13 Estado de la cantidad de agua potable del área nº 01 del caserío de Allpamarca.

Interpretación:

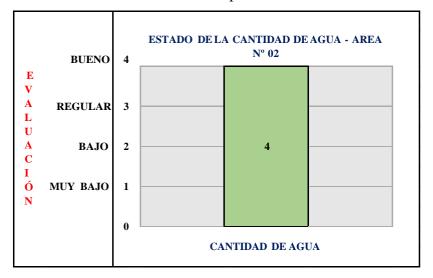
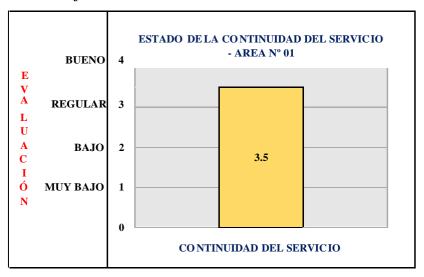

Para evaluar la cantidad de agua se tuvo que determinar con las fórmulas dela ficha 02 el volumen demandado que fue de 12107.2 litros y el volumen ofertado que fue de 54568 litros; dentro de lo cual el volumen ofertado es mucho mayor al volumen demandado que requiere el caserío de Allpamarca y por ende obtiene un puntaje de 4 clasificándose en "Bueno".

Tabla 19 Ficha 02: Evaluación de la cobertura de agua del área nº 02

FICHA 02	EVALUACIÓN Y M DE ABASTECIMIEN CASERÍO DE AI POBLADO DE T PANAO, PROVINO HUANUCO, PARA CONDICIÓN SANI 2019 TESISTA: BACH. V ASESOR: MS. LEO C) CANTIDAD	NTO DE A LLPAMA AYAGA CIA DE SU INC FARIA I EGA MA ÓN DE L	AGUA POT RCA DE SHA, DIS PACHITE IDENCIA DE LA PO AMANI JOS OS RÍOS O	ABLE E L CEN STRITO CA, REO EN LA OBLACIO	EN EL VTRO DE GIÓN ÓN –
2. ¿Cu	ál es el caudal de la fu			quía?	
	0.621	/s		_	
3. ¿Cuá	ntas conexiones domi	ciliarias t	tiene su sist	tema?	
4 77 4	25				
	stema tiene piletas púb			una X.	
Si	X Cuántag nilatag núbli		No sistema	9	
5. (Cuántas piletas públi 0	cas uene	su sistema	. •	
	El puntaje de V2 "CA	NTIDA	D" corá·		
Si D > C =	Bueno = 4 puntos		C = Regul	ar – 3 ni	intos
	: Malo = 2 puntos		0 = Muy m		
	Conexiones		Promed		
Datos:		40	_	۷.	
	domiciliarias		integra Famil		
	Dotación	80	ганш	iias	37
			benific		
	Caudal mínimo	0.62	Piletas pi	íblicas	0
	Para el cálculo se utiliz		ación "D"		
	Fórmu	la:			
Volumen					
demandado	Conex. x Prome. x Dot x	1,3 =	12157.2	respuesta	3
	Conex.) x Prome. x Dot x	13			
riie. x (Pallii. –	Collex.) x Floille. x Dot x	= =	0	respuesta	4
	Sumar $(3) + (4)$	=	12157.2	respuesta	C
Volumen ofertado	Sequia x 86,400	, =	54689	respuesta	D
		V2 =	4		

Fuente: (Sistema de Información Regional en Agua y Saneamiento)

Gráfico 14 Estado de la cantidad de agua potable del área nº 02 del caserío de Allpamarca.


Interpretación:

Para evaluar la cantidad de agua se tuvo que determinar con las fórmulas dela ficha 02 el volumen demandado que fue de 12157.2 litros y el volumen ofertado que fue de 54689 litros; dentro de lo cual el volumen ofertado es mucho mayor al volumen demandado que requiere el caserío de Allpamarca y por ende obtiene un puntaje de 4 clasificándose en "Bueno".

Tabla 20 Ficha 03: Evaluación de la continuidad del servicio de agua del área nº 01.

FICHA 03 EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA ABASTECIMIENTO DE AGUA POTABLE EN EL CASE DE ALLPAMARCA DEL CENTRO POBLADO TAYAGASHA, DISTRITO DE PANAO, PROVINCIA PACHITEA, REGIÓN HUANUCO, PARA SU INCIDENCE EN LA CONDICIÓN SANITARIA DE LA POBLACIÓ 2019 Tesista: BACH. VEGA MAMANI JOSE LUIS					
	Asesor:		LOS RÍOS GONZALO		
	D) CO	NTINUIDAD DEL S	SERVICIO		
	6. ¿C	ómo son las fuentes	<u> </u>		
		Nombre de la fue			
		Damaciopuqui	0		
		Descripción	1		
Perma	nente	regular cantidad pero no se seca	Seca totalmente en algunos		
		X			
7.¿En	los últimos d		to tiempo han tenido el		
m 1	1.1/	servicio de agua	?		
Todo durante to		x Por horas sól	o en épocas de sequia		
Por horas todo el año		Solamente alg	Solamente algunos dias por semana		
	El punt	aje de V3 "CONTIN	UIDAD" será:		
4	Permanente = Bueno = 4 puntos Se seca totalmente en Pregunta 6 Baja cantidad pero no seca = Regular = 3 puntos				
algunos	algunos meses. = Malo Caudal 0 = Muy malo = 1 puntos = 2 puntos				
		Pregunta 7			
todo el a	Todo el día durante todo el año = Bueno =4 puntos		n épocas de sequia = Regular = 3 puntos		
Por hora	Por horas todo el año = Solamente algunos		nos dias por semana = Muy alo = 1 puntos		
El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente					
Fórmula:					
V3	$P6 + P_{=}/2 =$		3.5		
	V3 =		3.5		

Gráfico 15 Estado de la continuidad del área nº 01

Interpretación:

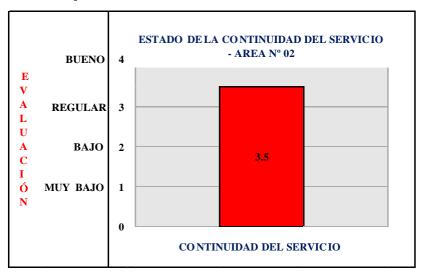

El estado de la continuidad del servicio del sistema de abastecimiento del caserío de Allpamarca, presenta un estado bueno-regular con un puntaje de 3.5 en la escala, estos datos se pueden especificar en la ficha 03.

Tabla 21 Ficha 03: Evaluación de la continuidad del servicio de agua del área nº 02.

Tesista: BACH. VEGA MAMANI JOSE LUIS Asesor: MS. LEÓN DE LOS RÍOS GONZALO D) CONTINUIDAD DEL SERVICIO 6. ¿Cómo son las fuentes de agua? Nombre de la fuente Matacaballo Descripción Permanente regular cantidad pero no se seca x 7.¿En los últimos doce (12) meses, cuánto tiempo han tenido el servicio de agua? Todo el día durante todo el año Por horas todo el año El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" ser el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6+P=2 3.5	FICHA 03	PACHITEA, REGION HUANUCO, PARA SU INCIDENC EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN				
Asesor: MS. LEÓN DE LOS RÍOS GONZALO D) CONTINUIDAD DEL SERVICIO 6. ¿Cómo son las fuentes de agua? Nombre de la fuente Matacaballo Descripción Permanente regular cantidad pero no se seca x 7. ¿En los últimos doce (12) meses, cuánto tiempo han tenido el servicio de agua? Todo el día durante todo el año Solamente algunos dias por semana El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Por horas todo el año = Caudal 0 = Muy malo = 1 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6 + P=2 = 3.5		2019 Tagistas		DACH VECAN	AAMANII IOCE I IIIC	
D) CONTINUIDAD DEL SERVICIO 6. ¿Cómo son las fuentes de agua? Nombre de la fuente Matacaballo Descripción Permanente Permanente Permanente Todo el día durante todo el año Por horas todo el año El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Por horas todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" se el promedio de P21 Y P22, de acuerdo a la fórmula siguiente V3 P6 + P=2 = 3.5						
6. ¿Cómo son las fuentes de agua? Nombre de la fuente Matacaballo Descripción Permanente Permanente Todo el día durante todo el año Permanente = Bueno = 4 puntos Se seca totalmente en algunos Se seca totalmente en algunos dias por semana El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Por horas todo el año = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Por horas solo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente			NTI			
Nombre de la fuente Matacaballo Descripción Permanente regular cantidad pero no se seca X 7.¿En los últimos doce (12) meses, cuánto tiempo han tenido el servicio de agua? Todo el día durante todo el año Por horas todo el año El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Permanente = 3 Seca totalmente en algunos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Por horas sólo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos		,				
Matacaballo Descripción		0. 60			•	
Permanente Permanente Permanente Permanente Permanente Permanente Permanente Por no se seca Por horas sólo en épocas de sequia						
Permanente Permanente Permanente Permanente Permanente Permanente Permanente Permanente Permanente Por horas sólo en épocas de sequia						
Todo el día durante todo el año El puntaje de V3 "CONTINUIDAD" será: Permanente en algunos El puntos Se seca totalmente en algunos dias por semana El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas sólo en épocas de sequia Caudal 0 = Muy malo = 1 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas sólo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6+P=2 3.5			re			
7.¿En los últimos doce (12) meses, cuánto tiempo han tenido el servicio de agua? Todo el día durante todo el año Por horas todo el año El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Por horas sólo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos	Perma	nente		_	Seca totalmente en algunos	
Todo el día durante todo el año Por horas todo el año El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Por horas sólo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos			<u> </u>			
Todo el día durante todo el año Por horas todo el año El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Por horas sólo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos	7.¿En	los últimos d	loce	(12) meses, cuánt	to tiempo han tenido el	
durante todo el año Por horas todo el año Bel puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Malo = 2 puntos Pregunta 7 Por horas sólo en épocas de sequia = Regular = 3 puntos Pregunta 7 Por horas sólo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Por horas sólo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos						
Por horas todo el año El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Malo = 2 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Solamente algunos dias por semana Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos Solamente algunos dias por semana = Muy malo = 1 puntos			X	Por horas sólo en épocas de sequia		
El puntaje de V3 "CONTINUIDAD" será: Pregunta 6 Permanente = Bueno = 4 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Por Horas sólo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente						
Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 6 Baja cantidad pero no seca = Regular = 3 puntos Caudal 0 = Muy malo = 1 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Malo = 2 puntos Por horas todo el año = Malo = 2 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6 + P=2 = 3.5				Solamente algunos dias por semana		
Permanente = Bueno = 4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 6 Baja cantidad pero no seca = Regular = 3 puntos Caudal 0 = Muy malo = 1 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Malo = 2 puntos Por horas todo el año = Malo = 2 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6 + P=2 = 3.5		El pun	taje	de V3 "CONTIN	UIDAD" será:	
4 puntos Se seca totalmente en algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Malo = 2 puntos Por horas todo el año = Malo = 2 puntos Solamente algunos dias por semana = Muy Malo = 2 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6 + P=2 = 3.5						
algunos meses. = Malo = 2 puntos Pregunta 7 Todo el día durante todo el año = Bueno = 4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy Malo = 2 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 Caudal 0 = Muy malo = 1 puntos Pregunta 7 Por horas sólo en épocas de sequia = Regular = 3 puntos Solamente algunos dias por semana = Muy malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula:			=	Baja cantidad		
Todo el día durante todo el año = Bueno =4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy Malo = 2 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6 + P=2 3.5	algunos	algunos meses. = Malo Caudal 0 = Muy malo = 1 puntos			= Muy malo = 1 puntos	
Todo el día durante todo el año = Bueno =4 puntos Por horas todo el año = Solamente algunos dias por semana = Muy Malo = 2 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6 + P=2 3.5	= :	2 puntos				
todo el año = Bueno =4 puntos Por horas solo en epocas de sequia = Regular = 3 puntos Por horas todo el año = Solamente algunos dias por semana = Muy malo = 2 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6 + P=2 = 3.5	70. 1	.1 .1/1 /		Pregunta 7		
Por horas todo el año = Solamente algunos dias por semana = Muy Malo = 2 puntos malo = 1 puntos El cálculo final para la V3 "CONTINUIDAD" es el promedio de P21 Y P22, de acuerdo a la fórmula siguiente Fórmula: V3 P6+P=2 3.5	todo el año = Bueno =4		4			
P22, de acuerdo a la fórmula siguiente Fórmula: V3 $P6 + P_{=}2 = 3.5$	Por hora	Por horas todo el año = Solamente algunos dias por semana = Muy			- ·	
V3 $P6 + P_{2} = 3.5$	P22, de acuerdo a la fórmula siguiente					
3.5	Fórmula:					
V3 = 3.5	V3	V3 $P6 + P_{2} =$			3.5	
		V3 = 3.5			3.5	

Fuente: (Sistema de Información Regional en Agua y Saneamiento)

Gráfico 16 Estado de la continuidad del área nº 02

Interpretación:

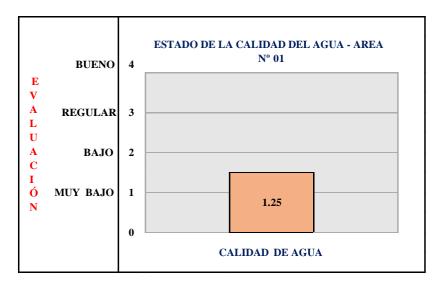

El estado de la continuidad del servicio del sistema de abastecimiento del caserío de Allpamarca, presenta un estado bueno-regular con un puntaje de 3.5 en la escala, estos datos se pueden especificar en la ficha 03.

Tabla 22 Ficha 04: Evaluación de la calidad del agua del área nº 01.

FICHA 04	TÍTULO	EVALUACIÓN SISTEMA DE A POTABLE EN EI DEL CENTRO I DISTRITO DE PACHITEA, REC INCIDENCIA EN DE LA POBLACI	BASTECII CASERÍC POBLADO PANAO, GIÓN HUA	MIENT DE A DE PRO NUCO DICIÓ	ALLPAM TAYAGA OVINCIA O, PARA	ARCA ASHA, DE SU
	T				LITTC	
	Tesista:	BACH. VEGA				
	Asesor:	MS. LEÓN DI		S GON	IZALO	
		E) CALIDAD DEL				
		n cloro en el agua en	forma per		.?	
	Si			No		X
	9. ;0	Cuál es el nivel de clo		1?		
	40	No tiene clor		0		
	10. ¿	Cómo es el agua que	consumen		1	
Agu	a clara	Agua turbia		Agua	con elemente extraños	entos
11. ¿Se h	a realizado el	análisis bacteriológ	ico en los ú	ltimos	doce me	ses?
_	Si	0		No		X
	12. ¿Q	uién supervisa la cal	idad del ag	gua?		
	<u> </u>	MINICA	TACC		NT. 1".	v
Munic	cipalidad	MINSA	JASS		Nadie	X
	El pu	ntaje de V3 "CANT		rá:		
		Pregunta 8				
	Si = 4 pu]	No = 1	punto	
		Pregunta 9			A 1.	
	Baja	Ideal			Alta	
3 p	untos	4 puntos Pregunta 10	`		3 puntos	
		Pregunta 10	,	Λ συς	con elem	antos
Agu	a clara	Agua turbia		Agua	extraños	iciitos
	4	3			2	
	•	Pregunta 11	<u> </u>			
	Si = 4 pu			No = 1	punto	
Pregunta 12						
Municipal idad	3 puntos	MINSA 4 puntos		4 punto	Nadie	1 punto
		Fórmula:				
	V4 <u>P8</u> +	+ P10 + P11 + P12 4	. –	V4 =	1.25 1.25	
				v 4 =	1.25	

Fuente: (Sistema de Información Regional en Agua y Saneamiento)

Gráfico 17 Estado de la calidad del agua del área nº 01

Interpretación:

El estado de la calidad del agua del sistema de abastecimiento de agua potable del caserío de Allpamarca, presenta un estado bajo-muy bajo por la cual no colocan cloro en el agua periódicamente y porque no se ha realizado un análisis bacteriológico del agua, estos datos se pueden especificar en la ficha 04.

Tabla 23 Ficha 04: Evaluación de la calidad del agua, del área nº 02.

FICHA 04	TÍTULO	EVALUACIÓN SISTEMA DE A POTABLE EN EL DEL CENTRO I DISTRITO DE PACHITEA, REC INCIDENCIA EN DE LA POBLACI	BASTECIMIEM CASERÍO DE POBLADO DE PANAO, PI GIÓN HUANUC LA CONDICI	NTO DE A ALLPAM TAYAGA ROVINCIA CO, PARA	AGUA ARCA ASHA, DE SU
	Tesista:	BACH. VEGA	MAMANI JOS	E LUIS	
	Asesor:	MS. LEÓN DE	E LOS RÍOS GO	NZALO	
		E) CALIDAD DEL			
		n cloro en el agua en		ca?	
	Si	N 41 1 1 - 1 - 1 - 1 - 1 -	No		X
	9. ¿(Cuál es el nivel de clo No tiene clor			
	10 :	Cómo es el agua que			
Agua	a clara	Agua turbia	Agua con elementos extraños		entos
11. ¿Se h	a realizado el	análisis bacteriológi	ico en los último	os doce me	ses?
	Si		No		X
	12. ¿Q	uién supervisa la cali	idad del agua?		
Munic	ipalidad	MINSA	JASS	Nadie	X
	El pu	ntaje de V3 "CANT	IDAD" será:		
	Si – 4 py	Pregunta 8	No -	1 nunto	
	Si = 4 pu	Pregunta 9	110 -	1 punto	
	aja untos	Ideal 4 puntos	Alta 3 puntos		
		Pregunta 10			
Agua	a clara	Agua turbia	Agua con elementos extraños		
	4	3		2	
	Pregunta 11 Si = 4 puntos No = 1 punto				
Pregunta 12					
Municipal idad	3 puntos	MINSA 4 puntos	JASS puntos	Nadie	1 punto
		Fórmula:		ı	
	V4 <u>P8 +</u>	- P10 + P11 + P12 4	=	1.33	

Fuente: (Sistema de Información Regional en Agua y Saneamiento)

Gráfico 18 Estado de la calidad del agua del área nº 02

Interpretación:

El estado de la calidad del agua del sistema de abastecimiento de agua potable del caserío de Allpamarca, presenta un estado bajo-muy bajo por la cual no colocan cloro en el agua periódicamente y porque no se ha realizado un análisis bacteriológico del agua, estos datos se pueden especificar en la ficha 04.

Gráfico 19 Estados de las condiciones sanitarias del sistema de agua potable del área nº 01.

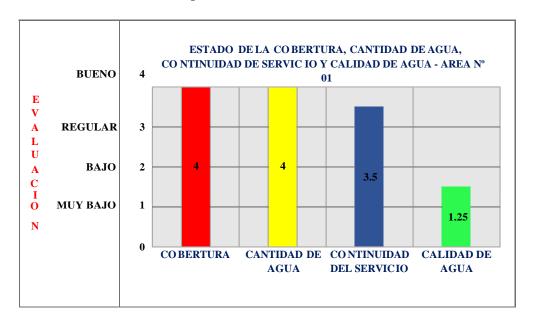
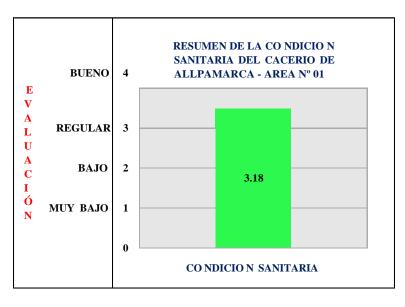
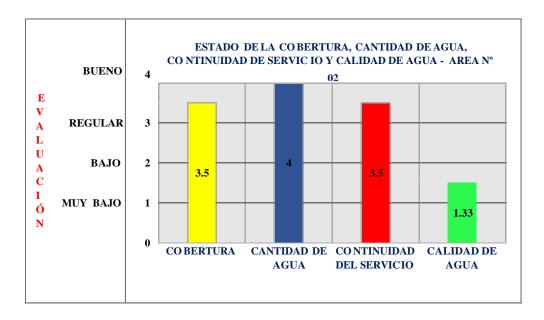



Gráfico 20 Resumen de la condición sanitaria del caserío de Allpamarca

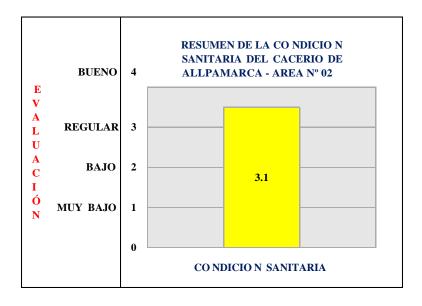
– área nº 01.



Fuente: Elaboración propia – 2021

Interpretación:

Evaluando la cobertura, cantidad, continuidad y calidad del agua, se determinó que la condición sanitaria del caserío de Allpamarca, se encontró en un estado Regular – Bueno.


Gráfico 21 Estados de las condiciones sanitarias del sistema de agua potable del área nº 02.

 $\textbf{Fuente:} \ Elaboraci\'on\ propia-2021$

Gráfico 22 Resumen de la condición sanitaria del caserío de Allpamarca

– área nº 02.

Fuente: Elaboración propia – 2021

Interpretación:

Evaluando la cobertura, cantidad, continuidad y calidad del agua, se determinó que la condición sanitaria del caserío de Allpamarca, se encontró en un estado Regular – Bueno.

4.2. Análisis de los resultados

4.2.1. Evaluación del sistema de agua potable existente

a) Captación

Esta estructura hidráulica se halló en un estado "bajo – muy bajo" para las dos captaciones evaluadas dentro del caserío de Allpamarca, debido a que no presentan un cerco perimétrico para su protección y sus componentes se encuentran deteriorados y falta implementar algunos accesorios, afectando al sistema de abastecimiento de agua potable, por

la cual los sistemas son ineficientes. En la tesis de Gil titulada "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío El Porvenir, distrito Santa Rosa, provincia de Pallasca, región Áncash - 2020", la captación presenta los mismos problemas, tanto la falta de un cerco perimétrico, la falta de algunos accesorios y la estructura en mal estado, por el cual se planteó realizar un nuevo diseño.

b) Línea de conducción

Resulto en un estado "regular" tanto para la línea de conducción del área nº 01 y el área nº 02, ya que se encuentran expuestas parcialmente al terreno, encontrándose tuberías deterioradas, presentan fugas en algunos tramos; además no cuentan con válvulas de aire y purga, se encontró en un estado ineficiente. En el proyecto de tesis de Quispe titulado "Evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío de Asay, distrito Huacrachuco, provincia Marañón, región Huánuco y su incidencia en la condición sanitaria de la población – 2019", el componente de la línea de conducción se obtuvo en un estado "Malo", la tubería presenta fisuras, no cuenta con cámara rompe presión, ni válvulas de aire y purga. cuenta con diámetros mayores que hacen disminuir la velocidad del agua y no cumplen con lo recomendado.

c) Reservorio

Se encontró en un estado "Regular - bajo" los dos reservorios del caserio de Allpamarca, debido a que no presentan un cerco perimétrico para su

protección y sus componentes se encuentran deteriorados y falta implementar algunos accesorios y tampoco cuentan con una caseta de cloración para poder brindar una mejor calidad del agua. En la tesis de Quispe titulada "Evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío de Asay, distrito Huacrachuco, provincia Marañón, región Huánuco y su incidencia en la condición sanitaria de la población - 2019", se encontró en un estado "Bueno regular", no contó con hipoclorador, válvula flotadora y cloración por goteo se implementará eso accesorios para mejora la calidad del agua.

d) Línea de aducción y Red de distribución

Se encontró en un estado "muy bajo", en la línea de aducción, contó con tubería de un diámetro de 1.00 pulg, de material PVC, clase 10; presenta fugas y se encuentra expuesta con fisuras y en la red de distribución, de tipo red abierta, no conecta con todas las viviendas; este caso se presenta en todo el caserío de Allpamarca, en donde el agua potable no llega a todos los pobladores de la comunidad. En la tesis de Herrera titulada "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay, provincia de Recuay, región de Áncash, agosto – 2019.", el estado de la línea de aducción y red de distribución se encuentran entre bueno-malo, no cuenta con válvulas de aire, purga y

válvulas de control el cual requiere y se las tuberías se encuentran cubierta en forma parcial.

4.2.2. Propuesta de mejoramiento de la infraestructura del sistema.

a) Diseño hidráulico de la captación.

Para realizar el diseño de la obra de las captaciónes, se tuvo que obtener datos en campo; determinando los caudales mínimo y máximo de la fuente mediante el método volumétrico. La obra de captación es aquella estructura hidráulica donde se captará el agua, del cual será de tipo ladera, para el cual se realizo el diseño de la captación de Damaciopuquio y Matacaballo:

La obra de captación por manantial tipo ladera denominado Damaciopuquio es el primer punto de inicio del sistema de abastecimiento de agua potable del área nº 01, ubicada en las coordenadas E: 398275.00 N: 8885759.00 en la altitud 3432.23 msnm; para realizar el diseño de la obra de captación se debe tener en cuenta los caudales de la fuente, obtenido a través del aforo en campo en época de lluvias (caudal máximo) y de estiaje (caudal mínimo) mediante el método volumétrico; además se tuvo en cuenta la verificación de la demanda de agua que requiere el sistema y para ello debemos saber que el caudal mínimo de la fuente deberá ser mayor al caudal máximo diario (Qmd); se realizó el cálculo del ancho de pantalla, cálculo de la distancia entre el punto de afloramiento y la cámara húmeda, la altura de la cámara húmeda, el dimensionamiento de la canastilla, rebose y limpia.

La obra de captación por manantial tipo ladera denominado Matacaballo es el primer punto de inicio del sistema de abastecimiento de agua potable del área nº 02, ubicada en las coordenadas E: 397732.00 N: 8883922.00 en la altitud 3269.79 msnm; para realizar el diseño de la obra de captación se debe tevo en cuenta los caudales de la fuente, obtenido a través del aforo en campo en época de lluvias (caudal máximo) y de estiaje (caudal mínimo) mediante el método volumétrico; además se tendrá en cuenta la verificación de la demanda de agua que requiere el sistema y para ello debemos saber que el caudal mínimo de la fuente deberá ser mayor al caudal máximo diario (Qmd); se realizó el cálculo del ancho de pantalla, cálculo de la distancia entre el punto de afloramiento y la cámara húmeda, la altura de la cámara húmeda, el dimensionamiento de la canastilla, rebose y limpia.

En la tesis de Verde titulada "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío canchas, distrito Cáceres del Perú, provincia del Santa, región Áncash –2019", determino los caudales mínimo y máximo de la fuente aplicando el mismo método volumétrico.

b) Diseño hidráulico de la línea de conducción.

En la línea de conducción se empleó tubería de PVC de clase 10 en todos sus tramos; para el cálculo hidráulico, haciendo uso del método directo y con el caudal máximo diario, el cual se diseño las dos líneas de conducción:

La línea de conducción del área nº 01 está conformada por tuberías, accesorios y estructuras complementarias que conducen el agua por gravedad desde la captación Damaciopuquio hasta el reservorio del área nº 01, la carga estática del punto de la captación al reservorio es de 13.78 m, por ende, Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192- 2018, el caudal de diseño para línea de conducción es el caudal máximo diario, la tubería en los tres tramos fue de PVC clase 10 y se obtuvo que enel primer tramo (Cap 1-Res 1) el diámetro de la tubería fue de 1 pulgada con una velocidad de 1.60 m/s y una presión dinámica de 6.477 m.

La línea de conducción del área nº 02 está conformada por tuberías, accesorios y estructuras complementarias que conducen el agua por gravedad desde la captación Matacaballo hasta el reservorio del área nº 02, la carga estática del punto de la captación al reservorio es de 43.89 m, por ende, Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192- 2018, el caudal de diseño para línea de conducción es el caudal máximo diario, la tubería en los tres tramos fue de PVC clase 10 y se obtuvo que en el primer tramo (Cap 2-Res 2) el diámetro de la tubería fue de 1 pulgada con una velocidad de 0.76 m/s y una presión dinámica de 21.30 m.

En la tesis de Herrera titulada "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay, provincia de Recuay, región de Áncash, agosto – 2019" emplea el mismo diámetro, de tubería de PVC, aplicando para el cálculo hidráulico el método directo y tomando en cuenta las fórmulas de Hazen y William, contó con 2 cámaras rompe presión, con 5 válvulas de aire y 3 válvulas de purga.

c) Diseño hidráulico del reservorio de almacenamiento.

El reservorio es diseñado considerando dos volúmenes, donde el volumen de regulación está dado que en zonas rurales se trabaja con el 25 % del caudal promedio diario anual y el volumen de reserva que está dada por el tiempo de reserva que es de 2 hrs < T< 4 hr por su caudal promedio, obteniendo dos reservorios de sección rectangular de volumen de 10 m3 y 15 m3 para el área nº 01 y el área nº 02. Estos reservorios dispondrán con un sistema de desinfección con dosificador.

En la tesis de Quispe titulada "Evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío de Asay, distrito Huacrachuco, provincia Marañón, región Huánuco y su incidencia en la condición sanitaria de la población - 2019." también considera el 25 % del caudal promedio diario anual para el volumen de regulación y también considera volumen de reserva.

d) Diseño hidráulico de la línea de aducción.

En las dos líneas de aducción se empleó tubería de PVC de clase 10 en todos sus tramos para el cálculo hidráulico, haciendo uso del método directo, se pudo obtener diámetros de 1", velocidades en el rango de 0.6 m/s a 3.00 m/s; cumpliendo con las presiones máxima y mínimas según el RM - 192 - 2018 VIVIENDA.

En la tesis de Herrera titulada "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay, provincia de Recuay, región de Áncash, agosto – 2019." emplea el mismo diámetro de 1 pulgada, de tubería de PVC, aplicando para el cálculo hidráulico el método directo y tomando en cuenta las fórmulas de Hazen y William.

e) Diseño hidráulico de la red de distribución.

En las dos redes de distribución de tipo red abierta, se empleó tubería de PVC clase 10, para diámetros de 2 pulgadas en la red principal y ¾ pulgada en los ramales. Las presiones en las vivienda se encuentran en rangos de 5.280 m.c.a – 48.710 m.c.a, para el área nº 02 y rango de presiones de 5.64 m.c.a – 50.12 m.c.a, para el área nº 01.

En la tesis de Gil titulada "Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío El Porvenir, distrito Santa Rosa, provincia de Pallasca, región Áncash - 2020.", se empleó tubería de PVC clase 10, para diámetros de 2 pulgada.

4.2.3. Determinación de la incidencia en la condición sanitaria.

Cuadro 11 Referencia para los puntajes

ESTADO	CUALIFICACION	PUNTAJE
Bueno	Sostenible	3.51 - 4
Regular	Medianamente Sostenible	2.51 – 3.50
Malo	No Sostenible	1.51 - 2.50
Muy Malo	Colapsado	1 – 1.50

Fuente: Sistema de Información Regional en Agua y Saneamiento.

Referente al cuadro 11, la cobertura y la cantidad se encuentran en un estado "Bueno" con un puntaje de 4 en el área nº 01, por ende, la cualificación es sostenible; la continuidad se encuentra entre un estado regular con un puntaje de 3.50 en el área nº 01 y por ende, la cualificación es medianamente sostenible yla calidad del agua se encuentra en un estado "muy bajo" con un puntaje de 1.25, por ende, la cualificación es colapsado.

La cobertura y la continuidad se encuentran en un estado "regular" con un puntaje de 3.5 en el área nº 02, por ende, la cualificación es medianamente sostenible; la cantidad se encuentra entre un estado bueno con un puntaje de 4.00 en el área nº 02 y por ende, la cualificación es sostenible y la calidad del agua se encuentra en un estado "muy bajo" con un puntaje de 1.33, por ende, la cualificación es colapsado.

V. Conclusiones y recomendaciones

5.1.Conclusiones

- 1. Se concluye que el caserío de Allpamarca, los dos sistemas de abastecimiento de agua potable existentes presentan deficiencias tanto en las estructuras como en las tuberías, como son: las captaciones, debido a la vida útil se encontró deteriorado, además de no contar con un cercos perimétricos en la que proteja la fuente; en las líneas de conducción existen tramos se encontraron expuestas y rotas, los dos reservorios por el periodo de vida útil se encontraron en mal estado, no cuentan con sistema de cloración y con cerco perimétrico que proteja a la estructura; las tuberías de aducción se encuentran expuestas al terreno por lo que se expone al peligro tanto en el deterioro por ser de PVCcomo a las roturas y ello conlleva a la contaminación del agua, por otro lado,las redes de distribución se encuentra en algunas partes las tuberías colapsadas y no conectas con todas las viviendas en su totalidad.
- 2. Se concluye que el caserío de Allpamarca, a través del mejoramiento que se aplicó para cumplir con la demanda de agua, cuenta con dos fuentes que tienen un caudal máximo de 1.50 l/s y un caudal mínimo de 1.30 l/s en la captación de Damaciopuquio Area nº 01 y un caudal máximo de 0.750 l/s y un caudal mínimo de 0.65 l/s en la captación de Matacaballo Area nº 02 . Se aplicó el mejoramiento de los sistemas de abastecimiento de agua potable para un periodo óptimo de diseño de 20 años y una población de diseño de 518; además se determinó los caudales de diseño Qmd de 0.88 l/s y Qmh de 1.36

l/s para la captación Damaciopuquio y se determinó los caudales de diseño Qmd de 0.42 l/s y Qmh de 0.65 l/s para la captación Matacaballo.

En las líneas de conducción, las tuberías se encontraron deterioradas debido al tiempo de vida útil para cual fue diseñado; a cada cierta distancia se encontró expuesta por encima del terreno con aberturas causada por animales de la zona, los golpes de ariete por el cierre brusco de las válvulas y por lo generaltienen complicaciones por las variaciones de presión, donde se da como conclusión realizar el diseño del mejoramiento de las líneas de conducción. La línea de conducción del área nº 01 está conformada por tuberías, accesorios y estructuras complementarias que conducen el agua por gravedad desde la captación Damaciopuquio hasta el reservorio del área nº 01, la carga estática del punto de la captación al reservorio es de 13.78 m, por ende, Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192-2018, el caudal de diseño para línea de conducción es el caudal máximo diario, la tubería en el tramo se realizo de PVC clase 10 y se obtuvo que en

el primer tramo (Cap 1-Res 1) el diámetro de la tubería fue de 1 pulgada con una velocidad de 1.60 m/s y una presión dinámica de 6.47 m. La línea de conducción del área nº 02 está conformada por tuberías, accesorios y estructuras complementarias que conducen el agua por gravedad desde la captación Matacaballo hasta el reservorio del área nº 02, la carga estática del punto de la captación al reservorio es de 43.89 m, por ende, Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192- 2018, el caudal de diseño para línea de conducción es el caudal máximo diario, la tubería en los tres tramos fue de PVC clase 10 y se obtuvo que enel primer tramo (Cap 2-Res 2) el diámetro de la tubería fue de 1 pulgada con una velocidad de 0.76 m/s y una presión dinámica de 21.30 m.

Los dos reservorios se encontró en una malas condiciones, debido al tiempo de vida útil para cual fue diseñado, donde se concluye con el diseño del mejoramiento de los reservorios de almacenamiento de agua potable de forma rectangular y apoyados, obteniendo un diseño para una capacidad de 15 m3 para el área nº 01 y 10 m3 para el área nº 02.

En las líneas de aducción, las tuberías se encontraron deterioradas debido al tiempo de vida útil para cual fue diseñado; a cada cierta distancia se encontró expuesta por encima del terreno con aberturas causada por animales de la zona, los golpes de ariete por el cierre brusco de las válvulas y por lo general tienen complicaciones por las variaciones de presión, donde se concluyo

la realización del diseño del mejoramiento de las líneas de aducción para las dos áreas del caserío de Allpamarca. La línea de aducción del área nº 01 está conformada por tuberías, accesorios y estructurascomplementarias que conducen el agua por gravedad desde el reservorio 01 del área nº 01 hasta el punto de inicio de la red de distribución 01, la carga estática del punto del reservorio al punto de inicio de la red de distribución es de 7.329 m, por ende, no cuenta con cámaras rompe presiones tipo 6, teniendo así un solo tramo. Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192- 2018, el caudal de diseño para línea de aducción es el caudal máximo horario, la tubería que se empleó fue de PVC clase 10 y se obtuvo que en el tramo (Reservorio 01 - Inicio red distribución 01) el diámetro de la tubería es de 1 1/2 pulgadas con una velocidad de 0.925 m/s y una presión dinámica de 5.21 m. La línea de aducción del área nº 02, está conformada por tuberías, accesorios y estructuras complementarias que conducen el agua por gravedad desde el reservorio 02 del área nº 02 hasta el punto de inicio de la red de distribución 02, la carga estática del punto del reservorio al punto de inicio de la red de distribución es de 25.34 m, por ende, no cuenta con cámaras rompe presiones tipo 6, teniendo así un solo tramo. Para el diseño hidráulico se aplicó el método directo y además se tomó en consideración los criterios de diseño establecidos en el RM 192- 2018, el caudal de diseño para línea de aducción es el caudal máximo horario, la tubería que se empleó fue de

PVC clase 10 y se obtuvo que en el tramo (Reservorio 02 - inicio red

distribución 02) el diámetro de la tubería es de 1 pulgada con una velocidad de 0.977m/s y una presión dinámica de 21.67 m.c.a.

En las redes de distribución siendo de tipo de redes mixtas, se encontraron colapsadas y algunas viviendas no estaban conectadas por la cual se concluye realizar el diseño del mejoramiento de las redes de distribución de las dos áreas del caserio de Allpamarca. Para el diseño de la red de distribución del área nº 01, se hizo uso del software watercad conection para poder determinar las presiones y velocidades para una red abierta, ya que, las viviendas se encuentran esparcidas; el caudal de diseño fue el caudal máximo horario de 1.3600 l/s, determinando un caudal unitario de 0.000190 l/s para 71 viviendas; se emplearon diámetros comerciales clase 10 de 2 pulgadas para la red principal y 3/4 pulgada para los ramales. La presión mínima en la vivienda fue de 5.64 m.c.a y la presión máxima fue de 50.12 m.c.a, las velocidades en la tubería fue como mínimo de 0.65 m/s - y la velocidad máxima de 0.813m/s. Para el diseño de la red de distribución del área nº 02, se hizo uso del software watercad conection para poder determinar las presiones y velocidades para una red abierta, ya que, las viviendas se encuentran esparcidas; el caudal de diseño fue el caudal máximo horario de 0.650 l/s, determinando un caudal unitario de 0.000177 l/s para 37 viviendas; se emplearon diámetros comerciales clase 10 de 2 pulgadas para la red principal y 3/4 pulgada para los ramales. La presión mínima en la vivienda fue de 5.280 m.c.a y la presión máxima fue de 48.71 m.c.a, las velocidades en la tubería fue como mínimo de 0.759 m/s – y la

velocidad máxima de 1.557 m/s.

3. Para determinar las incidencias de las condiciones sanitarias en los dos sistemas de abastecimiento de agua potable, se tuvo que emplear fichas, por la cual se concluye que el caserío de Allpamarca, la cobertura y la cantidad se encuentran en un estado "Bueno" con un puntaje de 4 en el área nº 01, por ende, la cualificación es sostenible; la continuidad se encuentra entre un estado regular con un puntaje de 3.50 en el área nº 01 y por ende, la cualificación es medianamente sostenible yla calidad del agua se encuentra en un estado "muy bajo" con un puntaje de 1.25, por ende, la cualificación es colapsado. La cobertura y la continuidad se encuentran en un estado "regular" con un puntaje de 3.5 en el área nº 02, por ende, la cualificación es medianamente sostenible; la cantidad se encuentra entre un estado bueno con un puntaje de 4.00 en el área nº 02 y por ende, la cualificación es sostenible y la calidad del agua se encuentra en un estado "muy bajo" con un puntaje de 1.33, por ende, la cualificación es colapsado.

5.2. Recomendaciones

1. Para poder realizar las evaluaciones de los sistemas de abastecimiento de agua potable, se recomienda primero tener previo conocimiento con respecto al marco teórico que conlleva la presente línea de investigación; ejecutar una programación del trabajo de campo y recopilación de información, preparando las fichas, encuestas con anticipación para poder hacer evaluaciones del estado de todos los componentes que conforman los dos sistemas de abastecimiento de agua potable del caserío de Allpamarca; se recomienda evaluar el estado de las obras decaptación, verificar si cuenta con canastillas, tuberías de rebose y limpia, tuberías de ventilación, cajas de válvulas, protección del afloramiento y cerco perimétrico; en las líneas de conducción verificar si se encuentran enterradas totalmente, si cuentan con válvulas de purga, aire en puntos bajos y altos de la tubería respectivamente y también si cuentan con cámaras rompe presión; para los dos reservorios verificar si cuentan con canastillas, tuberías de ventilación rebose y limpia; además si cuentan con casetas de desinfección cada reservorio, para permitir un consumo de calidad óptima para la población; en las líneas de aducción verificar si se encuentran enterradas totalmente, si cuentas con válvulas de purga, aire en puntos bajos y

óptima para la población; en las líneas de aducción verificar si se encuentran enterradas totalmente, si cuentas con válvulas de purga, aire en puntos bajos y altos de la tubería respectivamente y también si cuenta con cámaras rompe presión; en la red de distribución evaluar si todas las viviendas están conectadas a la red, si cuentan con válvulas controladoras de presión y si cuentan con piletas públicas.

2. Para realizar el diseño de las obras de captación se recomienda diseñar con el caudal máximo de la fuente, teniendo presente de que el caudal mínimo de la fuente tiene que ser mayor al caudal máximo diario (Qmd). Además, la velocidad de paso tiene que diseñarse para un valor máximo de 0.60 m/s en la entrada a la tubería y para determinar el número de orificios de la pantalla, deberá realizarse con diámetros menores a 2 pulg.

Para realizar el diseño de las líneas de conducción se recomienda hacer un estudio desuelo adecuado para poder conocer el tipo de tubería a emplearse; además para poblaciones rurales el diámetro mínimo deberá ser de 1 pulgada, tomando como diseño el diámetro interior de la tubería y el diseño deberá cumplir con velocidadesde 0.60 m/s a 3 m/s; carga estática máxima de 50 m y carga dinámica mínima de 1m.

Para los reservorios de almacenamiento en poblaciones rurales se recomienda usar volúmenes tal que su volumen de regulación sea el 25% del caudal promedio de consumo y el volumen de reserva se tome en cuenta el tiempo de reserva que deberáestar 2 horas a 4 horas.

Para realizar el diseño de las líneas de aducción se propone hacer un estudio de suelo adecuado para poder conocer el tipo de tubería a emplearse; además para poblaciones rurales el diámetro mínimo deberá ser de 1 pulgada, tomando como diseño el diámetro interior de la tubería y el diseño deberá cumplir con velocidadesde 0.60 m/s a 3 m/s; carga estática máxima de 50 m y carga dinámica mínima de 1m.

Para el diseño de las redes de distribución deberá tener en cuenta que para la

tubería principal el diámetro mínimo deberá ser de 1 pulgada y para los ramales de ¾ pulgadas, además deberá cumplir con presiones de servicio en cualquier punto de la red o línea de alimentación de agua no debe ser menor de 5 m.c.a ni mayor a 60m.c.a; además deberá cumplir con velocidad mínima de 0.60 m/s y en ningún casodeberá ser menor de 0.30 m/s; y una velocidad máxima de 3 m/s; además para el trazo de la red deberá realizarse por terrenos públicos en lo mejor posible y evitar que trazado se realice en terrenos vulnerables y privados.

3. Para que la población cuente con una buena condición sanitaria, se le recomienda que en los sistemas de abastecimiento de agua potable se realicen evaluaciones periódicas a todos los componentes, un mantenimiento preventivo para mantener las estructuras en buen estado y un mantenimiento correctivo si en el caso ocurre algún desastre natural que dañe el sistema y así cumplan con el periodo óptimo de diseño e impedir que afecte la salud de la población; se recomienda además que la población recibaeducación sanitaria y que la población cuente con miembros que puedan realizar una gestión comunitaria y así puedan mantener el sistema en un uso sostenible, siendo administrado y operado adecuadamente por los pobladores del caserío de Allpamarca.

Referencia Bibliográficas

- Gil M. Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del caserío El Porvenir, distrito Santa Rosa, provincia de Pallasca, región Áncash -2020. [Tesis para optar el título]. Chimbote -Perú: Universidad Los Ángeles de Chimbote; 2020.
- 2. Quispe E. Evaluación y mejoramiento del sistema de abastecimiento de agua potable del caserío de Asay, distrito Huacrachuco, provincia Marañón, región Huánuco y su incidencia en la condición sanitaria de la población 2019. [Tesis para optar el título]. Chimbote Perú: Universidad Los Ángeles de Chimbote; 2019.
- 3. Herrera M. Evaluación y mejoramiento del sistema de abastecimiento de agua potable y su incidencia en la condición sanitaria del centro poblado Huancapampa, distrito Recuay, provincia de Recuay, región de Áncash, agosto 2019. [Tesis para optar el título]. Chimbote Perú: Universidad Los Ángeles de Chimbote; 2019.
- 4. Mejia A. Evaluación y Mejoramiento del sistema de abastecimiento de agua potable del caserío Racrao Bajo, distrito de Pariacoto, provincia de Huaraz, región Áncash; y su incidencia en la condición sanitaria de la población 2019. [Tesis para optar el título]. Chimbote Perú: Universidad Los Ángeles de Chimbote; 2019.
- Chavarria M. Evaluación y propuesta de mejora del sistema de abastecimiento de agua potable de la ASADA Paquera de Puntarenas [Tesis para optar el título].
 Cartago – Costa Rica: Tecnológico de Costa Rica; 2019.
- 6. Carrillo L. Irma K., Quimbiamba G. Edison R. Rediseño y Optimización Hidráulica del Sistema de Agua Potable de Losbarrios Mushuñan e Inchalillo Alto, Parroquia Sangolquí, Cantón Rumiñahui, Provincia De Pichincha, [Internet]. Universidad

- Central del Ecuador, Facultad de Ingeniería, Ciencias Físicas y Matemática Ecuador; 2018. [citado 17 de Septiembre del 2021] .
- 7. Avila T. César M., Roncal L. André G. Modelo de red de saneamiento básico en zonas rurales caso: centro poblado Aynaca-Oyón-Lima. [Internet]. Universidad San Martin de Porres, Facultad de Ingeniería y Arquitectura Lima; 2014. [citado 13 de septiembre del 2021] disponible en: http://www.repositorioacademico.usmp.edu.pe/handle/usmp/1141
- 8. OMS, Organización Mundial de la Salud. Agua, saneamiento y salud (ASS). [Internet]. Washintong; 2018. [citado 12 de septiembre del 2021] disponible en: https://www.who.int/water_sanitation_health/mdg1/es/.
- Agüero P. Roger. Agua Potable para Poblaciones Rurales (Sistema de Abastecimiento por Gravedad sin Tratamiento)- Servicios Educativos (SER), Lima Perú; 1997.
- 10. INEI, Instituto Nacional de Estadística, Peru: Formas de acceso al agua y saneamiento básico sistensis estadística. [Internet]. Lima; 2018. [citado 18 de septiembre del 2021] disponible en: https://www.inei.gob.pe/media/MenuRecursivo/boletines/boletin_agua.pdf
- 11. GIZ, Gesellschaft für Internationale Zusammenarbe. Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el ámbito rural. [Internet]. Lima; 2017. [citado 11 de septiembre del 2021] disponible en: https://sswm.info/sites/default/files/reference_attachments/GIZ%202017.%20Manu al%20para%20la%20cloraci%C3%B3n%20del%20agua%20en%20sistemas%20de %20abastecimiento%20de%20agua%20potable.pdf

- 12. SUNASS, Superintendencia Nacional de Servicios de Saneamiento, Análisis de la Calidad del Agua Potable en las Empresas Prestadoras del Perú: 1995-2003. [Internet]. Lima; 2004. [citado 05 de octubre del 2021] disponible en: https://www.sunass.gob.pe/Publicaciones/analisis_agua_potable.pdf
- 13. EPAS, Ente Provincial del Agua y Saneamiento, [Internet]. Argentina; 2019. [citado 13 de septiembre del 2021] disponible en:http://www.epas.mendoza.gov.ar/index.php/88-destacados/agua-potable-y-salud/266-el-agua-segura-es-un-alimento
- López C. Ricardo A., Elementos de diseño para Acueductos y alcantarillados.
 Segunda Edición. Colombia; 2003.
- 15. Collazo C. María P., Montaño X. Javier, Manual de Agua Subterránea. [Internet].
 Uruguay; 2012. [citado 13 de septiembre del 2021] disponible en:
 http://www.mgap.gub.uy/sites/default/files/multimedia/manual_de_agua_subterran
 ea-ilovepdf-compressed.pdf
- Fair Gordon M., Geyer Jhon C., Okun Daniel A., Abastecimiento de agua y remoción de aguas residuales. México; 2001.
- 17. Loeches G. Miguel M., Rebollo F. Luis F., Aguas superficiales y subterráneas, Universidad de Alcala. [Internet]. España; 2007. [citado 18 de septiembre del 2021] disponible en: https://www.uah.es/export/sites/uah/es/conoce-la-uah/.galleries/Galeria-de-descarga-de-Conoce-la-UAH/Ecocampus/aguas-superficiales.pdf
- Fornes A. Juan Maria, Lopez G. Juan A., Ramos G. Gerardo, Villarroya G. Fermin,
 Las aguas subterráneas; un recurso natural del subsuelo, Instituto Geologico y

Minero de España. [Internet]. España; 2009. [citado 18 de septiembre del 2021] disponible en: https://www.fundacionbotin.org/89dguuytdfr276ed_uploads/Observatorio%20Tend encias/FORMACION/educacion%20ambiental.pdf

- 19. MVCS, Ministerio de Vivienda Construcción y Saneamiento. Norma Técnica de Diseño: Opciones Tecnológicas para Sistemas de Saneamiento en el Ámbito Rural. 2018.
- Valdez Enrique C., Abastecimiento de agua potable, Universidad Autonoma de Mexico. Mexico; 1990.
- Vierendel, Abastecimiento de agua y alcantarillado. Universidad Nacional de Ingenieria. Lima Perú; 2009

ANEXO N° 01: REGISTRO FOTOGRAFICO

Imagen 138 Vista panorámica del Caserío de Allpamarca, Área

Imagen 139 Vista panorámica del Caserío de Allpamarca, Área

Imagen 17 Reunión con los pobladores del Caserío de Allpamarca.

Imagen 18 Cámara rompe presión existente del Caserío de Allpamarca.

Imagen 19 Tubería HDPE de la línea de conducción existente del Caserío de Allpamarca.

Imagen 20 Proyección de la ubicación del reservorio de 15 m³ del área n01, del Caserío de Allpamarca.

ANEXO N° 02: ANALISIS DE AGUA

LABORATORIO DR CONTROL AMIUI:NTAL

INFORME DE ENSAYO FISICOQUIMICO Y BACTERIOLÓGICO Nº 061003 20 - LABCA/USA/DRSPN

SOLICITANTE: Sr. JOSE LUIS VEGA MAMANI • EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERIO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN SEPTIEMBRE- 201!1. LOCALIDAD: 05/09/2019 CASERIO DE ALLPAMARCA **FECHA DE MUESTREO:** DISTRITO: **PANAO** FECHA DE INGRESO AL LABORATORIO: 07/09/2019 **PROVINCIA PACHITEA FECHA DE REPORTE:** 17/09/2019 MUÉS°READOPOR: Muestra y dolos proporcionodospor DEPARTAMENTO: **HUANUCO** TIPO DE MUESTRA: ol solicitonio. **AGUA**

DATOS DE MUESTREO

	COD.LAB.	COD. CAMPO	FUENTE - UBICACION DEL PUNTO DE MUESTREO	HORA DE MUESTREO		ENADAS TM
-[ESTE	NORTE
Ī	061003 20	MZ	Captncion MMncnbnilo, ngun do mnnnntini ubicndo on ol	15:30	397732	0803922
1	_		Casorio do Allpnmnrcn - Pnnno / Pnchlton - Hunnuco / Sr.			
1			Joso Luis Voon Mnmnnl			

RESULTADO DE ANALISIS FISICOQUIMICO Y MICROBIOLOGICO

PARAMETROS	CODIGO DE MUESTRA		
	061003_20		
DH	6.57		
Turbiedad IUNn	1.25		
Conductividad 25°C (µs/cml	164		
Sólidos Totales Disueltos(mci/L)	97.3		
Coliformes Totales (NMP/100MII	34		
Coliformes Termotolerantes INMP/100MI)	< 1.2		
Noto: < "mlor si(!nifica 110 c1m111ificahl			

Motodos do Ensayo: Condusct, v, dod y Solidos Totales Disueltos. Electrodo APHA. AWW. WEF. 2510 O. 22nd Ecl. 2012. Turblccloct: Nofelometrico: APHA. AI MA. WEF. 2510 B. 23rd Ed. 2017. Numeroc/on de Coliformes Totales y Fecales por el Metodo Estondorl, oclo de Tubos Mu/tiples. APHA. AWWA. WEF. 2511 E 3rd Ed. 2017.

Atentamente.

Blga. Cecilia Victoria Zevellos Torres
JEFE DE LABORATORIO DE CONTROL AMBIENTAL

ce. USNRSPN Archivo Laboratorio.

Red de Salud Pacifico Norte

LABORATORIO III) CONTROL AMIIIENTAL

INFORME DE ENSAYO FISICOQUIMICO Y BACTERIOLÓGICO N° 061003 19 - LABCA/USA/DRSPN

SOLICITI\NTI::S _JOS::LUI SEGI\ MI\MANI • EVALUACION Y MEJORAMIENTO DEL SISTEMA DE AGUA POTI\OLE EN EL CI\SERIO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PI\NI\O, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA				
	ONDICIÓN SI\NITI\RIA DO LA POB_!./ CI\SEHIO DE I\LLPI\MI\\IICI\		05/09/2019	
DISTRITO:	PI\NI\O	FECHA DE INGRESO AL LABORA	ATORIO: 07/09/2019	
PROVINCIA:	PI\CHITEI\	FECHA DE REPORTE:	17/09/2019	
DEPARTAMENTO	: HUI\NUCO	MUESTREADO POR: Muestra y da	los proporcionados por	
-TIPODE MÜESTR	A: AGUA	el solicitante.		

DATOS DE MUESTREO

COD, LAII, COD.		FUENTE - UBICACIÓN DEL PUNTO DE MUESTREO	HORA DE MUESTREO	COORDENADAS UTM	
				FRIE	NURTE
001003_19	M1	Coptncion Dnmnclopuquio, oouo do monnntini ubicado on ol Coaorio do Alip:unorco - Ponoo / Pochiloo - Hunnuco / Sr, Joao Lula Voon Mnmnni	10:30	398276	8885759

RESULTADO DE ANALISIS FISICOQUIMICO Y MICROBIOLOGICO

PARAMETROS	CODIGO DE MUESTRA		
	061003 19		
pH	6.88		
Turblodod (UNT)	1.35		
Conductividnd 25°C (µs/cm)	176		
S6Ildos Totolos Disuoltos (mn/ .I	98.2		
Colliorrnos Totnios (NMP/100MI)	33		
Colliormos Torrnotolomntos (NMP/100MI)	< 1,8		
N11r11: • "1•11/m·" .,1,;111//ca 110 rn1111tl//c11Mt! /11/, •rfor al w,/or /11dlcado			

• Mrrodos d• Cnsoyo: Conrluscf/vldod y So/Ir/os Totolos Dirneltos: Electrodo /PI//, /WW. WEF, 1S10 D. 12nd Ed.2011. Turbiedad: Ne/elometr.co: APHA. AWW.il. WU, 7510 n. ZJrrl CrJ.2017, Nu111rroclo11 de Coll/or111es Totales y Fecales por el Metodo Estandarizado de Tubos Multiples. APHA. AWWA. WEF.

0 y 12211 23rd Cd.1017,

Atentamente,

I'C'. IJSIVItSI'N Arrhivn LnImrntorio.

ANEXO N° 03: ESTUDIO DE SUELO

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D-422

P ROY ECTO

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE – 2019"

300.00

195.19

104.81

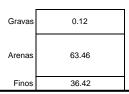
 S OLICITADO
 :
 JOSELUIS VEGA MAMANI
 FECHA
 :
 SEPTIEMBRE-2019

 UBICACIÓN
 :
 ALLPAMARCA
 TECNICO
 :
 J.D.M.

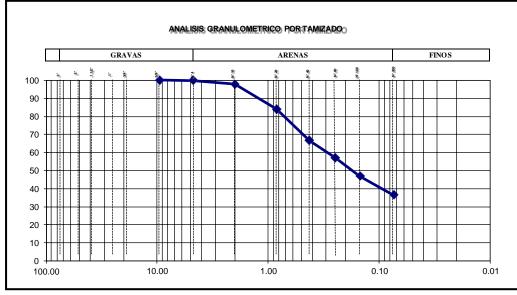
 CALICATA
 :
 C-57
 MUESTRA:
 M-1
 PROFUNDIDAD :
 0.00-1.50

HUMEDAD NATURAL DELA MUESTRA (%):

PESO DE LA MUESTRA SECA (gr):


PESO DE LA MUESTRA LAVADA Y SECADA (gr):

PESOS DE FINOS LAVADOS (gr):


SUCS	SM
AA SHTO	A-4 (0)
•	Arena limosa

TAMICES	DESCRIPCIÓN PESO	PESO RETENIDO	ESO RETENIDO PORCENTAJE PARCIAL	PORCENTAJE ACUMULADO	
ASTM	ABERTURA (m.m.)	(gr.)	RETENIDO (%)	RETENIDO (%)	PASA(%)
3"	76.200				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				100.00
N° 4	4.760	0.36	0.12	0.12	99.88
N° 10	2.000	6.23	2.08	2.20	97.80
N° 20	0.840	41.45	13.82	16.01	83.99
N° 40	0.426	51.94	17.31	33.33	66.67
N° 60	0.250	28.74	9.58	42.91	57.09
N° 100	0.149	30.69	10.23	53.14	46.86
N° 200	0.074	31.32	10.44	63.58	36.42
Fondo	-	4.46	1.49	65.06	34.94

Deo	0.303	
D60	-	
D30		
D10	-	
	-	
Cu		
Cc	-	
Cu	-	

Crucoo	0.00
Gruesa Fina	0.12
	2.08
Gruesa	31.13
Media	30,25
Fina	30.23

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D-422

P ROY ECTO

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE – 2019"

 S OLICITADO
 :
 JOSELUIS VEGA MAMANI
 FECHA
 :
 SEPTIEMBRE-2019

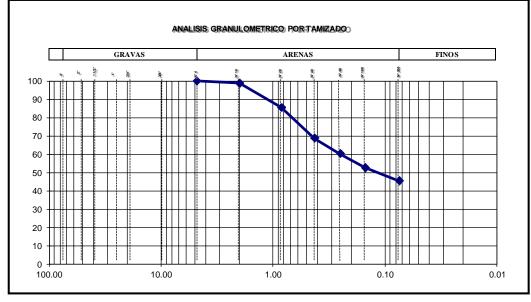
 UBICACIÓN
 :
 ALLPAMARCA
 TECNICO
 :
 J.D.M.

 CALICATA
 :
 C-58
 MUESTRA:
 M-2
 PROFUNDIDAD :
 0.80 - 1.50

 HUMEDAD NATURAL DE LA MUESTRA (%):
 37.99

 PESO DE LA MUESTRA SECA (gr):
 310.00

 PESO DE LA MUESTRA LAVADA Y SECADA (gr):
 172.00


 PESOS DE FINOS LAVADOS (gr):
 138.00

sucs	sc
AA SHTO	A-7-6 (11)
	Arono oroillogo

TAMICES	DESCRIPCIÓN	PESO RETENIDO	PORCENTAJE PARCIAL	PORCENTAJE ACUMULADO	
ASTM	ABERTURA (m.m.)	(gr.)	RETENIDO (%)	RETENIDO (%)	PASA(%)
3"	76.200				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				
N° 4	4.760				100.00
N° 10	2.000	3.70	1.19	1.19	98.81
N° 20	0.840	41.10	13.26	14.45	85.55
N° 40	0.426	52.10	16.81	31.26	68.74
N° 60	0.250	26.49	8.55	39.80	60.20
N° 100	0.149	23.42	7.55	47.36	52.64
N° 200	0.074	22.45	7.24	54.60	45.40
Fondo	_	2.74	0.88	55.48	44.52

D60	0.247		0.00
D30	-	0	0.00
D10	-		
Cu	-	Arenas	54.60
Сс	-		

Gruesa	0.00
Fina	0.00
Gruesa	1.19
Media	30.06
Fina	23.34

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D-422

P ROY ECTO

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANHAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DELA POBLACIÓN, SEPTIEMBRE - 2019"

 S OLICITADO
 :
 JOSELUIS VEGA MAMANI
 FECHA
 :
 SEPTIEMBRE- 2019

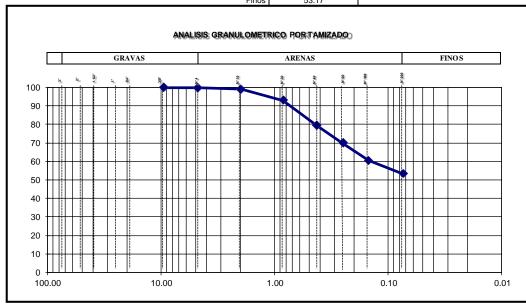
 UBICACIÓN
 :
 ALLPAMARCA
 TECNICO
 :
 J.D.M.

 CALICATA
 :
 C-59
 MUESTRA:
 M-1
 PROFUNDIDAD:
 0.20 - 1.70

 HUMEDAD NATURAL DE LA MUESTRA (%):
 67.23

 PESO DE LA MUESTRA SECA (gr):
 320.00

 PESO DE LA MUESTRA LAVADA Y SECADA (gr):
 152.80


 PESOS DEFINOS LAVADOS (gr):
 167.20

SUCS CH
AASHTO A-7-6 (16)

Arcilla arenosa de baja plasticidad

TAMICES	DESCRIPCIÓN	PESO RETENIDO	PORCENTAJE PARCIAL	PORCENTAJE ACUMULADO	
ASTM	ABERTURA (m.m.)	(gr.)	RETENIDO (%)	RETENIDO (%)	PASA(%)
3"	76.200				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				100.00
N° 4	4.760	0.63	0.20	0.20	99.80
N° 10	2.000	2.36	0.74	0.93	99.07
N° 20	0.840	19.46	6.08	7.02	92.98
N° 40	0.426	43.82	13.69	20.71	79.29
N° 60	0.250	30.69	9.59	30.30	69.70
N° 100	0.149	29.51	9.22	39.52	60.48
N° 200	0.074	23.38	7.31	46.83	53.17
Fondo	-	2.95	0.92	47.75	52.25

0.144 D60 Gruesa 0.00 Gravas 0.20 D30 Fina 0.20 D10 Gruesa 0.74 Arenas 46.63 Cu 19.78 Media Сс 26.12

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D-422

P ROY ECTO

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE – 2019"

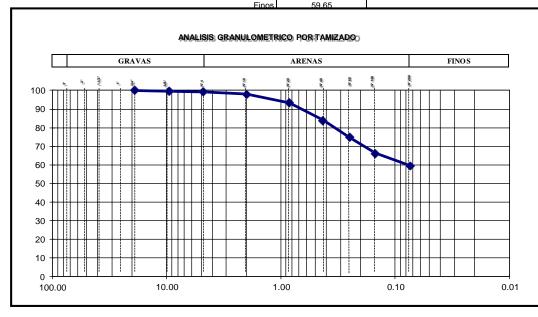
 S OLICITADO
 :
 JOSELUIS VEGA MAMANI
 FECHA
 :
 SEPTIEMBRE - 2019

 UBICACIÓN
 :
 ALLPAMARCA
 TECNICO
 :
 J.D.M.

 CALICATA
 :
 C - 59
 MUESTRA:
 M - 2
 PROFUNDIDAD :
 1.70 - 2.90

 HUMEDAD NATURAL DE LA MUESTRA (%):
 58.53

 PESO DE LA MUESTRA SECA (gr):
 300.00


 PESO DE LA MUESTRA LAVADA Y SECADA (gr):
 123.05

 PESOS DE FINOS LAVADOS (gr):
 176.95

SUCS	СН
AA SHTO	A-7-6 (16)
Limo aren	oso de baja plasticidad

TAMICES	DESCRIPCIÓN PESO RETENIDO	PORCENTAJE PARCIAL	PORCENTAJE ACUMULADO		
ASTM	ABERTURA (m.m.)	(gr.)	RETENIDO (%)	RETENIDO (%)	PASA(%)
3"	76.200				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				100.00
3/8"	9.525	0.75	0.25	0.25	99.75
N° 4	4.760	1.51	0.50	0.75	99.25
N° 10	2.000	3.84	1.28	2.03	97.97
N° 20	0.840	13.51	4.50	6.54	93.46
N° 40	0.426	28.50	9.50	16.04	83.96
N° 60	0.250	27.00	9.00	25.04	74.96
N° 100	0.149	26.16	8.72	33.76	66.24
N° 200	0.074	19.78	6.59	40.35	59.65
Fondo	-	2.00	0.67	41.02	58.98

D60	0.078	Gravas	0.75	Gruesa	0.00
D30	-	Giavas	0.75	Fina	0.75
D10	-			Gruesa	1.28
Cu	-	Arenas	39.60	Media	14.00
Сс	-			Fina	24.31

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D-422

P ROY ECTO

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE – 2019"

 S OLICITADO
 :
 JOSE LUIS VEGA MAMANI
 FECHA
 :
 SEPTIEMBRE - 2019

 UBICACIÓN
 :
 ALLPAMARCA
 TECNICO
 :
 J.D.M.

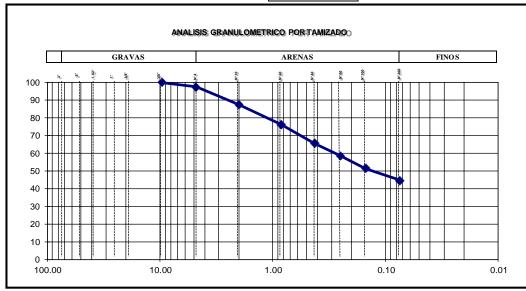
 CALICATA
 :
 C - 60
 MUESTRA:
 M - 1
 PROFUNDIDAD :
 0.20 - 1.00

 HUMEDAD NATURAL DE LA MUESTRA (%):
 27.15

 PESO DE LA MUESTRA SECA (gr):
 320.00

 PESO DE LA MUESTRA LAVADA Y SECADA (gr):
 177.08

 PESOS DE FINOS LAVADOS (gr):
 142.92


sucs	SM
AA SHTO	A-4 (2)
_	Arona limana

TAMICES	DESCRIPCIÓN	PESO RETENIDO PORCENTAJE PARO	PORCENTAJE PARCIAL	PORCENTAJE	ACUMULADO
ASTM	ABERTURA (gr.) RETENIDO (%)	RETENIDO (%)	PASA(%)		
3"	76.200				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				100.00
N° 4	4.760	8.17	2.55	2.55	97.45
N° 10	2.000	32.20	10.06	12.62	87.38
N° 20	0.840	35.90	11.22	23.83	76.17
N° 40	0.426	33.67	10.52	34.36	65.64
N° 60	0.250	23.03	7.20	41.55	58.45
N° 100	0.149	22.76	7.11	48.67	51.33
N° 200	0.074	21.35	6.67	55.34	44.66
Fondo	_	0.00	0.00	55 34	44 66

D60	0.288
D30	-
D10	-
Cu	-
Сс	-

Gravas	2.55
Arenas	52.78
Finos	44.66

Gruesa	0.00
Fina	2.55
Gruesa	10.06
Media	21.74
Fina	20.98

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D-422

P ROY ECTO

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE – 2019"

 S OLICITADO
 :
 JOSELUIS VEGA MAMANI
 FECHA
 :
 SEPTIEMBRE-2019

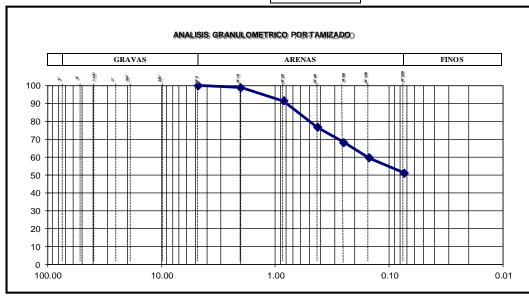
 UBICACIÓN
 :
 ALLPAMARCA
 TECNICO
 :
 J.D.M.

 CALICATA
 :
 C-60
 MUESTRA:
 M-2
 PROFUNDIDAD:
 0.20-1.00

 HUMEDAD NATURAL DE LA MUESTRA (%):
 49.71

 PESO DELA MUESTRA SECA (gr):
 300.00

 PESO DE LA MUESTRA LAVADA Y SECADA (gr):
 147.32


 PESOS DE FINOS LAVADOS (gr):
 152.68

sucs	ML		
AA SHTO	A-5 (4)		
Limo arenoso de baja plasticio			

TAMICES	DESCRIPCIÓN PESO RETENIDO	PORCENTAJE PARCIAL	PORCENTAJE ACUMULADO		
ASTM	(m.m.)	ABERTURA (gr.) RETENIDO (%)	RETENIDO (%)	PASA(%)	
3"	76.200				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				
N° 4	4.760				100.00
N° 10	2.000	3.52	1.17	1.17	98.83
N° 20	0.840	22.61	7.54	8.71	91.29
N° 40	0.426	43.80	14.60	23.31	76.69
N° 60	0.250	25.87	8.62	31.93	68.07
N° 100	0.149	25.85	8.62	40.55	59.45
N° 200	0.074	24.46	8.15	48.70	51.30
Fondo	-	1.21	0.40	49.11	50.89

0.155	Gravas	0.00
-	Glavas	0.00
-		
-	Arenas	48.70
-		
	Finos	51.30
	0.155 - - - -	Gravas - Arenas

Gruesa	0.00
Fina	0.00
Gruesa	1.17
Media	22.14
Fina	25.39

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D-422

P ROY ECTO

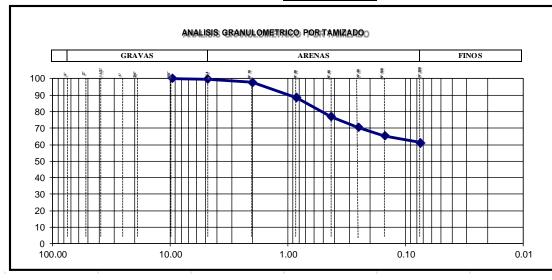
"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE – 2019"

JOSE LUIS VEGA MAMANI S OLICITADO **FECHA** SEPTIEMBRE - 2019 UBICACIÓN ALLPAMARCA **TECNICO** J.D.M. CALICATA MUESTRA: PROFUNDIDAD: 0.20 - 1.50 HUMEDAD NATURAL DE LA MUESTRA (%): 45.13 ML SUCS PESO DE LA MUESTRA SECA (gr) : 301.12 PESO DE LA MUESTRA LAVADA Y SECADA (gr) : 117.32 Limo arenoso de baja plasticidad PESOS DE FINOS LAVADOS (gr): 183.80

TAMICES	DESCRIPCIÓN	PESO RETENIDO	PORCENTAJE PARCIAL	PORCENTAJE	ACUMULADO
ASTM	ABERTURA (m.m.)	(gr.)	RETENIDO (%)	RETENIDO (%)	PASA(%)
3"	76.200				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				100.00
N° 4	4.760	1.37	0.45	0.45	99.55
N° 10	2.000	5.70	1.89	2.35	97.65
N° 20	0.840	27.32	9.07	11.42	88.58
N° 40	0.426	35.36	11.74	23.16	76.84
N° 60	0.250	18.92	6.28	29.45	70.55
N° 100	0.149	16.13	5.36	34.80	65.20
N° 200	0.074	11.83	3.93	38.73	61.27
Fondo	-	0.69	0.23	38.96	61.04

 D60

 D30


 D10

 Cu

 Cc

 Finos
 61.27

Gruesa	0.00
Fina	0.45
Gruesa	1.89
Media	20.82
Fina	15.57

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D-422

P ROY ECTO

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE – 2019"

 S OLICITADO
 :
 JOSE LUIS VEGA MAMANI
 FECHA
 :
 SEPTIEMBRE - 2019

 UBICACIÓN
 :
 ALLPAMARCA
 TECNICO
 :
 J.D.M.

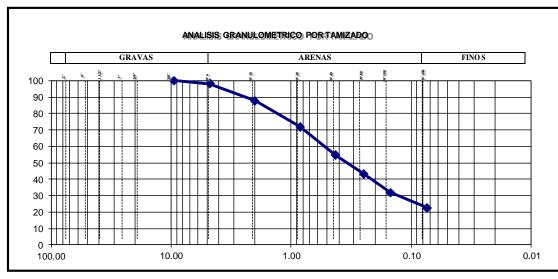
 CALICATA
 :
 C - 61
 MUESTRA:
 M - 2
 PROFUNDIDAD :
 0.20 - 1.50

 HUMEDAD NATURAL DE LA MUESTRA (%):
 26.75

 PESO DE LA MUESTRA SECA (gr):
 300.00

 PESO DE LA MUESTRA LAVADA Y SECADA (gr):
 234.49

 PESOS DE FINOS LAVADOS (gr):
 65.51

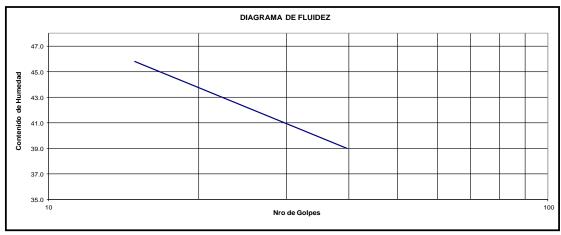

SUCS SC
AASHTO A-2-7 (2)
Arena arcillosa

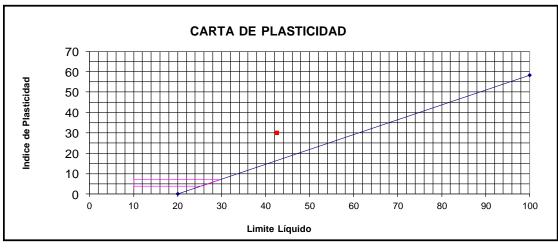
TAMICES	DESCRIPCIÓN	PESO RETENIDO	PORCENTAJE PARCIAL	PORCENTAJE A	ACUMULADO
ASTM	(m.m.)	ABERTURA (gr.)		RETENIDO (%)	PASA(%)
3"	76.200				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				100.00
N° 4	4.760	5.35	1.78	1.78	98.22
N° 10	2.000	31.50	10.50	12.28	87.72
N° 20	0.840	47.46	15.82	28.10	71.90
N° 40	0.426	51.72	17.24	45.34	54.66
N° 60	0.250	33.84	11.28	56.62	43.38
N° 100	0.149	34.25	11.42	68.04	31.96
N° 200	0.074	27.81	9.27	77.31 22	
Fondo	-	2.56	0.85	78.16	21.84

D60	0.554
D30	0.133
D10	-
Cu	-
Сс	-

Gravas	1.78
Arenas	75.53
Finos	22.69

Gruesa	0.00
Fina	1.78
Gruesa	10.50
Media	33.06
Fina	31.97



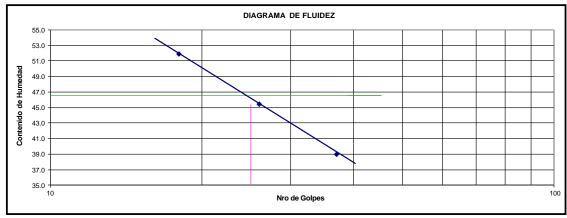

LÍMITE LIÍQUIDO Y PLÁSTICO

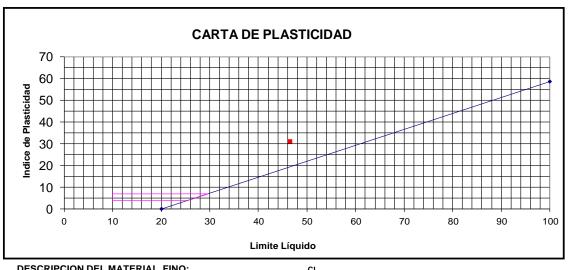
			ASTM	D-4318			
	PROYECTO:	"EVALUACIÓN Y MEJORAMIENT POBLADO DE TAYAGASHA, DIS" LA CON		DE PACHITEA, REGIÓN HUÁNU		OP ER A D OR :	J.D.M
	UB IC A C IÓN :	A LLP AM ARCA				M UEST R A :	C - 58
	FECHA:						M - 1
	FECHA:	SEPTIEMBRE - 2019				PROF (mt):	0.00 - 0.80
_	SOLICITADO :	JOSE LUIS VEGA MAMANI					
				LASTICO D-424)		LIMITE LIQUIDO (ASTM D-423)	
	ENSAYO No		1	2	1	2	3
	CAPSULA N.		188	93	161	77	90
	NUMERO DE GOLPES				16	25	36
1	PESO CAPSULA + SUELO H	UMEDO	24.912	24.035	27.572	28.693	29.229
2	PESO CAPSULA + SUELO S	ECO	24.020	23.121	24.171	25.214	25.952
3	PESO CAPSULA		16.573	16.014	16.640	16.990	17.687
1	PESO AGUA (1-2)		0.89	0.91	3.40	3.48	3.28
5	PESO SUELO SECO (2-3)		7.45	7.11	7.53	8.22	8.27

I.P. = 30.08

42.49

DESCRIPCION DEL MATERIAL FINO:


CL



LÍMITE LIÍQUIDO Y PLÁSTICO **ASTM D-4318**

			AOTI	1 10 40 10			
PROYECTO:		"EVALUA CIÓN Y MEJORAMI P OB LA DO DE TA YA GA SHA LA	OPERADOR:	J.D.M C - 58			
UBIC ACIÓN:		A LLP AM ARCA					M - 2
FECHA:		SEPTIEMBRE - 2019				PROF (mt):	0.80 - 1.50
SOLICITADO	:	JOSE LUIS VEGA MAMANI				. ,	
				PLASTICO		LIMITELIQUIDO (ASTM D-423)	
ENSAYO No			1	2	1	2	3
CAPSULA N.			35	69	225	173	25
NUMERO DE GO	LPES				18	26	37
PESO CAPSULA	+ SUELO H	HUMEDO	25.351	24.692	27.884	30.389	28.881
PESO CAPSULA	+ SUELO S	SECO	24.260	23.518	24.265	26.055	25.222
PESO CAPSULA			16.496	16.489	17.290	16.520	15.841
PESO AGUA (1-	2)		1.09	1.17	3.62	4.33	3.66
PESO SUELO SE	ECO (2-3)	•	7.76	7.03	6.98	9.54	9.38
6 CONTENIDO DE	HUMEDAD	(4/5*100)	14.05	16.70	51.89	45.45	39.00
·			L.P. =	15.38		L.L. =	46.51

I.P. = 31.13

DESCRIPCION DEL MATERIAL FINO:

CL

PESO CAPSULA

PESO SUELO SECO (2-3)

CONTENIDO DE HUMEDAD(4/5*100)

ROMAIA S.A.C. – LABORATORIO GEOTECNICO

16.576

4.20

7.12

58.89

LÍMITE LIÍQUIDO Y PLÁSTICO ASTM D-4318

PROYECTO:	POBLADO DE TAYAGASHA, DIST	*EVALUACIÓN Y MEJORA MIENTO DEL SISTEMA DE AGUA POTABLE EN EL CA SERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TA YAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANTARIA DE LA POBLACIÓN. SEPTIEMBRE - 2018.					
UB IC A C IÓN :	ALLPAMARCA				CALICATA: MUESTRA:	<u>C - 59</u> M - 1	
FECHA:	SEPTIEMBRE - 2019				PROF (mt):	0.20 - 1.70	
SOLICITADO :	JOSE LUIS VEGA MAMANI						
		LIMITE PL (ASTMI			LIMITE LIQUIDO (ASTM D-423)		
ENSAYO No				1		3	
ENSAYO No CAPSULA N.			D-424)	1 64	(ASTM D-423)	3 228	
		(ASTMI	2 23	1 64 17	(ASTM D-423)	-	
CAPSULA N.	ELO HUMEDO	(ASTMI	2 23		(ASTM D-423) 2 65	228	

16.647

1.37

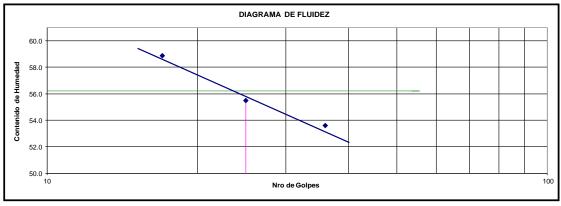
5.51

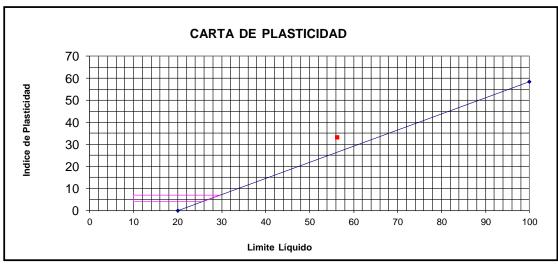
24.78

22.98

15.040

1.12


5.30

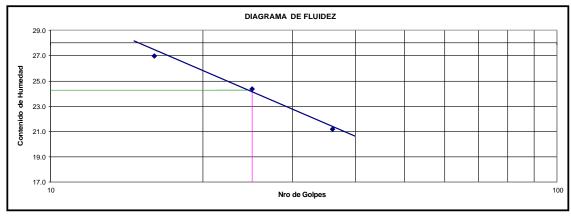

21.18

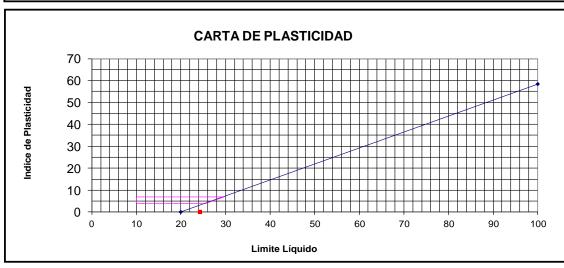
L.P. =

16.684 16.991
3.75 3.67
6.76 6.85
55.50 53.58
L.L. = 56.22

I.P. = 33.24

INCESTER A ANDINA
ROSALS MARIT MENERAL MONASA.C.
Ing. Obed Vay Rosales Salazar
Correle Consent


DESCRIPCION DEL MATERIAL FINO:


СН

LÍMITE LIÍQUIDO Y PLÁSTICO ASTM D-4318 PROYECTO: OPERADOR: J.D.M "EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO P OB LA DO DE TA YA GA SHA , DISTRITO DE PANA O, PROVINCIA DE PACHITEA , REGIÓN HUÂNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANTARIA DE LA POBLACIÓN, SEPTEMBRE Z-2019 CALICATA: ALLP AM ARCA UBICACIÓN : M - 2 MUESTRA: SEPTIEM BRE - 2019 1.70 - 2.90 PROF (mt): JOSE LUIS VEGA MAMANI SOLICITADO (ASTM D-423) ENSAYO No CAPSULA N. NUMERO DE GOLPES 36 16 25 PESO CAPSULA + SUELO HUMEDO 28.262 27.259 24.190 PESO CAPSULA + SUELO SECO 25.812 25.050 22.312 16.725 15.991 13.440 PESO AGUA (1-2) 2.45 2.21 1.88 PESO SUELO SECO (2-3) 9.09 9.06 8.87 CONTENIDO DE HUMEDAD(4/5*100) 24.38 21.17 26.96 L.P. = L.L. = 24.25

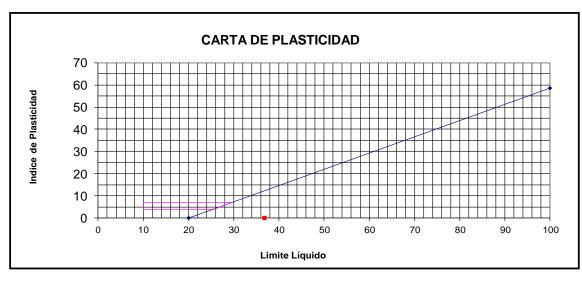
I.P. = 0.00

DESCRIPCION DEL MATERIAL FINO:

ML

L.L. =

36.78

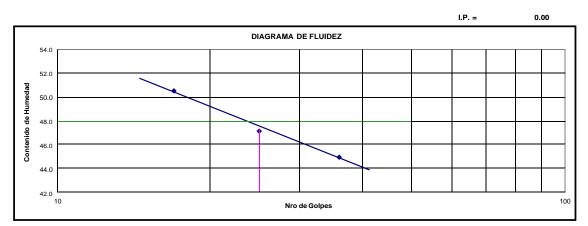

				IIDO Y PLÁSTICO M D-4318			
	PROYECTO:	P OB LA DO DE TA YA GA SH	MIENTO DEL SISTEMA DE AGUA POTA NA , DISTRITO DE PANA O, PROVINCIA D A CONDICIÓN SANITARIA DE LA POBLA	DE PACHITEA , REGIÓN HUÁNU		OPERADOR:	J.D.M
			A CONDICION GANTANIA DE LA TOBLA	COION, GET TIEMBRE - 2019		CALICATA:	C - 60
	UBIC A CIÓN:	A LLP AM ARCA				MUESTRA :	M - 1
	FECHA:	SEPTIEM BRE - 2019				PROF (mt):	0.20 - 1.00
	SOLICITADO :	JOSELUIS VEGA MAMAN	ĺ			, ,	
					•		
			LIMITE PL (ASTM I			LIMITELIQUIDO (ASTM D-423)	
	ENSAYO No		1	2	1	2	3
	CAPSULA N.				116	212	222
	NUMERO DE GOLPES				15	25	35
1	PESO CAPSULA + SUE	LO HUMEDO			26.492	26.820	26.378
2	PESO CAPSULA + SUE	LO SECO			22.829	23.954	23.800
3	PESO CAPSULA				13.169	16.320	16.421
4	PESO AGUA (1-2)				3.66	2.87	2.58
5	PESO SUELO SECO (2	-3)			9.66	7.63	7.38
6	CONTENIDO DE HUME	DAD(4/5*100)			37.92	37.54	34.94

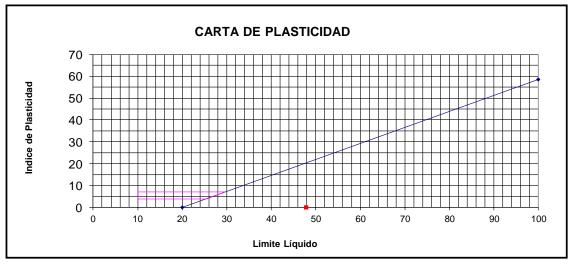
N.T

DIAGRAMA DE FLUIDEZ

| 40.0 | 39.0 | 37.0 | 36.0 |

L.P. =


DESCRIPCION DEL MATERIAL FINO:

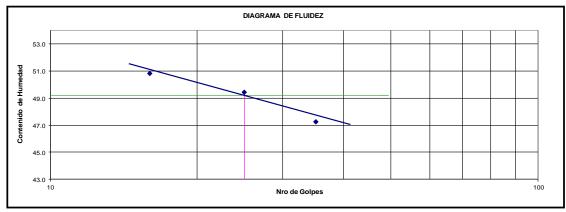

ML

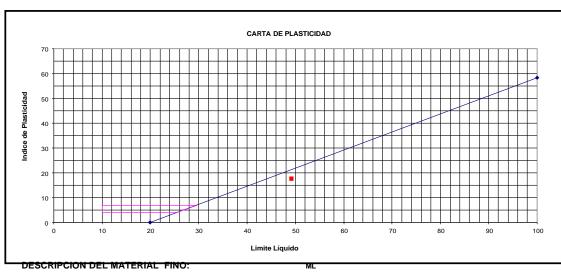
LÍMITE LIÍQUIDO Y PLÁSTICO ASTM D-4318

		ASTMID	9-4318			
PROYECTO:	POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN				OPERADOR:	J.D.M
	LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE – 2019*				CALICATA:	C - 60
UB IC A C IÓN :	UB IC A C IÓN : ALLP AM ARCA				MUESTRA :	M - 2
FECHA:	: SEPTIEMBRE - 2019				PROF (mt):	0.20 - 1.00
SOLICITADO :	JOSELUIS VEGA MAMANI					
				-		
			LIMITE PLASTICO (ASTM D-424)		LIMITE LIQUIDO (ASTM D-423)	
ENSAYO No		1	2	1	2	3
CAPSULA N.				62	160	141
NUMERO DE GOLPE	S			17	25	36
PESO CAPSULA + SUELO HUMEDO				27.956	24.225	27.143
PESO CAPSULA + SUELO SECO				24.179	21.854	23.421
PESO CAPSULA	PESO CAPSULA			16.707	16.828	15.150
PESO AGUA (1-2)	PESO AGUA (1-2)			3.78	2.37	3.72
PESO SUELO SECO	(2-3)			7.47	5.03	8.27
6 CONTENIDO DE HUI	MEDAD(4/5*100)			50.55	47.17	45.00
		L.P. =	N.T	·	L.L. =	47.81

DESCRIPCION DEL MATERIAL FINO:

ML




ROMAIA S.A.C. – LABORATORIO GEOTECNICO

LÍMITE LIÍQUIDO Y PLÁSTICO ASTM D-4318

					1		
	PROYECTO:	POBLADO DE TAYAGASHA, D	NTO DEL SISTEMA DE AGUA POT ISTRITO DE PANAO, PROVINCIA E ONDICIÓN SANITARIA DE LA POBL	DE PACHITEA, REGIÓN HUÁNU		OPERADOR:	J.D.M
	UB IC A C IÓN :	A LLP AM ARCA				CALICATA : MUESTRA :	<u>C - 61</u> M - 1
	FECHA:	SEPTIEMBRE - 2019				PROF (mt):	0.20 - 1.50
	SOLICITADO :	JOSE LUIS VEGA MAMANI					
				LASTICO D-424)		LIMITE LIQUIDO (ASTM D-423)	
	ENSAYO No		1	2	1	2	3
	CAPSULA N.		230	60	111	34	23
	NUMERO DE GOLPES				16	25	35
1	PESO CAPSULA + SUELO	O HUMEDO	24.794	23.867	25.786	26.903	28.256
2	PESO CAPSULA + SUEL	O SECO	22.905	22.020	21.821	23.500	24.530
3	PESO CAPSULA		16.915	16.132	14.018	16.615	16.647
4	PESO AGUA (1-2)		1.89	1.85	3.97	3.40	3.73
5	PESO SUELO SECO (2-3)	5.99	5.89	7.80	6.89	7.88
6	CONTENIDO DE HUMED.	AD(4/5*100)	31.54	31.37	50.81	49.43	47.27
			L.P. =	31.45		L.L. =	49.21

I.P. = 17.76

CONTENIDO DE HUMEDAD(4/5*100)

ROMAIA S.A.C. - LABORATORIO GEOTECNICO

42.83

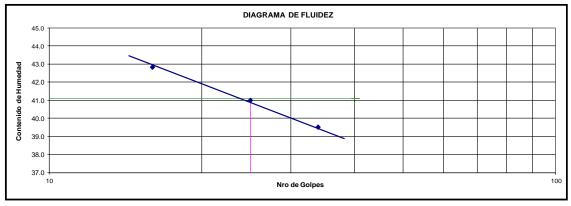
LÍMITE LIÍQUIDO Y PLÁSTICO **ASTM D-4318** AMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO SHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE – 2019" PROYECTO: OPERADOR: J.D.M CALICATA: C - 61 UB IC A C IÓN : MUESTRA: M - 2 SEPTIEMBRE - 2019 FECHA: 0.20 - 1.50 PROF (mt): SOLIC IT A D O JOSE LUIS VEGA MAMANI LIMITE PLASTICO LIMITE LIQUIDO (ASTM D-423) ENSAYO No CAPSULA N. 133 218 89 28 NUMERO DE GOLPES 34 26.999 27.356 26.552 23.518 24.973 PESO CAPSULA + SUELO SECO 23.122 23.912 23.942 24.233 23.719 13.851 15.260 16.804 16.614 16.549 PESO AGUA (1-2) 0.40 1.06 3.06 3.12 2.83 PESO SUELO SECO (2-3) 9.27 8.65 7.14 7.62 7.17

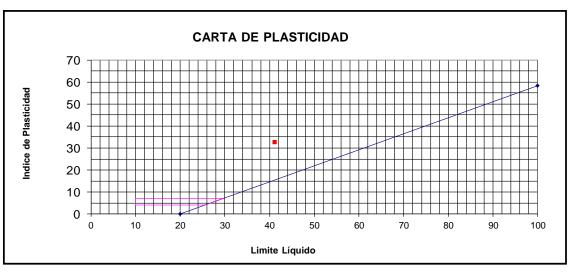
12.26

8.27

4.27

L.P. =


I.P. = 32.82


39.51

41.09

40.99

L.L. =

DESCRIPCION DEL MATERIAL FINO:

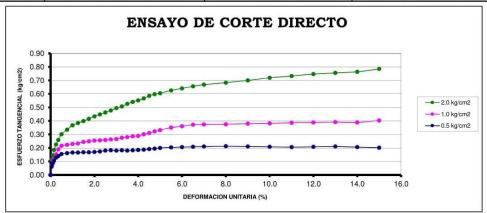
CL

ROMAIA S.A.C. – LABORATORIO GEOTECNICO

ENSAYO DE CORTE DIRECTO NORMA ASTM 3080

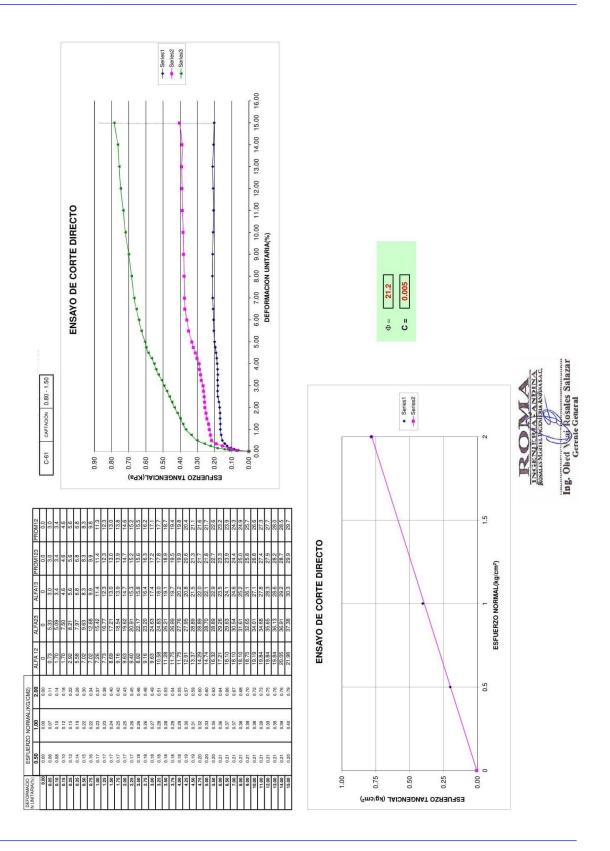
PROYECTO: EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERIO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE - 2019. SOLICITANTE: JOSE LUIS VEGA MAMANI

UBICACIÓN: ALLPAMARCA TAYAGASHA PANAO, PACHITEA, HUANUCO


Calicata: Muestra: M2 Prof. (m): 0.80 - 1.50 Area de Contacto Constante Dial de carga: 28.27 gr/cm3

gr

1.38


 $\gamma d =$ Peso = 78.04 Estado/Mustra = ALTERADO - REMOLDEADO

		0.5 Kg/cm2			1.0 Kg/m2			2 Kg/cm2	
Deformación Tangencial %	Dial de Carga	Fuerza Cortante kg	Esfuerzo de Corte kg/cm2	Dial de Carga	Fuerza Cortante kg	Esfuerzo de Corte kg/cm2	Dial de Carga	Fuerza Cortante kg	Esfuerzo de Corte kg/cm2
0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
0.05	29	1.74	0.06	32	1.92	0.07	54	3.24	0.11
0.10	40	2.40	0.08	47	2.82	0.10	68	4.08	0.14
0.15	49	2.94	0.10	56	3.36	0.12	87	5.22	0.18
0.25	60	3.60	0.13	72	4.32	0.15	106	6.36	0.22
0.35	66	3.96	0.14	89	5.34	0.19	122	7.32	0.26
0.50	73	4.38	0.15	102	6.12	0.22	142	8.52	0.30
0.75	76	4.56	0.16	105	6.30	0.22	158	9.48	0.34
1.00	78	4.68	0.17	108	6.48	0.23	173	10.38	0.37
1.25	78	4.68	0.17	110	6.60	0.23	181	10.86	0.38
1.50	79	4.74	0.17	115	6.90	0.24	188	11.28	0.40
1.75	79	4.74	0.17	117	7.02	0.25	196	11.76	0.42
2.00	80	4.80	0.17	120	7.20	0.25	204	12.24	0.43
2.25	82	4.92	0.17	121	7.26	0.26	211	12.66	0.45
2.50	85	5.10	0.18	122	7.32	0.26	218	13.08	0.46
2.75	86	5.16	0.18	124	7.44	0.26	225	13.50	0.48
3.00	85	5.10	0.18	125	7.50	0.27	233	13.98	0.49
3.25	86	5.16	0.18	130	7.80	0.28	239	14.34	0.51
3.50	85	5.10	0.18	132	7.92	0.28	248	14.88	0.53
3.75	86	5.16	0.18	135	8.10	0.29	255	15.30	0.54
4.00	87	5.22	0.18	136	8.16	0.29	260	15.60	0.55
4.25	88	5.28	0.19	142	8.52	0.30	267	16.02	0.57
4.50	90	5.40	0.19	146	8.76	0.31	276	16.56	0.59
4.75	92	5.52	0.20	152	9.12	0.32	282	16.92	0.60
5.00	94	5.64	0.20	156	9.36	0.33	285	17.10	0.60
5.50	96	5.76	0.20	165	9.90	0.35	295	17.70	0.63
6.00	97	5.82	0.21	170	10.20	0.36	302	18.12	0.64
6.50	98	5.88	0.21	175	10.50	0.37	309	18.54	0.66
7.00	99	5.94	0.21	176	10.56	0.37	315	18.90	0.67
8.00	100	6.00	0.21	177	10.62	0.38	322	19.32	0.68
9.00	99	5.94	0.21	179	10.74	0.38	330	19.80	0.70
10.00	98	5.88	0.21	180	10.80	0.38	339	20.34	0.72
11.00	97	5.82	0.21	182	10.92	0.39	345	20.70	0.73
12.00	98	5.88	0.21	183	10.98	0.39	352	21.12	0.75
13.00	99	5.94	0.21	184	11.04	0.39	356	21.36	0.76
14.00	97	5.82	0.21	183	10.98	0.39	360	21.60	0.76
15.00	95	5.70	0.20	190	11.40	0.40	370	22.20	0.79

ROMAIA S.A.C. – LABORATORIO GEOTECNICO

ANEXO N° 04: FICHA DE EVALUACIÓN

Tabla 1 Ficha 01: Evaluación de la condición sanitaria de la cobertura, calidad y continuidad del servicio de agua potable del caserío de Allpamarca.

FICHA Nº 01	TITULO: Evaluación y agua potable en el C Tayagasha, Distrito de para su Incidencia en TESISTA: Bach. José L ASESOR: Ms. Gonzalo ESTADO DEL SIS	Caserío de A Panao, Pro la Condici uis Vega M Miguel Leo PEMA DE	Allpamarca del Covincia de Pachito ón Sanitaria de la amani ón de los Rios ABASTECIMIE	entro Poblac ea, Región H a Población -	lo de uánuco, - 2019.	UL C	ADECH TOUGH
		A. U	bicación				
1. Comunidad / Caserio/ Cet 3. Sector: TAYAGAS 5. Provincia: PACHITE	HA	ARCA	 Codigo del Lug Distrito: Departamento: X: 398275.00 	PANAO	 2 0]	Y: 8885759	2.00
8. Cuantas familias tiene el ca 9. Promedio integrantes / fam 10. ¿Explique cómo se llega	nilia (dato del INEI):	desde la ca	254 pital del distrito?]			
Desde	Hasta	Т	ipo de via	Medio de tr	ansporte	Dsitancia (Km.)	Tiempo (horas)
LIMA	HUANUCO		FALTADO	CAMIO		368	8h 38 min
HUANUCO	PANAO		FALTADO	CAMIO		64	1h 44 min
PANAO	ALLPAMARCA	1	ROCHA	CAMIO	NETA	32	2h 35 min
11. ¿Qué servicios públicos o Establecimie Centro Educ Energía Eléc 12. Fecha en que se concluyo 13. Institución ejecutora:	nto de Salud ativo Inicial X trica 5 la construcción del sisten	SI X SI Primaria SI ana de agua J			NO NO Secundar	ia 🗌	
14. ¿Qué tipo de fuente de a Manantial 15. ¿Cómo es el sistema de a Por graveda	x x sbastecimiento? Marque co	Pozo on una X Por bombe	eo 🗌		Agua Sup	perficial	
		B. Cobertu	ra del Servicio				
16. ¿Cuántas familias se bene Numero comunidades	efician con el agua potable que tienen acceso al SAP		número) 1 dad de Agua]	4		
		J. Culti					
17. ¿Cuál es el caudal de la fi 18. ¿Cuántas conexiones don 19. ¿El sistema tiene piletas p	niciliarias tiene su sistema?	(Indicar el	-	0.62	4		
		SI X			NO	(Pasar a la p	gta. 21)
20. ¿Cuántas piletas públicas	tiene su sistema? (Indicar	el número)		4			
	D	. Continui	dad del Servicio				
21. ¿Cómo son las fuentes de	Ū 1						
	ESCRIPCIÓN		MEI	DICIONES			
NOMBRES DE LA FUENTE Permanente	Baja cantidad pero no es seca seca algunos meses	1ª	2ª	3 ª	4ª	5ª	CAUDAL
F 1: DAMACIOPUQUIO F 2: MATACABALLO		0.618	0.627	0.62 0.153	0.622 0.155	0.619	0.624
r 2; MATACABALLU		0.148	0.149	0.153	0.155	0.145	0.151

JULIO CESAR CAMARENA GUIO INGENIERO CIVIL Reg. CIP Nº 98758

Tabla 2 Ficha 02: Evaluación de la condición sanitaria de la calidad de agua y evaluación de la captación del caserío de Allpamarca.

FICHA N° 02		llpamarca de	el Centro Pob	olado de Taya	e abastecimient gasha, Distrito ndición Sanitai	de Panao, P	rovincia de	(vu	DECH
	TESISTA: Bac	h. José Luis	Vega Mama	ni				CF	TOL
	ASESOR: Ms.								
		ESTADO D			ECIMIENTO I	DE AGUA			
			Е. (Calidad del Ag	ua				
23. ¿Colocan cloro en el agua en	forma periódica? l	Marque con u	na X						
	SI		NO X	(Pasar a la pgt	a. 25)				
24. ¿Cuál es el nivel de cloro resi	dual? Marque con	una X		l					
	_			DESCI	RIPCION			1	
	Lugar de toma de muestra		cion (0 - 0,4 g/lt)	Id	leal 0.9 mg/lt)		loración .5 mg/lt)		
	Parte alta								
	Parte media								
	Parte baja								
25. ¿Cómo es el agua que consul	nen? Marque con	ına X							
	Agua clara	X		Agua turbia			Agua con elen	nentos extraños	
26. ¿Se ha realizado el análisis ba	cteriológico en los		meses? Marai	ie con una X					
20. goe in realizado er analisis oc		animos doce		1					
	SI		NO X						
27. ¿Quién supervisa la calidad d	el agua? Marque c	on una X							
	Municipalidad			MINSA			JASS	1	
	Otro (no	ombrarlo)					.Nadie X]	
								J	
			F. Estado	de la Infraest	tructura				
			F.1	CAPTACIO	N				
	Atricut. 2422.2	2	1	X: 398275.00		1	V. 0005750 0	0	1
	Altitud: 3432.2	5msnm]	1]	Y: 8885759.0	<u> </u>	
 ¿Cuántas captaciones tiene el 	sistema?		1	(Indicar el núm	nero)				
29. Describa el cerco perimétrico	y el material de co	nstrucción de	las captacione	es. Marque con	una X				
			Estado del	1	Material de o				
G		C	erco Perimét		de la capt		Dat	os Geo-referen	ciales
Captacion		Si t En buen estado	iene En mal estado	No tiene	Concreto	Artesanal	Altitud	Coordenada Y	Coordenada
Capt. 1: Damaciopuquio			X			X	3432.23	8885759	398275
Capt. 2: Matacaballo				X			3487.15	8885748	398245
					Identificaci	ón de peligro	os:		
				Crecidas	Hundimiento	Inundaciones	Deslizamientos	Desprendimient o de rocas o	Contaminación de la fuente de
Captación		No presenta	Huayco	o avenidas	de terreno			arboles	agua
Captación			Huayco X		de terreno		X		agua X
					de terreno		X X		_

JULI<mark>O CE</mark>SAR CAMARENA GUIO INGENIERO CIVIL R**e**g. CIP № 98758

Tabla 3 Ficha 03: Evaluación de la estructura de captación y caja del sistema de abastecimiento de agua potable actual del caserío de Allpamarca.

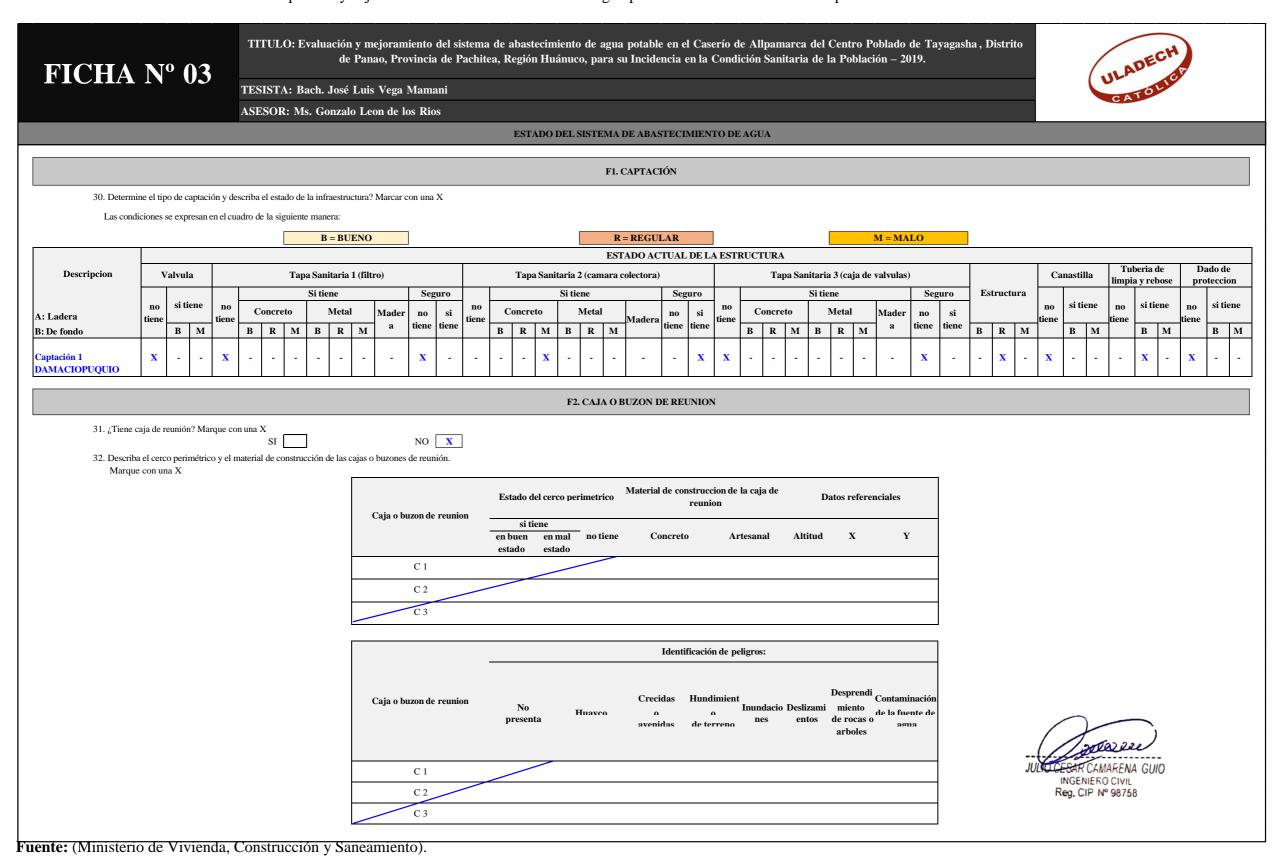


Tabla 4 Ficha 04: Evaluación de la estructura de buzón de reunión y cámara rompe presión (CR6) del caserío de Allpamarca.

						oramient																	7
FICHA Nº 04	Alipama	rca d				o de Tay idencia e										egion	Huant	ıco,	/		ADE	SEP.	1
1011111111111	TESISTA	Bac	h. Jos	sé Lu	is Veş	ga Mama	ni													UL	6	LIGI	ŀ
	ASESOR:	Ms.	Gonz					MA F	E A D	A CVETC	CID CIE	NITTO .	DE	A CITI	_	_	_	_	_	C	Α .		4
		-	-	E	STAD	O DEL S F2.					EUNIC		DE.	AGUA	1	-	-	-	-	-	-		4
 Describa el estad 	o de la estru	ctura.	. Marc	que co	on una	Х																	
Las condiciones s	e expresan e	n el cı	uadro (de la s	siguier	nte manera	a:																
	I	$\mathbf{B} = \mathbf{B}^{\dagger}$	UENC)	1			I	R = RE	GULA	R					M = 1	MALO)	1				ŀ
											_								_				
					Ton	a Sanitar		ESTA	ДО А	CIUA	LDEI	A ES	IK		nasti	lla	Tu	beria	de		Dado	de	
Descripcion					1 ap	u Sumun					Estr	uctur	a	_			limpi	a y re	bose	p	rotec	cion	
	no		oner	nin.	Siti	ene Metal		Ma	Seg	guro				no	si ti	iene	no	si t	iene	no		tiene	
	tiene	В	R	M	В	R	M	_	tiene	tiene	В	R	M	tiene	В	M	tiene	В	М	tien	e B	M	
C 1					\vdash		1																
C 2	_											_										+	
				<u> </u>	E3	. CAMAI	DA DA	MPI	F DDE	SION	- TIPO	6(0	'DD	6)					<u> </u>	<u> </u>			
								J.111 1		DIOIT	- 111 ()	0(0	-111	0)									
34. ¿Tiene cámara re	ompe presió	n CRI	P-6? N	Aarqu	e con	una X																	
		SI					NO	X] (Pas	ar a la j	pgta. 38	()											
35. ¿Cuántas cámara	is rompe pre	sión t	iene el	Lsister	ma?					(Ind	icar el n	úmero	0)										
 Describa el cerco 	perimétrico	y el ı	materi	al de c	constru	icción de	las cár	naras	rompe	presiói	ı (CRP-	6). M	arqu	e con ı	ına X								
]	Estad	o del cerc	o per	imetr	ico	Mat	terial d			ccion d	e la		Date	os rei	feren	ciales			
C	RP-6			_	s	i tiene						CRI	P 6										
					buen	en mal e	stado	no	tiene	C	oncret	0	A	rtesar	nal	Al	titud		X		Y		-
CR	P-6 1			est	tado		_																
	P-6 2	_	_																			1	
CR	P-6 3																						
										T.J.	4° 6°			l!								_	1
				_						Iuc	ntificac	ion u	ере	ngros.						Contr	minac		
c	RP-6				N	n						Iundin				Deslia	zamien		orendi ento		ón		
					pres	enta		Huay	co	aven	o idas (o le terr		Inunda	actones	s 1	tos		ocas o ooles		de	•	
																				а	igua		
	P-6 1																					-	
	P-6 2 P-6 3																					-	
CK	r-0 3																					_	
37. Describir el estac	lo de la infra	estru	ctura.	Marq	ue cor	una X:																	
Las condiciones s	e expresan e	n el cı	uadro (de la s	siguier	nte manera	a:																
					7														,				ŀ
		3 = B	UENC)				ŀ	R = RE	GULA	R					M = 1	MALO)					
								ESTA	DO A	CTUA	L DE I	A ES	TRI	UCTU									
Descripcion					Tap Si ti	a Sanitar one	ia		Sor	uro	Estr	uctur	a	Ca	nasti			beria		1 '	Dado	ac	
	no tiene	_c	oner	eto	1	Metal		Mad	no	,u.o			_	no tiene	si ti	iene	no tiene	SIT	iene	tien		tiene	
ann c		В	R	M	В	R	M	era	tiene	tiene	B	R	M		В	M		В	M		В	M	
CRP 6 - 1											H	$\exists F$									\mathbf{F}	\Box	
CRP 6 - 2			\vdash		L			L								L							
CRP 6 - 3												_									Ε	\prod	
38. ¿Tiene el sistema	tubo rompe	carga	a en la	línea	de coi	nducción?	Marq	ue cor	ı una X	:				-			-						
		SI	_	1			NO.	v		or o 1-	nata M												
		31	Щ	1			NO	X	(Pas	ara la j	pgta. 40	')											
39. ¿En qué estado s	e encuentrai	los t	ubos r	ompe	carga	? Marque	con u	na X															-
											Tubo	s rom	pe c	arga				1			_) -	
				Des	scripo	ion		N	N ^a 1	N	a 2	N ^a		N'	4	N	l ^a 5		/			J.	
		1			Bueno)]	1			2000	200
																				_	_		
					Malo													11	- K	CES	40	CLMA	CENIA /

Tabla 5 Ficha 05: Evaluación de la estructura de la línea de conducción y planta de tratamiento de agua del caserío de Allpamarca.

		mejoramiento						
		marca del Cen Región Huánuo de la F		ncidencia en			ULA	DECH
TESISTA:		Luis Vega Mar	mani				C A	TOLI
ASESOR:		DEL SISTEM		STREIMIR	NTO DE AG	TIA		
	ESTAD		EA DE CON		NIODENI	UA		
40 The stands do conducation	0.14	V						
40. ¿Tiene tubería de conducción	1							
	SI X		NO	(Pasar a la p	gta. 44)			
Identificación de peligros:	,							
	No presenta				Huaycos			
_	Crecidas o a	venidas			Hundimiento	de terreno		
L	Inundacione	es .			Deslizamien	itos		
	Desprendim	iento de rocas o	árboles		Contaminacio	ón de la fuent	e de agua	
		Especifique:	SISMO]
41. ¿Cómo está la tubería? Marq	ue con una X							
	Enterrada tot	almente		x	Enterrada en	forma parcia	ıl	
	Malograda				Colapsada			
42. ¿Tiene cruces / pases aéreos	?			_				
	SI		NO X	(Pasar a la p	ogta. 47)			
43. ¿En qué estado se encuentra		aéreo? Marque		-				
	Bueno				Malo			
	Regular				Colapsado			
		5. PLANTA D	FTRATAM	HENTO DE				
		J. I Linitara	ETRIL	HENTO D.	AGUA			
44. ¿El sistema tiene Planta de Tr	atamiento de	Aguas? Marque	con una X				_	
	SI		NO	(Pasar a la p	gta. 44)			
Identificación de peligros:								
	No presenta				Huaycos			
	Crecidas o a	venidas			Hundimiento	de terreno		
	Inundacione	es :			Deslizamien	itos		
	Desprendim	iento de rocas o	árboles		Contaminacio	ón de la fuent	e de agua	
		Especifique:						
45. ¿Tiene cerco perimétrico la es	structura? Ma	rque con una X						
	SI, en buen e	estado			SI, en mal es	stado		
	No tiene							
46. ¿En que estado se encuentra l	la estructura?	Marque con una	аX					
	Bueno	7	**-		Malo			
	Regular				1720		1)
	Regulai	F/	6. RESERVO	ODIO		-	13000	vere
·- ·- · · · · · · · · · · · · · · · · ·	V	10). KESERY	JKIU				
47. ¿Tiene reservorio? Marque co	1					JULIO (CESAR CAN INGENIER	MARENA GUI
	SI X		NO L			f	Reg. CIP N	
48. Describa el cerco perimétrico	y el material	de construcción	del reservorio	o. Marque con	n una X	-		00.00
		Estado del			rial de cción del	Dates	Coo referen	- of alos
proprione		erco Perimétrio	co		cción del rvorio	Datos	Geo-referer	iciales
RESERVORIO	En buen	tiene En mal	No tiene	Concreto	Artesanal	Altitud	Coordenad	Coordenad
	estado	estado	110 11011	Concrete	PHI COMPAN	211111444	a Y	a X
RESERVORIO AREA 01	T 1		X	X	Γ Ι	3409	8885382	398121
			1	1	<u> </u>		<u> </u>	

Tabla 6 Ficha 06: Evaluación de la estructura del reservorio, línea de aducción y red de distribución del caserío de Allpamarca.

		Bach. José L						C /	ADECH
	ASESUR:	Ms. Gonzalo ES			E ABASTECIM	IENTO DE AGUA			
					ESERVORIO				
				FU. K		ión de peligros:			
					- ruemijieuc	on ac pengros.		Desprendi	Contamina
RESERV	ORIO	No presenta	Huayco	Crecidas o avenidas	Hundimiento de terreno	Inundaciones	Deslizamiento s	miento de rocas o	ón de la fuent de
REERVORIO	O AREA 01	X		_	-	-	-	arboles	agua -
		l						l	l
49. ¿Describir el	estado de la es	tructura? Marc	ue con una A	ν.	ECTAD	O ACTUAL			1
	Desc	ripcion		1	Si tiene	O ACTUAL	Segu	ro	
	Volumen :.		no tiene	Bueno	Regular	Malo	Si tiene	No tiene	•
	Tapa	De concreto		X				X	1
	sanitaria 1	Metalica							1
	(T.A)	Madera De concreto					 	 	1
	Tapa sanitaria 2	Metalica	X				+		ł
	(C.V)	Madera	A.				1	†	1
	Reservorio /	Tanque de			X				Ĭ
	Caja de válv	ulas	X						1
	Canastilla Tuborío do li	mnio veskar	X			ļ			1
	Tuberia de la Tubo de ven	mpia y rebose	X	 		 			1
	Hipoclorad		X				-		
	Válvula flota		X				-		
	Válvula de e	ntrada	X						1
	Válvula de s		X				-		1
	Válvula de d	esagüe	X						1
	Miller of Land Caller		V						i
	Nivel estátio		X				-		
	Nivel estátic Dado de pro Cloración po	tección	X X X						
	Dado de pro	tección or goteo	X				- - -		
	Dado de pro Cloración po Grifo de enju En el caso d	ntección or goteo nague de que hubiese	X X X	eservorio, utili	zar un cuadro po	r cada uno de ellos	- - - y		
	Dado de pro Cloración po Grifo de enju	ntección or goteo nague de que hubiese	X X X	eservorio, utili	zar un cuadro po	r cada uno de ellos	- - у		
	Dado de pro Cloración po Grifo de enju En el caso d	ntección or goteo nague de que hubiese	X X X más de un r			r cada uno de ellos DISTRIBUCIÓN	- - - - - y		
50. ¿Cómo está k	Dado de pro Cloración po Grifo de enju En el caso o adjuntar a	stección or goteo nague de que hubiese da encuesta.	X X X más de un r				у		
50. ¿Cómo está k	Dado de pro Cloración po Grifo de enju En el caso o adjuntar a	otección or goteo nague le que hubiese a encuesta.	X X X más de un r F7. LINEA			DISTRIBUCIÓN			
50. ¿Cómo está k	Dado de pro Cloración po Grifo de enju En el caso o adjuntar a	rección or goteo nague le que hubiese la encuesta. que con una X	X X X más de un r F7. LINEA			DISTRIBUCIÓN Cubierta en forma			
50. ¿Cómo está la	Dado de pro Cloración po Grifo de enju En el caso o adjuntar a	otección or goteo nague le que hubiese a encuesta.	X X X más de un r F7. LINEA			DISTRIBUCIÓN			
50. ¿Cómo está k	Dado de pro Cloración po Grifo de enju En el caso o adjuntar a	rección or goteo nague le que hubiese la encuesta. que con una X	X X X más de un r F7. LINEA			DISTRIBUCIÓN Cubierta en forma			
	Dado de pro Cloración po Grifo de enju En el caso o adjuntar a	rección or goteo lague le que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene	X X X más de un r F7. LINEA			DISTRIBUCIÓN Cubierta en forma			
	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a u a tubería? Mar	rección or goteo lague de que hubiese la encuesta. que con una X Cubierta totali Malograda No tiene	X X X más de un r F7. LINEA			DISTRIBUCIÓN Cubierta en forma Colapsada			
	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a u a tubería? Mar	or goteo la gue le que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene No presenta	X X X más de un r. F7. LINEA			DISTRIBUCIÓN Cubierta en forma Colapsada Huaycos	parcial		
	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a u a tubería? Mar	or goteo la gue le que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene No presenta Crecidas o ave	X X X más de un r. F7. LINEA			Cubierta en forma Colapsada Huaycos Hundimiento de ter	parcial		
	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a u a tubería? Mar	or goteo la gue le que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene No presenta	X X X más de un r. F7. LINEA			DISTRIBUCIÓN Cubierta en forma Colapsada Huaycos	parcial		
	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a u a tubería? Mar	or goteo la gue le que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene No presenta Crecidas o ave	X X X más de un r. F7. LINEA	DE ADUCCI		Cubierta en forma Colapsada Huaycos Hundimiento de ter	parcial		
	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a u a tubería? Mar	rección or goteo laque le que hubiese a encuesta. que con una X Cubierta totala Malograda No tiene Crecidas o ave Inundaciones Desprendimie	X X X X X X X X X X X A A A A A A A A A	DE ADUCCI		Cubierta en forma e Colapsada Huaycos Hundimiento de ter Deslizamientos	parcial		1
Identificació	Dado de pro Cloración pe Grifo de enju En el caso a adjuntar a la a tubería? Mar	rección or goteo lague le que hubiese a encuesta. que con una X Cubierta totala Malograda No tiene : No presenta Crecidas o ave Inundaciones Desprendimie	X X X X más de un r. F7. LINEA mente	DE ADUCCI		Cubierta en forma e Colapsada Huaycos Hundimiento de ter Deslizamientos	parcial		
Identificació	Dado de pro Cloración pe Grifo de enju En el caso a adjuntar a la a tubería? Mar	rección or goteo laque le que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene : No presenta Crecidas o ave Inundaciones Desprendimie	X X X X más de un r. F7. LINEA mente	DE ADUCCI		Cubierta en forma production Cubierta en forma production Colapsada Huaycos Hundimiento de ter Deslizamientos	parcial		
Identificació	Dado de pro Cloración pe Grifo de enju En el caso a adjuntar a la a tubería? Mar	rección or goteo lague le que hubiese a encuesta. que con una X Cubierta totala Malograda No tiene : No presenta Crecidas o ave Inundaciones Desprendimie	X X X X más de un r. F7. LINEA mente	DE ADUCCI		Cubierta en forma production Cubierta en forma production Colapsada Huaycos Hundimiento de ter Deslizamientos	parcial) and	(4) 022
Identificació 51. ¿Tiene cruces	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a la a tubería? Man in de peligros s / pases aéreo	que con una X Cubierta totala No presenta Crecidas o ave Inundaciones Desprendimie	X X X Mas de un r. F7. LINEA mente enidas tho de rocas Especifique una X	o árboles SISMO NO X	ÓN Y RED DE I	Cubierta en forma production Cubierta en forma production Colapsada Huaycos Hundimiento de ter Deslizamientos	parcial		(a) see
Identificació 51. ¿Tiene cruces	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a la a tubería? Man in de peligros s / pases aéreo	rección or goteo la gue le que hubiese la encuesta. Que con una X Cubierta totala Malograda No tiene Crecidas o ave Inundaciones Desprendimie	X X X Mas de un r. F7. LINEA mente enidas tho de rocas Especifique una X	o árboles SISMO NO X	ÓN Y RED DE I	Cubierta en forma para collegada Huaycos Hundimiento de ter Deslizamientos Contaminación de l	parcial reno la fuente de agua	ESAR CAI	MARENA
Identificació 51. ¿Tiene cruces	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a la a tubería? Man in de peligros s / pases aéreo	rección or goteo laque la que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene No presenta Crecidas o ave Inundaciones Desprendimie 3? Marque con SI a el cruce / pase Bueno	X X X Mas de un r. F7. LINEA mente enidas tho de rocas Especifique una X	o árboles SISMO NO X	ÓN Y RED DE I	Cubierta en forma para como de la contaminación de la contaminació	parcial Teno la fuente de agua	ESAR CAI INGENIER	MARENA O CIVIL
Identificació 51. ¿Tiene cruces	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a la a tubería? Man in de peligros s / pases aéreo	rección or goteo la gue le que hubiese la encuesta. Que con una X Cubierta totala Malograda No tiene Crecidas o ave Inundaciones Desprendimie	X X X Mas de un r. F7. LINEA mente enidas tho de rocas Especifique una X	o árboles SISMO NO X	ÓN Y RED DE I	Cubierta en forma para collegada Huaycos Hundimiento de ter Deslizamientos Contaminación de l	parcial Teno la fuente de agua	ESAR CAI	MARENA O CIVIL
Identificació 51. ¿Tiene cruces	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a la a tubería? Man in de peligros s / pases aéreo	rección or goteo laque la que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene No presenta Crecidas o ave Inundaciones Desprendimie 3? Marque con SI a el cruce / pase Bueno	X X X Mas de un r. F7. LINEA mente enidas tho de rocas Especifique una X	o árboles SISMO NO X arque con una	ÓN Y RED DE I	Cubierta en forma para como de la contaminación de la contaminació	parcial Teno la fuente de agua	ESAR CAI INGENIER	MARENA O CIVIL
Identificació 51. ¿Tiene cruces 52. ¿En qué estad	Dado de pro Cloración pe Grifo de enju En el caso a adjuntar a i a tubería? Mar sin de peligros s / pases aéreo.	rección or goteo laque le que hubiese la encuesta. Que con una X Cubierta totala Malograda No tiene : No presenta Crecidas o ave Inundaciones Desprendimie s? Marque con SI	X X X X Mas de un r. F7. LINEA mente enidas enidas Especifique una X es aéreos? M	o árboles SISMO NO X arque con una	ÓN Y RED DE I	Cubierta en forma para como de la contaminación de la contaminació	parcial Teno la fuente de agua	ESAR CAI INGENIER	MARENA O CIVIL
Identificació 51. ¿Tiene cruces 52. ¿En qué estad	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a la a tubería? Man in de peligros s / pases aéreo lo se encuentra	rección or goteo la que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene No presenta Crecidas o ave Inundaciones Desprendimie A Harque con SI a el cruce / pase Bueno Regular	X X X X Más de un r. F7. LINEA mente enidas ento de rocas Especifique una X es aéreos? M	o árboles SISMO NO X arque con una	X X X YALVULAS que el número:	Cubierta en forma para como de la contaminación de la contaminació	parcial reno la fuente de agua	ESAR CAI INGENIER	MARENA O CIVIL
50. ¿Cómo está la Identificació 51. ¿Tiene cruces 52. ¿En qué estad 53. Describa el es	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a la tubería? Man in de peligros s/pases aéreo lo se encuentra tado de las vá	rección or goteo la gue le que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene Crecidas o ave Inundaciones Desprendimie s? Marque con SI a el cruce / pase Bueno Regular	X X X X Mas de un r. F7. LINEA mente enidas enidas Especifique una X es aéreos? M	o árboles SISMO NO X arque con una	X X VALVULAS que el número:	Cubierta en forma Colapsada Huaycos Hundimiento de ter Deslizamientos Contaminación de l	parcial reno la fuente de agua	ESAR CAI INGENIER	MARENA O CIVIL
Identificació 51. ¿Tiene cruces 52. ¿En qué estad	Dado de pro Cloración po Grifo de enju En el caso a adjuntar a la a tubería? Man in de peligros s / pases aéreo to se encuentra tado de las vá DESCI Valvu	rección or goteo la que hubiese la encuesta. que con una X Cubierta totala Malograda No tiene No presenta Crecidas o ave Inundaciones Desprendimie A Harque con SI a el cruce / pase Bueno Regular	X X X X Más de un r. F7. LINEA mente enidas ento de rocas Especifique una X es aéreos? M	o árboles SISMO NO X arque con una F8. on una X e indi	X X X YALVULAS que el número:	Cubierta en forma Colapsada Huaycos Hundimiento de ter Deslizamientos Contaminación de l Malo Colapsado	parcial Teno In fuente de agua	ESAR CAI INGENIER	MARENA O CIVIL

Tabla 7 Ficha 07: Evaluación de la estructura de la cámara rompe presión tipo 7 y piletas públicas del caserío de Allpamarca.

	TITULO, El.	-1 (1		.1 .2.4 4.	ali a stantini ta					
	TITULO: Evalua el Caserío de Allp									
FICHA Nº 07	de Pachitea, I								LADEC	m_
FICHAN UI				ación – 2019	١.			(0	LAD	C P
	TESISTA: Bach.		•						CATOL	
	ASESOR: Ms. Go				ECIMIENT	O DE AGIL	۸.			
	2.0				ION TIPO 7		•			/
						(0-11-1)				$\overline{}$
54. ¿Tiene cámaras rompe pre	esión CRP-7? Marqu	e con una X								
		SI		NO					/	/
				110		_				
 ¿Cuántas cámaras rompe p 						(Indicar el nú	ímero)			
 Describa el cerco perimétr 	ico y material de con	strucción de	las CRP-7. I	Marque con u	na X			/		
			Estado del	l	Material de co	onstrucción del	Dotos	Geo-referen	ololog	
	<u>-</u>		rco Perimét	rico	CF	RP 7	Datos	Geo-reieren	ciaies	
CRP -7	-	Siti		No tiene	Concreto	Artesanal	Altitud	Coordenad	Coorden	
		En buen estado	En mal estado	110 tiene	Concreto	Artesunar	innuu	a Y	ada X	
CRP 7 - 1							$\overline{}$			
CRP 7 - 2			_		_		/	_		•
CRP 7 - 3 CRP 7 - 4						/				
CRP 7 - 4						-/-				•
CRP 7 - 6	i									
				7	dontificación	. da naliaras				
	-				dentificación			n	Contamina	
CRP -7		No		Crecidas	Hundimien	Inundacion	n Deslizami	Desprendimie e nto	ción	
		presenta	Huayco	U	to de terreno	99	ntos	de rocas o arboles	de la fuente de	
CRP 7 - 1								urboics	agua	
CRP 7 - 2				-						•
CRP 7 - 3			/							
CRP 7 - 4 CRP 7 - 5										
CRP 7 - 6			-							
CRP 7 - 6										· ·
57. ¿Describir el estado de la i	infraestructura? Mar									•
	infraestructura? Mar									•
57. ¿Describir el estado de la i	infraestructura? Mar	siguiente ma		R = RE	GULAR		M=1	MALO		
57. ¿Describir el estado de la i	infraestructura? Man an en el cuadro de la	siguiente ma		R = RE]	M=1	MALO		
57. ¿Describir el estado de la i	infraestructura? Man an en el cuadro de la	siguiente ma		R = RE	ESTADO	ACTUAL			<u> </u>	
57. ¿Describir el estado de la i	infraestructura? Mar an en el cuadro de la B = BUE	siguiente ma		R = RE		ACTUAL Malo		MALO guro No tiene		
57. ¿Describir el estado de la i	B = BUE Descripci	siguiente ma	nera:		ESTADO Si tiene	•	Se	guro		
57. ¿Describir el estado de la i	B = BUE Descripci	siguiente ma NO ion De concreto Metalica	nera:		ESTADO Si tiene	•	Se	guro		
57. ¿Describir el estado de la i	infraestructura? Man an en el cuadro de la B = BUE Descripci CRP 7 - N° : Tapa sanitaria 1	siguiente ma NO ion De concreto Metalica Madera	nera:		ESTADO Si tiene	•	Se	guro		
57. ¿Describir el estado de la i	infraestructura? Man an en el cuadro de la B = BUE Descripci CRP 7 - N° : Tapa sanitaria 1	ion De concreto Metalica Madera De concreto	nera:		ESTADO Si tiene	•	Se	guro		
57. ¿Describir el estado de la i	B = BUE Descripci CRP 7 - N°: Tapa sanitaria 1 Tapa sanitaria 2 (C.V)	ion De concreto Metalica Madera De concreto	nera:		ESTADO Si tiene	•	Se	guro		
57. ¿Describir el estado de la i	infraestructura? Mar an en el cuadro de la B = BUEN Descripci CRF 7 - N° : Tapa sanitaria 1 Tapa sanitaria 2 1 (C.V) Estructura	siguiente ma sigui	nera:		ESTADO Si tiene	•	Se	guro		
57. ¿Describir el estado de la i	Descripci CRF7 - N°: Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla	siguiente ma NO Loconcreto Metalica Madera De concreto fetalica Madera	nera:		ESTADO Si tiene	•	Se	guro		
57. ¿Describir el estado de la i	B = BUE B = BUE Descripci CRF 7 - N°: Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia yı Valvula de control	siguiente ma ion De concreto Metalica Madera De concreto fetalica Madera	nera:		ESTADO Si tiene	•	Se	guro No tiene		
57. ¿Describir el estado de la i	Descripci CRF7 - N°: Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia y	siguiente ma ion De concreto Metalica Madera De concreto fetalica Madera	nera:		ESTADO Si tiene	•	Se	guro No tiene	ota 2	ese)
57. ¿Describir el estado de la i	B = BUE B = BUE Descripci CRF 7 - N°: Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia yı Valvula de control	siguiente ma ion De concreto Metalica Madera De concreto fetalica Madera	no tiene	Bueno	ESTADO Si tiene Regular	•	Se	guro No tiene	o da	
57. ¿Describir el estado de la i Las condiciones se expres	Descripci CRF 7 - N°: Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Estructura Tubería de limpia y i Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera Madera	no tiene		ESTADO Si tiene Regular	•	Se	guro No tiene	MAREN	I A GUI O
57. ¿Describir el estado de la i	Descripci CRF 7 - N°: Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Estructura Tubería de limpia y i Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera Madera	no tiene	Bueno	ESTADO Si tiene Regular	•	Se	guro No tiene CESAR CI	MAREN RO CIVIL	I A GU IO
57. ¿Describir el estado de la i Las condiciones se expres 58. Describir el estado de las p	Descripci CRF7 - N°: Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia yı Valvula de control Valvula flotadora	siguiente ma siguiente ma dion De concreto Metalica Madera De concreto fetalica Madera rebose	no tiene F10. PII	Bueno LETAS PUE	ESTADO Si tiene Regular	Malo	Se Si tiene	guro No tiene	MAREN RO CIVIL Nº 9875	I A GU IO
57. ¿Describir el estado de la i Las condiciones se expres	Descripci CRF7 - N°: Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia yı Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera Madera	no tiene F10. PII	Bueno LETAS PUE	ESTADO Si tiene Regular	•	Se Si tiene	guro No tiene CESAR CI	MAREN RO CIVIL	I A GU IO
57. ¿Describir el estado de la i Las condiciones se expres. 58. Describir el estado de las p DECRIPCION P 1	Descripci CRF 7 - N° : Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia y Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera prebose que con una 2 STAL O EST	no tiene F10. PH X	Bueno Bueno LETAS PUE A No tiene X	ESTADO Si tiene Regular	Malo VULA DE I	Se Si tiene JULIO PASO No tiene X	Suro No tiene CESARCO INGENIE Reg. CIP	FO CIVIL Nº 9875 GRIFO Malo	I A GU IO 58
57. ¿Describir el estado de la i Las condiciones se expres 58. Describir el estado de las p DECRIPCION P 1 P 2	Descripci CRF 7 - N° : Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia y Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera prebose que con una 2 STAL O EST	no tiene F10. PH X	Bueno Bueno A No tiene X X	ESTADO Si tiene Regular	Malo VULA DE I	Se Si tiene PASO No tiene X X	Suro No tiene CESARCO INGENIE Reg. CIP	FO CIVIL Nº 9875 GRIFO Malo X	I A GU IO 58
57. ¿Describir el estado de la i Las condiciones se expres 58. Describir el estado de las p DECRIPCION P 1 P 2 P 3	Descripci CRF 7 - N° : Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia y Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera prebose que con una 2 STAL O EST	no tiene F10. PH X	Bueno Bueno A No tiene X X	ESTADO Si tiene Regular	Malo VULA DE I	Se Si tiene JULIO PASO No tiene X X	Suro No tiene CESARCO INGENIE Reg. CIP	MAREN RO CIVIL Nº 9875 GRIFO Malo X X	I A GU IO 58
57. ¿Describir el estado de la i Las condiciones se expres 58. Describir el estado de las p DECRIPCION P 1 P 2	Descripci CRF 7 - N° : Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia y Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera prebose que con una 2 STAL O EST	no tiene F10. PH X	Bueno Bueno A No tiene X X	ESTADO Si tiene Regular	Malo VULA DE I	Se Si tiene PASO No tiene X X	Suro No tiene CESARCO INGENIE Reg. CIP	FO CIVIL Nº 9875 GRIFO Malo X	I A GU IO 58
58. Describir el estado de la propertica	Descripci CRF 7 - N° : Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia y Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera prebose que con una 2 STAL O EST	no tiene F10. PH X	Bueno Bueno A No tiene X X	ESTADO Si tiene Regular	Malo VULA DE I	Se Si tiene JULIO PASO No tiene X X	Suro No tiene CESARCO INGENIE Reg. CIP	MAREN RO CIVIL Nº 9875 GRIFO Malo X X	1 A GU 10 58
57. ¿Describir el estado de la i Las condiciones se expres 58. Describir el estado de las p DECRIPCION P 1 P 2 P 3 P 4 P 5 P 6 P 7	Descripci CRF 7 - N° : Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia y Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera prebose que con una 2 STAL O EST	no tiene F10. PH X	Bueno Bueno A No tiene X X	ESTADO Si tiene Regular	Malo VULA DE I	Se Si tiene JULIO PASO No tiene X X	Suro No tiene CESARCO INGENIE Reg. CIP	MAREN RO CIVIL Nº 9875 GRIFO Malo X X	IA GU IO 58
58. Describir el estado de la propertica	Descripci CRF 7 - N° : Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia y Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera prebose que con una 2 STAL O EST	no tiene F10. PH X	Bueno Bueno A No tiene X X	ESTADO Si tiene Regular	Malo VULA DE I	Se Si tiene JULIO PASO No tiene X X	Suro No tiene CESARCO INGENIE Reg. CIP	MAREN RO CIVIL Nº 9875 GRIFO Malo X X	IA GU IO 58
57. ¿Describir el estado de la i Las condiciones se expres 58. Describir el estado de las p DECRIPCION P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8	Descripci CRF 7 - N° : Tapa sanitaria 1 Tapa sanitaria 2 (C.V) Estructura Canastilla Tubería de limpia y Valvula de control Valvula flotadora	ion De concreto Metalica Madera De concreto fetalica Madera prebose que con una 2 STAL O EST	no tiene F10. PH X	Bueno Bueno A No tiene X X	ESTADO Si tiene Regular	Malo VULA DE I	Se Si tiene JULIO PASO No tiene X X	Suro No tiene CESARCO INGENIE Reg. CIP	MAREN RO CIVIL Nº 9875 GRIFO Malo X X	IA GU IO 58

Tabla 8 Ficha 08: Evaluación de la estructura de piletas domiciliarias del caserío de Allpamarca.

TITULO: Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de FICHA Nº 08 Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición TESISTA: Bach. José Luis Vega Mamani ASESOR: MS. Gonzalo Leon de los Rios ESTADO DEL SISTEMA DE ABASTECIMIENTO DE AGUA F11. PILETAS DOMICILIARIAS 59. Describir el estado de las piletas domiciliarias. Marque con una X (muestra de 15% del total de viviendas con pileta domiciliaria) PEDESTAL O ESTRUCTURA VÁLVULA DE PASO GRIFO DECRIPCION No tiene Bueno Malo No tiene Bueno Regular Malo No tiene Bueno Malo Vivienda Nº 01 Vivienda Nº 02 Vivienda Nº 03 Vivienda Nº 04 Vivienda Nº 05 Vivienda Nº 06 Vivienda Nº 07 Vivienda Nº 08 Vivienda Nº 09 Vivienda Nº 10 Vivienda Nº 11 Vivienda Nº 12 Vivienda Nº 13 Vivienda Nº 14 Vivienda Nº 15 Vivienda Nº 16 Vivienda Nº 17 Vivienda Nº 18 Vivienda Nº 19 Vivienda Nº 20 Vivienda Nº 21 Vivienda Nº 22 Vivienda Nº 23 Vivienda Nº 24 Vivienda Nº 25 Vivienda Nº 26 Vivienda Nº 27 Vivienda Nº 28 Vivienda Nº 29 Vivienda Nº 30 Vivienda Nº 31 Vivienda Nº 32 Vivienda Nº 33 Vivienda Nº 34 Vivienda Nº 35 Vivienda Nº 36 Vivienda Nº 37 Vivienda Nº 38 Vivienda Nº 39 Vivienda Nº 40 Vivienda Nº 41 Vivienda Nº 42

Fuente: (Ministerio de Vivienda, Construcción y Saneamiento).

Vivienda N° 44 Vivienda N° 45 Vivienda N° 45 Vivienda N° 46 Vivienda N° 47

Vivienda Nº 48 Vivienda Nº 49 Reg. CIP Nº 98758

ANEXO N° 05: SUSTENTO DE CALCULOS HIDRAULICOS

DISEÑO HIDRAÚLICO DE CAPTACIÓN DE DAMACIOPUQUIO

Tesis: Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición Sanitaria de la Población – 2019.

Tesista: Bach. Jose Luis Vega Mamani

Gasto Máximo de la Fuente: Qmax= 1.50 l/s
Gasto Mínimo de la Fuente: Qmin= 1.30 l/s
Gasto Máximo Diario: Qmd asumido= 1.00 l/s
Qmd real= 0.88 l/s

1) Determinación del ancho de la pantalla:

Sabemos que: $Q_{max} = v_2 \times Cd \times A$

Despejando: $A = \frac{Q_{\text{max}}}{v_2 \times Cd}$

Donde: Gasto máximo de la fuente: Qmax= 1.50 l/s

Coeficiente de descarga: Cd= 0.80 (valores entre 0.6 a 0.8)

Aceleración de la gravedad: g= 9.81 m/s2

Carga sobre el centro del orificio: H= 0.40 m (Valor entre 0.40m a 0.50m)

Velocidad de paso teórica: $v_{2t} = Cd \times \sqrt{2gH}$

v2t= 2.24 m/s (en la entrada a la tubería)

Velocidad de paso asumida: v2= 0.60 m/s (el valor máximo es 0.60m/s, en la entrada

a la tubería)

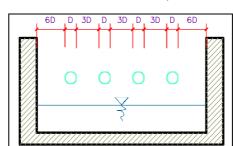
Área requerida para descarga: A= 0.003 m2

Ademas sabemos que: $D = \sqrt{\frac{4A}{A}}$

Diámetro Tub. Ingreso (orificios): Dc= 0.06 m

Dc= 2.48 pulg

Asumimos un Diámetro comercial: Da= 2.00 pulg (se recomiendan diámetros < ó = 2")


0.05 m

Determinamos el número de orificios en la pantalla:

Norif = $\frac{\text{área del diámetro calculado}}{\text{área del diámetro asumido}} + 1$

Norif = $\left(\frac{Dc}{Da}\right)^2 + 1$

Número de orificios: Norif= 3 orificios

Conocido el número de orificios y el diámetro de la tubería de entrada se calcula el ancho de la pantalla (b), mediante la siguiente ecuación:

 $b = 2(6D) + Norif \times D + 3D(Norif -1)$

Ancho de la pantalla: b= 1.10 m (Pero con 1.50 tambien es trabajable)

2) Cálculo de la distancia entre el punto de afloramiento y la cámara húmeda:

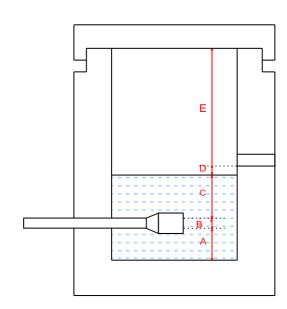
Sabemos que: $Hf = H - h_o$

Donde: Carga sobre el centro del orificio: H= 0.40 m

Además: $h_o = 1.56 \frac{V_2^2}{2g}$

Pérdida de carga en el orificio: ho= 0.03 m

Hallamos: Pérdida de carga afloramiento - captacion: Hf= 0.37 m


Determinamos la distancia entre el afloramiento y la captación:

 $L = \frac{Hf}{0.30}$

Distancia afloramiento - Captacion: L= 1.238 m 1.25 m Se asume

3) Altura de la cámara húmeda:

Determinamos la altura de la camara húmeda mediante la siguiente ecuación:

Donde:

A: Altura mínima para permitir la sedimentación de arenas. Se considera una altura mínima de 10cm

B: Se considera la mitad del diámetro de la canastilla de salida.

D: Desnivel mínimo entre el nivel de ingreso del agua de afloramiento y el nivel de agua de la cámara húmeda (mínima 5cm).

E: Borde Libre (se recomienda minimo 30cm).

C: Altura de agua para que el gasto de salida de la captación pueda fluir por la tubería de conducción se recomienda una altura mínima de 30cm).

$$C = 1.56 \frac{v^2}{2g} = 1.56 \frac{Qmd^2}{2gA^2}$$

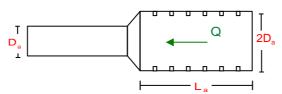
m²

m/s²

Donde: Caudal máximo diario: Qmd= 0.0010 m3/s Área de la Tubería de salida: A= 0.002 m2

C = 0.02 mPor tanto: Altura calculada:

Resumen de Datos:


A= 10.00 cm B= 3.75 cm C = 30.00 cmD = 10.00 cmE= 40.00 cm

Hallamos la altura total: Ht = A + B + H + D + E

Ht = 0.94 m

Altura Asumida: Ht= 1.00 m

4) Dimensionamiento de la Canastilla:

Diámetro de la Canastilla

El diámetro de la canastilla debe ser dos veces el Diámetro de la línea de conducción:

Dcanastilla = 2×Da

Dcanastilla= 3 pulg

Longitud de la Canastilla

Se recomienda que la longitud de la canastilla sea mayor a 3Da y menor que 6Da:

L=
$$3 \times 1.5 = 4.5 \text{ pulg} = 11.43 \text{ cm}$$

L= $6 \times 1.5 = 9 \text{ pulg} = 22.86 \text{ cm}$

Lcanastilla= 20.0 cm ¡OK!

ancho de la ranura= Siendo las medidas de las ranuras: 5 mm (medida recomendada)

largo de la ranura= 7 mm (medida recomendada) Siendo el área de la ranura: Ar=35 mm2 = 0.0000350 m2

Debemos determinar el área total de las ranuras (A_{TOTAL}):

 $A_{\text{TOTAL}} = 2A_{\scriptscriptstyle \bullet}$

Siendo: Área sección Tubería de salida: A_• = 0.0020268 m2

 $A_{TOTAL} = 0.0040537 \text{ m}2$

El valor de Atotal debe ser menor que el 50% del área lateral de la granada (Ag)

 $Ag = 0.5\!\times\!Dg\!\times\!L$

Donde: Diámetro de la granada: Dg= 3 pulg = 7.62 cm

L= 20.0 cm

Ag= 0.0239389 m2

Por consiguiente: $A_{T \text{ OTAL}} < Ag$ **OK!**

Determinar el número de ranuras:

Nºranuras- Area total de ranura
Area de ranura

Número de ranuras : 115 ranuras

5) Cálculo de Rebose y Limpia:

En la tubería de rebose y de limpia se recomienda pendientes de 1 a 1,5%

La tubería de rebose y limpia tienen el mismo diámetro y se calculan mediante la siguiente ecuación:

 $Dr = \frac{0.71 \times Q^{0.38}}{hf^{0.21}}$

Tubería de Rebose

Donde: Gasto máximo de la fuente: Qmax= 1.50 l/s

Perdida de carga unitaria en m/m: hf= 0.015 m/m (valor recomendado)

Diámetro de la tubería de rebose: D_R= 2 pulg

Asumimos un diámetro comercial: D_R= 2 pulg

Tubería de Limpieza

Donde: Gasto máximo de la fuente: Qmax= 1.50 l/s

Perdida de carga unitaria en m/m: hf= 0.015 m/m (valor recomendado)

Diámetro de la tubería de limpia: D_L= 2 pulg

Asumimos un diámetro comercial: D_L= 2 pulg

Resumen de Cálculos de Manantial de Ladera

Gasto Máximo de la Fuente: 1.50 l/s
Gasto Mínimo de la Fuente: 1.30 l/s
Gasto Máximo Diario: 1.00 l/s

1) Determinación del ancho de la pantalla:

Diámetro Tub. Ingreso (orificios):

Número de orificios:

Ancho de la pantalla:

2.0 pulg

3 orificios

1.10 m

2) Cálculo de la distancia entre el punto de afloramiento y la cámara húmeda:

L= 1.25 r

3) Altura de la cámara húmeda:

Ht= 1.00 m

Tuberia de salida= 1.50 plg

4) Dimensionamiento de la Canastilla:

Diámetro de la Canastilla 3 pulg Longitud de la Canastilla 20.0 cm Número de ranuras : 115 ranuras

5) Cálculo de Rebose y Limpia:

Tubería de Rebose2 pulgTubería de Limpieza2 pulg

DISEÑO HIDRAÚLICO DE CAPTACIÓN DE MATACABALLO - AREA Nº 02

Tesis: Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición Sanitaria de la Población – 2019.

Tesista: Bach. Jose Luis Vega Mamani

Gasto Máximo de la Fuente: Qmax= 0.75 l/s
Gasto Mínimo de la Fuente: Qmin= 0.65 l/s
Gasto Máximo Diario: Omd asumido- 0.50 l/s

Gasto Máximo Diario: Qmd asumido= 0.50 l/s Se asumio según el RM 192-2018

Qmd real= 0.42 l/s

1) Determinación del ancho de la pantalla:

Sabemos que: $Q_{max} = v_2 \times Cd \times A$

Despejando: $A = \frac{Q_{max}}{v_2 \times Co}$

Donde: Gasto máximo de la fuente: Qmax= 0.75 l/s

Coeficiente de descarga: Cd= 0.80 (valores entre 0.6 a 0.8)

Aceleración de la gravedad: g= 9.81 m/s2

Carga sobre el centro del orificio: H= 0.40 m (Valor entre 0.40m a 0.50m)

Velocidad de paso teórica: $v_{2t} = Cd \times \sqrt{2gH}$

v2t= 2.24 m/s (en la entrada a la tubería)

Velocidad de paso asumida: v2= 0.60 m/s (el valor máximo es 0.60m/s, en la entrada

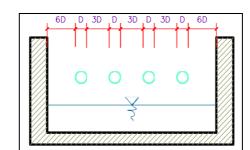
a la tubería)

Área requerida para descarga: A= 0.00 m2

Ademas sabemos que: $D = \sqrt{\frac{4A}{\pi}}$

Diámetro Tub. Ingreso (orificios): Dc= 0.045 m

Dc= 1.756 pulg


Asumimos un Diámetro comercial: Da= 2.00 pulg (se recomiendan diámetros < ó = 2")

0.051 m

Determinamos el número de orificios en la pantalla:

Norif = $\frac{\text{área del diámetro calculado}}{\text{área del diámetro asumido}} + 1$ $\frac{\left(\frac{Dc}{Dc}\right)^2}{\text{Norif -} \left(\frac{1}{Dc}\right)^2}$

Número de orificios: Norif= 2 orificios

Conocido el número de orificios y el diámetro de la tubería de entrada se calcula el ancho de la pantalla (b), mediante la siguiente ecuación:

$$b = 2(6D) + Norif \times D + 3D(Norif -1)$$

Ancho de la pantalla: b= 0.90 m (Pero con 1.50 tambien es trabajable)

2) Cálculo de la distancia entre el punto de afloramiento y la cámara húmeda:

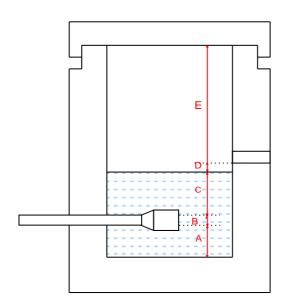
Sabemos que: $Hf = H - h_o$

Donde: Carga sobre el centro del orificio: H= 0.40 m

Además: $h_o = 1.56 \frac{{v_2}^2}{2g}$

Pérdida de carga en el orificio: ho= 0.029 m

Hallamos: Pérdida de carga afloramiento - captacion: Hf= 0.37 m


Determinamos la distancia entre el afloramiento y la captación:

 $L = \frac{Hf}{0.30}$

Distancia afloramiento - Captacion: L= 1.238 m 1.25 m Se asume

3) Altura de la cámara húmeda:

Determinamos la altura de la camara húmeda mediante la siguiente ecuación:

Donde:

A: Altura mínima para permitir la sedimentación de arenas. Se considera una altura mínima de 10cm

B: Se considera la mitad del diámetro de la canastilla de salida.

D: Desnivel mínimo entre el nivel de ingreso del agua de afloramiento y el nivel de agua de la cámara húmeda (mínima 5cm).

E: Borde Libre (se recomienda minimo 30cm).

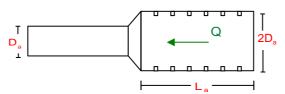
C: Altura de agua para que el gasto de salida de la captación pueda fluir por la tubería de conducción se recomienda una altura mínima de 30cm).

$$C = 1.56 \frac{v^2}{2g} = 1.56 \frac{Qmd^2}{2gA^2} \qquad \qquad \begin{array}{ccc} Q & & m^3/s \\ & A & & m^2 \\ & g & & m/s^2 \end{array}$$

Donde: Caudal máximo diario: Qmd= 0.0005 m3/s Área de la Tubería de salida: A= 0.002 m2

Por tanto: Altura calculada: C= 0.005 m

Resumen de Datos:


A= 10.00 cm B= 2.50 cm C= 30.00 cm D= 10.00 cm E= 40.00 cm

Hallamos la altura total: Ht = A + B + H + D + E

Ht= 0.93 m

Altura Asumida: Ht= 1.00 m

4) Dimensionamiento de la Canastilla:

Diámetro de la Canastilla

El diámetro de la canastilla debe ser dos veces el Diámetro de la línea de conducción:

Dcanastilla = 2×Da

Dcanastilla= 2 pulg

Longitud de la Canastilla

Se recomienda que la longitud de la canastilla sea mayor a 3Da y menor que 6Da:

L= $3 \times 1.0 = 3$ pulg = 7.62 cm L= $6 \times 1.0 = 6$ pulg = 15.24 cm

Lcanastilla= 15.0 cm ¡OK!

Siendo las medidas de las ranuras: ancho de la ranura= 5 mm (medida recomendada)

largo de la ranura= 7 mm (medida recomendada)

Siendo el área de la ranura: Ar=35 mm2 = 0.0000350 m2

Debemos determinar el área total de las ranuras (A_{TOTAL}):

 $A_{TOTAL} = 2A_{\bullet}$

Siendo: Área sección Tubería de salida: A_• = 0.0020268 m2

 $A_{TOTAL} = 0.0040537 \text{ m}2$

El valor de Atotal debe ser menor que el 50% del área lateral de la granada (Ag)

 $Ag = 0.5 \times Dg \times L$

Donde: Diámetro de la granada: Dg= 2 pulg = 5.08 cm

L= 15.0 cm

Ag= 0.0119695 m2

Por consiguiente: $A_{T \text{ OTAL}}$ < Ag **OK!**

Determinar el número de ranuras:

Area total de ranura

Area de ranura

Número de ranuras : 115 ranuras

5) Cálculo de Rebose y Limpia:

En la tubería de rebose y de limpia se recomienda pendientes de 1 a 1,5%

La tubería de rebose y limpia tienen el mismo diámetro y se calculan mediante la siguiente ecuación:

$$Dr = \frac{0.71 \times Q^{0.38}}{hf^{0.21}}$$

Tubería de Rebose

Donde: Gasto máximo de la fuente: Qmax= 0.75 l/s

Perdida de carga unitaria en m/m: hf= 0.015 m/m (valor recomendado)

Diámetro de la tubería de rebose: D_R= 1.537 pulg

Asumimos un diámetro comercial: D_R= 1.5 pulg

Tubería de Limpieza

Donde: Gasto máximo de la fuente: Qmax= 0.75 l/s

Perdida de carga unitaria en m/m: hf= 0.015 m/m (valor recomendado)

Diámetro de la tubería de limpia: D_L= 1.537 pulg

Asumimos un diámetro comercial: D_L= 1.5 pulg

Resumen de Cálculos de Manantial de Ladera

Gasto Máximo de la Fuente: 0.75 l/s
Gasto Mínimo de la Fuente: 0.65 l/s
Gasto Máximo Diario: 0.50 l/s

1) Determinación del ancho de la pantalla:

Diámetro Tub. Ingreso (orificios):

Número de orificios:

Ancho de la pantalla:

2.0 pulg
2 orificios
0.90 m

2) Cálculo de la distancia entre el punto de afloramiento y la cámara húmeda:

L= 1.25 m

3) Altura de la cámara húmeda:

Ht= 1.00 m

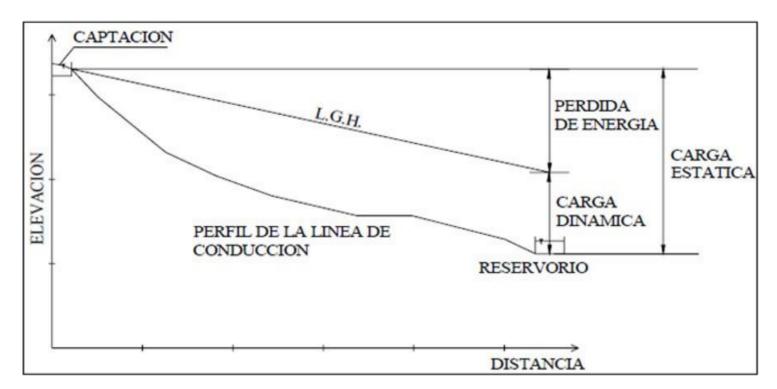
Tuberia de salida= 1.00 plg

4) Dimensionamiento de la Canastilla:

Diámetro de la Canastilla 2 pulg Longitud de la Canastilla 15.0 cm Número de ranuras : 115 ranuras

5) Cálculo de Rebose y Limpia:

Tubería de Rebose 1.5 pulg Tubería de Limpieza 1.5 pulg


DISEÑO HIDRAULICO DE LA LINEA DE CONDUCCIÓN - AREA Nº 01

Proyecto:

Huánuco, para su Incidencia en la Condición Sanitaria de la Población – 2019.

Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región – 2019.

Asesor : Ms. Gonzalo Miguel Léon de los Ríos Tesista: Bach. Jose Luis Vega Mamani

Cota(msnm) L(m) Pto 1 3432.23 L1= 63.46 Pto 2 3418.45

Total = 63.46

A) CONSIDERACIONES DE DISEÑO

La línea de conducción en el presente proyecto es un sistema hidráulico que circula en un conducto cerrado por gravedad. Consideraremos el valor de la presión atmosférica como "0", utilizando el método de Hazen / Williams para el cálculo de las pérdidas de fricción con la finalidad de obtener la presión de llegada deseada, asegurando que la misma no sea negativa en ninguno de sus tramos. Finalmente se tendrá en cuenta que la velocidad no será menor a 0.6 m/seg ni mayor a 3 m/seg.

FÓRMULA GENERAL DE HAZEN WILLIAMS

Coeficiente Hazen&Williams Material de la tubería C. H&W Fierro fundido nuevo 130 Fierro fundido 10 años 110 F°G° 120 Acero **150** HDPE 140 PVC **150** 140 Cemento o Concreto Vidrio 140 **130** Hojalata Duela de madera 120

DIAME	ETROS COME	RCIALES	
EN TUBE	RÍAS PVC NI	TP 1452:2011	
Comercial	Interno	Clase/Tipo	
3/4 ''	1.299 ''	10	
1 "	1.043 ''	10	

B) <u>ELECCIÓN DEL DIÁMETRO MÁXIMO Y MÍNIMO</u>

De la ecuación de Continuidad:

$$D = \sqrt{\frac{4Q}{\pi V}}$$

Donde:

Q: Qmáxd: **0.880 Lt/seg** =0.000880 m³/seg

D) <u>DISTRIBUCIÓN DE CAUDALES POR CAPTACIÓN</u>

a) Tramo captación "Damaciopuquio" hacia RP-01

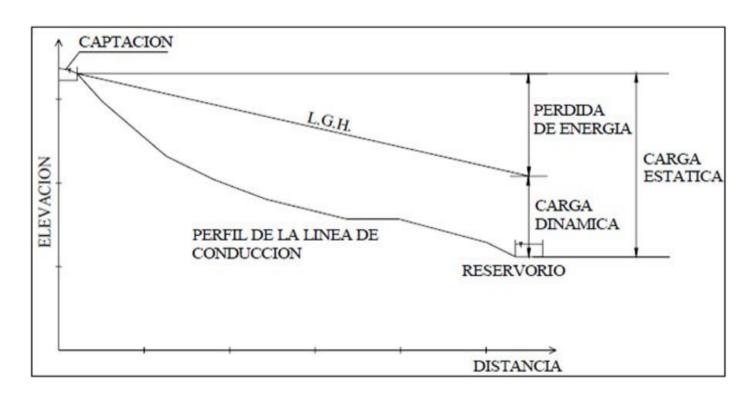
Q: Qmáxd: **0.880 Lt/seg** =0.000880 m³/seg

C) <u>CÁLCULO DE PRESIONES</u>

Para el caso del cálculo de las pérdidas locales, se está considerando una longitud equivalente igual a un 10% de la longitud real, garantizando así un rango de seguridad respectivo.

TRAMO	CAUDAL	COTA INICIAL	COTA FINAL	DIF. COTAS		COEFICIEN TE DE H&W	REAL	Interno (")	Velocidad m/s	Hf (Tramo)	Hf Acumulado m.c.a.	Sf (Tramo)	Presión Inicial m.c.a.	Presión Dinámica m.c.a.	Presión Estática
						a) Tramo ca	ptación ''Dama	ciopuquio'' h	acia RP-01						
Pto 1 -Pto 2	0.88 Lt/seg	3432.230	3418.450	13.780	PVC	150	63.460	1.043 ''	1.60	7.31	7.31	11.51%	0.00	6.47	13.78

ok


Notas:

- Todos los tramos seran de PVC C-10 NTP 1452:2011.
- En los tramos se esta considerando el diametro de 26.5mm y 33mm

Referencias:

- Resolucion Ministerial 192 -2018

DISEÑO HIDRAULICO DE LA LINEA DE CONDUCCIÓN - AREA Nº 02 Proyecto: Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición Sanitaria de la Población - 2019. Asesor: Ms. Gonzalo Miguel Léon de los Ríos Tesista: Bach. Jose Luis Vega Mamani

Cota(msnm) L(m) Pto 1 3262.79 L1= 772 Pto 2 3218.90

Total= **772**

A) CONSIDERACIONES DE DISEÑO

La línea de conducción en el presente proyecto es un sistema hidráulico que circula en un conducto cerrado por gravedad. Consideraremos el valor de la presión atmosférica como "0", utilizando el método de Hazen / Williams para el cálculo de las pérdidas de fricción con la finalidad de obtener la presión de llegada deseada, asegurando que la misma no sea negativa en ninguno de sus tramos. Finalmente se tendrá en cuenta que la velocidad no será menor a 0.6 m/seg ni mayor a 3 m/seg.

FÓRMULA GENERAL DE HAZEN WILLIAMS

Coeficiente Hazen&Willia	ams
Material de la tubería	C. H&W
Fierro fundido nuevo	130
Fierro fundido 10 años	110
F°G°	120
Acero	150
HDPE	140
PVC	150
Cemento o Concreto	140
Vidrio	140
Hojalata	130
Duela de madera	120

DIÁMI	ETROS COME	ERCIALES
EN TUBI	ERÍAS PVC N	ГР 1452:2011
Comercial	Interno	Clase/Tipo
3/4 ''	1.299 ''	10
1 "	1.043 ''	10

B) <u>ELECCIÓN DEL DIÁMETRO MÁXIMO Y MÍNIMO</u>

De la ecuación de Continuidad:

$$D = \sqrt{\frac{4Q}{\pi V}}$$

Donde:

Q: Qmáxd: **0.420 Lt/seg** =0.000420 m³/seg **D) DISTRIBUCIÓN DE CAUDALES POR CAPTACIÓN**

a) Tramo captación "Matacaballo" hacia RP-02

0.420 Lt/seg = $0.000420 \text{ m}^3/\text{seg}$ Q: Qmáxd:

C) <u>CÁLCULO DE PRESIONES</u>

Para el caso del cálculo de las pérdidas locales, se está considerando una longitud equivalente igual a un 10% de la longitud real, garantizando así un rango de seguridad respectivo.

TRAMO	CAUDAL	COTA INICIAL	COTA FINAL	DIF. COTAS	AL	TE DE H&W	REAL	Interno ('')	m/s	Hf (Tramo)	Hf Acumulado m.c.a.	Sf (Tramo)	Presión Inicial m.c.a.	Presión Dinámica m.c.a.	Presión Estática
						a) Tramo cap	tación ''Mataca	aballo'' hacia	RP-02						
Pto 1 -Pto 2	0.42 Lt/seg	3262.790	3218.900	43.890	PVC	150	772.000	1.043 ''	0.76	22.59	22.59	2.93%	0.00	21.30	43.89

ok

Notas:

- Todos los tramos seran de PVC C-10 NTP 1452:2011.
- En los tramos se esta considerando el diametro de 26.5mm y 33mm

Referencias:

- Resolucion Ministerial 192 -2018

Tesis: Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición Sanitaria de la Población – 2019.

ÁMBITO GEOGRÁFICO Tesista: Bach. Jose Luis Vega Mamani

1 Región del Proyecto SIERRA SIERRA

PERIO	DOS DE DISEÑO	Maximos red	comendados		
ld	Componentes	Datos de diseño	Datos de diseño	Unidad	Referencia, criterio o cálculo
2	Fuente de abastecimiento	20	20	años	Referencia 1, Capitulo III item 2 inciso 2.2
3	Obra de captacion	20	20	años	Referencia 1, Capitulo III item 2 inciso 2.2
4	Pozos	20	20	años	Referencia 1, Capitulo III item 2 inciso 2.2
5	Planta de tratamiento de agua para consumo humano	20	20	años	Referencia 1, Capitulo III item 2 inciso 2.2
6	Reservorio	20	20	años	Referencia 1, Capitulo III item 2 inciso 2.2
7	Tuberias de Conduccion, impulsion y distribucion	20	20	años	Referencia 1, Capitulo III item 2 inciso 2.2

POBLACIÓN DE DISEÑO AREA 02 AREA 01 Datos de Datos de Código Parámetros básicos de diseño Unidad Referencia, criterio o cálculo diseño diseño Dato de proyecto, Referencia 1, Capitulo III item 3, tasa de crecimiento t 1.39% 1.39% adimensional Tasa de crecimiento aritmetico aritmetico 13 Poblacion inicial Ро Dato del proyecto de investiacion 206.00 405.00 hab Dato del proyecto de investiacion 14 N° viviendas existentes Nve 37.00 71.00 und 15 Densidad de vivienda D Dato del proyecto de investiacion 5.57 5.70 hab/viv Dato del proyecto de investiacion 16 Cobertura de agua potable proyectada Ср 100% 100% adimensional 17 Numero de estudiantes de Primaria Dato del proyecto de investiacion Еp 0 100 estudiantes 18 Numero de estudiantes de Secundaria y superior Es Dato del proyecto de investiacion 0 50 estudiantes Referencia 1, Capitulo III item 2 inciso 2.2 19 periodo de diseño Estacion de bombeo (Cisterna) pb 20 20 años Referencia 1, Capitulo III item 2 inciso 2.2 20 Periodo de diseño Equipos de Bombeo 10 10 años pe 21 Poblacion año 10 P10 =(13)*(1+(12)*10) 235 461 hab 22 Poblacion año 20 P20 263 518 hab =(13)*(1+(12)*20)

DOTACION DE AGUA SEGÚN OPCIÓN DE SANEAMIENTO

ITEM	DOTACION SEGÚN REGION O INSTITUCIONES	Código	SIN ARRASTRE HIDRAULICO It/hab/dia	CON ARRASTRE HIDRAULICO It/hab/dia	Referencia, criterio o calculo
23	Costa	Reg	60	90	Referencia 1, Capitulo III item 5 i
24	Sierra	Reg	50	80	Referencia 1, Capitulo III item 5 i
25	Selva	Reg	70	100	Referencia 1, Capitulo III item 5 i
26	Educacion primaria	Dep	2	.0	Referencia 1, Capitulo III item 5 i
27	Eduacion secundaria y superior	Des	2	:5	Referencia 1, Capitulo III item 5 i

Tesis: Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición Sanitaria de la Población – 2019.

Tesista: Bach. Jose Luis Vega Mamani

AMBI		

1 Región del Proyecto SIERRA SIERRA

VARIACIONES DE CONSUMO

ld	Parámetros básicos de diseño	Código	Fórmula	Datos de diseño	Datos de diseño	Unidad	Referencia, criterio o cálculo
28	Coef. variacion maximo diario K1	K1	Dato	1.3	1.3	adimensional	Referencia 1, Capitulo III item 7 inciso 7.1
29	Coef variacion maximo horario K2	K2	Dato	2	2	adimensional	Referencia 1, Capitulo III item 7 inciso 7.2
30	Volumen de almacenamiento por regulacion	Vrg	Dato	25%	25%	%	Referencia 1 Capitulo V item 5 inciso 5.4. El 25% del Qp y fuente de agua continuo;
31	Volumen de almacenamiento por reserva	Vrs	Dato	0%	0%	%	Referencia 1, Capitulo V, Item 5.1 y 5.2, en casos de emergencia, suspension temporal de la fuente de abastecimiento y/o paralizacion parcial de la planta tratamiento. Referencia 2, Norma OS.03 item 4.3 De ser el caso, debera justificarse.
32	Perdidas en el sistema	Vrs	Dato	25%	25%	%	

CAUDALES DE DISEÑO Y ALMACENAMIENTO

¿Con arraste hidraulico?

33	Caudal promedio anual Qp (año 20)	Qp	Qp=(P20* Reg + Ep*Dep + Es*Des / 86400) / (1-Vrs)	0.32	0.69	l/s	={{(22)*(23)+(17)*(26)+(18)*(27)}/86400}/(1-(32))
34	Caudal maximo diario anual Qmd (año 20)	Qmd	Qmd = Qp * K1	0.42	0.90	l/s	=(33)*(28)
35	Caudal maximo horario anual (año 20)	Qma	Qma = Qp * K2	0.65	1.38	l/s	=(33)*(29)
36	Volumen de reservorio año 20	Qma	Qma = Qp * 86.4 * Vrg	7.10	14.90	m3	=(33)*86.4*(30)
	Volumen de reservorio año 20	Qma		10.00	15.00	m3	Asumir el volumen de almacenamiento estandarizado por la RM 192-2018
	Caudal promedio anual Qp (año 10)	Qp	Qp=(P10* Reg + Ep*Dep + Es*Des / 86400) / (1-Vrs)	0.29	0.62	l/s	
	Caudal maximo diario anual Qmd (año 10)	Qmd	Qmd = Qp * K1	0.38	0.81	l/s	
	Caudal maximo horario anual (año 10)	Qma	Qma = Qp * K2	0.58	1.24	l/s	

DIMENSIONAMIENTO

37 Ancho interno b Dato 3 3.6 m asumido	

Tesis: Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición Sanitaria de la Población – 2019.

			su incidencia en la Condi			1 – 2019.	
.			T esista: Bach	n. Jose Luis Ve	ega Mamani		
AMBIT	O GEOGRÁFICO					1	
1	Región del Proyecto			SIERRA	SIERRA		
38	Largo interno	1	Dato	3	3.6	m	asumido
39	Altura útil de agua	h		0.79	1.15		
40	Distancia vertical eje salida y fondo reservorio	hi	Dato	0.1	0.1	m	Referencia 1, Capitulo V item 5 inciso 5.4. Para instalacion de canastilla y evitar entrada de sedimentos
41	Altura total de agua			0.89	1.25		
42	Relación del ancho de la base y la altura (b/h)	j	j = b / h	3.38	2.88	adimensional	Referencia 3: (b)/(h) entre 0.5 y 3 OK
43	Distancia vertical techo reservorio y eje tubo de ingreso de agua	k	Dato	0.20	0.20	m	Referencia 1 capitulo II item 1.1, parrafo 4. Referencia 2, Norma IS 010 Item 2.4 Almacenamiento y regulacion Inciso i
44	Distancia vertical entre eje tubo de rebose y eje ingreso de agua	I	Dato	0.15	0.20	m	Referencia 1 capitulo II item 1.1, parrafo 4. Referencia 2, Norma IS 010 Item 2.4 Almacenamiento y regulacion Inciso j
45	Distancia vertical entre eje tubo de rebose y nivel maximo de agua	m	Dato	0.10	0.10	m	Referencia 1 capitulo II item 1.1, parrafo 4. Referencia 2, Norma IS 010 Item 2.4 Almacenamiento y regulacion Inciso k
46	Altura total interna	Н	H = h + (k + l + m)	1.34	1.75	m	
INSTA	LACIONES HIDRAULICAS						
47	Diámetro de ingreso	De	Dato	1 1/2	1 1/2	pulg	Referencia 1: Capitulo Item 2 Inciso 2.3 y 2.4 o diseño de linea de conduccion
48	Diámetro salida	Ds	Dato	1 1/2	2	pulg	Referencia 1: Capitulo Item 2 Inciso 2.3 y 2.4 o diseño de linea de aduccion
49	Diámetro de rebose	Dr	Dato	3	4	pulg	Referencia 1 capitulo II item 1.1, parrafo 4.Referencia 2, Norma IS 010 Item 2.4 inciso m
	Limpia: Tiempo de vaciado asumido (segundos)			1800	1800		
	Limpia: Cálculo de diametro			2.1	2.7		
50	Diámetro de limpia	DI	Dato	2	3	pulg	Referencia 1, Capitulo V item 5 inciso 5.4 "debe permitir el vaciado en máximo en 2 horas"

DIMENSIONAMIENTO DE CANASTILLA

Diámetro de ventilación

Cantidad de ventilación

2

2

2

pulg

unidad

Dato

Dato

Dv

Cv

Tesis: Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición Sanitaria de la Población – 2019.

Tesista: Bach. Jose Luis Vega Mamani

À	MB	OTI	GEO	GRÁ	AFICO	

AIVIDII	U GEUGRAFICU							
1	Región del Proyecto			(SIERRA	SIERRA		
52	Longitud de canastilla sea mayor a 3 veces diámetro salida y menor a 6 Dc	С	Dato		5	5	veces	Se adopta 5 veces
53	Longitud de canastilla	Lc	Lc = Dsc * c		217.00	271.00	mm	
54	Area de Ranuras	Ar	Dato		38.48	38.48	mm2	Radio de 7 mm
55	Diámetro canastilla = 2 veces diámetro de salida	Dc	Dc = 2 * Dsc		86.80	108.40	mm	
56	Longitud de circunferencia canastilla	рс	pc = pi * Dc		272.69	340.55	mm	
57	Número de ranuras en diámetro canastilla espaciados 15 mm	Nr	Nr = pc / 15		18	22	ranuras	
58	Área total de ranuras = dos veces el área de la tubería de salida	At	At = 2 * pi * (Dsc^2)	/ 4	2,959	4,614	mm2	
59	Número total de ranuras	R	R = At / Ar		76.00	119.00	ranuras	
60	Número de filas transversal a canastilla	F	F = R / Nr		4.00	5.00	filas	
61	Espacios libres en los extremos	0	Dato		20	20	mm	
62	Espaciamiento de perforaciones longitudinal al tubo	S	s = (Lc - o) / F		49.00	50.00	mm	

CLORACION

32	Volumen de solución	Vs	cálculos en otra hoja	10.39	22.07	I

Nota:

Referencia 1: "Guia de diseño para sistemas de abastecimiento de agua para consumo humano y saneamiento en el ambito rural"

Referencia 2:"Reglamento Nacional de Edificaciones"

Referencia 3: "Guia para el diseño y construccion de reservorios apoyados" OPS 2004

ESTRUCTURAS

27	Perímetro de planta (interior)	р	p = 2 * (b + l)	12	14.4	m	
29	Espesor de muro	em	Dato	20	20	cm	ACI Alturas mayores a 3.00m mínimo 30cm
30	Espesor de losa de fondo	ef	Dato	20	20	cm	
31	Altura de zapato	Z	Dato	25	25	cm	La altura de zapato más la losa de cimentación no debe ser menor de 30cm

Tesis: Evaluación y mejoramiento del sistema de abastecimiento de agua potable en el Caserío de Allpamarca del Centro Poblado de Tayagasha, Distrito de Panao, Provincia de Pachitea, Región Huánuco, para su Incidencia en la Condición Sanitaria de la Población – 2019.

Tesista: Bach. Jose Luis Vega Mamani

ÁMBITO GEOGRÁFICO

1	Región del Proyecto			SIERRA	SIERRA		
32	Altura total de cimentación	hc	hc = ef + z	45	45	cm	
33	Espesor de losa de techo	et	Dato	15	15	cm	
33	Alero de cimentacion	vf	Dato	15	15	cm	

Población futura 518 habitantes Qm 0.88 lt/seg (Ver proyección de demanda) Longitud Total= 7153.28 m.

Dotación 80 lt/hab/día Qmh 1.3600 lt/seg (Ver proyección de demanda) Qu= 0.000190 lt/seg/m

TRAMO	Nudo de	Nudo de	L (m)	GAST	O (l/s)	DIÁM	ETRO	V (m/s)	PÉRDID CAR		COTA PIEZO	OMETRICA	COTA TE	ERRENO	PRESIÓN	(mca)
(m)	Salida	Llegada		TRAMO	DISEÑO	mm	pulg		hf (%)	Hf (m)	INICIAL (i)	FINAL (f)	INICIAL (i)	FINAL (f)	INICIAL	FINAL
P-1	J-5	J-6	59.87	0.0114	1.3324	54.2	2	0.577	0.0079	0.0005	3415.998	3415.998	3394.800	3385.560	21.198	30.438
P-2	J-9	J-10	32.64	0.0062	0.0062	22.9	3/4	0.015	0.0000	0.0000	3355.878	3355.878	3328.980	3327.450	26.898	28.428
P-3	J-12	J-11	34.41	0.0065	0.0065	22.9	3/4	0.016	0.0000	0.0000	3355.878	3355.878	3319.000	3314.910	36.878	40.968
P-4	J-6	J-14	120.60	0.0229	0.0839	22.9	3/4	0.204	0.0031	0.0004	3415.998	3415.997	3385.560	3382.570	30.438	33.427
P-5	J-2	J-15	11.66	0.0022	0.3727	54.2	2	0.162	0.0007	0.0000	3355.878	3355.878	3330.490	3329.020	25.388	26.858
P-6	J-21	J-22	121.27	0.0231	0.0347	22.9	3/4	0.084	0.0006	0.0001	3198.659	3198.659	3167.000	3162.340	31.659	36.319
P-7	J-9	J-25	42.91	0.0082	0.4737	43.4	1 1/2	0.320	0.0034	0.0001	3355.878	3355.878	3328.980	3325.010	26.898	30.868
P-8	J-4	CRP N° 09	181.80	0.0346	0.1411	43.4	1 1/2	0.095	0.0004	0.0001	3241.250	3241.250	3205.280	3198.660	35.970	42.590
P-9	J-24	J-27	26.13	0.0050	0.0050	22.9	3/4	0.012	0.0000	0.0000	3355.879	3355.879	3305.620	3306.700	50.259	49.179
P-10	J-29	J-30	58.82	0.0112	0.0112	22.9	3/4	0.027	0.0001	0.0000	3241.250	3241.250	3222.500	3224.000	18.750	17.250
P-11	J-7	J-31	35.00	0.0067	0.0853	43.4	1 1/2	0.058	0.0001	0.0000	3415.997	3415.997	3395.810	3394.020	20.187	21.977
P-12	J-20	J-29	30.16	0.0057	0.2793	43.4	1 1/2	0.189	0.0013	0.0000	3241.250	3241.250	3226.740	3222.500	14.510	18.750
P-13	J-33	J-23	34.95	0.0066	0.0195	22.9	3/4	0.047	0.0002	0.0000	3355.878	3355.878	3321.390	3324.290	34.488	31.588
P-14	J-33	J-26	34.77	0.0066	0.0161	22.9	3/4	0.039	0.0001	0.0000	3355.878	3355.878	3321.390	3318.530	34.488	37.348
P-15	J-8	J-36	90.21	0.0172	0.8840	54.2	2	0.383	0.0037	0.0003	3355.879	3355.878	3334.810	3330.870	21.069	25.008
P-16	J-36	J-2	49.94	0.0095	0.8668	54.2	2	0.376	0.0035	0.0002	3355.878	3355.878	3330.870	3330.490	25.008	25.388
P-17	J-16	J-38	165.56	0.0315	0.1828	22.9	3/4	0.444	0.0132	0.0022	3327.612	3327.610	3298.900	3288.030	28.712	39.580
P-18	J-39	J-40	33.70	0.0064	0.0898	29.4	1	0.132	0.0010	0.0000	3241.249	3241.249	3207.160	3208.000	34.089	33.249
P-19	J-41	J-42	66.66	0.0127	0.0127	22.9	3/4	0.031	0.0001	0.0000	3241.249	3241.249	3221.450	3223.710	19.799	17.539
P-20	J-2	J-9	25.10	0.0048	0.4846	43.4	1 1/2	0.328	0.0036	0.0001	3355.878	3355.878	3330.490	3328.980	25.388	26.898
P-21	J-43	J-44	25.01	0.0048	0.0048	22.9	3/4	0.012	0.0000	0.0000	3327.613	3327.613	3294.880	3299.070	32.733	28.543
P-22	J-45	J-46	20.72	0.0039	0.0123	22.9	3/4	0.030	0.0001	0.0000	3327.614	3327.614	3298.160	3292.810	29.454	34.804
P-23	J-46	J-47	44.17	0.0084	0.0084	22.9	3/4	0.020	0.0000	0.0000	3327.614	3327.614	3292.810	3289.380	34.804	38.234
P-24	CRP N° 09	J-48	59.70	0.0114	0.1065	22.9	3/4	0.259	0.0049	0.0003	3198.660	3198.660	3198.660	3177.740	0.000	20.920
P-25	J-45	J-51	27.14	0.0052	0.2211	22.9	3/4	0.537	0.0187	0.0005	3327.614	3327.614	3298.160	3296.440	29.454	31.174
P-26	J-51	J-43	38.00	0.0072	0.2188	22.9	3/4	0.531	0.0184	0.0007	3327.614	3327.613	3296.440	3294.880	31.174	32.733
P-27	J-51	J-52	10.16	0.0019	0.0019	22.9	3/4	0.005	0.0000	0.0000	3327.614	3327.614	3296.440	3294.100	31.174	33.514
P-28	J-40	J-54	154.49	0.0294	0.0834	22.9	3/4	0.202	0.0031	0.0005	3241.249	3241.249	3208.000	3213.600	33.249	27.649
P-29	J-54	J-41	137.95	0.0262	0.0389	22.9	3/4	0.094	0.0008	0.0001	3241.249	3241.249	3213.600	3221.450	27.649	19.799
P-30	J-54	J-55	79.34	0.0151	0.0151	22.9	3/4	0.037	0.0001	0.0000	3241.249	3241.249	3213.600	3226.050	27.649	15.199
P-31	J-21	J-56	9.61	0.0018	0.0018	22.9	3/4	0.004	0.0000	0.0000	3198.659	3198.659	3167.000	3165.790	31.659	32.869
P-32	J-22	J-57	15.37	0.0029	0.0029	22.9	3/4	0.007	0.0000	0.0000	3198.659	3198.659	3162.340	3158.910	36.319	39.749
P-33	J-37	J-59	74.41	0.0141	0.0393	22.9	3/4	0.095	0.0008	0.0001	3327.610	3327.610	3299.120	3313.080	28.490	14.530
P-34	J-16	J-60	69.52	0.0132	0.0132	22.9	3/4	0.032	0.0001	0.0000	3327.612	3327.612	3298.900	3315.550	28.712	12.062
P-35	J-25	J-33	25.99	0.0049	0.0406	22.9	3/4	0.099	0.0008	0.0000	3355.878	3355.878	3325.010	3321.390	30.868	34.488
P-36	J-38	J-61	80.17	0.0152	0.0663	22.9	3/4	0.161	0.0020	0.0002	3327.610	3327.610	3288.030	3300.610	39.580	27.000
P-37	J-61	J-62	211.10	0.0401	0.0401	22.9	3/4	0.097	0.0008	0.0002	3327.610	3327.610	3300.610	3322.100	27.000	5.510
P-38	J-61	J-63	57.27	0.0109	0.0109	22.9	3/4	0.026	0.0001	0.0000		3327.610	3300.610	3308.400	27.000	19.210
P-39	J-59	J-67	75.27	0.0143	0.0252	22.9	3/4	0.061	0.0003	0.0000		3327.610	3313.080	3316.970	14.530	10.640
P-40	J-67	J-68	57.18	0.0109	0.0109	22.9	3/4	0.026	0.0001	0.0000	3327.610	3327.610		3322.110	10.640	5.500

Población futura518
Botaciónhabitantes
It/hab/díaQm0.88
Useglt/seg
(Ver proyección de demanda)Longitud Total=7153.28
Qu=m.Dotación80lt/hab/díaQmh1.3600lt/seg(Ver proyección de demanda)Qu=0.000190lt/seg/m

TRAMO	Nudo de	Nudo de	L (m)	GAST	CO (l/s)	DIÁM	ETRO	V (m/s)	PÉRDID CAR		COTA PIEZO	OMETRICA	COTA TI	ERRENO	PRESIÓN	N (mca)
(m)	Salida	Llegada		TRAMO	DISEÑO	mm	pulg		hf (%)	Hf (m)	INICIAL (i)	FINAL (f)	INICIAL (i)	FINAL (f)	INICIAL	FINAL
P-41	J-15	J-70	6.39	0.0012	0.0012	22.9	3/4	0.003	0.0000	0.0000	3355.878	3355.878	3329.020	3330.950	26.858	24.928
P-42	RESERVORIC	J-71	47.83	0.0091	1.3691	43.4	1 1/2	0.925	0.0244	0.0012	3416.000	3415.999	3416.000	3408.670	0.000	7.329
P-43	J-71	J-72	14.33	0.0027	0.0027	22.9	3/4	0.007	0.0000	0.0000	3415.999	3415.999	3408.670	3411.910	7.329	4.089
P-44	CRP N° 03	J-28	72.02	0.0137	0.0381	22.9	3/4	0.093	0.0007	0.0001	3374.950	3374.950	3374.950	3358.620	0.000	16.330
P-45	J-26	J-13	49.95	0.0095	0.0095	22.9	3/4	0.023	0.0001	0.0000	3355.878	3355.878	3318.530	3320.480	37.348	35.398
P-46	J-34	J-35	9.33	0.0018	0.0018	22.9	3/4	0.004	0.0000	0.0000	3327.615	3327.615	3314.760	3314.080	12.855	13.535
P-47	J-18	J-19	147.58	0.0281	0.3363	43.4	1 1/2	0.227	0.0018	0.0003	3284.020	3284.019	3266.410	3249.910	17.610	34.109
P-48	CRP N° 08	J-20	123.37	0.0235	0.3028	43.4	1 1/2	0.205	0.0015	0.0002	3241.250	3241.250	3241.250	3226.740	0.000	14.510
P-49	J-4	J-39	84.63	0.0161	0.1059	22.9	3/4	0.257	0.0048	0.0004	3241.250	3241.249	3205.280	3207.160	35.970	34.089
P-50	J-22	J-3	45.79	0.0087	0.0087	22.9	3/4	0.021	0.0000	0.0000	3198.659	3198.659	3162.340	3174.430	36.319	24.229
P-51	J-43	J-16	56.64	0.0108	0.2068	22.9	3/4	0.502	0.0166	0.0009	3327.613	3327.612	3294.880	3298.900	32.733	28.712
P-52	J-28	J-65	128.49	0.0244	0.0244	22.9	3/4	0.059	0.0003	0.0000	3374.950	3374.950	3358.620	3340.010	16.330	34.940
P-53	J-25	J-77	11.82	0.0022	0.4249	43.4	1 1/2	0.287	0.0028	0.0000	3355.878	3355.878	3325.010	3322.420	30.868	33.458
P-54	J-18	J-32	96.83	0.0184	0.0184	22.9	3/4	0.045	0.0002	0.0000	3284.020	3284.020	3266.410	3272.470	17.610	11.550
P-55	J-19	CRP N° 08	28.77	0.0055	0.3083	43.4	1 1/2	0.208	0.0015	0.0000	3284.019	3284.019	3249.910	3241.250	34.109	42.769
P-56	J-71	J-5	70.89	0.0135	1.3573	54.2	2	0.588	0.0081	0.0006	3415.999	3415.998	3408.670	3394.800	7.329	21.198
P-57	J-50	J-21	52.32	0.0099	0.0465	22.9	3/4	0.113	0.0010	0.0001	3198.659	3198.659	3167.700	3167.000	30.959	31.659
P-58	J-17	CRP N° 07	33.99	0.0065	0.3890	43.4	1 1/2	0.263	0.0024	0.0001	3315.110	3315.110	3290.310	3284.020	24.800	31.090
P-59	CRP N° 07	J-18	146.43	0.0278	0.3826	43.4	1 1/2	0.259	0.0023	0.0003	3284.020	3284.020	3284.020	3266.410	0.000	17.610
P-60	J-29	J-4	81.52	0.0155	0.2624	43.4	1 1/2	0.177	0.0011	0.0001	3241.250	3241.250	3222.500	3205.280	18.750	35.970
P-61	J-48	J-49	30.98	0.0059	0.0059	22.9	3/4	0.014	0.0000	0.0000	3198.660	3198.660	3177.740	3171.670	20.920	26.990
P-62	J-48	J-50	225.14	0.0428	0.0893	22.9	3/4	0.217	0.0035	0.0008	3198.660	3198.659	3177.740	3167.700	20.920	30.959
P-63	J-5	J-64	60.11	0.0114	0.0114	22.9	3/4	0.028	0.0001	0.0000	3415.998	3415.998	3394.800	3411.630	21.198	4.368
P-64	J-31	J-80	161.70	0.0307	0.0787	22.9	3/4	0.191	0.0028	0.0004	3415.997	3415.997	3394.020	3375.920	21.977	40.077
P-65	J-80	CRP N° 03	51.61	0.0098	0.0479	22.9	3/4	0.116	0.0011	0.0001	3415.997	3415.997	3375.920	3374.950	40.077	41.047
P-66	J-17	J-66	11.52	0.0022	0.0022	22.9	3/4	0.005	0.0000	0.0000	3315.110		3290.310	3288.630	24.800	26.480
P-67	J-77	CRP N° 06	38.08	0.0072	0.4227	43.4	1 1/2	0.286	0.0028	0.0001	3355.878	3355.878	3322.420	3315.110	33.458	40.768
P-68	CRP N° 06	J-17	127.25	0.0242	0.4154	43.4	1 1/2	0.281	0.0027	0.0003	3315.110	3315.110	3315.110	3290.310	0.000	24.800
P-69	J-14	J-81	10.11	0.0019	0.0019	22.9	3/4	0.005	0.0000	0.0000	3415.997	3415.997	3382.570	3384.980	33.427	31.017
P-70	J-7	J-53	204.19	0.0388	0.0388	22.9	3/4	0.094	0.0008	0.0002	3415.997	3415.997	3395.810	3403.180	20.187	12.817
P-71	J-23	J-12	33.42	0.0064	0.0129	22.9	3/4	0.031	0.0001	0.0000		3355.878	3324.290	3319.000	31.588	36.878
P-72	J-83	J-75	79.76	0.0152	0.0152	22.9	3/4	0.037	0.0001	0.0000			3349.520	3351.190	20.790	19.120
P-73	J-83	J-58	39.17	0.0074	0.0074	22.9	3/4	0.018	0.0000	0.0000	3370.310		3349.520	3341.600	20.790	28.710
P-74	J-78	J-34	133.42	0.0254	0.3349	22.9	3/4	0.813	0.0404	0.0054			3321.950	3314.760	5.670	12.855
P-75	J-82	J-69	85.06	0.0162	1.0311	54.2	2	0.447	0.0049	0.0004			3374.390	3366.710	9.730	17.409
P-76	CRP N° 02	J-82	36.01	0.0068	1.0379	54.2	2	0.450	0.0050	0.0002	3384.120			3374.390	0.000	9.730
P-77	J-76	CRP N° 05	5.46	0.0010	0.3521	54.2	2	0.153	0.0007	0.0000	3355.878	3355.878	3329.490	3327.620	26.388	28.258
P-78	CRP N° 05	J-78	85.06	0.0162	0.3511	54.2	2	0.152	0.0007	0.0001	3327.620			3321.950	0.000	5.670
P-79	J-76	J-79	78.21	0.0149	0.0149	22.9	3/4	0.036	0.0001	0.0000		3355.878	3329.490	3323.870	26.388	32.008
P-80	J-6	J-84	43.16	0.0082	1.2371	54.2	2	0.536	0.0069	0.0003	3415.998	3415.997	3385.560	3384.920	30.438	31.077

Población futura

Dotación

(m) Salida Llegada TRAMO DISEÑO mm pulg hf (%) Hf (m) INICIAL (i) FINAL (f) INICIAL (i) FINAL (f) P-81 J-84 CRP N° 02 6.65 0.0013 1.0392 54.2 2 0.450 0.0050 0.0000 3415.997 3415.997 3384.920 3384.120 P-82 J-84 J-85 51.66 0.0098 0.1897 43.4 1 1/2 0.128 0.0006 0.0000 3415.997 3415.997 3384.920 3374.620 P-83 J-85 J-7 293.08 0.0557 0.1799 43.4 1 1/2 0.122 0.0006 0.0002 3415.997 3415.997 3374.620 3395.810 P-84 J-38 J-86 49.60 0.0094 0.0851 22.9 3/4 0.207 0.0032 0.0002 3327.610 3327.610 3287.480 P-85 J-86 J-86 J-74 9.35 0.0018 22.9 3/4 0.019 0.0025 <th colspan="2">PRESIÓN (mca)</th>	PRESIÓN (mca)	
P-82 J-84 J-85 51.66 0.0098 0.1897 43.4 1 1/2 0.128 0.0006 0.0000 3415.997 3415.997 3384.920 3374.620 P-83 J-85 J-7 293.08 0.0557 0.1799 43.4 1 1/2 0.122 0.0006 0.0002 3415.997 3374.620 3395.810 P-84 J-38 J-86 49.60 0.0094 0.0851 22.9 3/4 0.207 0.0032 0.0002 3327.610 3327.610 3288.030 3287.480 P-85 J-86 J-37 98.54 0.0187 0.0738 22.9 3/4 0.179 0.0025 0.0002 3327.610 3327.610 3287.480 3299.120 P-86 J-86 J-74 9.35 0.0018 0.0018 22.9 3/4 0.004 0.0000 0.0000 3327.610 3327.610 3287.480 3286.240 P-87 J-69 J-87 121.31 0.0231 1.0149 54.2 2 <	INICIAL FINAL	
P-83 J-85 J-7 293.08 0.0557 0.1799 43.4 1 1/2 0.122 0.0006 0.0002 3415.997 3374.620 3395.810 P-84 J-38 J-86 49.60 0.0094 0.0851 22.9 3/4 0.207 0.0032 0.0002 3327.610 3327.610 3288.030 3287.480 P-85 J-86 J-37 98.54 0.0187 0.0738 22.9 3/4 0.179 0.0025 0.0002 3327.610 3327.610 3287.480 3299.120 P-86 J-86 J-74 9.35 0.0018 0.0018 22.9 3/4 0.004 0.0000 0.0000 3327.610 3327.610 3287.480 3286.240 P-87 J-69 J-87 121.31 0.0231 1.0149 54.2 2 0.440 0.0048 0.0006 3384.119 3384.119 3366.710 3357.210	31.077 31.877	
P-84 J-38 J-86 49.60 0.0094 0.0851 22.9 3/4 0.207 0.0032 0.0002 3327.610 3327.610 3288.030 3287.480 P-85 J-86 J-37 98.54 0.0187 0.0738 22.9 3/4 0.179 0.0025 0.0002 3327.610 3327.610 3287.480 3299.120 P-86 J-86 J-74 9.35 0.0018 0.0018 22.9 3/4 0.004 0.0000 0.0000 3327.610 3287.480 3286.240 P-87 J-69 J-87 121.31 0.0231 1.0149 54.2 2 0.440 0.0048 0.0006 3384.119 3384.119 3366.710 3357.210	31.077 41.377	
P-85 J-86 J-37 98.54 0.0187 0.0738 22.9 3/4 0.179 0.0025 0.0002 3327.610 3327.610 3287.480 3299.120 P-86 J-86 J-74 9.35 0.0018 0.0018 22.9 3/4 0.004 0.0000 0.0000 3327.610 3327.610 3287.480 3286.240 P-87 J-69 J-87 121.31 0.0231 1.0149 54.2 2 0.440 0.0048 0.0006 3384.119 3384.119 3366.710 3357.210	41.377 20.187	
P-86 J-86 J-74 9.35 0.0018 0.0018 22.9 3/4 0.004 0.0000 0.0000 3327.610 3327.610 3287.480 3286.240 P-87 J-69 J-87 121.31 0.0231 1.0149 54.2 2 0.440 0.0048 0.0006 3384.119 3384.119 3366.710 3357.210	39.580 40.130	
P-87 J-69 J-87 121.31 0.0231 1.0149 54.2 2 0.440 0.0048 0.0006 3384.119 3384.119 3366.710 3357.210	40.130 28.490	
	40.130 41.370	
P-88 J-8 J-24 171.65 0.0326 0.0376 22.9 3/4 0.091 0.0007 0.0001 3355.879 3355.879 3334.810 3305.620	17.409 26.909	
	21.069 50.259	
P-89 J-15 J-76 11.87 0.0023 0.3693 54.2 2 0.160 0.0007 0.0000 3355.878 3355.878 3329.020 3329.490	26.858 26.388	
P-90 J-37 J-1 83.01 0.0158 0.0158 22.9 3/4 0.038 0.0001 0.0000 3327.610 3327.610 3299.120 3279.380	28.490 48.230	
P-91 J-87 CRP N° 04 15.31 0.0029 0.9918 54.2 2 0.430 0.0046 0.0001 3384.119 3384.119 3357.210 3355.880	26.909 28.239	
P-92 J-14 CRP N° 01 44.63 0.0085 0.0590 22.9 3/4 0.143 0.0016 0.0001 3415.997 3415.997 3382.570 3370.310	33.427 45.687	
P-93 CRP N° 01 J-83 146.98 0.0279 0.0506 29.4 1 0.074 0.0004 0.0001 3370.310 3370.310 3370.310 3370.310 3349.520	0.000 20.790	
P-94 J-34 J-45 366.04 0.0696 0.3078 54.2 2 0.133 0.0005 0.0002 3327.615 3327.614 3314.760 3298.160	12.855 29.454	
P-95 CRP N° 04 J-88 169.61 0.0322 0.9889 54.2 2 0.429 0.0045 0.0008 3355.880 3355.879 3355.880 3346.190	0.000 9.689	
P-96 J-89 J-8 96.62 0.0184 0.9399 54.2 2 0.407 0.0041 0.0004 3355.879 3355.879 3342.170 3334.810	13.709 21.069	
P-97 J-88 J-89 6.81 0.0013 0.9412 54.2 2 0.408 0.0041 0.0000 3355.879 3355.879 3346.190 3342.170	9.689 13.709	
P-98 J-88 J-73 81.32 0.0155 0.0155 22.9 3/4 0.038 0.0001 0.0000 3355.8792 3355.8792 3346.190 3344.240	9.689 11.639	

7153.28 1.36

Población futura

Dotacion

TRAMO	Nudo de	Nudo de		GAST	CO (l/s)	DIÁM	ETRO		PÉRDIDA D	DE CARGA	COTA PIEZ	OMETRICA	COTA T	ERRENO	PRES	SIÓN
(m)	Salida	Llegada	L (m)	TRAMO	DISEÑO	mm	pulg	V (m/s)	hf (%)	Hf (m)	INICIAL (i)	FINAL (f)	INICIAL (i)	FINAL (f)	INICIAL	FINAL
P-1	RESERVORIO	J-34	75.13	0.0133	0.6633	29.40	1	0.977	0.0424	0.0032	3217.180	3217.177	3217.180	3191.840	0.000	25.337
P-2	J-34	J-38	48.36	0.0085	0.0085	22.90	3/4	0.021	0.0000	0.0000	3217.177	3217.177	3191.840	3211.900	25.337	5.277
P-3	J-34	J-35	78.77	0.0139	0.6415	22.90	3/4	1.557	0.1345	0.0106	3217.177	3217.166	3191.840	3187.220	25.337	29.946
P-4	J-35	CRP-01	11.15	0.0020	0.0182	22.90	3/4	0.044	0.0002	0.0000	3217.166	3217.166	3187.220	3183.940	29.946	33.226
P-5	CRP-01	J-39	45.09	0.0080	0.0163	22.90	3/4	0.040	0.0002	0.0000	3183.940	3183.940	3183.940	3171.610	0.000	12.330
P-6	J-39	J-40	47.03	0.0083	0.0083	22.90	3/4	0.020	0.0000	0.0000	3183.940	3183.940	3171.610	3161.000	12.330	22.940
P-7	J-35	J-3	30.03	0.0053	0.6093	22.90	3/4	1.479	0.1222	0.0037	3217.166	3217.163	3187.220	3187.410	29.946	29.753
P-8	J-3	J-41	20.86	0.0037	0.0037	22.90	3/4	0.009	0.0000	0.0000	3217.163	3217.163	3187.410	3191.000	29.753	26.163
P-9	J-3	J-8	93.95	0.0166	0.6003	22.90	3/4	1.457	0.1189	0.0112	3217.163	3217.151	3187.410	3170.800	29.753	46.351
P-10	J-8	J-11	81.14	0.0143	0.1837	22.90	3/4	0.446	0.0133	0.0011	3217.151	3217.150	3170.800	3177.630	46.351	39.520
P-11	J-11	J-36	22.37	0.0040	0.1253	22.90	3/4	0.304	0.0066	0.0001	3217.150	3217.150	3177.630	3173.410	39.520	43.740
P-12	J-36	J-4	25.59	0.0045	0.0045	22.90	3/4	0.011	0.0000	0.0000	3217.150	3217.150	3173.410	3168.100	43.740	49.050
P-13	J-36	CRP-02	8.24	0.0015	0.1168	22.90	3/4	0.284	0.0058	0.0000	3217.150	3217.150	3173.410	3173.710	43.740	43.440
P-14	CRP-02	J-25	48.13	0.0085	0.1154	22.90	3/4	0.280	0.0056	0.0003	3173.710	3173.710	3173.710	3158.520	0.000	15.190
P-15	J-25	J-42	11.34	0.0020	0.0020	22.90	3/4	0.005	0.0000	0.0000	3173.710	3173.710	3158.520	3158.620	15.190	15.090
P-16	J-25	J-21	33.1	0.0058	0.1048	22.90	3/4	0.255	0.0047	0.0002	3173.710	3173.710	3158.520	3154.320	15.190	19.390
P-17	J-21	J-22	59.97	0.0106	0.0990	22.90	3/4	0.240	0.0042	0.0003	3173.710	3173.709	3154.320	3141.900	19.390	31.809
P-18	J-22	CRP-03	48.63	0.0086	0.0884	22.90	3/4	0.215	0.0034	0.0002	3173.709	3173.709	3141.900	3125.000	31.809	48.709
P-19	CRP-03	J-5	50.18	0.0089	0.0798	22.90	3/4	0.194	0.0028	0.0001	3125.000	3125.000	3125.000	3098.520	0.000	26.480
P-20	J-5	J-24	112.19	0.0198	0.0198	22.90	3/4	0.048	0.0002	0.0000	3125.000	3125.000	3098.520	3082.180	26.480	42.820
P-21	J-5	CRP-04	13.3	0.0024	0.0511	22.90	3/4	0.124	0.0012	0.0000	3125.000	3125.000	3098.520	3088.450	26.480	36.550
P-22	CRP-04	J-6	75.36	0.0133	0.0488	22.90	3/4	0.118	0.0011	0.0001	3088.450	3088.450	3088.450	3060.920	0.000	27.530
P-23	J-6	J-44	35.05	0.0062	0.0062	22.90	3/4	0.015	0.0000	0.0000	3088.450	3088.450	3060.920	3067.670	27.530	20.780
P-24	J-6	J-7	69.73	0.0123	0.0293	22.90	3/4	0.071	0.0004	0.0000	3088.450	3088.450	3060.920	3055.950	27.530	32.500
P-25	J-7	J-23	66.85	0.0118	0.0169	22.90	3/4	0.041	0.0002	0.0000	3088.450	3088.450	3055.950	3069.530	32.500	18.920
P-26	J-23	J-43	28.95	0.0051	0.0051	22.90	3/4	0.012	0.0000	0.0000	3088.450	3088.450	3069.530	3075.490	18.920	12.960
P-27	J-11	J-30	125.9	0.0222	0.0441	22.90	3/4	0.107	0.0009	0.0001	3217.150	3217.150	3177.630	3176.230	39.520	40.920
P-28	J-30	CRP-05	64.44	0.0114	0.0218	22.90	3/4	0.053	0.0003	0.0000	3217.150	3217.150	3176.230	3170.400	40.920	46.750
P-29	CRP-05	J-37	59.11	0.0104	0.0104	22.90	3/4	0.025	0.0001	0.0000	3170.400	3170.400	3170.400	3142.610	0.000	27.790
P-30	J-8	CRP-06	9.28	0.0016	0.4000	22.90	3/4	0.971	0.0561	0.0005	3217.151	3217.151	3170.800	3169.290	46.351	47.861
P-31	CRP-06	J-14	202.14	0.0357	0.3984	22.90	3/4	0.967	0.0557	0.0113	3169.290	3169.279	3169.290	3136.900	0.000	32.379
P-32	J-14	J-15	27.49	0.0049	0.0426	22.90	3/4	0.104	0.0009	0.0000	3169.279	3169.279	3136.900	3138.000	32.379	31.279
P-33	J-15	J-16	33.03	0.0058	0.0378	22.90	3/4	0.092	0.0007	0.0000	3169.279	3169.279	3138.000	3138.770	31.279	30.509
P-34	J-16	J-26	84.05	0.0149	0.0319	22.90	3/4	0.078	0.0005	0.0000	3169.279	3169.279	3138.770	3142.810	30.509	26.469
P-35	J-26	J-20	96.68	0.0171	0.0171	22.90	3/4	0.041	0.0002	0.0000	3169.279	3169.279	3142.810	3143.920	26.469	25.359
P-36	J-14	CRP-07	42.04	0.0074	0.3200	22.90	3/4	0.777	0.0371	0.0016	3169.279	3169.277	3136.900	3132.850	32.379	36.427
P-37	CRP-07	J-31	121	0.0214	0.3126	22.90	3/4	0.759	0.0356	0.0043	3132.850	3132.846	3132.850	3113.750	0.000	19.096
P-38	J-31	J-32	366.5	0.0648	0.0648	22.90	3/4	0.157	0.0019	0.0007	3132.846	3132.845	3113.750	3116.030	19.096	16.815
P-39	J-31	J-9	97.83	0.0173	0.2264	22.90	3/4	0.550	0.0196	0.0019	3132.846	3132.844	3113.750	3116.000	19.096	16.844

Población futura Dotacion		263 80			-	0.420 lt/seg 0.650 lt/seg			ión de demanda ión de demanda		Lon	gitud Total= Qu=	3678.43 0.000177	l		
P-40	J-9	J-28	17.43	0.0031	0.0031	22.90	3/4	0.007	0.0000	0.0000	3132.844	3132.844	3116.000	3117.370	16.844	15.474
P-41	J-9	J-2	53.79	0.0095	0.2061	22.90	3/4	0.500	0.0165	0.0009	3132.844	3132.843	3116.000	3108.400	16.844	24.443
P-42	J-2	J-27	75.42	0.0133	0.0133	22.90	3/4	0.032	0.0001	0.0000	3132.843	3132.843	3108.400	3099.480	24.443	33.363
P-43	J-2	J-10	52.3	0.0092	0.1832	22.90	3/4	0.445	0.0132	0.0007	3132.843	3132.842	3108.400	3107.670	24.443	25.172
P-44	J-10	J-29	27.35	0.0048	0.0048	22.90	3/4	0.012	0.0000	0.0000	3132.842	3132.842	3107.670	3114.210	25.172	18.632
P-45	J-10	J-1	46.5	0.0082	0.1692	22.90	3/4	0.411	0.0114	0.0005	3132.842	3132.842	3107.670	3105.640	25.172	27.202
P-46	J-1	J-33	203.53	0.0360	0.1609	22.90	3/4	0.391	0.0104	0.0021	3132.842	3132.840	3105.640	3091.560	27.202	41.280
P-47	J-33	J-17	38.58	0.0068	0.0068	22.90	3/4	0.017	0.0000	0.0000	3132.840	3132.840	3091.560	3086.730	41.280	46.110
P-48	J-33	J-18	105.41	0.0186	0.1182	22.90	3/4	0.287	0.0059	0.0006	3132.840	3132.839	3091.560	3084.720	41.280	48.119
P-49	J-18	CRP-08	11.44	0.0020	0.0212	22.90	3/4	0.051	0.0002	0.0000	3132.839	3132.839	3084.720	3083.760	48.119	49.079
P-50	CRP-08	J-19	108.48	0.0192	0.0192	22.90	3/4	0.047	0.0002	0.0000	3083.760	3083.760	3083.760	3055.050	0.000	28.710
P-51	J-18	J-12	113.41	0.0200	0.0783	22.90	3/4	0.190	0.0027	0.0003	3132.839	3132.839	3084.720	3089.710	48.119	43.129
P-52	J-12	CRP-09	17.85	0.0032	0.0583	22.90	3/4	0.142	0.0016	0.0000	3132.839	3132.839	3089.710	3085.120	43.129	47.719
P-53	CRP-09	CRP-10	195.11	0.0345	0.0551	22.90	3/4	0.134	0.0014	0.0003	3085.120	3085.120	3085.120	3037.260	0.000	47.860
P-54	CRP-10	J-13	116.98	0.0207	0.0207	22.90	3/4	0.050	0.0002	0.0000	3037.260	3037.260	3037.260	3008.130	0.000	29.130
		•	3753.5600	0.6633		•	•	•		•	•				•	-

ANEXO N° 06: REGLAMENTO APLICADO EN EL DISEÑO

MINISTERIO DE VIVIENDA CONSTRUCCIÓN Y SANEAMIENTO DIRECCIÓN DE SANEAMIENTO

DIRECCIÓN GENERAL DE POLÍTICAS Y REGULACIÓN EN CONSTRUCCIÓN Y SANEAMIENTO

NORMA TÉCNICA DE DISEÑO: OPCIONES TECNOLÓGICAS PARA SISTEMAS DE SANEAMIENTO EN EL ÁMBITO RURAL

PERÍODO DE DISEÑO

1. CRITERIOS DE DISEÑO PARA SISTEMAS DE AGUA PARA CONSUMO HUMANO

1.1. Parámetros de diseño

a. Período de diseño

El período de diseño se determina considerando los siguientes factores:

- Vida útil de las estructuras y equipos.
- · Vulnerabilidad de la infraestructura sanitaria
- Crecimiento poblacional.
- Economía de escala

Como año cero del proyecto se considera la fecha de inicio de la recolección de información e inicio del proyecto, los períodos de diseño máximos para los sistemas de saneamiento deben ser los siguientes:

Tabla Nº 03.01. Periodos de diseño de infraestructura sanitaria

ESTRUCTURA	PERIODO DE DISEÑO
✓ Fuente de abastecimiento	20 años
✓ Obra de captación	20 años
√ Pozos	20 años
√ Planta de tratamiento de agua para consumo humano (PTAP)	20 años
✓ Reservorio	20 años
✓ Líneas de conducción, aducción, impulsión y distribución	20 años
✓ Estación de bombeo	20 años
✓ Equipos de bombeo	10 años
✓ Unidad Básica de Saneamiento (arrastre hidráulico, compostera y para zona inundable	10 años
✓ Unidad Básica de Saneamiento (hoyo seco ventilado)	5 años

POBLACIÓN FUTURA

b. Población de diseño

Para estimar la población futura o de diseño, se debe aplicar el método aritmético, según la siguiente formula:

$$P_d = P_i * (1 + \frac{r * t}{100})$$

Donde:

Pi : Población inicial (habitantes)

P_d: Población futura o de diseño (habitantes)

: Tasa de crecimiento anual (%)

t : Período de diseño (años)

Es importante indicar:

 La tasa de crecimiento anual debe corresponder a los períodos intercensales, de la localidad específica.

✓ En caso de no existir, se debe adoptar la tasa de otra población con características similares, o en su defecto, la tasa de crecimiento distrital rural.

✓ En caso, la tasa de crecimiento anual presente un valor negativo, se debe adoptar una población de diseño, similar a la actual (r = 0), caso contrario, se debe solicitar opinión al INEI.

DOTACIÓN

c. Dotación

La dotación es la cantidad de agua que satisface las necesidades diarias de consumo de cada integrante de una vivienda, su selección depende del tipo de opción tecnológica para la disposición sanitaria de excretas sea seleccionada y aprobada bajo los criterios establecidos en el Capítulo IV del presente documento, las dotaciones de agua según la opción tecnológica para la disposición sanitaria de excretas y la región en la cual se implemente son:

Tabla Nº 03.02. Dotación de agua según opción tecnológica y región (l/hab.d)

REGIÓN	DOTACIÓN SEGÚN TIPO DE OPCION TECNOLÓGICA (I/hab.d)		
	SIN ARRASTRE HIDRÁULICO (COMPOSTERA Y HOYO SECO VENTILADO)	CON ARRASTRE HIDRÁULICO (TANQUE SÉPTICO MEJORADO)	
COSTA	60	90	
SIERRA 50		80	
SELVA	70	100	

Tabla Nº 03.03. Dotación de agua para centros educativos

DESCRIPCIÓN	DOTACIÓN (l/alumno.d)
Educación primaria e inferior (sin residencia)	20
Educación secundaria y superior (sin residencia)	25
Educación en general (con residencia)	50

TIPO DE ESTABLECIMIENTO	DOTACIÓN	
Cines, teatros y auditorios	3 lt/asiento	
Discotecas, casino y salas de baile y similares	30 lt/m2 de área	
Estadios, velódromos, autódromos, plaza de toros y similares.	1 lt/espectador	
Circos, hipódromos, parques de atracción y similares	1 lt/espec, + Dot de anim.	

La dotación de agua para áreas verdes será de 2 l/m2.d .No se requerirá incluir áreas pavimentadas, enripiadas u otras no sembradas para los fines de esta dotación

La dotación de agua para oficinas se calculará a razón de 6 l/m2.d de área útil del local

ÁREA DE COMEDOR EN M2	DOTACIÓN	
Hasta 40	2000 lt/asiento	
41 a 100	50 lt/m2 de área	
Más de 100	40 lt/espectador	

VARIACIONES DE CONSUMO

VARIACIONES DE C	ONSUMO	
1. Consumo máximo diario (Qmd)		
Se debe considerar un valor de 1,3 del co	onsumo promedio diario	
anual, Qp de este modo:		
On $= \frac{\text{Dot x Pd}}{\text{Dot x Pd}}$	$Qmd = 1.3 \times Qp$	
$Qp = \frac{B6474}{86400}$	C G	
Donde:		
Qp : Caudal promedio diario anual en l/s		
Qmd : Caudal máximo diario en l/s		
Dot : Dotación en l/hab.d		
Pd : Población de diseño en habitantes	(hab)	
2. Consumo máximo horario (Qmh)		
Se debe considerar un valor de 2.00 del consumo promedio diario		
anual, Qp de este modo:		
$Qp = \frac{Dot \times Pd}{86400}$	$Qmd = 2.00 \times Qp$	
Donde:		
Qp : Caudal promedio diario anual en l/s		
Qmh : Caudal máximo horario en l/s		
Dot : Dotación en l/hab.d		
Pd : Población de diseño en habitantes	(hab)	
Fuente: Resolución Ministerial. Nº 192 -	- 2018 – Vivienda	

CAPTACIÓN

Determinación del ancho de la pantalla

Para determinar el ancho de la pantalla es necesario conocer el diámetro y el número de orificios que permitirán fluir el agua desde la zona de afloramiento hacia la cámara húmeda.

$$Q_{\text{max}} = V_2 \times C_d \times A$$

$$A = \frac{Q_{max}}{V_2 \times C_d}$$

Q_{max} : gasto máximo de la fuente (l/s)

C_d : coeficiente de descarga (valores entre 0.6 a 0.8)

g : aceleración de la gravedad (9.81 m/s²)

H : carga sobre el centro del orificio (valor entre 0.40m a 0.50m)

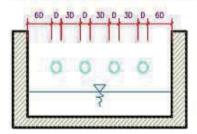
Cálculo de la velocidad de paso teórica (m/s):

$$V_{2t} = C_d \times \sqrt{2gH}$$

Velocidad de paso asumida: v_2 = 0.60 m/s (el valor máximo es 0.60m/s, en la entrada a la tubería)

Por otro lado:

$$D = \sqrt{\frac{4A}{\pi}}$$


Donde:

D : diámetro de la tubería de ingreso (m)

Cálculo del número de orificios en la pantalla:

$$N_{ORIF} = rac{ ext{ Área del diámetro teórico}}{ ext{ Área del diámetro asumido}} + 1$$
 $N_{ORIF} = \left(rac{ ext{Dt}}{ ext{Da}}
ight)^2 + 1$

Ilustración Nº 03.21. Determinación de ancho de la pantalla

Conocido el número de orificios y el diámetro de la tubería de entrada se calcula el ancho de la pantalla (b), mediante la siguiente ecuación:

$$b = 2 \times (6D) + N_{ORIF} \times D + 3D \times (N_{ORIF} - 1)$$

Cálculo de la distancia entre el punto de afloramiento y la cámara húmeda

$$H_f = H - h_o$$

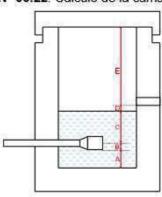
Donde:

H : carga sobre el centro del orificio (m)
 h_o : pérdida de carga en el orificio (m)

Hf : pérdida de carga afloramiento en la captación (m)

Determinamos la distancia entre el afloramiento y la captación:

$$L = \frac{H_f}{0.30}$$


Donde:

L : distancia afloramiento – captación (m)

Cálculo de la altura de la cámara

Para determinar la altura total de la cámara húmeda (Ht), se considera los elementos identificados que se muestran en la siguiente figura:

Ilustración Nº 03.22. Cálculo de la cámara húmeda

 $H_t = A + B + C + D + E$

Donde:

 A : altura mínima para permitir la sedimentación de arenas, se considera una altura mínima de 10 cm

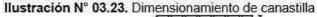
B : se considera la mitad del diámetro de la canastilla de salida.

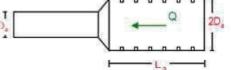
D : desnivel mínimo entre el nivel de ingreso del agua de afloramiento y el nivel de agua de la cámara húmeda (mínimo de 5 cm).

E : borde libre (se recomienda mínimo 30 cm).

 c altura de agua para que el gasto de salida de la captación pueda fluir por la tubería de conducción (se recomienda una altura mínima de 30 cm).

$$C = 1.56 \frac{v^2}{2g} = 1.56 \frac{Q_{md}^2}{2g \times A^2}$$


Donde:


Q_{md} : caudal máximo diario (m³/s) A : área de la tubería de salida (m²)

Dimensionamiento de la canastilla

Para el dimensionamiento de la canastilla, se considera que el diámetro de la canastilla debe ser dos veces el diámetro de la tubería de salida a la línea de conducción (DC); que el área total de ranuras (A_t) debe ser el doble del área de la tubería de la línea de conducción (AC) y que la longitud de la canastilla (L) sea mayor a 3DC y menor de 6DC.

$$H_f = H - h_o$$

Diámetro de la Canastilla

El diámetro de la canastilla debe ser dos veces el diámetro de la línea de conducción

Longitud de la Canastilla

Se recomienda que la longitud de la canastilla sea mayor a 3Da y menor que 6Da:

$$3D_a < L_a < 6D_a$$

Debemos determinar el área total de las ranuras (Atotal):

$$A_{TOTAL} = 2A$$

El valor de Atotal debe ser menor que el 50% del área lateral de la granada (Ag)

$$A_g = 0.5 \times D_g \times L$$

Determinar el número de ranuras:

$$N^{\circ}_{ranuras} = \frac{\text{Área total de ranura}}{\text{Área de ranura}}$$

Dimensionamiento de la tubería de rebose y limpia

En la tubería de rebose y de limpia se recomienda pendientes de 1 a 1,5%

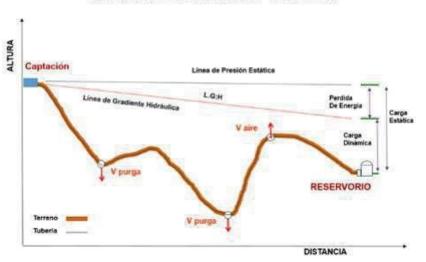
· Cálculo de la tubería de rebose y limpia tienen el mismo diámetro:

$$D_{\mathbf{r}} = \frac{0.71 \times Q^{0.38}}{h_f^{0.21}}$$

Tubería de rebose

Donde:

Qmax : gasto máximo de la fuente (l/s)


n_f: perdida de carga unitaria en (m/m) - (valor recomendado: 0.015 m/m)

D_r : diámetro de la tubería de rebose (pulg)

LÍNEA DE CONDUCCIÓN

Es la estructura que permite conducir el agua desde la captación hasta la siguiente estructura, que puede ser un reservorio o planta de tratamiento de agua potable. Este componente se diseña con el caudal máximo diario de agua; y debe considerar: anclajes, válvulas de purga, válvulas de aire, cámaras rompe presión, cruces aéreos, sifones. El material a emplear debe ser PVC; sin embargo, bajo condiciones expuestas, es necesario que la tubería sea de otro material resistente.

Ilustración Nº 03.31, Línea de Conducción

✓ Caudales de Diseño

La Línea de Conducción debe tener la capacidad para conducir como mínimo, el caudal máximo diario (Q_{md}), si el suministro fuera discontinuo, se debe diseñar para el caudal máximo horario (Q_{mh}).

La Línea de Aducción debe tener la capacidad para conducir como mínimo, el caudal máximo horario (Q_{mh}) .

√ Velocidades admisibles

Para la línea de conducción se debe cumplir lo siguiente:

- La velocidad mínima no debe ser inferior a 0,60 m/s.
- La velocidad máxima admisible debe ser de 3 m/s, pudiendo alcanzar los 5 m/s si se justifica razonadamente.

✓ Criterios de Diseño

Para las tuberías que trabajan sin presión o como canal, se aplicará la fórmula de Manning, con los coeficientes de rugosidad en función del material de la tubería.

$$v = \frac{1}{n} * R_h^{2/3} * i^{1/2}$$

Donde:

V : velocidad del fluido en m/s

n : coeficiente de rugosidad en función del tipo de material

Hierro fundido dúctil 0,015
 Cloruro de polivinilo (PVC) 0,010
 Polietileno de Alta Densidad (PEAD) 0.010

R_h: radio hidráulico

: pendiente en tanto por uno

Cálculo de diámetro de la tubería:

Para tuberías de diámetro superior a 50 mm, Hazen-Williams:

$$H_f = 10,674 * [Q^{1.852}/(C^{1.852} * D^{4.86})] * L$$

Donde:

: pérdida de carga continua, en m.

: Caudal en m³/s

: diámetro interior en m

: Coeficiente de Hazen Williams (adimensional)

 Acero sin costura 	C=120
 Acero soldado en espiral 	C=100
- Hierro fundido dúctil con revestimiento	C=140
 Hierro galvanizado 	C=100
- Polietileno	C=140
- PVC	C=150

: Longitud del tramo, en m.

Para tuberías de diámetro igual o menor a 50 mm, Fair - Whipple:

$$H_f = 676,745 * [Q^{1,751}/(D^{4,753})] * L$$

Donde:

pérdida de carga continua, en m.

Q Caudal en I/min

D diámetro interior en mm

Salvo casos fortuitos debe cumplirse lo siguiente:

- La velocidad mínima no será menor de 0,60 m/s.
- · La velocidad máxima admisible será de 3 m/s, pudiendo alcanzar los 5 m/s si se justifica razonadamente.
- Cálculo de la línea de gradiente hidráulica (LGH), ecuación de Bernoulli

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2 * g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2 * g} + H_f$$

Donde:

Z : cota altimétrica respecto a un nivel de referencia en m

 $P_{/\gamma}$: Altura de carga de presión, en m, P es la presión y γ el peso específico del fluido

: Velocidad del fluido en m/s

H_f: Pérdida de carga, incluyendo tanto las pérdidas lineales (o longitudinales) como las locales.

Si como es habitual, V₁=V₂ y P1 está a la presión atmosférica, la expresión se reduce a: ${}^{p_2}/_{\gamma}=z_1-z_2-H_f$

$$P_2/_{\gamma} = Z_1 - Z_2 - H$$

La presión estática máxima de la tubería no debe ser mayor al 75% de la presión de trabajo especificada por el fabricante, debiendo ser compatibles con las presiones de servicio de los accesorios y válvulas a utilizarse.

Se deben calcular las pérdidas de carga localizadas ΔH_i en las piezas especiales y en las válvulas, las cuales se evaluarán mediante la siguiente expresión:

$$\Delta H_i = K_i \frac{V^2}{2g}$$

Donde:

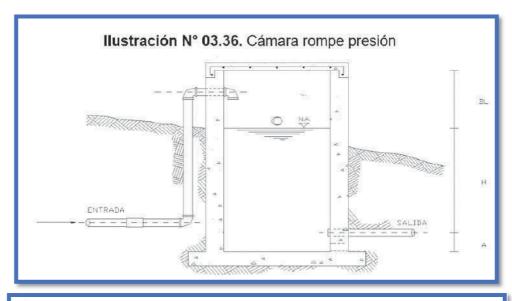
 ΔH_i : Pérdida de carga localizada en las piezas especiales y en las válvulas, en m.

K_i : Coeficiente que depende del tipo de pieza especial o válvula (ver Tabla N° 03.14)

V : Máxima velocidad de paso del agua a través de la pieza especial o de la válvula en m/s

g : aceleración de la gravedad (9,81 m/s²)

RANGO DE DISEÑO


RANGO	Qmd REAL	SE DISEÑA CON:	
1	< de 0.50 1/s	0.50 1/s	
2	0.50 l/s hasta 1.00 l/s	1.00 1/s	
3	> de 1.00 $1/s$	1.50 1/s	
Fuente: RM - 192 - 2018 VIVIENDA			

CÁMARA ROMPE PRESIÓN

La diferencia de nivel entre la captación y uno o más puntos en la línea de conducción, genera presiones superiores a la presión máxima que puede soportar la tubería a instalar. Es en estos casos, que se sugiere la instalación de cámaras rompe-presión cada 50 m de desnivel

Para ello, se recomienda:

- ✓ Una sección interior mínima de 0,60 x 0,60 m, tanto por facilidad constructiva como para permitir el alojamiento de los elementos.
- √ La altura de la cámara rompe presión se calcula mediante la suma de tres conceptos:
 - Altura mínima de salida, mínimo 10 cm
 - Resquardo a borde libre, mínimo 40 cm
 - Carga de agua requerida, calculada aplicando la ecuación de Bernoulli para que el caudal de salida pueda fluir.
- ✓ La tubería de entrada a la cámara estará por encima de nivel del agua.
- ✓ La tubería de salida debe incluir una canastilla de salida, que impida la entrada de objetos en la tubería.
- ✓ La cámara dispondrá de un aliviadero o rebose.
- ✓ El cierre de la cámara rompe presión será estanco y removible, para facilitar las operaciones de mantenimiento.

✓ Cálculo de la Cámara Rompe Presión

Del gráfico:

A : altura mínima (0.10 m)

H : altura de carga requerida para que el caudal de salida pueda fluir

BL: borde libre (0.40 m)

Ht : altura total de la Cámara Rompe Presión

$$H_t = A + H + B_L$$

√ Para el cálculo de carga requerida (H)

$$H = 1,56 \times \frac{V^2}{2g}$$

Con menor caudal se necesitan menor dimensión de la cámara rompe presión, por lo tanto, la sección de la base debe dar facilidad del proceso constructivo y por la

instalación de accesorios, por lo que se debe considerar una sección interna de 0,60 x 0,60 m.

√ Cálculo de la Canastilla

Se recomienda que el diámetro de la canastilla sea 2 veces el diámetro de la tubería de salida.

$$D_c = 2D$$

La longitud de la canastilla (L) debe ser mayor 3D y menor que 6D

Área de ranuras:

$$A_{\text{s}} = \, \frac{\pi {D_{\text{s}}}^2}{4}$$

Área de At no debe ser mayor al 50% del área lateral de la granada (Ag)

$$A_g = 0.5 \times D_g \times L$$

El número de ranuras resulta:

$$N^{\circ}$$
 ranuras = $\frac{\text{Área total de ranura}}{\text{Área de ranura}}$

√ Rebose

La tubería de rebose se calcula mediante la ecuación de Hazen y Williams (C= 150)

$$D=4,\!63\times\!\frac{{Q_{\mathrm{md}}}^{0,\!38}}{{C^{0,\!38}\times S^{0,\!21}}}$$

Donde:

D : diámetro (pulg)

Qmd : caudal máximo diario (l/s) S : pérdida de carga unitaria (m/m)

RESERVORIO

Aspectos generales

El reservorio se debe diseñar para que funcione exclusivamente como reservorio de cabecera. El reservorio se debe ubicar lo más próximo a la población, en la medida de lo posible, y se debe ubicar en una cota topográfica que garantice la presión mínima en el punto más desfavorable del sistema.

Debe ser construido de tal manera que se garantice la calidad sanitaria del agua y la total estanqueidad. El material por utilizar es el concreto, su diseño se basa en un criterio de estandarización, por lo que el volumen final a construir será múltiplo de 5 m³. El reservorio debe ser cubierto, de tipo enterrado, semi enterrado, apoyado o elevado. Se debe proteger el perímetro mediante cerco perimetral. El reservorio debe disponer de una tapa sanitaria para acceso de personal y herramientas.

Criterios de diseño

El volumen de almacenamiento debe ser del 25% de la demanda diaria promedio anual (Q_p) , siempre que el suministro de agua de la fuente sea continuo. Si el suministro es discontinuo, la capacidad debe ser como mínimo del 30% de Q_p .

Se deben aplicar los siguientes criterios:

- Disponer de una tubería de entrada, una tubería de salida una tubería de rebose, así como una tubería de limpia. Todas ellas deben ser independientes y estar provistas de los dispositivos de interrupción necesarios.
 - La tubería de entrada debe disponer de un mecanismo de regulación del llenado, generalmente una válvula de flotador.
 - La tubería de salida debe disponer de una canastilla y el punto de toma se debe situar
 10 cm por encima de la solera para evitar la entrada de sedimentos.

- La embocadura de las tuberías de entrada y salida deben estar en posición opuesta para forzar la circulación del aqua dentro del mismo.
- El diámetro de la tubería de limpia debe permitir el vaciado en 2 horas.
- Disponer de una tubería de rebose, conectada a la tubería de limpia, para la libre descarga del exceso de caudal en cualquier momento. Tener capacidad para evacuar el máximo caudal entrante.
- Se debe instalar una tubería o bypass, con dispositivo de interrupción, que conecte las tuberías de entrada y salida, pero en el diseño debe preverse sistemas de reducción de presión antes o después del reservorio con el fin de evitar sobre presiones en la distribución. No se debe conectar el bypass por períodos largos de tiempo, dado que el agua que se suministra no está clorada.
- La losa de fondo del reservorio se debe situar a cota superior a la tubería de limpia y siempre con una pendiente mínima del 1% hacia esta o punto dispuesto.
- Los materiales de construcción e impermeabilización interior deben cumplir los requerimientos de productos en contacto con el agua para consumo humano. Deben contar con certificación NSF 61 o similar en país de origen.
- Se debe garantizar la absoluta estanqueidad del reservorio.
- El reservorio se debe proyectar cerrado. Los accesos al interior del reservorio y a la cámara de válvulas deben disponer de puertas o tapas con cerradura.
- Las tuberías de ventilación del reservorio deben ser de dimensiones reducidas para impedir el acceso a hombres y animales y se debe proteger mediante rejillas que dificulten la introducción de sustancias en el interior del reservorio.
- Para que la renovación del aire sea lo más completa posible, conviene que la distancia del nivel máximo de agua a la parte inferior de la cubierta sea la menor posible, pero no inferior a 30 cm a efectos de la concentración de cloro.
 - Se debe proteger el perímetro del reservorio mediante cerramiento de fábrica o de valla metálica hasta una altura mínima de 2,20 m, con puerta de acceso con cerradura.
 - Es necesario disponer una entrada practicable al reservorio, con posibilidad de acceso de materiales y herramientas. El acceso al interior debe realizarse mediante escalera de peldaños anclados al muro de recinto (inoxidables o de polipropileno con fijación mecánica reforzada con epoxi).
 - Los dispositivos de interrupción, derivación y control se deben centralizar en cajas o casetas, o cámaras de válvulas, adosadas al reservorio y fácilmente accesibles.
 - La cámara de válvulas debe tener un desagüe para evacuar el agua que pueda verterse.
 - Salvo justificación razonada, la desinfección se debe realizar obligatoriamente en el reservorio, debiendo el proyectista adoptar el sistema más apropiado conforme a la ubicación, accesibilidad y capacitación de la población.

Recomendaciones

- Solo se debe usar el bypass para operaciones de mantenimiento de corta duración, porque al no pasar el agua por el reservorio no se desinfecta.
- En las tuberías que atraviesen las paredes del reservorio se recomienda la instalación de una brida rompe-aguas empotrado en el muro y sellado mediante una impermeabilización que asegure la estanquidad del agua con el exterior, en el caso de que el reservorio sea construido en concreto.
- Para el caso de que el reservorio sea de otro material, ya sea metálico o plástico, las tuberías deben fijarse a accesorios roscados de un material resistente a la humedad y la exposición a la intemperie.
- La tubería de entrada debe disponer de un grifo que permita la extracción de muestras para el análisis de la calidad del agua.
- Se recomienda la instalación de dispositivos medidores de volumen (contadores) para el registro de los caudales de entrada y de salida, así como dispositivos eléctricos de control del nivel del agua. Como en zonas rurales es probable que no se cuente con

CASETA DE VÁLVULA DE RESERVORIO

La caseta de válvulas es una estructura de concreto y/o mampostería que alberga el sistema hidráulico del reservorio, en el caso reservorios el ambiente es de paredes planas, salvo el reservorio de 70 m³, en este caso el reservorio es de forma cilíndrica, en este caso, una de las paredes de la caseta de válvulas es la pared curva del reservorio.

La puerta de acceso es metálica y debe incluir ventanas laterales con rejas de protección.

En el caso del reservorio de 70 m³, desde el interior de la caseta de válvulas nace una escalera tipo marinera que accede al techo mediante una ventana de inspección y de allí se puede ingresar al reservorio por su respectiva ventana de inspección de 0,60 x 0,60 m con tapa metálica y dispositivo de seguridad.

Las consideraciones por tener en cuenta son las siguientes:

Techos

Los techos serán en concreto armado, pulido en su superficie superior para evitar filtración de agua en caso se presenten lluvias, en el caso de reservorios de gran tamaño, el techo acabara con ladrillo pastelero asentados en torta de barro y tendrán junta de dilatación según el esquema de techos.

Paredes

Los cerramientos laterales serán de concreto armado en el caso de los reservorios de menor tamaño, en el caso del reservorio de 70 m³, la pared estará compuesto por ladrillo K.K. de 18 huecos y cubrirán la abertura entre las columnas estructurales del edificio. Éstos estarán unidos con mortero 1:4 (cemento: arena gruesa) y se prevé el tarrajeo frotachado interior y exterior con revoque fino 1:4 (cemento: arena fina).

Las paredes exteriores serán posteriormente pintadas con dos manos de pintura látex para exteriores, cuyo color será consensuado entre el Residente y la Supervisión. El acabado de las paredes de la caseta será de tarrajeo frotachado pintado en látex y el piso de cemento pulido bruñado a cada 2 m.

Pisos

Los pisos interiores de la caseta serán de cemento pulido y tendrán un bruñado a cada 2 m en el caso de reservorios grandes.

Pisos en Veredas Perimetrales

En vereda el piso será de cemento pulido de 1 m de ancho, bruñado cada 1 m y, tendrá una junta de dilatación cada 5 m.

El contrazócalo estará a una altura de 0,30 m del nivel del piso acabado y sobresaldrá 1 cm al plomo de la pared. Estos irán colocados tanto en el interior como en el exterior de la caseta de válvulas.

Escaleras

En el caso sea necesario, la salida de la caseta hacia el reservorio, se debe colocar escaleras marineras de hierro pintadas con pintura epóxica anticorrosivas con pasos espaciados a cada 0.30 m.

Escaleras de Acceso

Las escaleras de acceso a los reservorios (cuando sean necesarias), serán concebidas para una circulación cómoda y segura de los operadores, previendo un paso aproximado

a los 0,18 m. Se han previsto descansos intermedios cada 17 pasos como máximo, cantidad de escalones máximos según reglamento.

Veredas Perimetrales

Las veredas exteriores serán de cemento pulido, bruñado cada 1 m y junta de dilatación cada 5 m.

Aberturas

Las ventanas serán metálicas, tanto las barras como el marco y no deben incluir vidrios para así asegurar una buena ventilación dentro del ambiente, sólo deben llevar una malla de alambre N°12 con cocada de 1".

La puerta de acceso a la caseta (en caso sea necesaria) debe ser metálica con plancha de hierro soldada espesor 3/32" con perfiles de acero de 1.½" x 1.½" y por 6 mm de espesor.

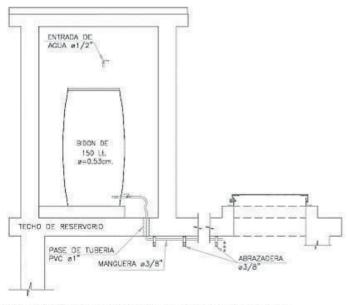
SISTEMA DE DESINFECCIÓN

Este sistema permite asegurar que la calidad del agua se mantenga un periodo más y esté protegida durante su traslado por las tuberías hasta ser entregado a las familias a través de las conexiones domiciliarias. Su instalación debe estar lo más cerca de la línea de

entrada de agua al reservorio y ubicado donde la iluminación natural no afecte la solución de cloro contenido en el recipiente.

El cloro residual activo se recomienda que se encuentre como mínimo en 0,3 mg/l y máximo a 0,8 mg/l en las condiciones normales de abastecimiento, superior a este último son detectables por el olor y sabor, lo que hace que sea rechazada por el usuario consumidor.

Para su construcción debe utilizarse diferentes materiales y sistemas que controlen el goteo por segundo o su equivalente en ml/s, no debiéndose utilizar metales ya que pueden corroerse por el cloro.


Desinfectantes empleados

La desinfección se debe realizar con compuestos derivados del cloro que, por ser oxidantes y altamente corrosivos, poseen gran poder destructivo sobre los microrganismos presentes en el agua y pueden ser recomendados, con instrucciones de manejo especial, como desinfectantes a nivel de la vivienda rural. Estos derivados del cloro son:

- Hipoclorito de calcio (Ca(OCI)₂ o HTH). Es un producto seco, granulado, en polvo o en pastillas, de color blanco, el cual se comercializa en una concentración del 65% de cloro activo.
- Hipoclorito de sodio (NaClO). Es un líquido transparente de color amarillo ámbar el cual se puede obtener en establecimientos distribuidores en garrafas plásticas de 20 litros con concentraciones de cloro activo de más o menos 15% en peso.
- Dióxido de cloro (ClO₂). Se genera normalmente en el sitio en el que se va a utilizar, y, disuelto en agua hasta concentraciones de un 1% ClO₂ (10 g/L) pueden almacenarse de manera segura respetando ciertas condiciones particulares como la no exposición a la luz o interferencias de calor.
- a. Sistema de Desinfección por Goteo

a. Sistema de Desinfección por Goteo

Ilustración Nº 03.57. Sistema de desinfección por goteo

Cálculo del peso de hipoclorito de calcio o sodio necesario

$$P = Q * d$$

Donde:

P : peso de cloro en gr/h

Q : caudal de agua a clorar en m³/h
 d : dosificación adoptada en gr/m³

· Cálculo del peso del producto comercial en base al porcentaje de cloro

$$P_c = P * 100/r$$

Donde:

P_c: peso producto comercial gr/h

: porcentaje del cloro activo que contiene el producto comercial (%)

 Cálculo del caudal horario de solución de hipoclorito (qs) en función de la concentración de la solución preparada. El valor de "qs" permite seleccionar el equipo dosificador requerido

$$\mathrm{q}_s = P_c * \frac{100}{c}$$

Donde:

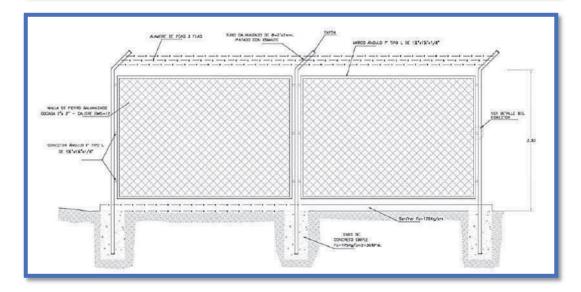
Pc : peso producto comercial gr/h

q_s : demanda horaria de la solución en l/h, asumiendo que la densidad de 1 litro de solución pesa 1 kg

c : concentración solución (%)

 Calculo del volumen de la solución, en función del tiempo de consumo del recipiente en el que se almacena dicha solución

$$Vs = qs * t$$


Donde:

- V_s : volumen de la solución en lt (correspondiente al volumen útil de los recipientes de preparación).
- t iempo de uso de los recipientes de solución en horas h
 t se ajusta a ciclos de preparación de: 6 horas (4 ciclos), 8 horas (3 ciclos) y 12 horas (2 ciclos) correspondientes al vaciado de los recipientes y carga de nuevo volumen de solución

CERCO PERÍMETRICO DEL RESERVORIO

El cerco perimétrico idóneo en zonas rurales para reservorios por su versatilidad, durabilidad, aislamiento al exterior y menor costo es a través de una malla de las siguientes características:

- Con una altura de 2,30 m dividido en paños con separación entre postes metálicos de 3,00 m y de tubo de 2" F°G°.
- Postes asentados en un dado de concreto simple f'c = 175 kg/cm² + 30% de P.M.
- Malla de F°G° con cocada de 2" x 2" calibre BWG = 12, soldadas al poste metálico con un conector de Angulo F tipo L de 1 ¼" x 1 ¼" x 1/8".
- Los paños están coronados en la parte superior con tres hileras de alambres de púas y en la parte inferior estarán sobre un sardinel de f'c= 175 kg/cm².

LÍNEA DE ADUCCIÓN

Para el trazado de la línea debe tenerse en cuenta lo siguiente:

- ✓ Se debe evitar pendientes mayores del 30% para evitar altas velocidades, e inferiores al 0,50%, para facilitar la ejecución y el mantenimiento.
- ✓ Con el trazado se debe buscar el menor recorrido, siempre y cuando esto no conlleve excavaciones excesivas u otros aspectos. Se evitarán tramos de difícil acceso, así como zonas vulnerables.
- ✓ En los tramos que discurran por terrenos accidentados, se suavizará la pendiente del trazado ascendente pudiendo ser más fuerte la descendente, refiriéndolos siempre al sentido de circulación del agua.
- ✓ Evitar cruzar por terrenos privados o comprometidos para evitar problemas durante la construcción y en la operación y mantenimiento del sistema.
- ✓ Mantener las distancias permisibles de vertederos sanitarios, márgenes de ríos, terrenos aluviales, nivel freático alto, cementerios y otros servicios.
- ✓ Utilizar zonas que sigan o mantengan distancias cortas a vías existentes o que por su topografía permita la creación de caminos para la ejecución, operación y mantenimiento.
- ✓ Evitar zonas vulnerables a efectos producidos por fenómenos naturales y antrópicos.
- ✓ Tener en cuenta la ubicación de las canteras para los préstamos y zonas para la disposición del material sobrante, producto de la excavación.
- ✓ Establecer los puntos donde se ubicarán instalaciones, válvulas y accesorios, u otros
 accesorios especiales que necesiten cuidados, vigilancia y operación.

Diseño de la línea de aducción

- Caudal de diseño
 La Línea de Aducción tendrá capacidad para conducir como mínimo, el caudal máximo horario (Qmh).
- Carga estática y dinámica
 La carga estática máxima aceptable será de 50 m y la carga dinámica mínima será de 1 m.

Ilustración Nº 03.60. Línea gradiente hidráulica de la aducción a presión.

Diámetros

El diámetro se diseñará para velocidades mínima de 0,6 m/s y máxima de 3,0 m/s. El diámetro mínimo de la línea de aducción es de 25 mm (1") para el caso de sistemas rurales.

Dimensionamiento

Para el dimensionamiento de la tubería, se tendrán en cuenta las siguientes condiciones:

✓ La línea gradiente hidráulica (L.G.H.)

La línea gradiente hidráulica estará siempre por encima del terreno. En los puntos críticos se podrá cambiar el diámetro para mejorar la pendiente.

✓ Pérdida de carga unitaria (h_f)

Para el propósito de diseño se consideran:

- Ecuaciones de Hazen y Williams para diámetros mayores a 2ⁿ, y
- Ecuaciones de Fair Whipple para diámetros menores a 2".

Cálculo de diámetro de la tubería podrá realizarse utilizando las siguientes fórmulas:

• Para tuberías de diámetro superior a 50 mm, Hazen-Williams:

$$\rm H_f = 10,674 \times \frac{Q^{1,852}}{C^{1,852} \times D^{4,86}} \times L$$

Donde:

H_f : pérdida de carga continua (m)

Q : caudal en (m³/s)

D : diámetro interior en m (ID)

C : coeficiente de Hazen Williams (adimensional)

-	Acero sin costura	C=120
-	Acero soldado en espiral	C=100
-	Hierro fundido dúctil con revestimiento	C=140
-	Hierro galvanizado	C=100
-	Polietileno	C=140
-	PVC	C=150

L : longitud del tramo (m)

Para tuberías de diámetro igual o inferior a 50 mm, Fair-Whipple:

$$H_{\rm f} = 676,745 \times \frac{Q^{1,751}}{D^{4,753} \times L}$$

Donde:

H_f: pérdida de carga continua (m)

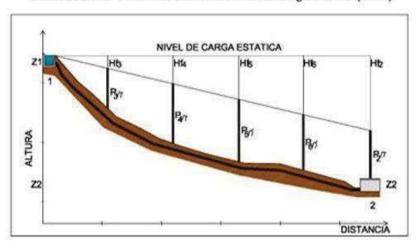
Q : caudal en (l/min)

D : diámetro interior (mm)

L : longitud (m)

Salvo casos excepcionales que deberán ser justificados, la velocidad de circulación del agua establecida para los caudales de diseño deberá cumplir lo siguiente:

- La velocidad mínima no será menor de 0,60 m/s.
- La velocidad máxima admisible será de 3 m/s, pudiendo alcanzar los 5 m/s si se iustifica razonadamente.


Presión

En la línea de aducción, la presión representa la cantidad de energía gravitacional contenida en el agua.

Para el cálculo de la línea de gradiente hidráulica (LGH), se aplicará la ecuación de Bernoulli.

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2 * g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2 * g} + H_f$$

Ilustración Nº 03.61. Cálculo de la línea de gradiente (LGH)

Donde:

cota altimétrica respecto a un nivel de referencia en m.

altura de carga de presión, en m, P es la presión y y el peso específico del PΝ

fluido.

: velocidad del fluido en m/s.

Hf. pérdida de carga de 1 a 2, incluyendo tanto las pérdidas lineales (o longitudinales) como las locales.

Si como es habitual, V₁=V₂ y P₁ está a la presión atmosférica, la expresión se reduce a:

$$P_2/v = Z_1 - Z_2 - H_f$$

La presión estática máxima de la tubería no debe ser mayor al 75% de la presión de trabajo especificada por el fabricante, debiendo ser compatibles con las presiones de servicio de los accesorios y válvulas a utilizarse.

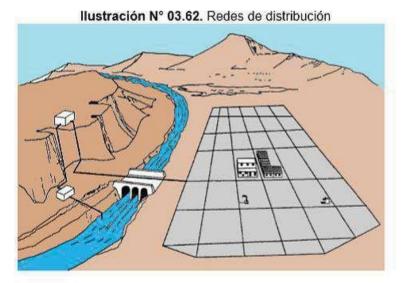
Se calcularán las pérdidas de carga localizadas AHi en las piezas especiales y en las válvulas, las cuales se evaluarán mediante la siguiente expresión:

$$\Delta H_{\rm i} = K_{\rm i} \frac{V^2}{2g}$$

Dónde:

 ΔH_i : pérdida de carga localizada en las piezas especiales y en las válvulas (m) Κi

coeficiente que depende del tipo de pieza especial o válvula (ver Tabla).


: máxima velocidad de paso del agua a través de la pieza especial o de la

válvula (m/s)

: aceleración de la gravedad (m/s²)

REDES DE DISTRIBUCIÓN

Es un componente del sistema de agua potable, el mismo que permite llevar el agua tratada hasta cada vivienda a través de tuberías, accesorios y conexiones domiciliarias.

Aspectos Generales

Para la red de distribución se debe cumplir lo siguiente:

- Las redes de distribución se deben diseñar para el caudal máximo horario (Q_{mh}).
- Los diámetros mínimos de las tuberías principales para redes cerradas deben ser de 25 mm (1"), y en redes abiertas, se admite un diámetro de 20 mm (¾") para ramales.
- En los cruces de tuberías no se debe permitir la instalación de accesorios en forma de cruz y se deben realizar siempre mediante piezas en tee de modo que forme el tramo recto la tubería de mayor diámetro. Los diámetros de los accesorios en tee, siempre que existan comercialmente, se debe corresponder con los de las tuberías que unen, de forma que no sea necesario intercalar reducciones.
- La red de tuberías de abastecimiento de agua para consumo humano debe ubicarse siempre en una cota superior sobre otras redes que pudieran existir de aguas grises.

Velocidades admisibles

Para la red de distribución se debe cumplir lo siguiente:

- La velocidad mínima no debe ser menor de 0,60 m/s. En ningún caso puede ser inferior a 0.30 m/s.
- La velocidad máxima admisible debe ser de 3 m/s.

Trazado

El trazado de la red se debe ubicar preferentemente en terrenos públicos siempre que sea posible y se deben evitar terrenos vulnerables.

Materiales

El material de la tubería que conforma la red de distribución debe ser de PVC y compatible con los accesorios que se instale para las conexiones prediales.

Presiones de servicio.

Para la red de distribución se deberá cumplir lo siguiente:

- La presión mínima de servicio en cualquier punto de la red o línea de alimentación de agua no debe ser menor de 5 m.c.a. y
- La presión estática no debe ser mayor de 60 m.c.a.

De ser necesario, a fin de conseguir las presiones señaladas se debe considerar el uso de cámaras distribuidora de caudal y reservorios de cabecera, a fin de sectorizar las zonas de presión.

Criterios de Diseño

Existen dos tipos de redes:

a. Redes malladas

Son aquellas redes constituidas por tuberías interconectadas formando circuitos cerrados o mallas. Cada tubería que reúna dos nudos debe tener la posibilidad de ser seccionada y desaguada independientemente, de forma que se pueda proceder a realizar una reparación en ella sin afectar al resto de la malla. Para ello se debe disponer a la salida de los dos nudos válvulas de corte.

El diámetro de la red o línea de alimentación debe ser aquél que satisfaga las condiciones hidráulicas que garanticen las presiones mínimas de servicio en la red.

Para la determinación de los caudales en redes malladas se debe aplicar el método de la densidad poblacional, en el que se distribuye el caudal total de la población entre los "i" nudos proyectados.

El caudal en el nudo es:

$$Q_i = Q_p * P_i$$

 $Q_i = Q_p * P_i$

Donde:

Q_i : Caudal en el nudo "i" en l/s.

Q_p: Caudal unitario poblacional en l/s.hab.

 $Q_{p} = \frac{Q_{t}}{P_{t}}$

Donde:

Qt : Caudal máximo horario en I/s.

Pt : Población total del proyecto en hab.

Pi : Población de área de influencia del nudo "i" en hab.

Para el análisis hidráulico del sistema de distribución, puede utilizarse el método de Hardy Cross o cualquier otro equivalente.

El dimensionamiento de redes cerradas debe estar controlado por dos condiciones:

- El flujo total que llega a un nudo es igual al que sale.
- La pérdida de carga entre dos puntos a lo largo de cualquier camino es siempre la misma.

Estas condiciones junto con las relaciones de flujo y pérdida de carga nos dan sistemas de ecuaciones, los cuales pueden ser resueltos por cualquiera de los métodos matemáticos de balanceo.

En sistemas anillados se deben admitir errores máximos de cierre:

- De 0,10 mca de pérdida de presión como máximo en cada malla y/o simultáneamente debe cumplirse en todas las mallas.
- De 0,01 l/s como máximo en cada malla y/o simultáneamente en todas las mallas.

Se recomienda el uso de un caudal mínimo de 0,10 l/s para el diseño de los ramales. La presión de funcionamiento (OP) en cualquier punto de la red no debe descender por debajo del 75% de la presión de diseño (DP) en ese punto.

Tanto en este caso como en las redes ramificadas, se debe adjuntar memoria de cálculo, donde se detallen los diversos escenarios calculados:

- Para caudal mínimo.
- Caudal máximo.
- Presión mínima.
- Presión máxima.

b. Redes ramificadas

Constituida por tuberías que tienen la forma ramificada a partir de una línea principal; aplicable a sistemas de menos de 30 conexiones domiciliarias

En redes ramificadas se debe determinar el caudal por ramal a partir del método de probabilidad, que se basa en el número de puntos de suministro y en el coeficiente de simultaneidad. El caudal por ramal es:

$$\mathbf{Q_{ramal}} = \mathbf{K} * \sum \mathbf{Q_g}$$

Donde:

Q_{ramal} : Caudal de cada ramal en l/s.

K : Coeficiente de simultaneidad, entre 0,2 y 1.

$$K = \frac{1}{\sqrt{(x-1)}}$$

Donde:

x : número total de grifos en el área que abastece cada ramal.

Q_a : Caudal por grifo (I/s) > 0,10 I/s.

Si se optara por una red de distribución para piletas públicas, el caudal se debe calcular con la siguiente expresión:

$$Q_{pp} = N * \frac{D_c}{24} * C_p * F_u \frac{1}{E_f}$$

Donde:

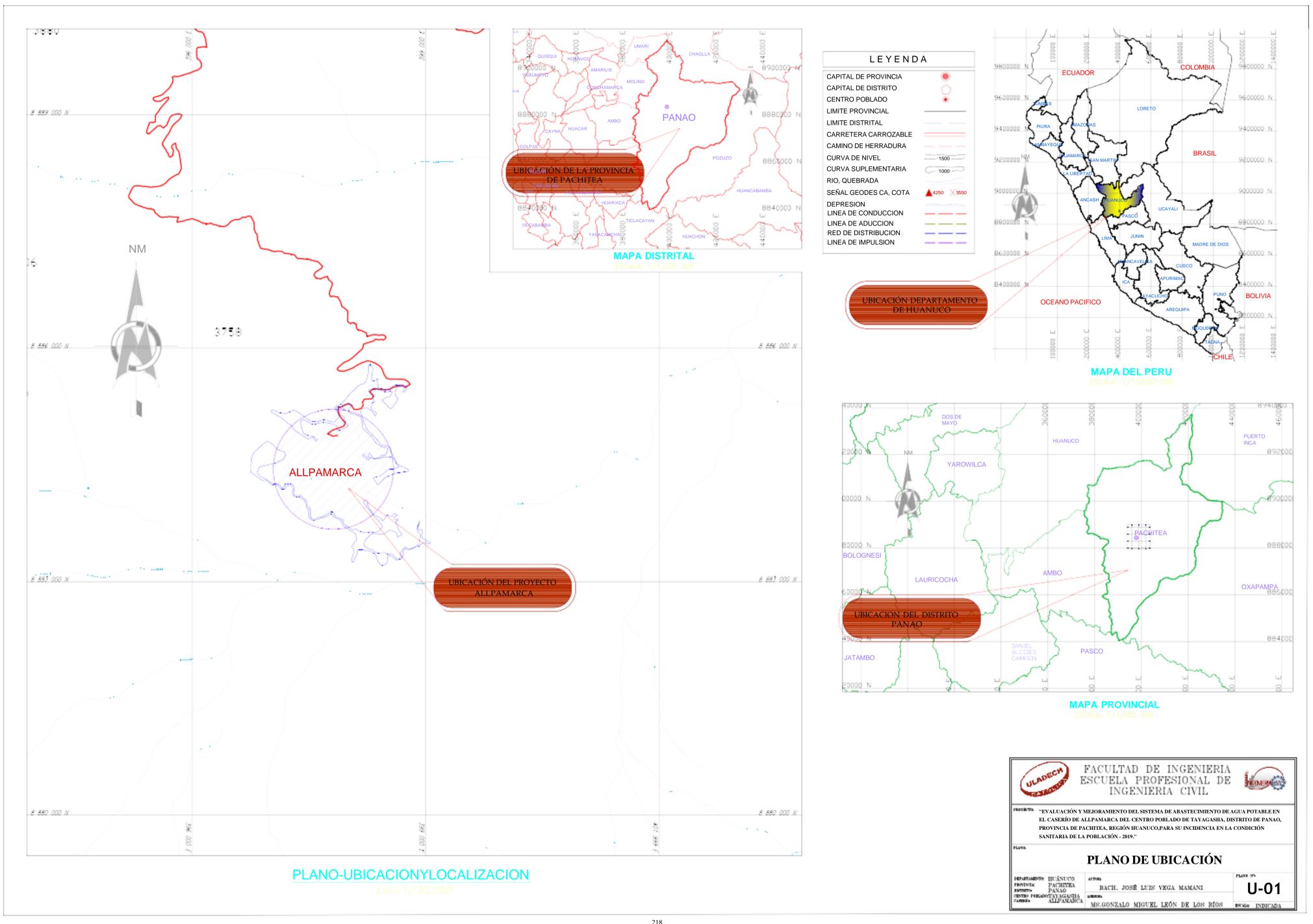
Q_{pp} : Caudal máximo probable por pileta pública en l/h.

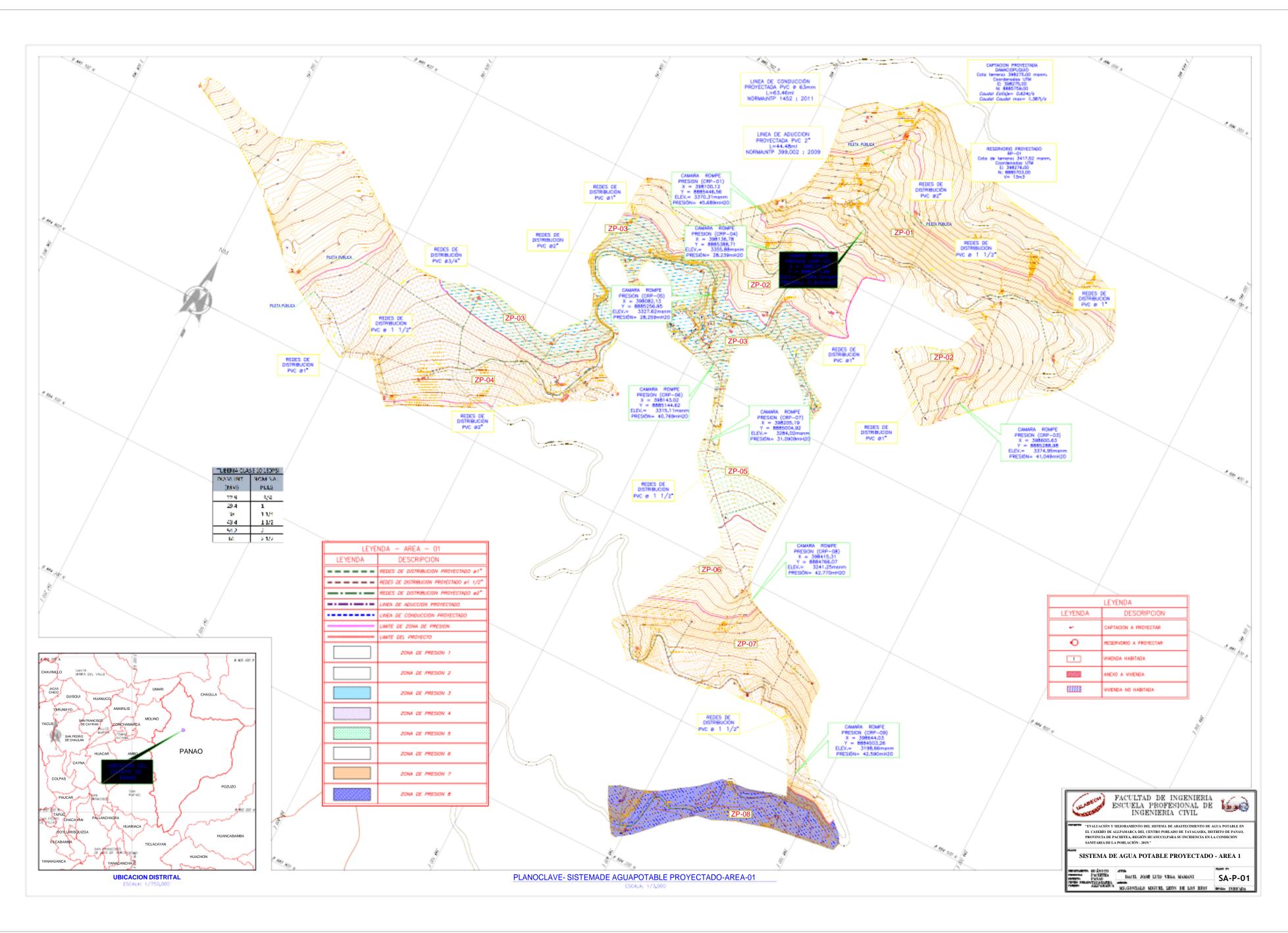
 N : Población a servir por pileta. Un grifo debe abastecer a un número máximo de 25 personas).

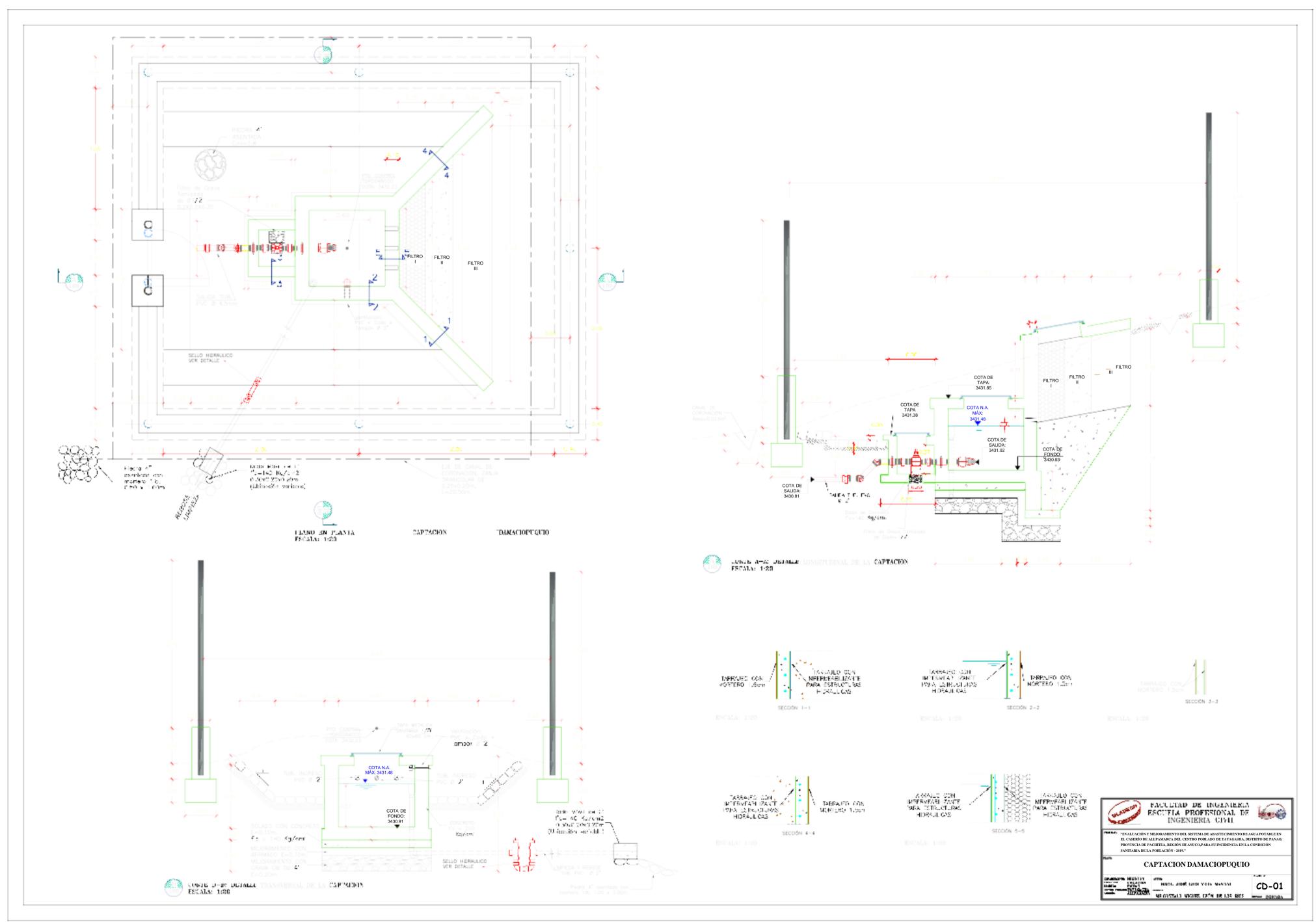
D_c : Dotación promedio por habitante en l/hab.d.

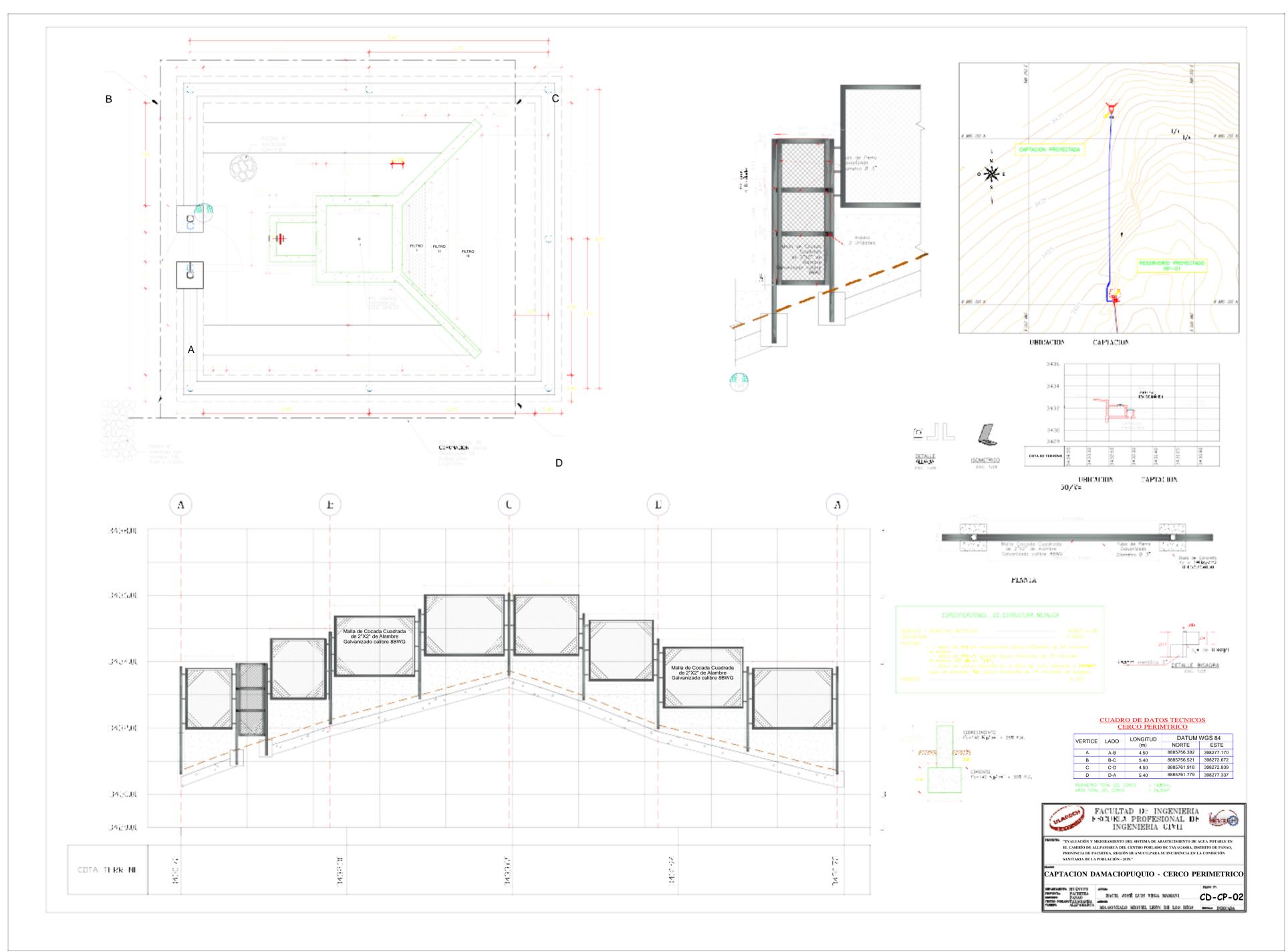
Porcentaje de pérdidas por desperdicio, varía entre 1,10 y 1,40.

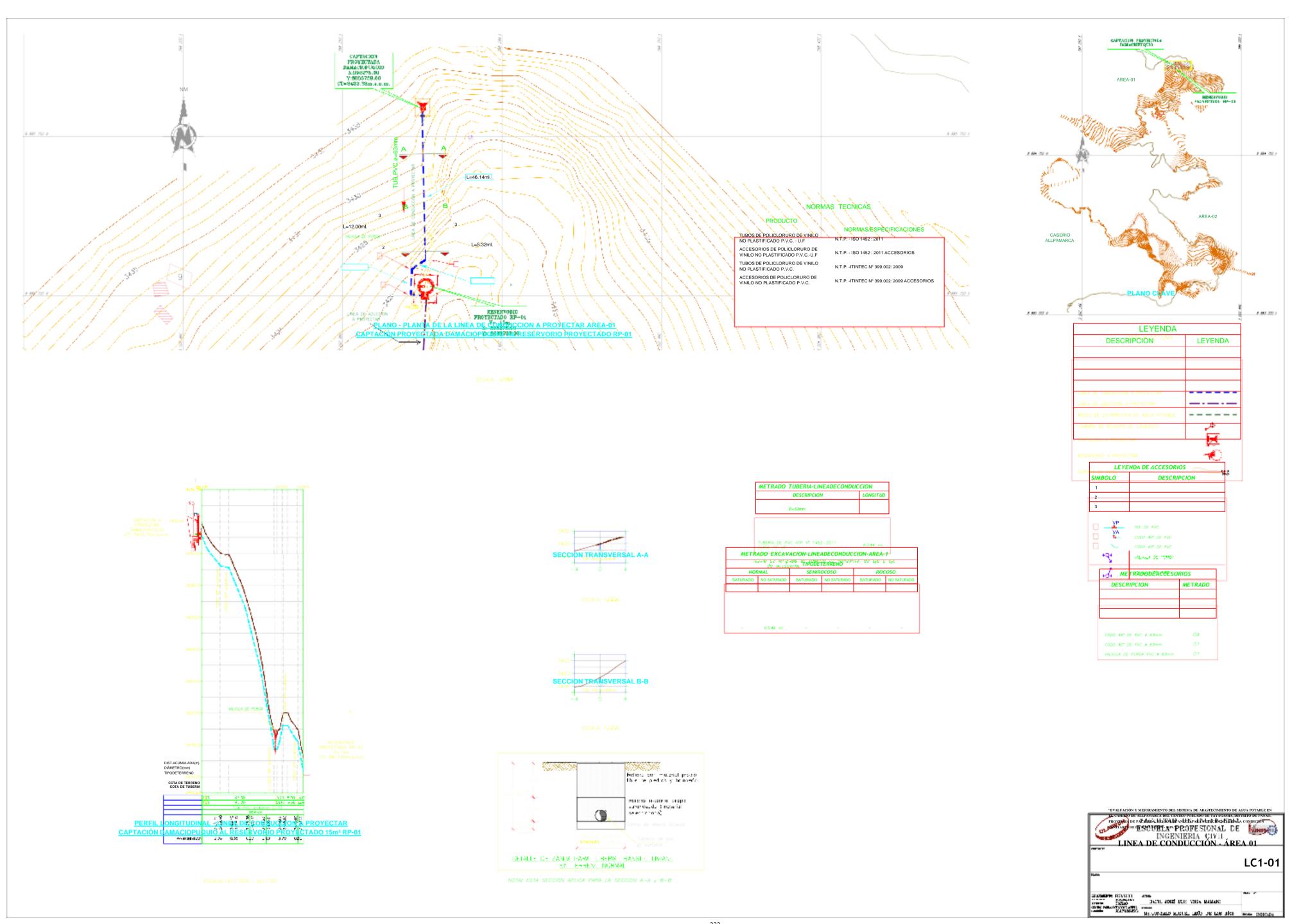
E_f : Eficiencia del sistema considerando la calidad de los materiales y accesorios. Varía entre 0,7 y 0,9.

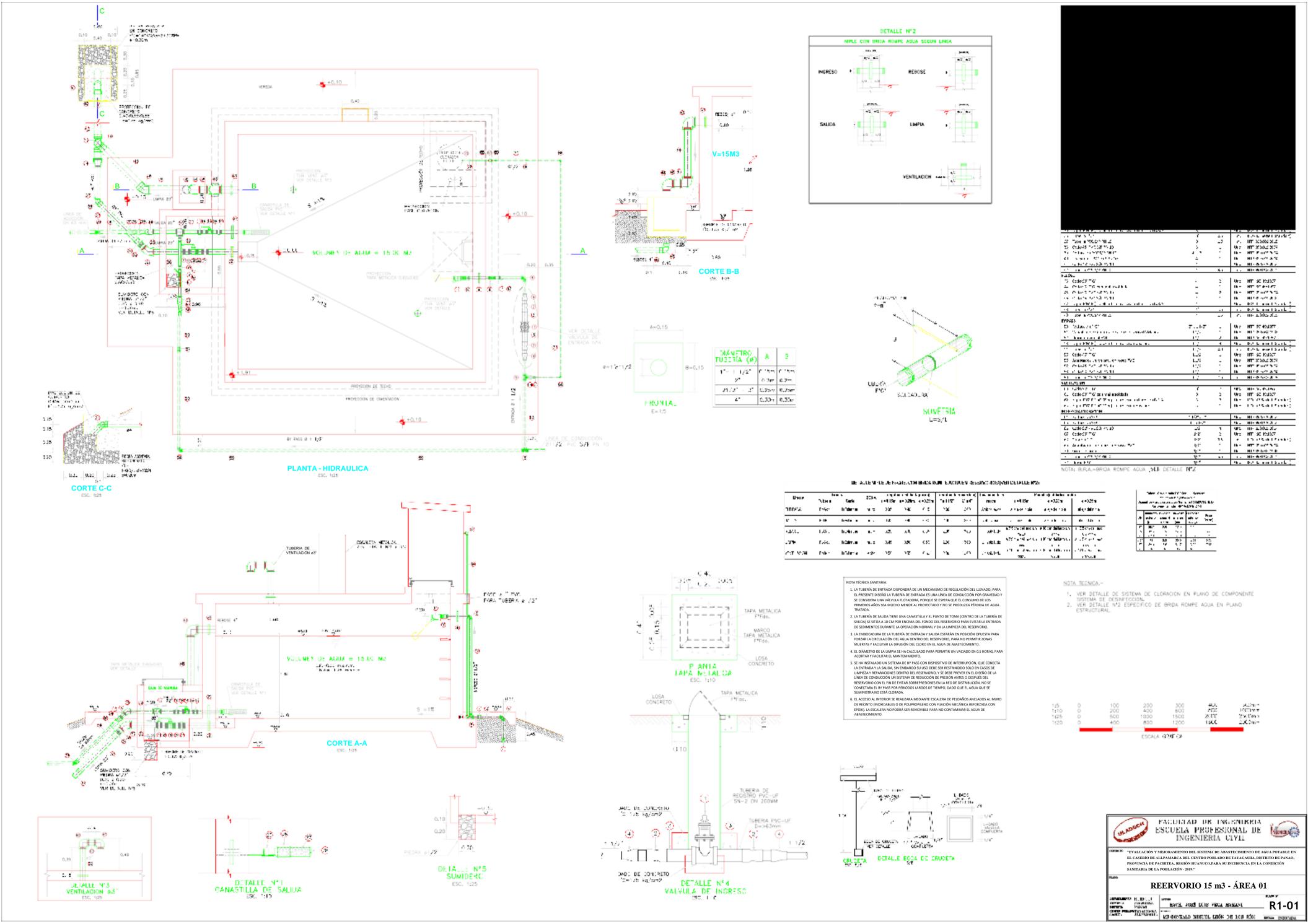

F_u : Factor de uso, definido como F_u = 24/t. Depende de las costumbres locales, horas de trabajo, condiciones climatológicas, etc. Se evalúa en función al tiempo real de horas de servicio (t) y puede variar entre 2 a 12 horas.

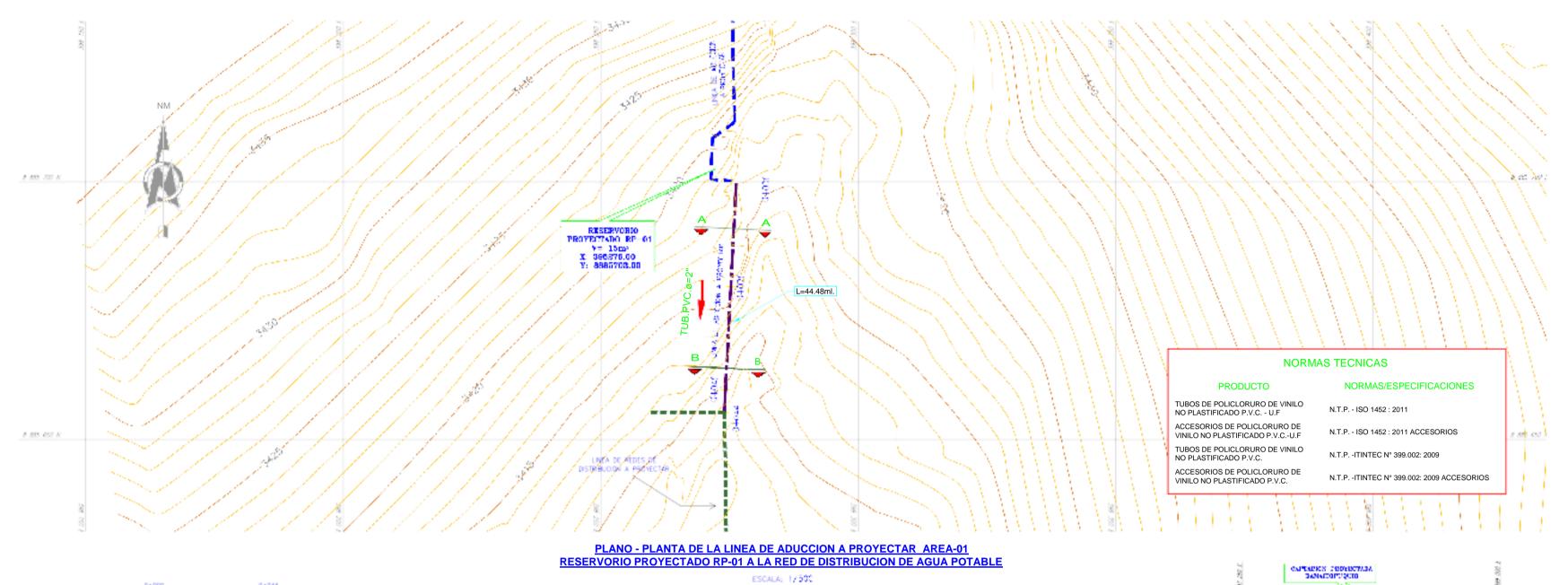

En ningún caso, el caudal por pileta pública debe ser menor a 0,10 l/s.

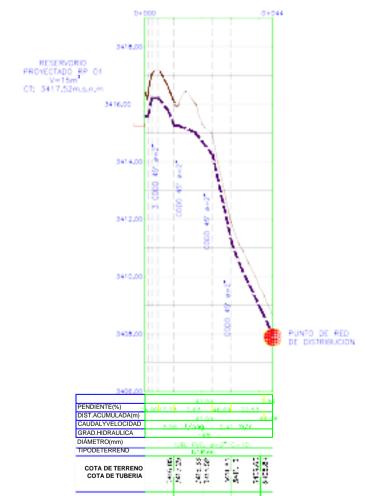

El Dimensionamiento de las redes abiertas o ramificadas se debe realizar según las fórmulas del ítem 2.4 Línea de Conducción (Criterios de Diseño) del presente Capítulo, de acuerdo con los siguientes criterios:

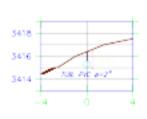

 Se puede admitir que la distribución del caudal sea uniforme a lo largo de la longitud de cada tramo.


ANEXO N° 07: PLANOS









PERFIL LONGITUDINAL - LINEA DE ADUCCION A PROYECTAR
RESERVORIO PROYECTADO 15m³ RP-01 A LA RED DE DISTRIBUCION AGUA
POTABLE

ESCALA: H:1/1000 ; ¥ 1/100

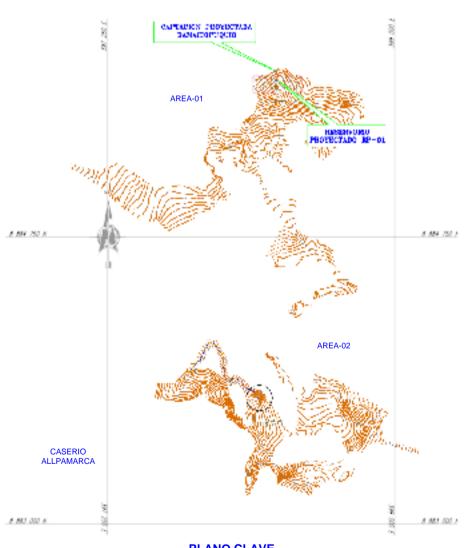
METRADO EXCAVACION-LINEADECONDUCCION-AREA-1					
TIPODETERRENO					
NOF	RMAL	SEMIR	ocoso	ROC	oso
SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO
17.40 ml	30,43 ml		-	-	-

SECCION TRANSVERSAL A-A

SECCION TRANSVERSAL B-B

SCALA: 1/250

NOTA: ESTA SECCION APLICA PARA LA SECCION A-A y B-B


LEYENDA	
DESCRIPCION	LEYENDA
LINEA DE CONDUCCION A PROYECTAR	
LINEA DE ADUCCION A PROYECTAR	
REDES DE DISTRIBUCIÓN DE AQUA FOTABLE	
CAMARA DE REUNION DE CAUDALES	_B
CAPTACION A PROYECTAR	医
RESERVORIO A PROYECTAR	₩)
CURVAS DE NIVEL	

LEYENDA DE ACCESORIOS		
SIMBOLO	DESCRIPCION	
1	tor or eve	
2	copo acr de Avo	
3	0000 45° 00 FMC	
3 <mark></mark> VP	VALVORAL DEL ENTROS	
-₹ ^{VA}	WORKE DE ASE	

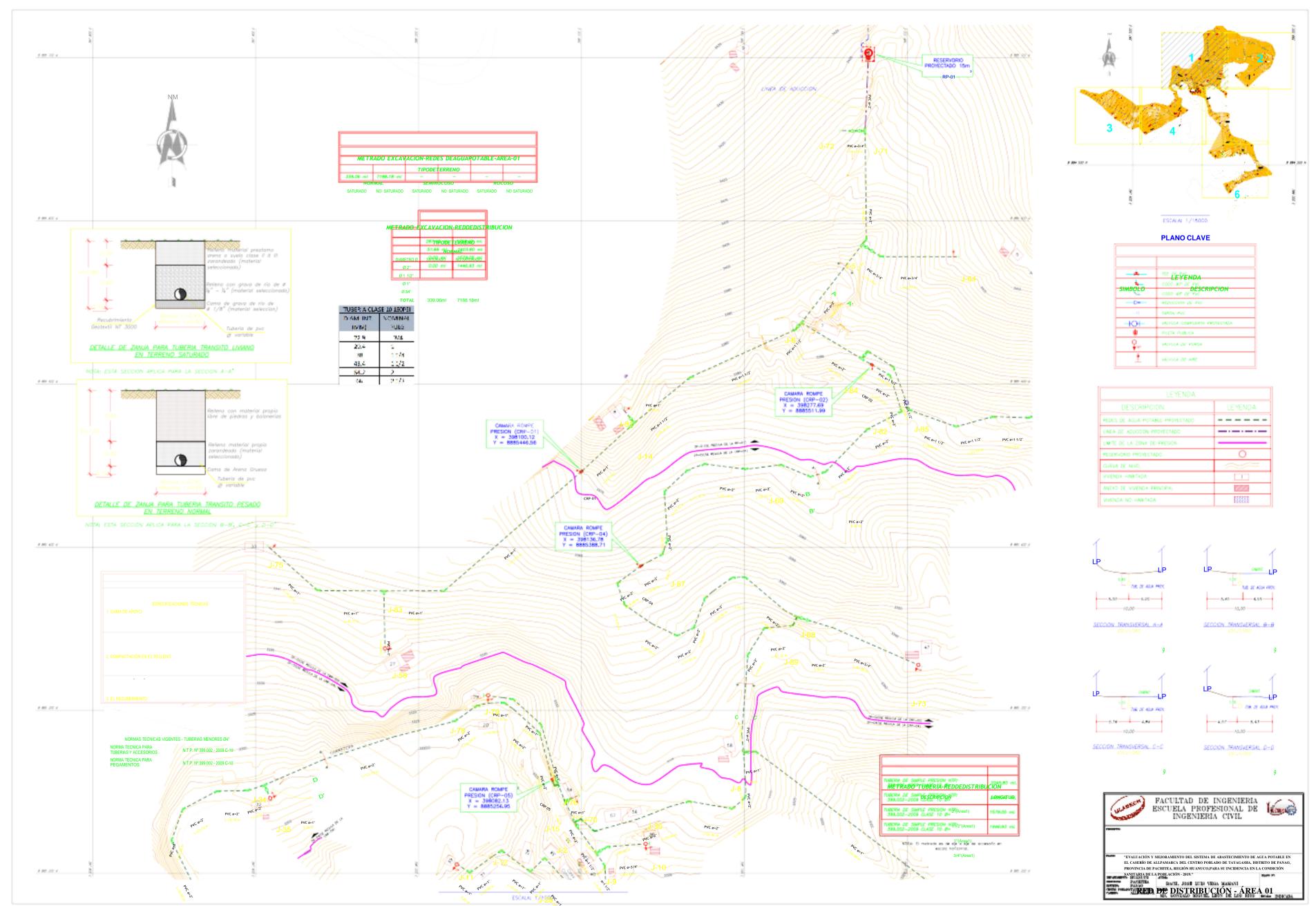
METRADODEACCESORIOS	
DESCRIPCION	METRADO
CODO 45" DE PVC # 3"	06

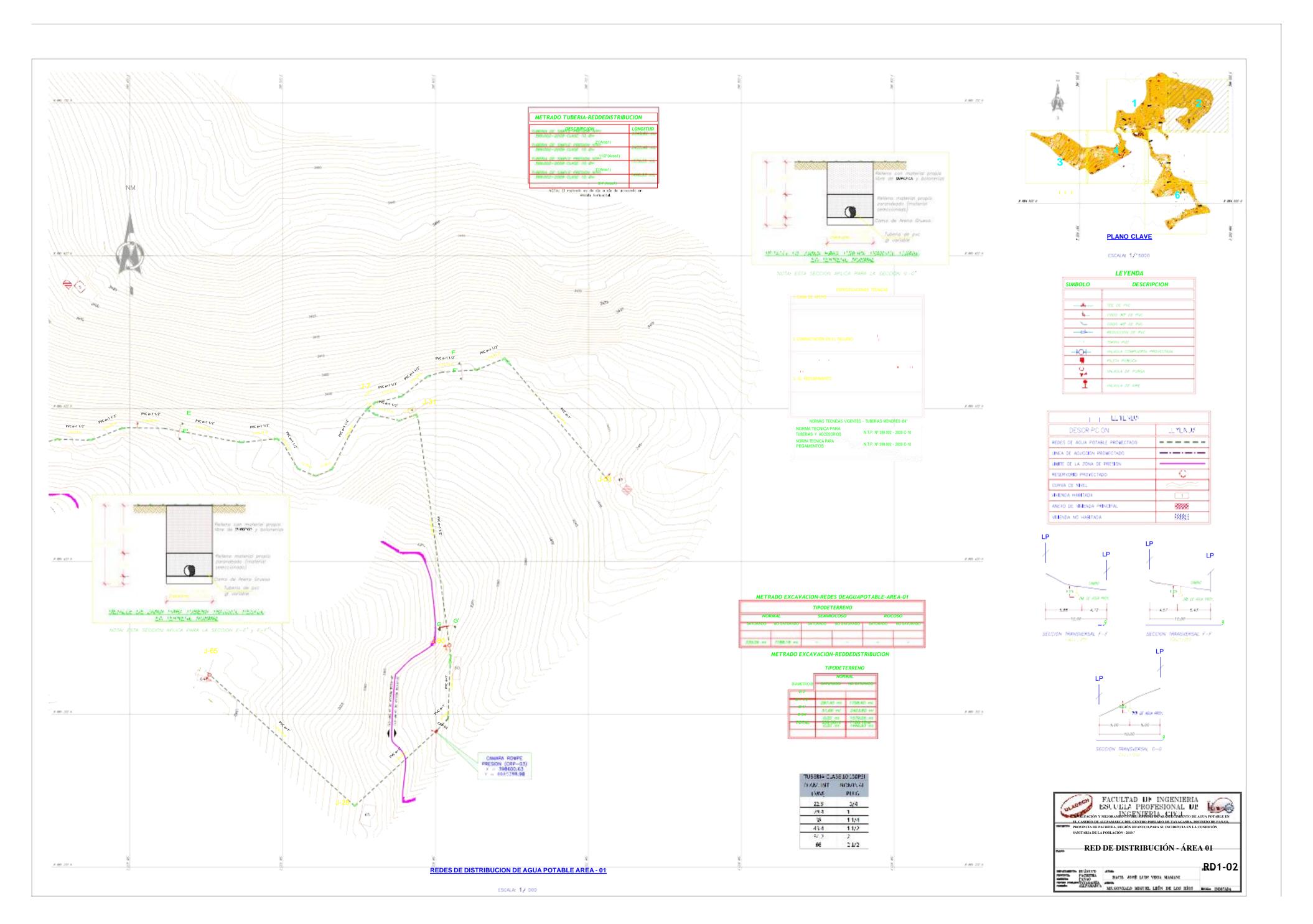
METRADO TUBERIA-LINEADECONDUCCION	
DESCRIPCION	LONGITUD
TUHERIA DE PVC NTP N° 399,002 - 2009 CLASE 10 Ø=2"	44,48 ml

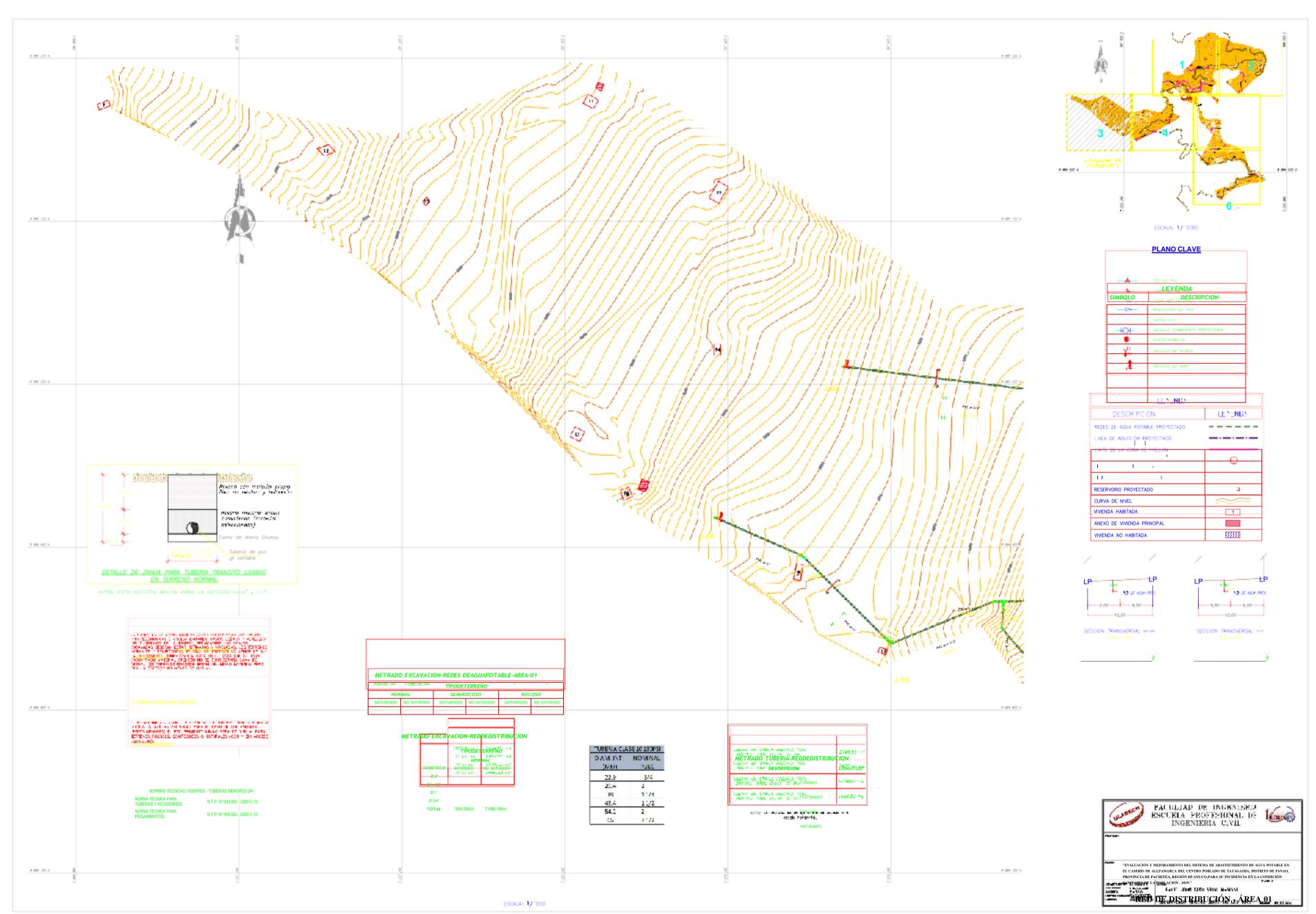
NOTA: La langitud de tubería es horizontal de Cy2 a Cy2 de accesorio.

PLANO CLAVE ESCALA: 1/17.000

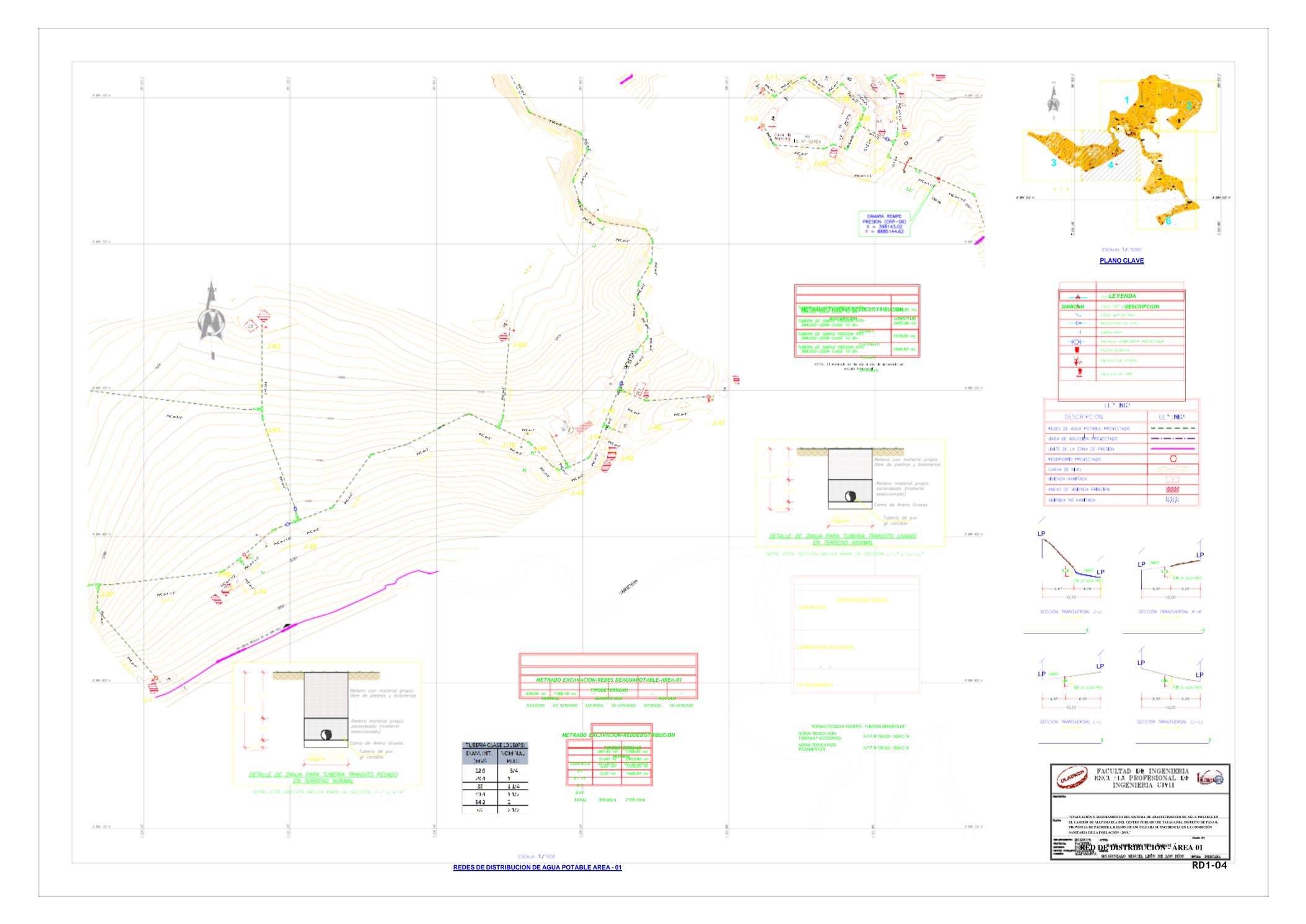
LÍNEA DE ADUCCIÓN - ÁREA 01

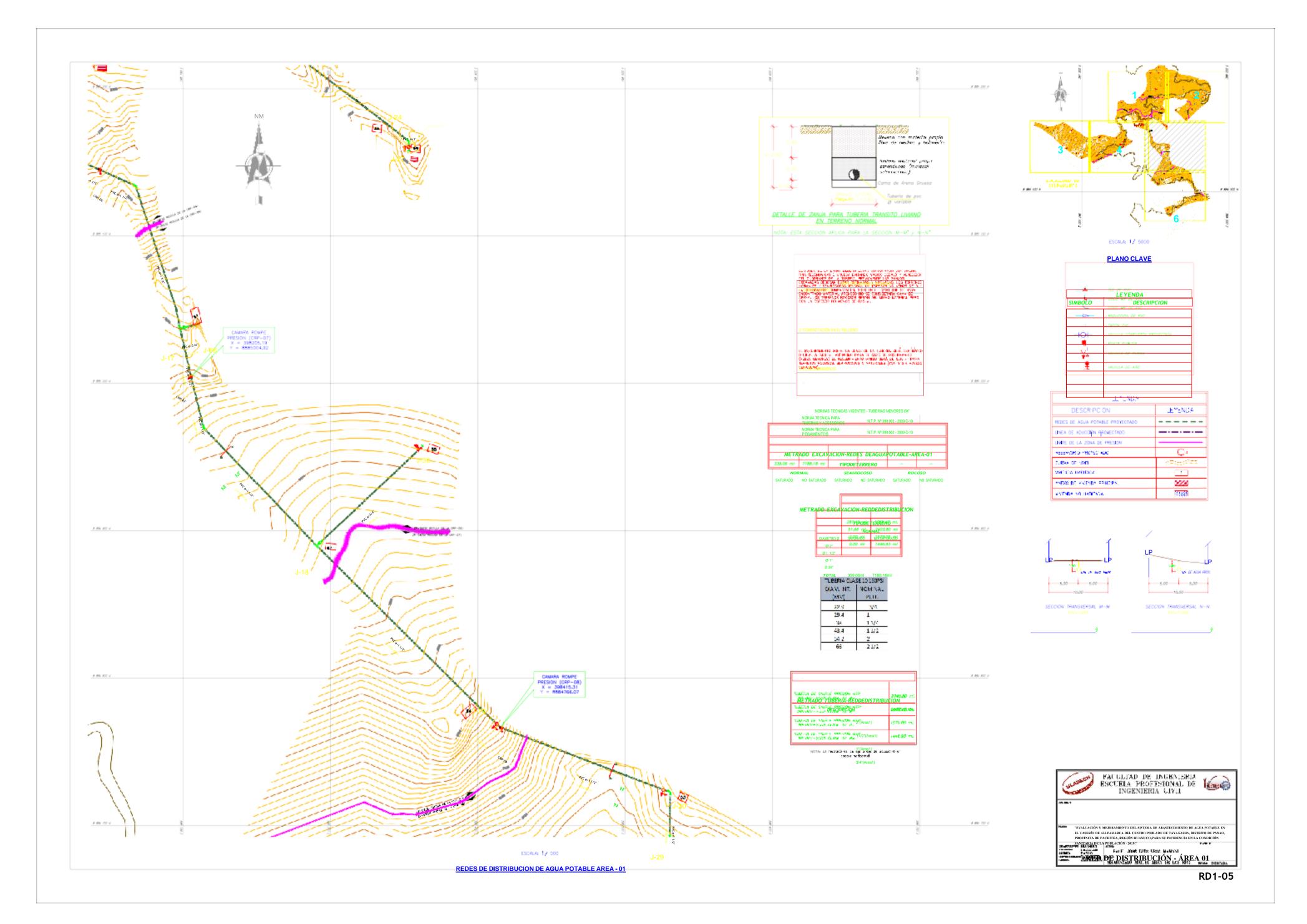

MEGRARIO HIGHITO
PROPOSA PROSETTO
MINTE HASED
PROPOSA STATEMENTS
MEGRARIO STATEMENTS
MEGRARIO MINTELLE PROPOSA MANAMI

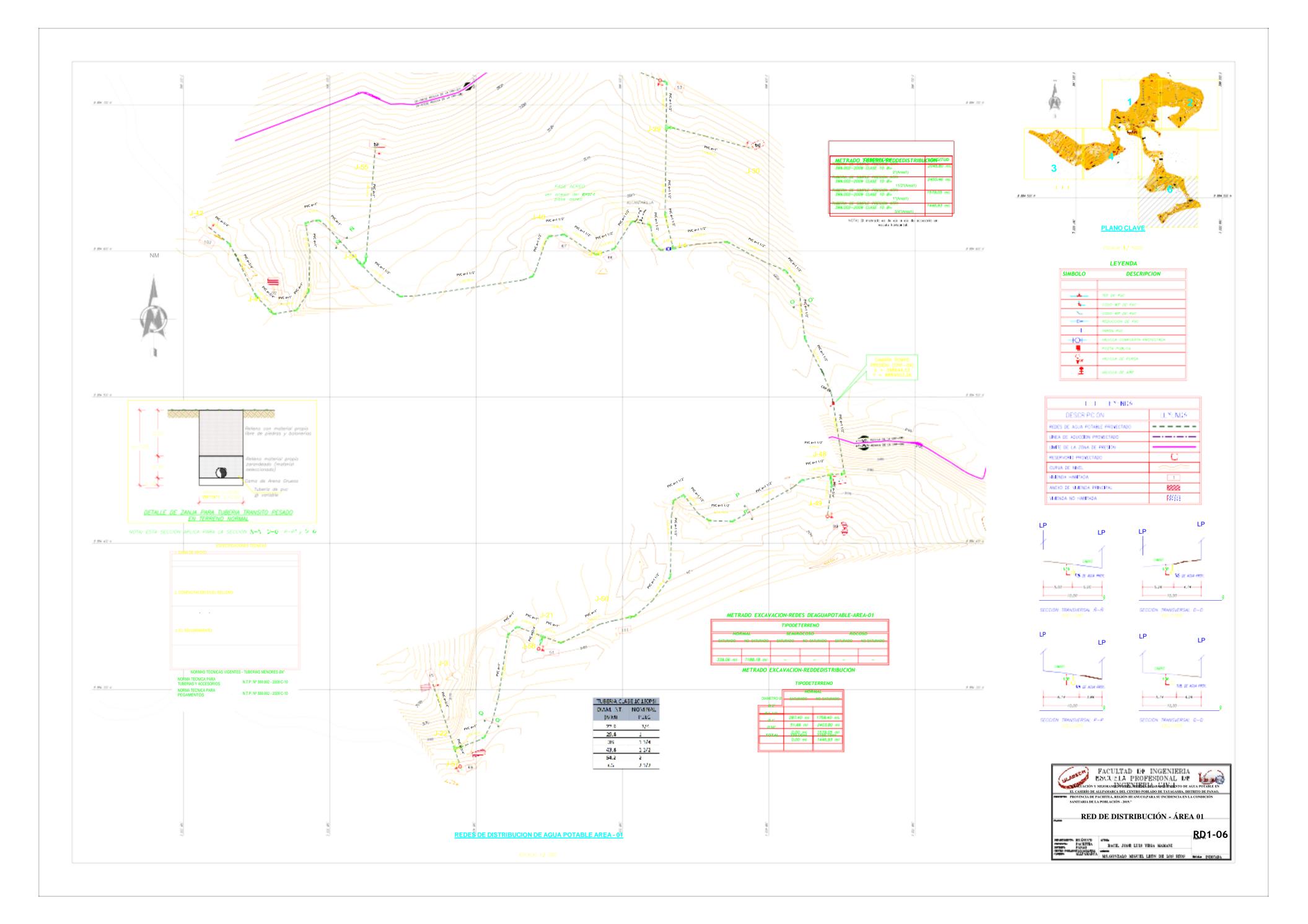

MEGRARIO HIGHITOLI DE PROPOSA MANAMI

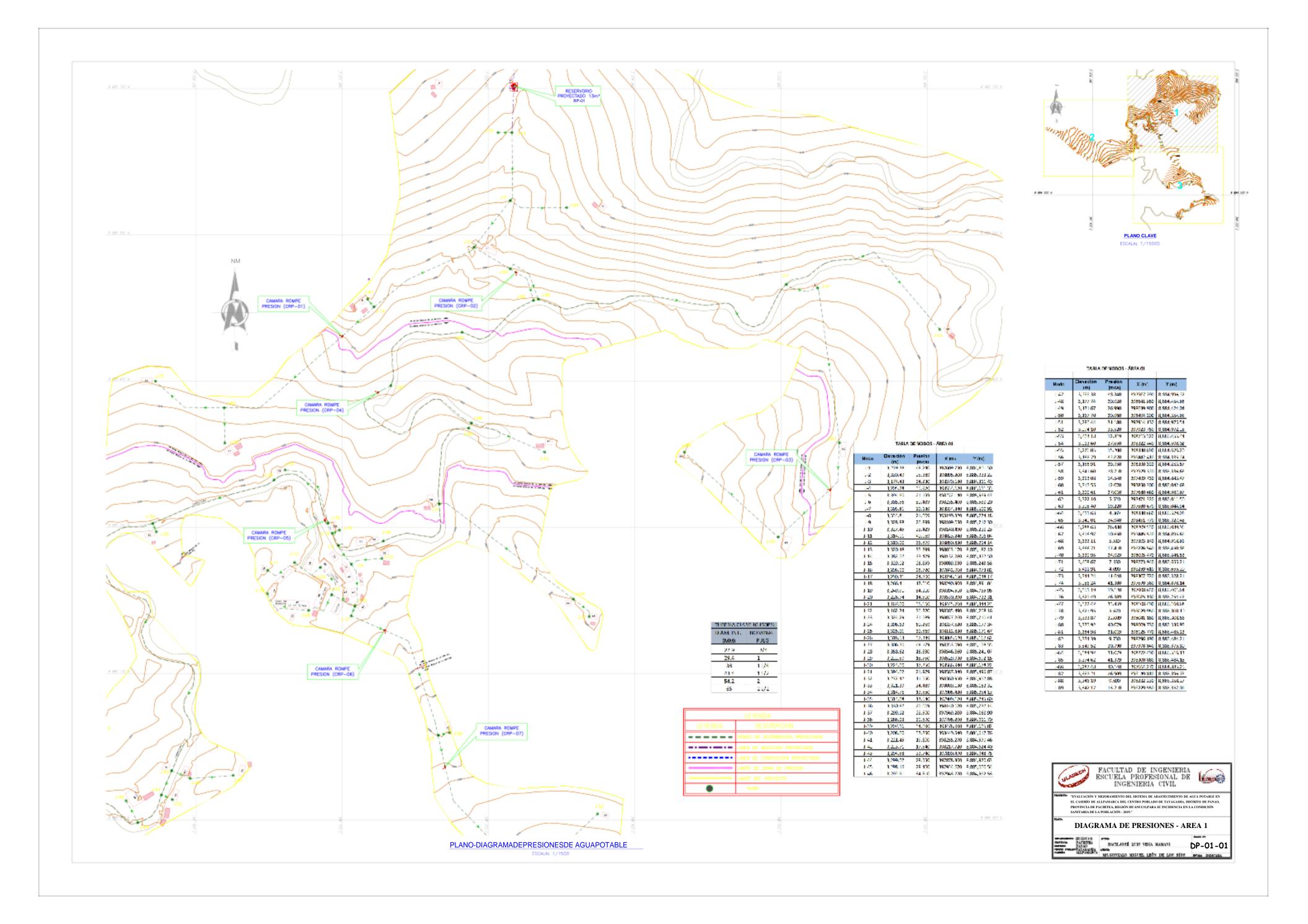

MEGRARIO HIGHITOLI DE PROPOSA MANAMI

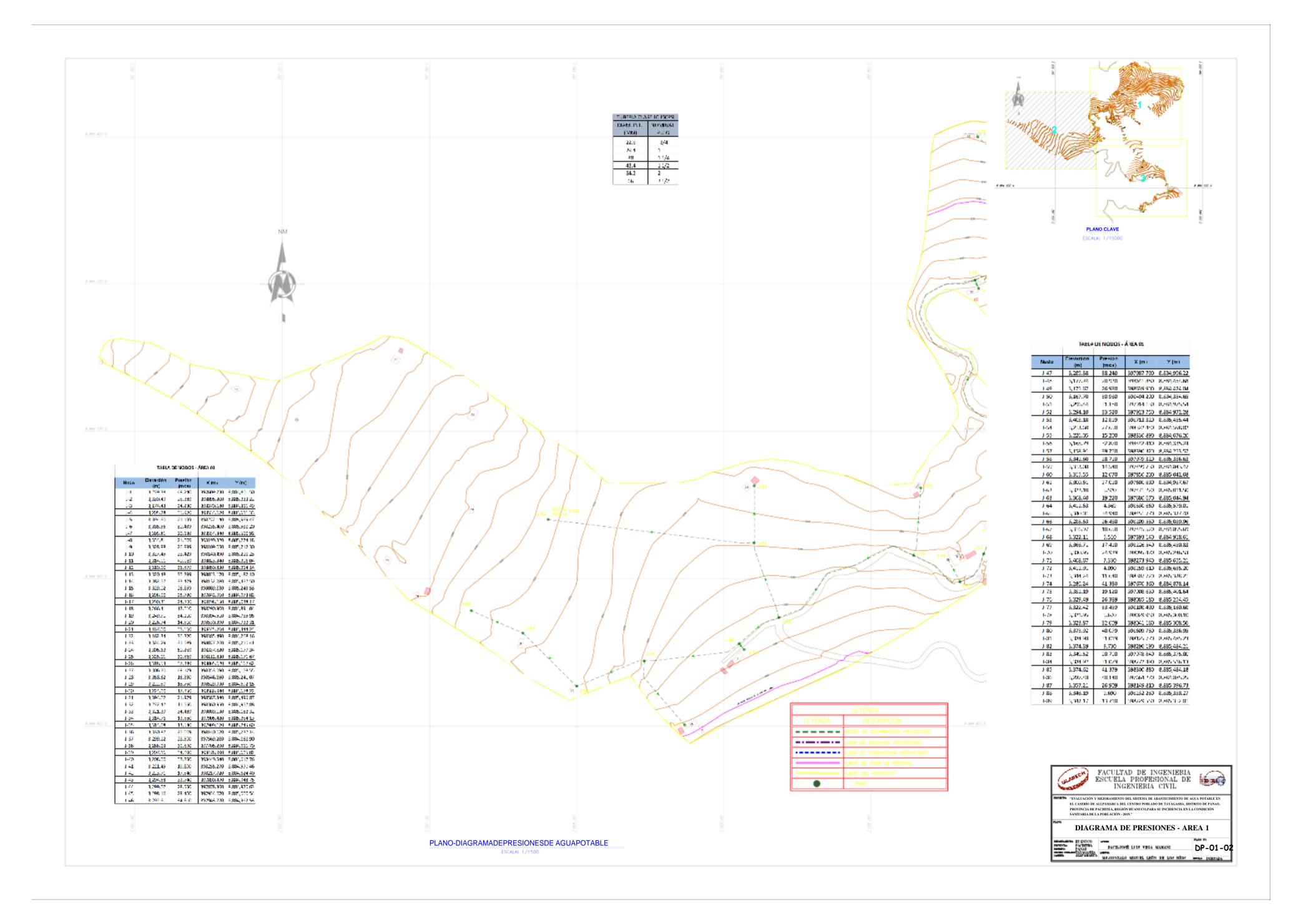
MEGRARIO HIGHITOLI DE PROP

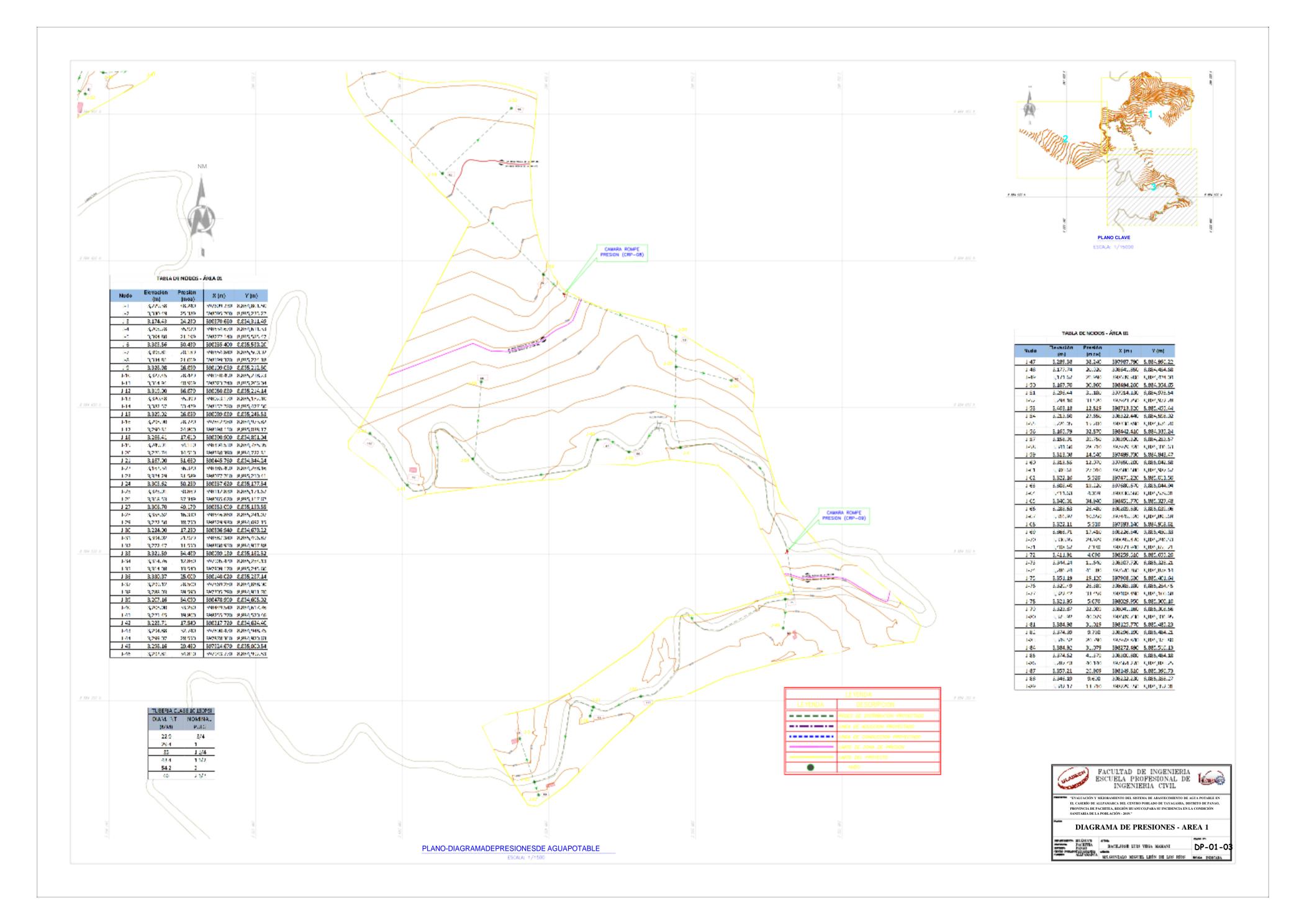

LA1-01

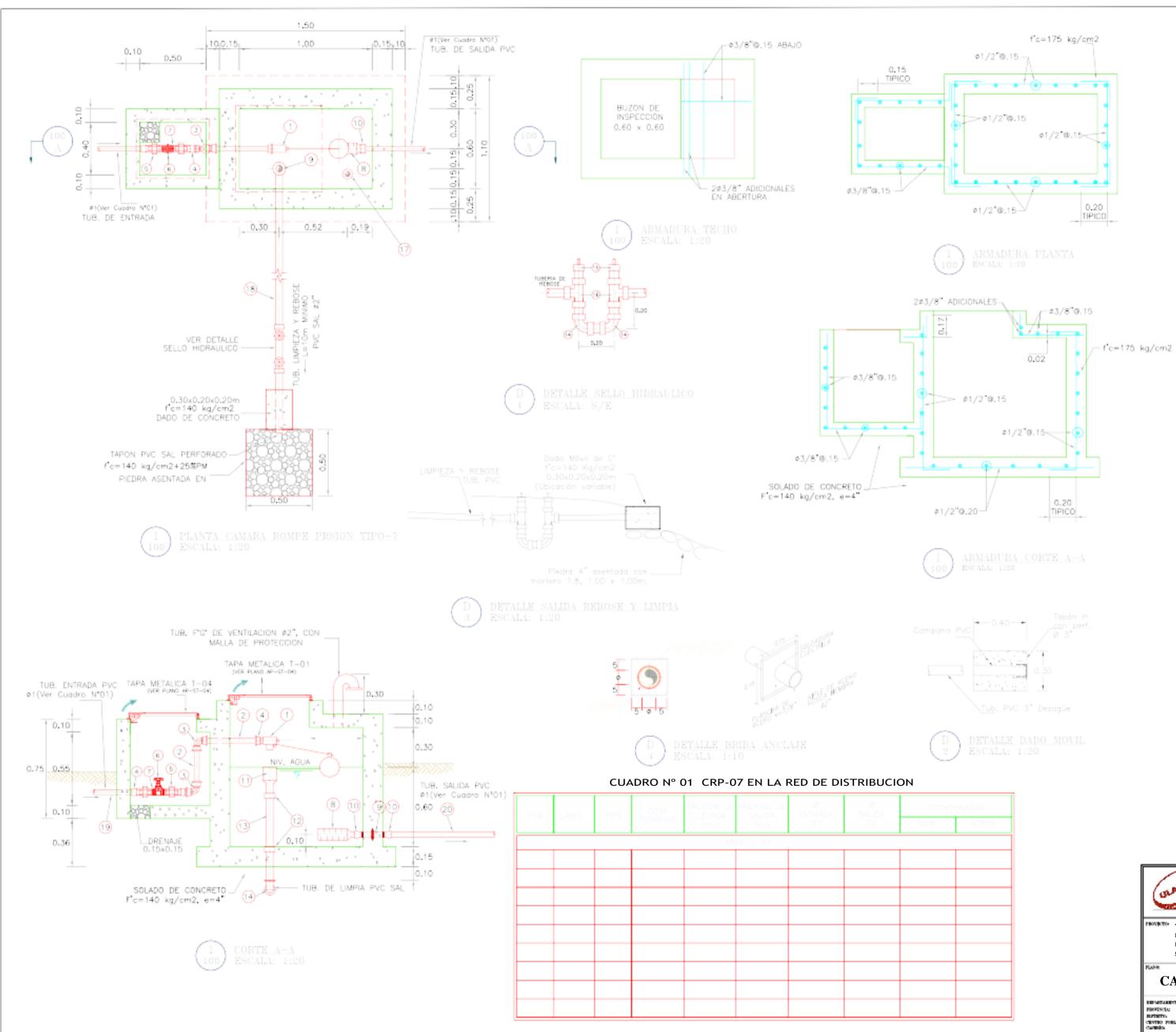







REDES DE DISTRIBUCION DE AGUA POTABLE AREA - 01





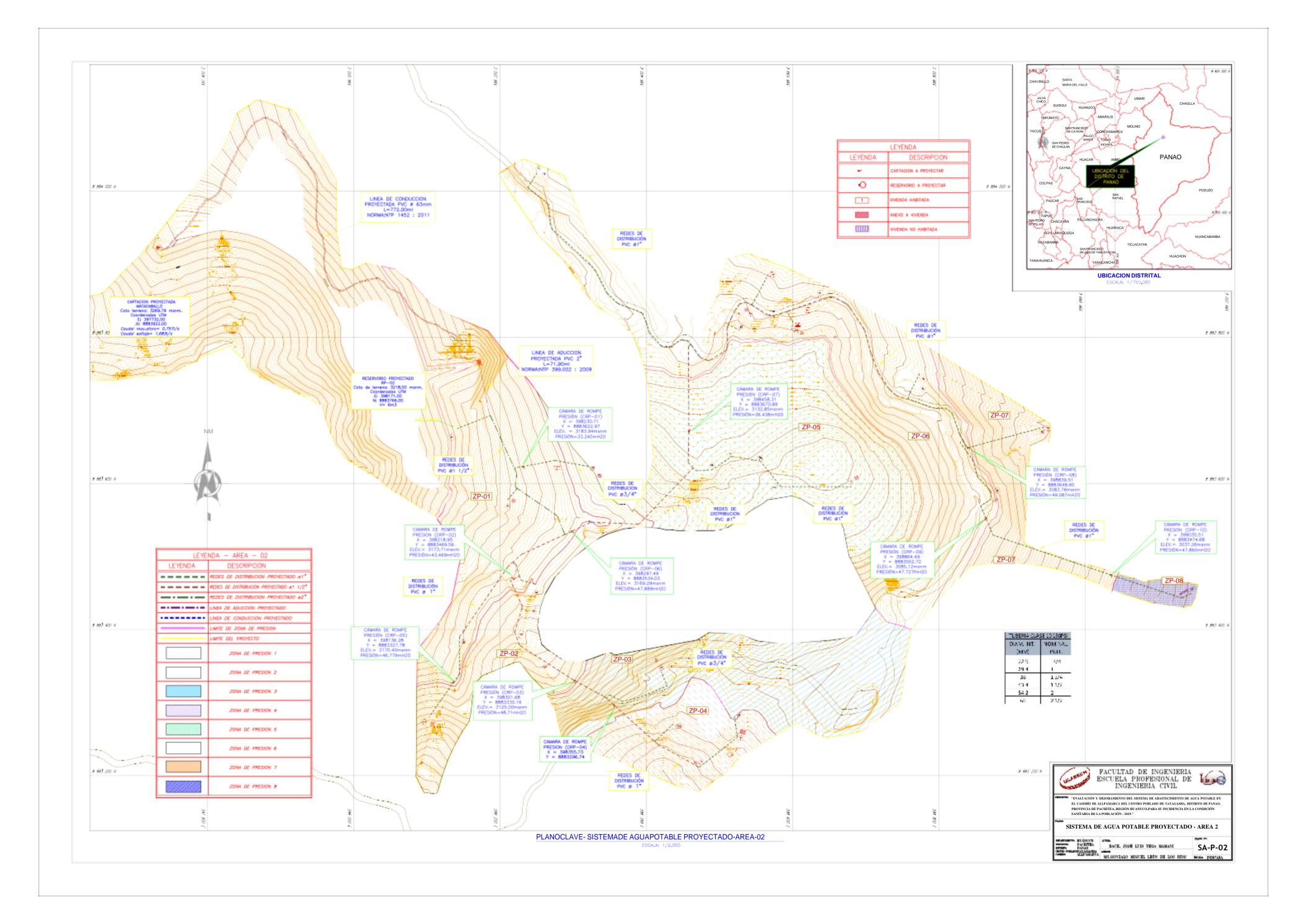
ESPECIFICACIONES TECNICAS

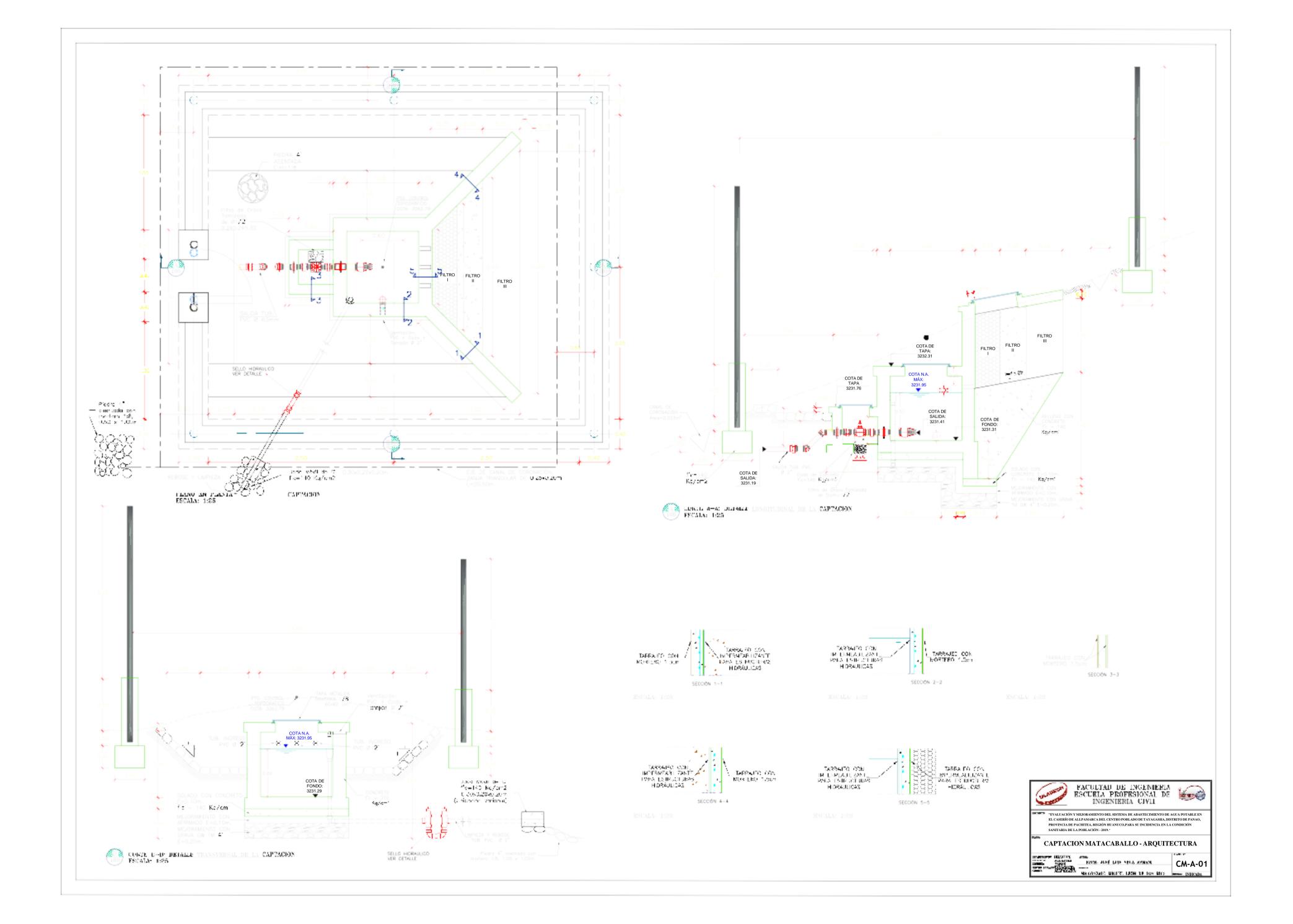
- Concreto armado f´c = 210 kg/cm2
- Concreto simple f´c = 140 kg/cm2
- Acero fy = 4200 kg/cm2
- Recubrimientos:
- Losa superior =2 cm Losa de Fondo =4 cm Muros =2 cm
- Enlucidos exterior e=1.5 cm, 1:4
- Enlucidos interior e=2.0 cm, 1:2 + aditivo impermeabilizante
- MATERIALES
- Cemento Portland Tipo I
- Acero Corrugado Grado 60
- Hormigon
- TUBERIA Y ACCESORIOS
- -Tubería y accesorios PVC deben cumplir -Norma Técnica Peruana 399.002 para fluidos a presión.
- -Norma Técnica Peruana 399.003
- -Norma Técnica Peruana ISO 1452:2011

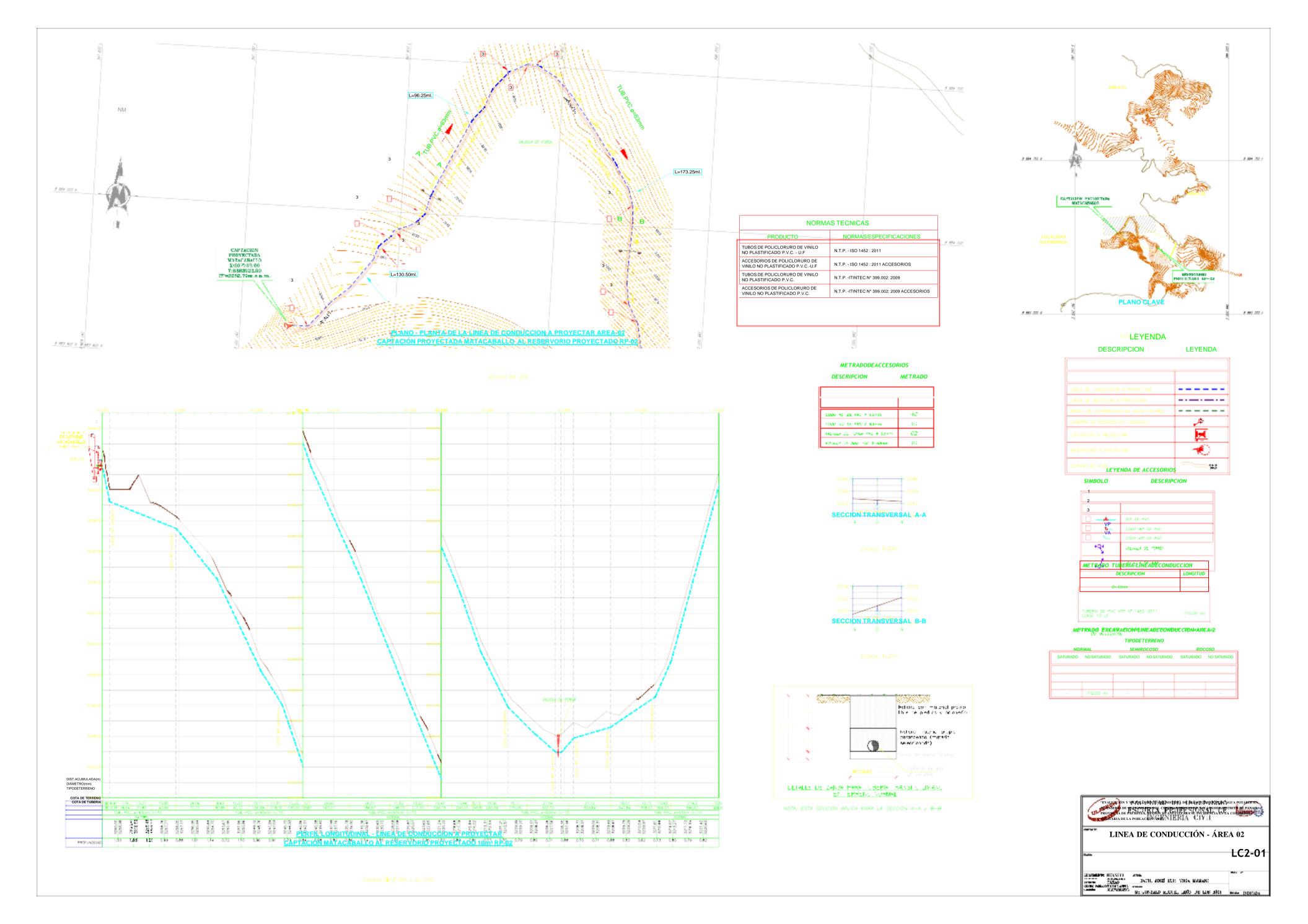
N°	ACCESORIO	Ø	UND
	Mpse FVC C-JC' L=4"		
3	Clade MVC 90°		
4	Adoptodor UPR PVC		
5	Union Universal FVC		
6	Valvula compuerta de Brance		
7			
8			
	divida de anciaje F*G* L=4*		
	Adoptisdar LYW FVC		
	Cono de Rebose PVC SAL		
		2"	
rd .	Tube PVC SAL L=0.40m.		
74	Codo 90° 50° PVC 54L		
	Topon Wacha SP S4L		
16	Tee SP PVC SAL		
	Tuberia FIGT Ventilacion	2"	
	Tuberio PVC SAL L-5.00	2"	
79		.0.1	

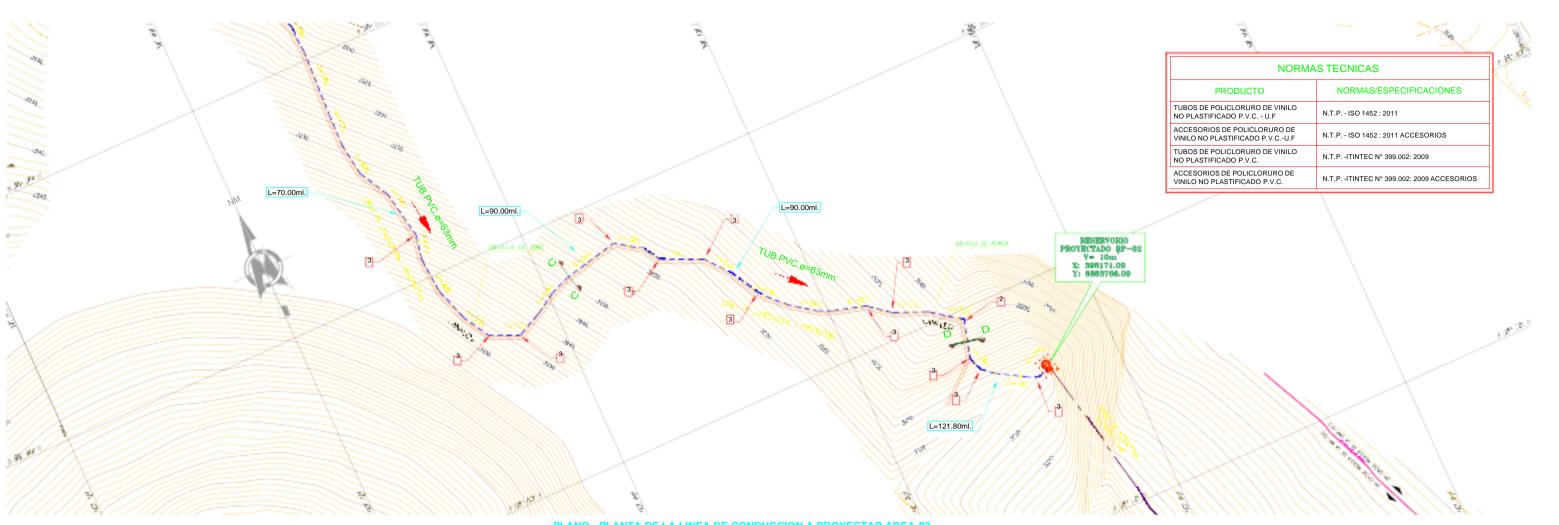
CUADRO DE RELACIONES DE NORMAS TECNICAS

DIAMETRO NOMINAL DE TUBERIAS		
N.T.P-ISO1452	N.T.PITINTEC Nº 399.002-399.003	
ф 21mm	ф 1/2"	
ф 26.5mm	ф 3/4"	
ф.33mm	ф 1"	
ф 48mm	ф 1 1/2"	
ф 60mm	ф 2"	
ф 114mm	ф 4"	

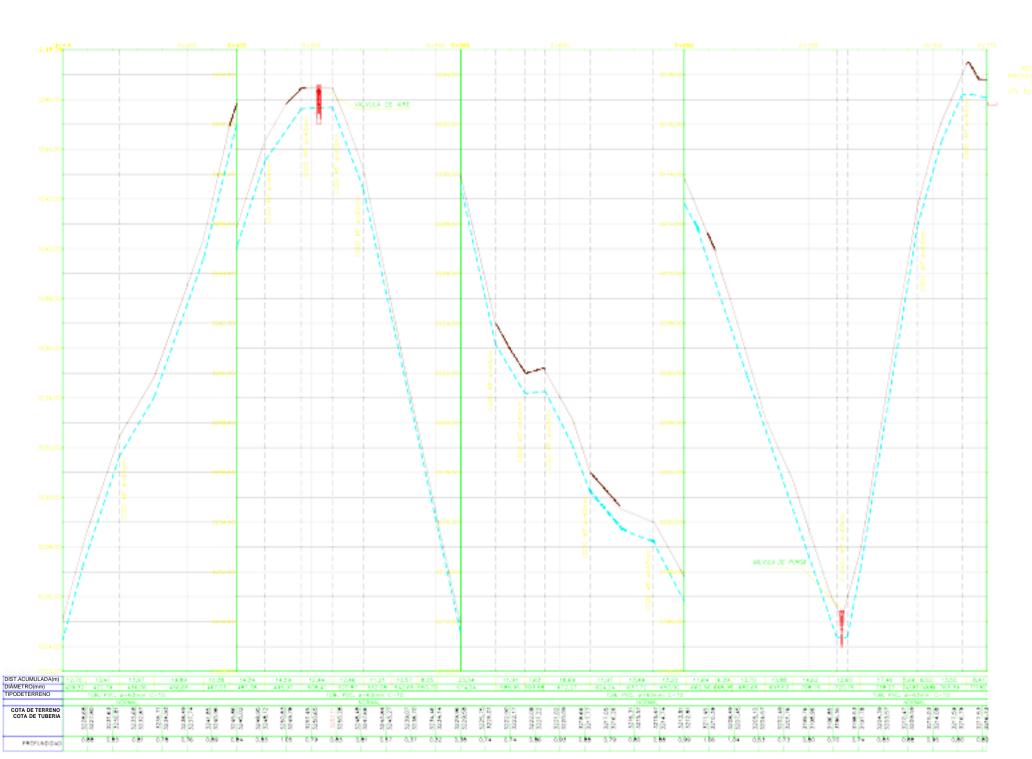


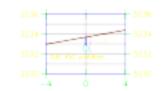

"EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL CASERÍO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUANUCO,PARA SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN - 2019."

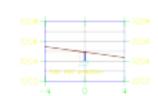

CAMARA ROMPE PRESION TIPO 7 - ÁREA 01

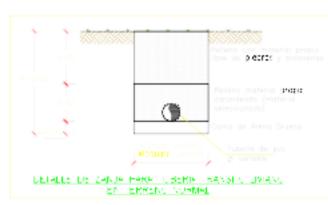


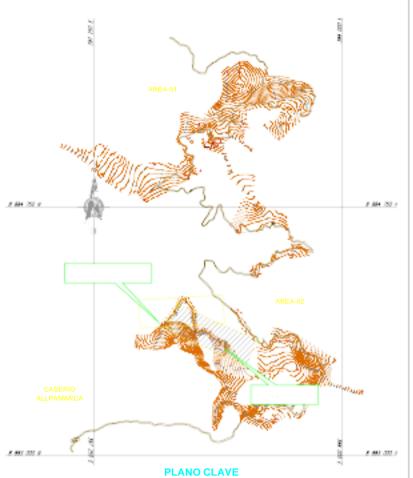
PACE PACENTE P






PLANO - PLANTA DE LA LINEA DE CONDUCCION A PROYECTAR AREA-02 CAPTACIÓN PROYECTADA MATACABALLO AL RESERVORIO PROYECTADO RP-02


METRADODEACCESORIOS		
DESCRIPCION	METRADO	
copp set of evo a street	48	
0000 90" DE PVC # 65mm	01	
VALMULA DE PURSA PVC & 634V4	02	
VALUEDA DE ARRE POR E REVON	01	

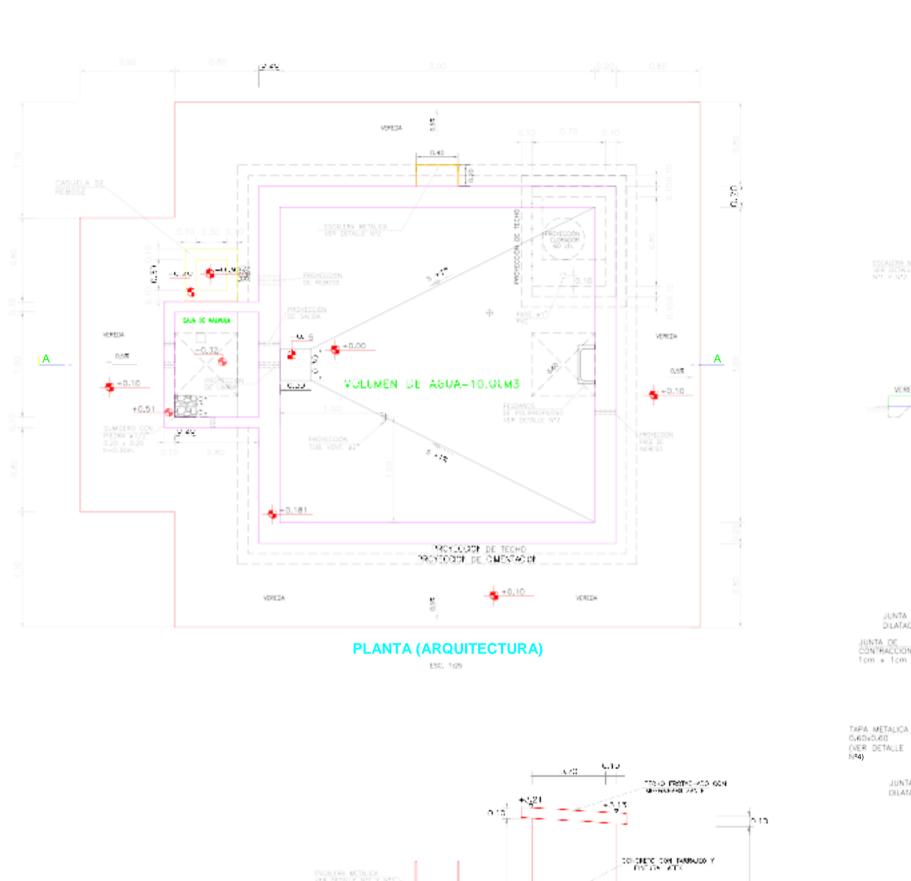


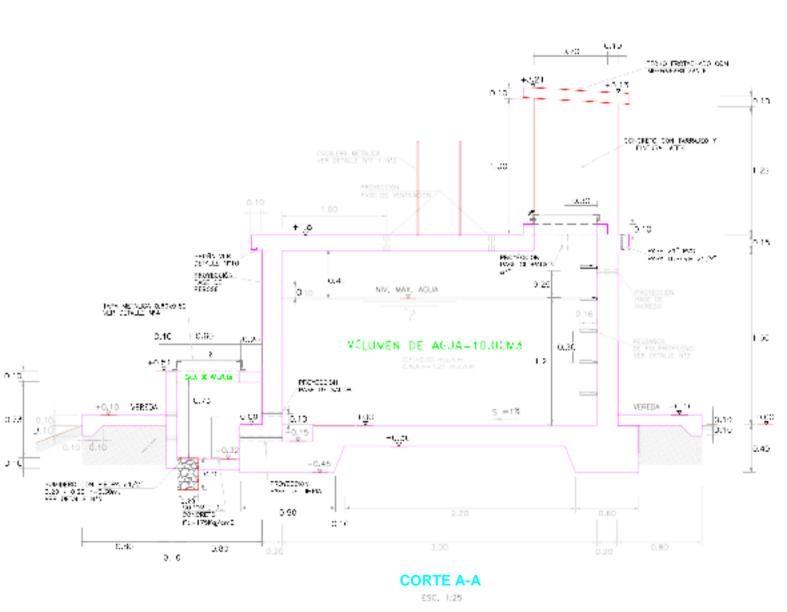
SECCION TRANSVERSAL C-C

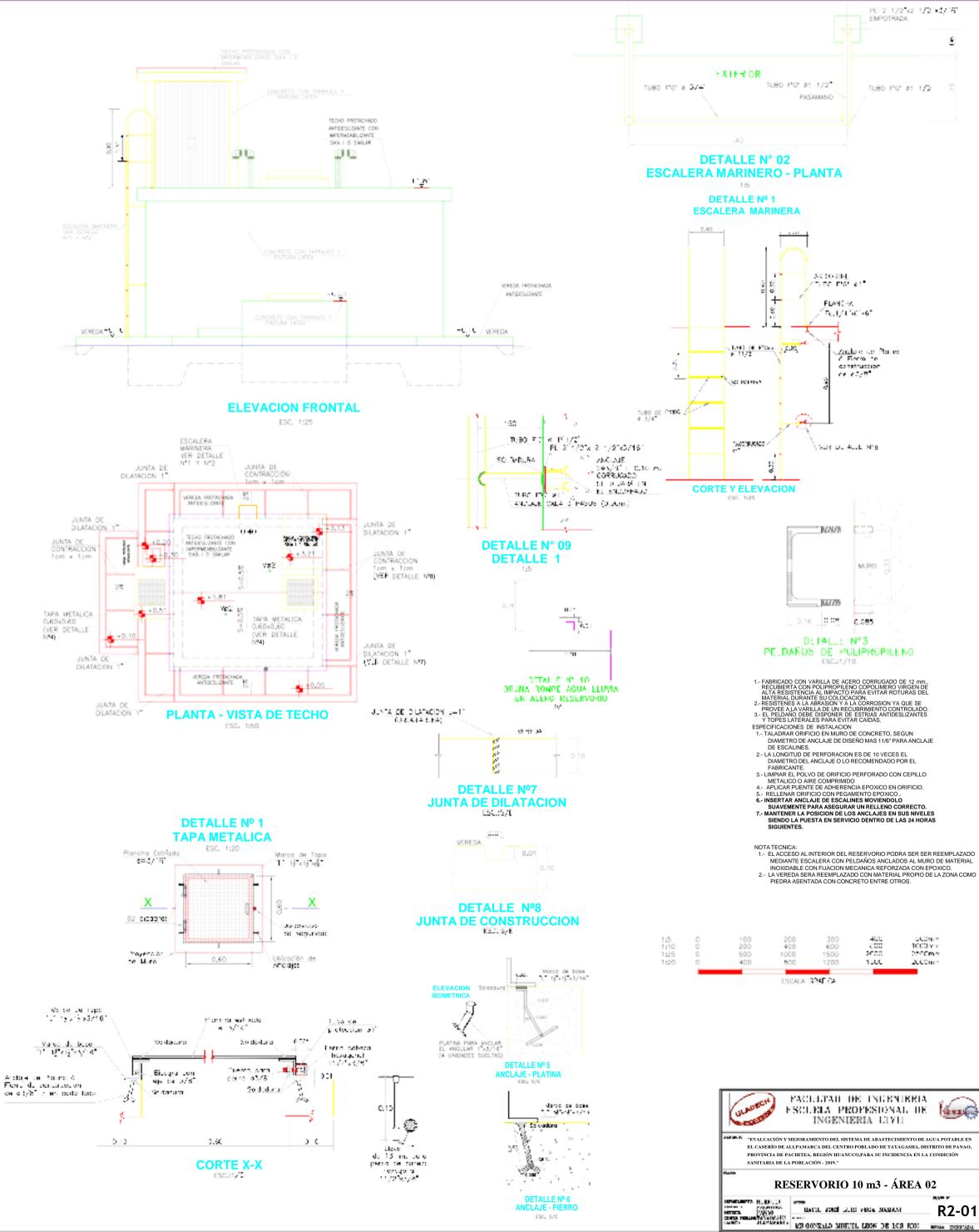
SECCION TRANSVERSAL D-D

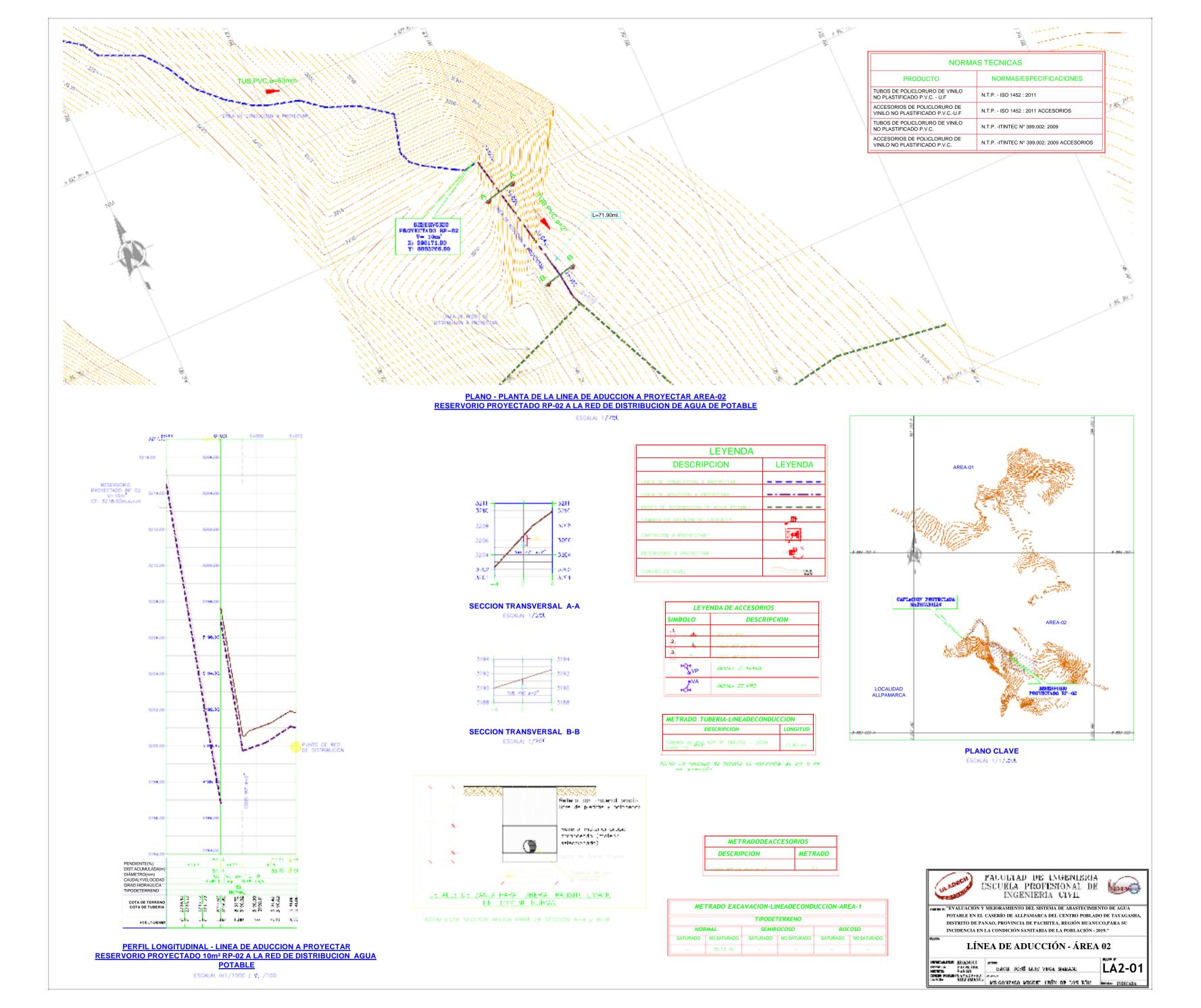
LEYENDA DESCRIPCION	LEYENDA
LINEA DE CONDUCCION A PROJECTAR	
DINEA DE ADUCCION A PROYECTAR	
REDES DE DISTRIBUCION DE AQUA POTABLE	
CAMARA DE REUNION DE CAUDALES	خلب
CAPTACION A PROYECTAR	<u>F</u>
RESERVORIO A PROTECTAR	→€
CURVAS DE NIVEL	- ***

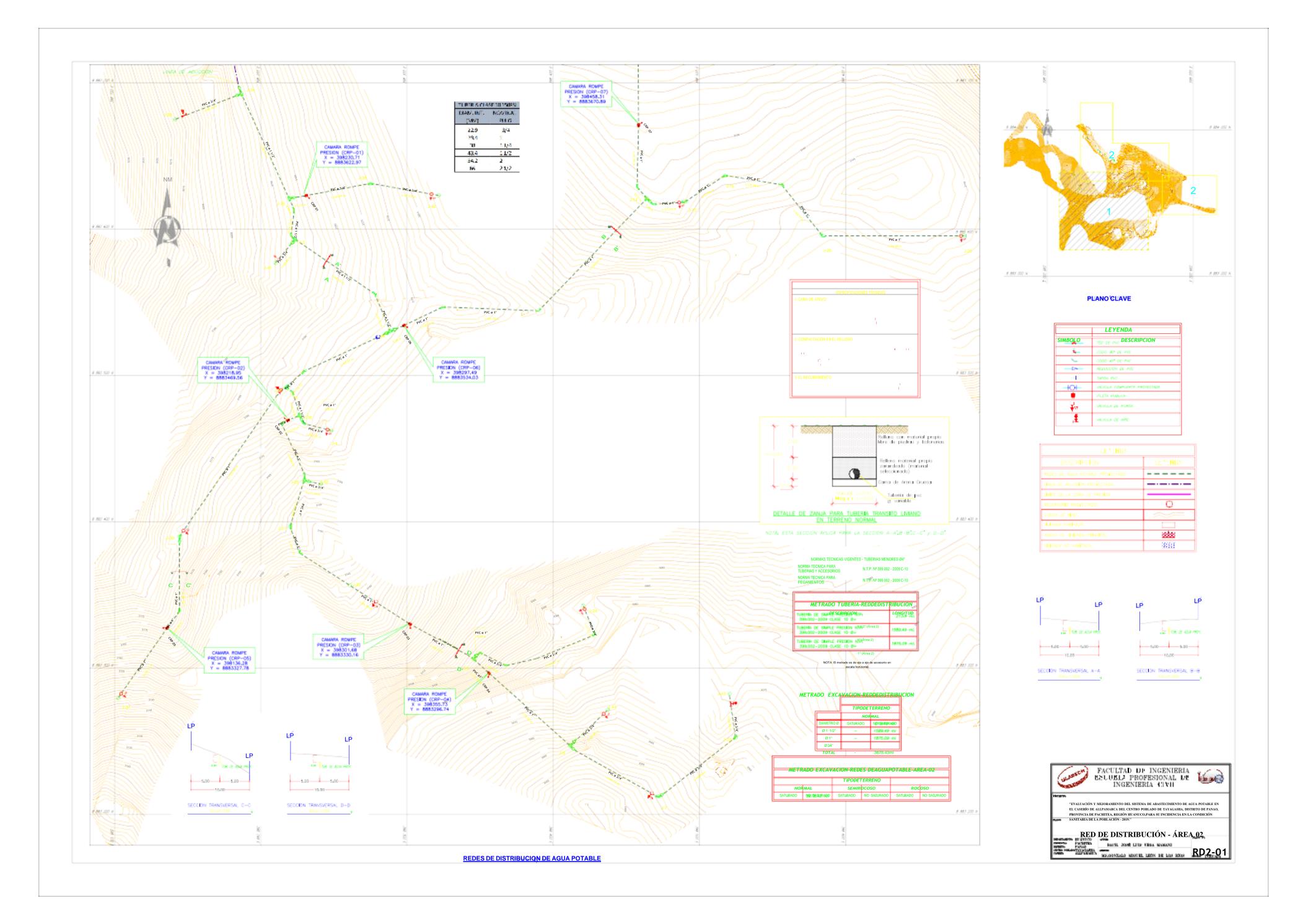
LEYENDA DE ACCESORIOS

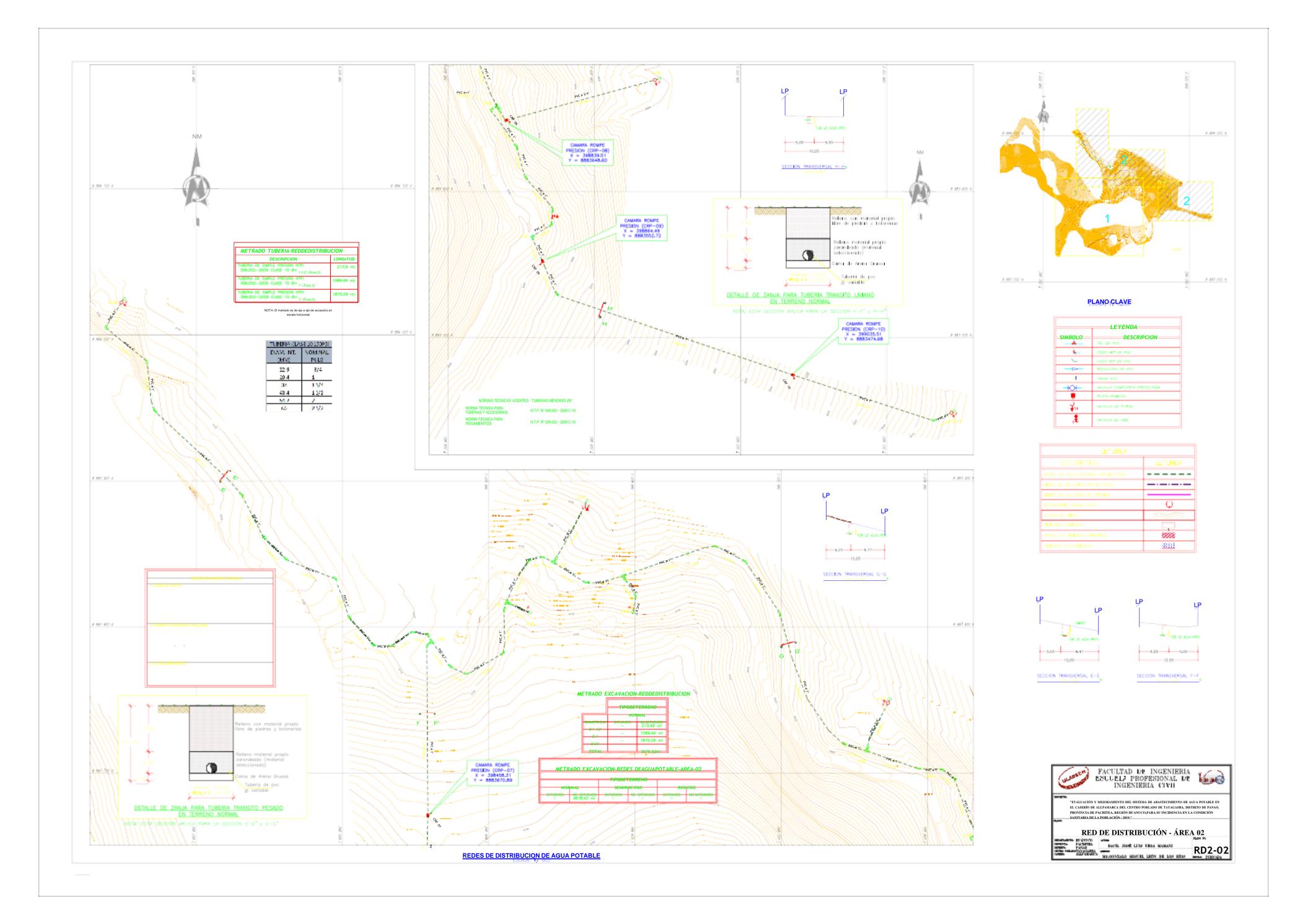

SIMBOLO		DESCRIPCION
1 2		THE SE PIC
3	t	CODO NO DE PVC
Ŏ	No. 1	copo ver se evo
•	℃ VP VA	MENDER DE PORSK
	J.	WALVALLE AME

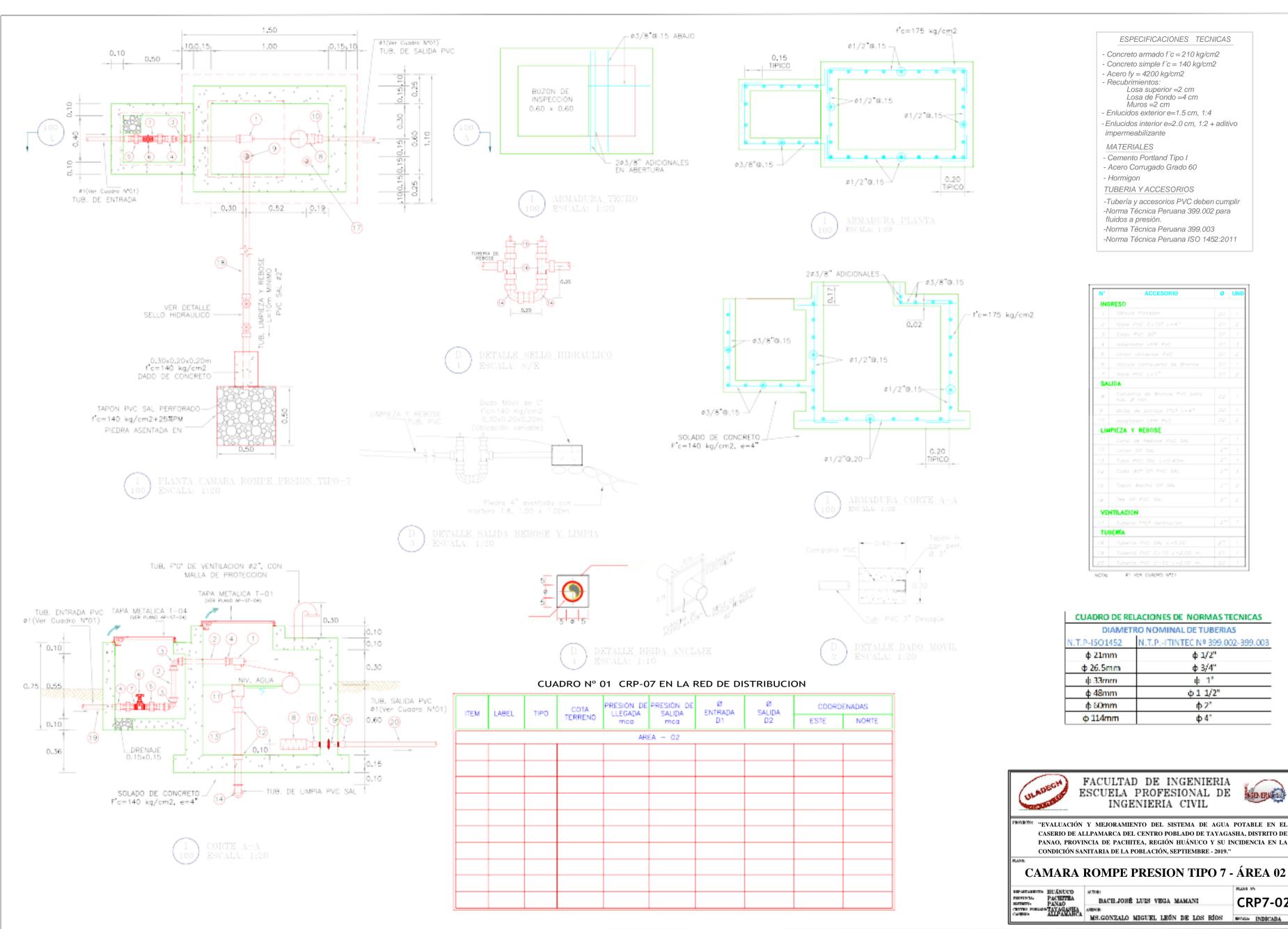

METRADO TUBERIA-LINEADECONDUCCION	
DESCRIPCION	LONGITUD
TUBERNA DE 19 0=63mm ut 1452-2011 CLASE 10 UF	773.00 est.


METRADO EXCAVACION-LINEADECONDUCCION-AREA-1 TIPODETERRENO					
NORMAL		SEMIR	ocoso	ROC	oso
SATURADO	NO SATURADO	SATURADO	NO SATURADO	SATURADO	NO SATURADO
	772,00 ml				




PERFIL LONGITUDINAL - LINEA DE CONDUCCION A PROYECTAR
CAPTACIÓN MATACABALLO AL RESERVORIO PROYECTADO 10m³ RP-02





ESPECIFICACIONES TECNICAS

- -Tubería y accesorios PVC deben cumplir -Norma Técnica Peruana 399.002 para
- -Norma Técnica Peruana 399.003

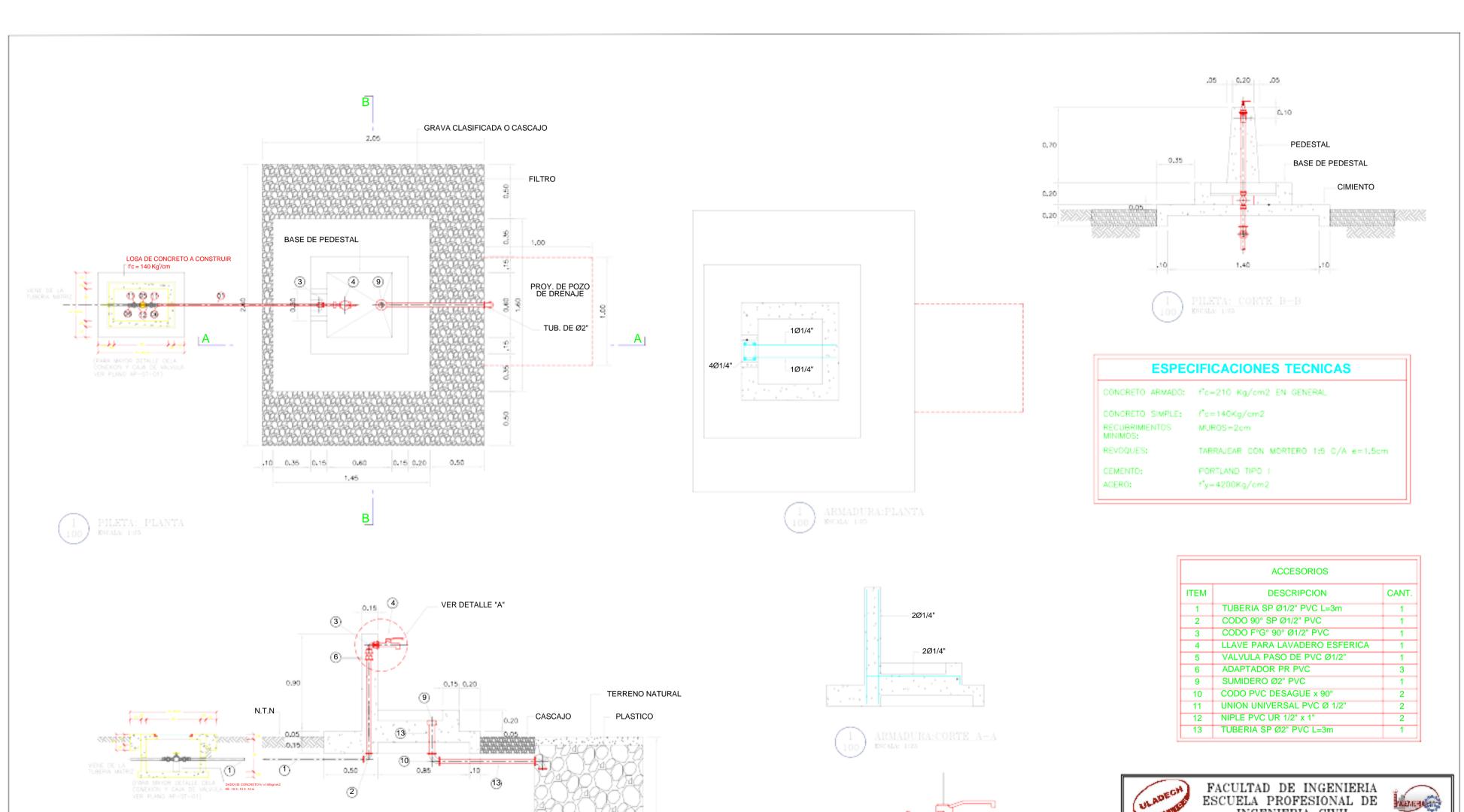
Vorma	Técnica	Peruana	ISO	1452:201

N°	ACCESORIO	Ø	UND
ING	RESO		
	Note FVC C-JC' L=4"		
3	Code PVC 90°		
4	Astoprostor UPR PVC		
5	Union Universal FVC		
6	Valvula compuerta de Brance		
7			
SAL	JDA		
8			
	divida de anciaje F*G* L=4*		
	Adaptador UFF FVC		
UИ	PIEZA Y REBOSE		
	Cono de Rebose PVC SAL		
		2"	
rd.	Tubo PVD SAL L=0.40m.		
74	Codo 90° 50° PVC 54L		
	Topon Macha SP S4L		
06	Tee SP PVC SAL		
YE	MILACION		
	Tuberia PIGE Ventilacion	2"	
TUE	ERÍA		
	Tuberio PVC SAL L-5.00	2"	
7.0		.0.1	2

CUADRO DE RELACIONES DE NORMAS TECNICAS

	DIAMETRO NOMINAL DE TUBERIAS		
l	N.T.P-ISO1452	N.T.PITINTEC Nº 399.002-399.003	
	ф 21mm	ф 1/2"	
	ф 26.5mm	ф 3/4"	
	ф 33mm	ф 1"	
	ф 48mm	ф 1 1/2"	
	ф 50mm	φ2*	
	ф 114mm	ф 4*	

ESCUELA PROFESIONAL DE


PROFESTOR "EVALUACIÓN Y MEJORAMIENTO DEL SISTEMA DE AGUA POTABLE EN EL CASERIO DE ALLPAMARCA DEL CENTRO POBLADO DE TAYAGASHA, DISTRITO DE PANAO, PROVINCIA DE PACHITEA, REGIÓN HUÁNUCO Y SU INCIDENCIA EN LA CONDICIÓN SANITARIA DE LA POBLACIÓN, SEPTIEMBRE - 2019."

CAMARA ROMPE PRESION TIPO 7 - ÁREA 02

CRP7-02

PIEDRA GRANDE 4"- 3"

POZO DE DRENAJE

