

UNIVERSIDAD CATOLICA LOS ANGELES DE CHIMBOTE

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

DETERMINACION Y EVALUACION DE LAS
PATOLOGIAS DEL CONCRETO PARA OBTENER EL
INDICE DE INTEGRIDAD ESTRUCTURAL Y CONDICION
OPERACIONAL DE LA SUPERFICIE DE LA PISTA EN LA
AVENIDA HABILITACION URBANA MUNICIPAL,
DISTRITO DE CALLERIA, PROVINCIA DE CORONEL
PORTILLO, DEPARTAMENTO DE UCAYALI - 2017

TESIS PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

BACH. LUIS DIEGO HUAMAN CORDOVA

ASESOR:

ING. RAMIREZ PALOMINO LUIS ARTEMIO

PUCALLPA – PERÚ

2017

Hoja de firma del jurado

Mag. Ing. Johanna del Carmen Sotelo
Urbano
Presidente

Ing. Francisco Eli Oropeza Ascarza
Miembro

Ing. Juan Alberto Veliz Rivera Miembro

3. Hoja de agradecimiento y/o dedicatoria

3.1. Agradecimiento

Dios

Por la bendición de darme la vida cada día, el permitirme disfrutar de mi familia.

Universidad

Mi segundo hogar, donde tuve la oportunidad de formarme profesionalmente con principios y valores.

Padres

Por los valores puestos en mi a muy temprana edad y el amor que brindan cada día.

Docentes

Son quienes me brindaron los conocimientos básicos y necesarios durante cinco años para mi formación profesional.

3.2. Dedicatoria

El presente informe de tesis para obtener el título profesional de ingeniero civil está dedicado al ser divino que nos brinda la vida para seguir con el plan que él tiene para nosotros.

Y también poder cumplir con nuestros sueños que sin él no sería posible, nuestro padre celestial Dios y a mis padres, hermana que fueron los pilares para lograr mis metas.

4. Resumen y abstract

4.1. Resumen

El informe de tesis lleva por título "Determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural y condición operacional de la superficie de la pista en la avenida Habilitación Urbana Municipal, distrito de Callería, provincia de Coronel Portillo, departamento de Ucayali - 2017". Tiene como problema de investigación: ¿En qué nivel de la determinación y evaluación de las patologías de concreto para obtener el índice de integridad estructural del pavimento y condición operacional de la superficie de la pista de la avenida Habilitación Urbana Municipal, distrito de Callería, Provincia de Coronel Portillo, Departamento de Ucayali? La metodología de la investigación empleada fue descriptivo, no experimental y de corte transversal. Nivel de investigación, descriptivo, explicativo y correlacionado. Su objetivo general fue determinar el tipo y nivel de a patologías, el índice de integridad estructural del pavimento y condición operacional de la superficie de la pista en estudio, a partir de la determinación evaluación de las patologías encontradas en dicho pavimento. Concluyéndose que los paños del pavimento rígido en estudio presentan patologías, siendo los más recurrentes pulimentos de agregados, daño de sello de junta, grietas en esquina, Punzonamiento y descascaramiento de junta, obteniendo un PCI que nos indica que la condición operacional del pavimento es **Regular.** El trabajo se realizó con el objetivo de que sirva como material de consulta en los procedimientos a considerar a la hora de determinar y evaluar la condición de un pavimento a estudiantes de pregrado o posgrado.

Palabra clave: patologías, índice de condición de pavimentos, tipos de patologías en pavimento rígido.

4.2. Abstract

The thesis report is entitled "Determination and evaluation of the concrete pathologies to obtain the structural integrity index and operational condition of the surface of the runway at Habilitación Urbana Municipal, Callería district, Coronel Portillo province, department of Ucayali - 2017 Greeting Cards ". It has as a research problem: At what level of the determination and evaluation of the concrete pathologies to obtain the structural integrity index of the pavement and operational condition of the surface of the avenue Habilitación Urbana Municipal, district of Callería, Province of Coronel Portillo, Department of Ucayali? The methodology of the research used was descriptive, nonexperimental and cross-sectional. Level of research, descriptive, explanatory and correlated. Its general objective was to determine the type and level of pathologies, the structural integrity index of the pavement and the operational condition of the surface of the track under study, based on the determination and evaluation of the pathologies found in said pavement. It was concluded that the rigid pavement cloths in study present pathologies, being the most recurrent aggregate polishes, joint seal damage, corner cracks, punching and joint peeling, obtaining a PCI that indicates that the operational condition of the pavement is bad. The work was done with the aim of serving as a reference material in the procedures to be considered when determining and assessing the condition of a pavement to undergraduate or graduate students.

Key word: pathologies, index of pavement condition, types of pathologies in rigid pavement.

5. Contenido

1. Título de tesisi
2. Hoja de firma de juradoii
3. Hoja de agradecimiento y/o dedicatoriaiii
3.1. Agradecimientoiii
3.2. Dedicatoriaiiv
4. Resumen y abstract v
4.1. Resumenv
4.2. Abstractvi
5. Contenidovii
6. Índice de figuras y tablasx
6.1. Índice de figurasx
6.2. Índice de tablasxiii
I. Introducción1
II. Revision de literatura
2.1. Antecedentes
2.1.1. Antecedentes internacionales
5.1.2. Antecedentes nacionales
2.2. Bases teóricas de la investigación
2.2.1. Pavimento
2.2.2. Clasificación de los pavimentos

a. Pavimento flexible	16
b. Pavimento rígido	17
c. Pavimentos compuestos	19
d. Pavimentos especiales	19
2.2.3. Patología en pavimentos	20
2.2.4. Deterioros más comunes en los pavimentos	21
2.2.5. Catálogo de fallas del pavimento	22
5.2.6. Índice de condición de pavimento (PCI)	23
III. Metodología	59
3.1. Diseño de la investigación	59
3.2. Universo y población	61
a) Población	61
b) Muestra	61
c) Muestreo	61
3.3. Diseño y Operacionalización de las variables	63
3.4. Técnicas e instrumentos	63
3.5. Plan de análisis	65
3.6. Matriz de consistencia	66
3.7. Principios éticos	69
IV. Resultados.	70

4.1. Análisis de resultados	70
4.2. Resultados	120
V. Conclusiones	125
Aspectos complementarios	126
Referencias bibliográficas	127
Anexos:	130

6. Índice de figuras y tablas

6.1. Índice de figuras

Figura 1: Pavimento flexible	17
Figura 2: Pavimento rígido	18
Figura 3: Fotográfica panorámica de la avenida habilitación urbana municipal	22
Figura 4: Blowup / buckling de baja severidad	25
Figura 5: Grieta de esquina de alta severidad	27
Figura 6: Grieta de durabilidad de alta severidad	29
Figura 7: Escala de alta severidad	31
Figura 8: Daño de sello de junta de alta severidad	32
Figura 9: Desnivel de carril / berma de alta severidad	33
Figura 10: Grietas lineales de alta severidad en losa de concreto simple	36
Figura 11: Parche grande y acometidas de servicios públicos de alta severidad	37
Figura 12: Parche pequeño de severidad media	38
Figura 13: Pulimento de agregados	39
Figura 14: Popout	40
Figura 15: Bombeo	41
Figura 16: Punzonamiento de alta severidad	43
Figura 17: Cruce de vía férrea de severidad media	44
Figura 18: Desconchamientos / mapa de grietas / craquelado de alta severidad	45
Figura 19: Grietas de contracción.	46
Figura 20: Descascaramiento de esquina de alta severidad	47
Figura 21: Descascaramiento de junta de alta severidad	49
Figura 22: Ecuación 1	53
Figura 23: Feugción 2	53

Figura 24: Ecuación 3	57
Figura 25: Ecuación 4.	59
Figura 26: Grafico de valor deducido total de UM-01	77
Figura 27: Porcentaje de fallas y grafico del PCI (UM-01)	79
Figura 28: Grafico del PCI (UM-01)	80
Figura 29: Grafico del valor deducido total – UM-02	90
Figura 30: Grafico del PCI – UM-02.	92
Figura 31: Grafico de porcentajes de fallas –UM-02	93
Figura 32: Porcentajes de fallas (UM-03)	106
Figura 33: Grafico del PCI (UM-03)	107
Figura 34: Grafico del PCI (UM-04).	119
Figura 35: Cuadro estadístico de porcentaje densidades	123
Figura 36: Grafico PCI promedio de la avenida habilitación urbana municipal	124
Figura 37: Ficha de campo (UM-01)	130
Figura 38: Ficha de campo (UM-02)	131
Figura 39: Ficha de campo (UM-03)	132
Figura 40: Ficha de campo (UM-04)	133
Figura 41: Solicitud para inspección de la avenida habilitación urbana municipal	134
Figura 42: Libreta de apuntes	135
Figura 43: Regla milimetrada de metal	135
Figura 44: Wincha de 50 metros.	135
Figura 45: Casco de seguridad	136
Figura 46: Cámara fotográfica	136
Figura 47: Vista panorámica de la avenida habilitación urbana municipal (2017)	148
Figura 48: Vista panorámica de la avenida habilitación urbana municipal (2017)	148

Figura 49: Vista panorámica de la cuadra 01 de la avenida habilitación urbana municipal
Figura 50: Pulimentos de agregados cuadra 01 de la avenida habilitación urbana municipal
Figura 51: Punzonamiento en la cuadra 02 de la avenida habilitación urbana m
Figura 52: Desconchamiento en la cuadra 02 de la avenida habilitación urbana m150
Figura 53: Punzonamiento, descascaramiento, pulimento de agregados en la cuadra 02 de la avenida habilitación urbana municipal (2017)
Figura 54: Punzonamiento, descascaramiento, pulimento de agregados en la cuadra 03 de la avenida habilitación urbana municipal (2017)
<i>Figura 55:</i> Punzonamiento, descascaramiento, daño de sello de junta, grieta de esquina, pulimentos de agregados en la cuadra 03 de la av. Habilitación urbana municipal (2017)
Figura 56: Punzonamiento, descascaramiento, daño de sello de junta, grieta de esquina, pulimentos de agregados en la cuadra 03 de la av. Habilitación urbana municipal (2017)
Figura 57: Punzonamiento, descascaramiento, daño de sello de junta, grieta de esquina, pulimentos de agregados en la cuadra 04 de la av. Habilitación urbana municipal (2017)
Figura 58: Descascaramiento, daño de sello de junta, grieta de esquina en la cuadra 04 de la av. Habilitación urbana municipal (2017)
<i>Figura 59:</i> Escala, descascaramiento, daño de sello de junta, pulimentos de agregados en la cuadra 04 de la av. Habilitación urbana municipal (2017)
<i>Figura 60:</i> Punzonamiento, descascaramiento, daño de sello de junta, grieta de esquina, pulimentos de agregados en la cuadra 04 de la av. Habilitación urbana municipal (2017)

6.2. Índice de tablas

Tabla 1: Tipos de fallas en pavimentos flexibles	13
Tabla 2: Cuadro de catálogo de fallas de pavimento	22
Tabla 3: Niveles de severidad para losa dividida	28
Tabla 4: Niveles de severidad para escala	30
Tabla 5: Niveles de severidad para punzonamiento.	42
Tabla 6: Niveles de severidad para descascaramiento de esquina	46
Tabla 7: Niveles de severidad descascaramiento de juntas	48
Tabla 8: Rangos de calificación del PCI.	50
Tabla 9: Formato de exploración para carreteras con superficie de concreto rígido	52
Tabla 10: Formato para la obtención del máximo valor deducido corregido	58
Tabla 11: Ideograma de diseño de investigación	60
Tabla 12: Definición y operacionalizacion de las variables.	63
Tabla 13: Matriz de consistencia	67
Tabla 14: Determinación de las unidades de muestreo	71
Tabla 15: Hoja de inspección, cálculo de "m" y VDC (UM-01)	73
Tabla 16: Cálculo del VR – falla 21-UM-01	74
Tabla 17: Cálculo del VR – falla 26-UM-01	75
Tabla 18: Cálculo del VR – falla 31-UM-01	75
Tabla 19: Cálculo del número máximo admisible de fallas permisibles (UM-01)	77
Tabla 20: Interpolación de VDC. Calculo del PCI y VDC (UM-01)	78
Tabla 21: Cálculo del PCI UM-01	79
Tabla 22: Hoja de inspección, cálculo de "m" y VDC (UM-02)	82
Tabla 23: Cálculo del VR – falla 21-UM-02	83
Tabla 24: Cálculo del VR – falla 26-UM-02	84
Tabla 25: Cálculo del VR – falla 31-UM-02	85

Tabla 26: Cálculo del VR – falla 32-UM-02.	86
<i>Tabla 27:</i> Cálculo del VR – falla 34-UM-02.	87
<i>Tabla 28:</i> Cálculo del VR – falla 36-UM-02.	88
Tabla 29: Cálculo del VR – falla 38-UM-02	89
Tabla 30: Cálculo del número máximo admisible (UM-02)	90
Tabla 31: Interpolación de VDC. Calculo del PCI (UM-02)	91
Tabla 32: Cuadro de VDC (UM-02)	92
Tabla 33: Hoja de inspección, cálculo de "m" y VDC (UM-03)	96
Tabla 34: Cálculo del VR – falla 22-UM-03	97
Tabla 35: Cálculo del VR – falla 25-UM-03	98
Tabla 36: Cálculo del VR – falla 26-UM-03	99
Tabla 37: Cálculo del VR – falla 27-UM-03	100
Tabla 38: Cálculo del VR – falla 31-UM-03.	101
<i>Tabla 39:</i> Cálculo del VR – falla 36-UM-03	102
<i>Tabla 40:</i> Cálculo del VR – falla 39-UM-03	103
Tabla 41: Cálculo del número máximo admisible y VDC – UM-03	104
Tabla 42: Interpolación de VDC. Calculo del PCI (UM-03)	104
Tabla 43: Cuadro de VDC (UM-03)	106
Tabla 44: Hoja de inspección, cálculo de "m" y VDC (UM-04)	109
Tabla 45: Cálculo del VR – falla 25-UM-04	110
Tabla 46: Cálculo del VR – falla 26-UM-04.	111
Tabla 47: Cálculo del VR – falla 28-UM-04	112
Tabla 48: Cálculo del VR – falla 31-UM-04	113
Tabla 49: Cálculo del VR – falla 32-UM-04	114
Tabla 50: Cálculo del VR – falla 38-UM-04	115

Tabla 51:Cálculo del VR – falla 39-UM-04	116
Tabla 52: Cálculo del número máximo admisible de fallas permisibles (UM-04)	117
Tabla 53: Interpolación de VDC. Calculo del PCI (UM-04)	117
Tabla 54: Cuadro de VDC (UM-04)	119
Tabla 55: Cuadro de porcentajes de fallas – UM-04	120
Tabla 56: Identificación final de patologías	122
Tabla 57: Cuadro de análisis de resultados	123
Tabla 58: Matriz de consistencia	137
Tabla 59: Valores deducidos tipo de falla (21)	139
Tabla 60: Valores deducidos tipo de falla (22)	139
Tabla 61: Valores deducidos tipo de falla (23)	140
Tabla 62: Valores deducidos tipo de falla (24)	140
Tabla 63: Valores deducidos tipo de falla (25)	141
Tabla 64: Valores deducidos tipo de falla (27)	141
Tabla 65: Valores deducidos tipo de falla (28)	142
Tabla 66: Valores deducidos tipo de falla (29)	142
Tabla 67: Valores deducidos tipo de falla (30)	143
Tabla 68: Valores deducidos tipo de falla (31)	143
Tabla 69: Valores deducidos tipo de falla (32)	144
Tabla 70: Valores deducidos tipo de falla (33)	144
Tabla 71: Valores deducidos tipo de falla (34)	145
Tabla 72: Valores deducidos tipo de falla (35)	145
Tabla 73: Valores deducidos tipo de falla (36)	146
Tabla 74: Valores deducidos tipo de falla (38)	146
Tabla 75: Valores deducidos tino de falla (39)	14

I. Introducción.

El presente proyecto de investigación "Determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural y condición operacional de la superficie de la pista en la avenida Habilitación Urbana Municipal, distrito de Callería, provincia de Coronel Portillo, departamento de Ucayali - 2017", se realizó con mucho esfuerzo, con el objetivo de llegar a entender los procedimiento para poder realizar una buena avaluación del índice de condición del pavimento, el objetivo es identificar por tramos y paños todas las patologías que se presentan en la mencionada vía y las causas de su aparición al mismo tiempo prevenirlas y del mismo modo mejorar el diseño de mesclas del concreto, considerar el clima del lugar donde nos encontremos para poder hacer un buen uso de la tecnología de los materiales para obtener pavimentos de muy buena calidad. el **problema de la investigación** es, ¿En qué medida la determinación y evaluación de la patologías del pavimento, nos permitirá obtener el estado actual y condición de servicio de funcionamiento de la avenida Habilitación Urbana Municipal, los diferentes tipos de patologías que llegan a manifestarse en los pavimentos ya sea por la antigüedad o un mal proceso constructivo entre otros, el **objetivo general** es determinar y evaluar las patologías del pavimento de la avenida Habilitación Urbana Municipal, distrito de Callería, provincia de Coronel Portillo, departamento de Ucayali – 2017, **el objetivo específico** en sí, es identificar los distintos tipos de patologías que se manifiestan a lo largo de la avenida Habilitación Urbana Municipal – 2017, evaluar los elementos que conforman la pavimentación, áreas comprometidas para poder obtener los resultados de la evaluación y saber el estado actual del pavimento. La importancia del desarrollo socioeconómico en nuestro país o región están ligado con las vías de comunicación

mediantes las carreteras, vías urbanas, etc. Y darles la importancia y el debido mantenimiento rutinario para poder cumplir con la vida útil de cada vía pavimentada en nuestro país o región y obtener la serviciabilidad necesaria para el desarrollo socioeconómico en la población, por ejemplo nos ayudaría a mejorar la calidad de vida de cada peruano. La Serviciabilidad que presenta cada vía pavimentada está en función directa del estado superficial y estructural del pavimento. El diseño, el proceso constructivo y el mantenimiento rutinario de un pavimento son suficientes para garantizar la calidad de vida de este. Basándonos en la teoría de evaluación de pavimentos, aplicamos el método del PCI, basándose en la inspección visual por unidades de muestreo del pavimento. En la elaboración del trabajo se utilizó de recursos humanos y materiales como cámaras fotográficas, de video, hojas de apunte y otros, así como guiándonos de fuentes bibliográficas que en la actualidad tenemos a nuestro alcance gracias a la tecnología. Esta investigación se **justifica** por la necesidad de conocer las patologías que se presentan y el estado en que se encuentra el pavimento en la Avenida la Habilitación Urbana Municipal entre la avenida Centenario y la avenida Túpac Amaru del Distrito de Callería, Provincia de Coronel Portillo, Región Ucayali. Según los tipos de patologías identificadas y los factores causantes, se determinó el estado actual del pavimento. Por lo que desarrollaremos un Tipo de Investigación Descriptiva, no Experimental, de corte transversal y Correlacionado para el periodo 2017. El resultado de nuestras muestras según el método del PCI utilizado son: UM-01; UM-02; UM-03; UM-04; UM-05 respectivamente, siendo el estado de condición del pavimento Regular.

II. Revisión de literatura

2.1. Antecedentes

2.1.1. Antecedentes internacionales

a) Patología de pavimentos rígidos de la ciudad de asunción.

Según Godoy O., Ramírez D.(1)

Objetivo general; El objetivo del trabajo es realizar una evaluación de diversos pavimentos rígidos construidos en calles y avenidas de la comuna asuncena, con el fin de determinar el estado en que se encuentran, así como recomendar las propuestas de solución a sus patologías, si las hubiere. Resultados: La serviciabilidad actual de la calle Cassanello se califica como Regular. El estado del pavimento hace que el costo de un mantenimiento mayor no sea económicamente conveniente. Por otro lado, el costo de una remoción del pavimento existente y la reconstrucción con pavimento flexible o rígido tampoco está al alcance del presupuesto municipal. La solución que resta es ejecutar lo que sí está al alcance y nunca está demás: la limpieza y resellado de juntas y grietas, al igual que la estabilización de losas con inyección de lechada de cemento. Conclusiones; El estudio del aporte estructural del pavimento empedrado, realizado en otros trabajos de investigación, ha demostrado que el empedrado posee un coeficiente de

Balasto (k) variando de 19 a 180 kg/cm3. Aun asumiendo el valor menor, para cálculos de dimensionamiento de pavimento rígido, sigue siendo un valor considerablemente alto, pero los resultados arrojan también la falta de uniformidad de dicho coeficiente para distintos sectores evaluados,

siendo su uniformidad y no la alternancia de valores elevados la situación ideal para el soporte de un pavimento rígido. Así también, las bases de elevada rigidez (como es el caso del empedrado) no acompañan las deformaciones de las losas de hormigón hidráulico y son causantes de mayores esfuerzos en las mismas. Por último, otra condición que se debe cumplir para el buen desempeño del pavimento rígido es la regularidad de la base, situación que los empedrados en la mayoría de los casos no presentan. En lo referente a dimensionamiento, los espesores de las losas de los pavimentos rígidos sobre empedrado de la ciudad oscilan entre los muy delgados (menos de 100 mm), pasando por los delgados (entre 100 mm y150 mm) y alcanzando los de mediano espesor (entre 150 mm y 200 mm). La mayor parte presenta entre losa y losa, o en una misma losa, variaciones de espesor que llegan hasta al 20% (20 mm en pavimentos de 100 mm de espesor). Dicha variación de espesor es debida a lo que mencionamos previamente, la irregularidad del empedrado. Una variación tan considerable representa, según los métodos de diseño, reducciones de la resistencia de diseño de hasta 0,65 MPa a flexotracción (aproximadamente 15,6 kg/cm2 a compresión). Los sitios donde están las piedras del empedrado tienden además a ser, por la forma y disposición de las mismas, zonas de concentración de tensiones. Como causas principales de los deterioros delos pavimentos rígidos se consignan las siguientes: _ Espesor deficiente de las losas en relación a la repetición de cargas; _ Hormigón de resistencia inferior a la especificada; _ Trabajo en voladizo en las esquinas o extremidades de las losas, debido a alabeo

excesivo de las losas sobre una base que no acompaña los movimientos de las placas;

_ Apoyo no uniforme de las losas, debido a falta de apoyo uniforme de la base empedrada o por causa de asentamientos; _ Juntas transversales mal ejecutadas o debido a la obstrucción de las mismas con material incompresible. La consideración primera que no debemos obviar es la de que cualquier tipo de pavimento empleado en Asunción se construirá sobre el empedrado existente, el que podrá ser saneado en mayor o menor medida, pero permanecerá allí, y debajo de él la antiquísima y caduca red de suministro de agua potable de la ciudad. De los tramos analizados, algunos presentan deterioros prematuros que no son coincidentes con las expectativas de desempeño de los pavimentos rígidos (larga vida útil con mínimo mantenimiento). El mayor porcentaje de daños es atribuible a los inconvenientes por cobertura incompleta y deficiente de servicios sanitarios. Se contemplan entre esos daños los causados directamente por la rotura del pavimento para instalación o reparación de cañerías, así como los causados indirectamente por la saturación de la subrasante con el consiguiente asentamiento de la fundación y pérdida de sustentación del pavimento rígido(formación de vacíos bajo las losas). Aplicando un criterio de secciones normalizadas, concluimos que pavimento rígido (sobre empedrado) con espesor de 10cm (aproximadamente 8,5 cm en las zonas de menor espesor) resulta suficiente en calles residenciales(tránsito compuesto casi en su totalidad por vehículos livianos), no así encalles con tránsito mayor. En este último caso son necesarios espesores de por lo

menos 14 cm (aproximadamente 12,5 cm en las zonas de menor espesor). En el caso de las intersecciones de calles, con encuentros entre pavimento flexible y rígido, se constató en algunas la ausencia de juntas de expansión entre el pavimento rígido el pavimento flexible. La consecuencia solos levantamientos localizados, deterioros de los más visibles y que más afectan la comodidad de rodado. En 2003 se construyó frente al Edificio de la Municipalidad de Asunción, sobre la Avenida Mariscal López una dársena con pavimento rígido. Aunque se observa un cierto pulido desagregados, escalonamiento de juntas y algunas grietas de esquina y longitudinales, está sirviendo perfectamente al intenso tránsito de ómnibus de dicha arteria, demostrando una serviciabilidad superior al pavimento de concreto asfáltico de otra dársena construida casi simultáneamente sobre la misma avenida, frente a la Plaza San8 Ya sea directamente sobre el empedrado o sobre una capa asfáltica que a la vez está sobre el empedrado. Roque González. El pavimento flexible de esta última dársena presenta Ahuellamiento que afectan la calidad de rodado, además de favorecer la acumulación de agua sobre el pavimento.

La ejecución del hormigonado con frecuencia se realiza durante las horas de mayor temperatura ambiente, como ser al mediodía o a la siesta. No son escasos los casos en que se refiere un aserrado tardío de las juntas y un curado de menor duración que la necesaria. El 100% de las juntas de los pavimentos rígidos de Asunción nunca fue objeto de mantenimiento. El sellado de las juntas es una operación de suma relevancia. La correcta formación de la caja que aloja al sellante, así como la disposición de la

tira de respaldo y la colocación del sellante favorecen el desempeño óptimo del pavimento de hormigón con juntas. Su reposición periódica conserva alejadas de las juntas el agua y los materiales con posibilidad de alojarse en ellas (provocando luego saltaduras, degradación de la caja del sellante, disminución de la capacidad de transferencia de carga por trabazón de agregados e incremento de tensiones). No puede dejar de recalcarse la importancia que tiene la correcta conservación de las juntasen el desempeño del pavimento rígido.

b) Estudio de patologías en pavimentos de hormigón la Plata Argentina.

Según Prunell S.(2)

Objetivos: Contribuir desde lo científico y tecnológico, al mejoramiento y desarrollo de la industria de la construcción vial y su efecto en el transporte y medio ambiente. ; Constituir una entidad que pueda brindar al medio regional y nacional servicios y asesoramiento en materias de tecnología vial y de la construcción. ; Formar recursos humanos en investigación, desarrollo tecnológico, transferencia de tecnologías y docencia. ; Constituir un medio de formación y consulta para Docentes y Alumnos de la Facultad Regional La Plata de la U.T.N. y otras instituciones de nivel terciario y universitario de la región, nacionales y del exterior. **Resultados:** Este documento incluye que la mayoría de los deterioros hallados, estudio estadístico realizado, los defectos con mayor frecuencia de aparición en las superficies de concreto son: fallas de borde 22,3 %, fallas de juntas 19,4 %, fisuras transversales 13,8 %, fisura

longitudinales 10,3 %) disloca miento 9,1 10 %, hundimiento de vías 6,1 %.Nidos de abeja 19 %.pueden producirse por causa de uno o varios factores simultáneos. Debe considerarse el mantenimiento de los pavimentos como un punto importante para evitar deterioros de severidad alta, ya que en todos los casos. Conclusiones: La mayoría de los deterioros hallados, pueden producirse por causa de uno o varios factores simultáneos. Es conveniente seguir un catálogo de deterioros de pavimentos rígidos para la identificación y calificación de fallas, para realizar un diagnóstico certero en cada caso. Debe considerarse el mantenimiento de los pavimentos como un punto importante para evitar deterioros de severidad alta, ya que en todos los casos, implican la reparación total del pavimento, incidiendo en un costo de reparación más elevado en comparación con uno de severidad baja o media. Estudiar los distintos tipos de deterioro y sus orígenes, ayuda a prevenirlos, para evitar la inseguridad e incomodidad del tránsito y aplicar las técnicas de reparación adecuadas.

c) Análisis de los factores que producen el deterioro de los Pavimentos rígidos. Sangolquí Ecuador, abril de 2011.

Según Ruiz C . (3)

1.1. Objetivos.; 1.1.1. Objetivo general. Analizar los factores que producen el deterioro de los pavimentos rígidos en las vías Suma - Pedernales y Pedernales – San Vicente, y Chone – Calceta – Junín - Pimpiguasí, mediante la observación y monitoreo in situ y proponer

soluciones técnicas a las fallas encontradas.; 1.1.2. Objetivos específicos.; Realizar varias visitas a las vías indicadas para obtener información del— estado físico en el que se encuentran, para lograr focalizarse en las patologías existentes. Desarrollar un estudio de las estructuras en pavimentos rígidos, para— determinar las características óptimas en el uso de materiales, dosificaciones, tipos, etc. Clasificar los tipos de deterioros observados a fin de analizar el— comportamiento del pavimento rígido antes, durante y después del tendido. Escuela Politécnica del Ejército Ingeniería Civil César A. Ruiz B. 3 Recomendar los procesos de reparación que más se adecuen a una— situación en particular, proponiendo soluciones eficientes para evitar futuras fallas. Comparar los tipos de deterioros de pavimentos rígidos que se generan— en diferentes vías.

Este documento hace mención que después de la supervisión, monitoreo y análisis a varios proyectos que se están ejecutando en el país con pavimento rígido, se puede constatar y verificar diferentes tipos de patologías, las que se producen por deficiencias en el diseño, construcción y operación las cuales son: fisuras transversales 18.63%, fisuras longitudinales 9.84%, fisuras de esquinas 6.71%, losas subdivididas 7%, fisuras en bloque 5.81%, fisuras inducidas 16.19%, levantamiento de losas 2.38%, dislocamiento de losas 1.64%, hundimiento de vías 8.20%, descascaramientos 4.32%, pulimientos 7.15%, pelamientos 7%, en baches 5.22%.

Conclusiones. Primeramente es necesario mencionar que la implementación de pavimentos rígidos en el país es una propuesta relativamente nueva, por lo que falta acumular experiencia en la construcción de los mismos, lo que constituye un factor determinante, para que se produzcan deterioros severos en sus estructuras. Por lo tanto es necesario regirse de manera estricta a las normas tanto de diseño como de mantenimiento de los pavimentos rígidos, con el fin de evitar y disminuir procesos de deterioro observados en el análisis del presente documento. Después de la supervisión, monitoreo y análisis a varios proyectos— que se están ejecutando en el país con pavimento rígido, se puede constatar y verificar diferentes tipos de patologías, las que se producen por deficiencias en el diseño, construcción y operación. Además considero que no se tomaron en cuenta variables topográficas y climáticas, las cuales influyen negativamente en el resultado final del proyecto. Escuela Politécnica del Ejército Ingeniería Civil César A. Ruiz B. 211 En las visitas a ciertos proyectos de pavimento rígido, se observa— que no existe un correcto y adecuado control de calidad en su construcción, debido a que se deja de lado ciertos parámetros necesarios para que un pavimento rígido, cumpla eficientemente con su vida útil. Entre los procesos inobservados por las constructoras y fiscalizadoras, que más afectaron a la estructura del pavimento rígido se puede citar a los siguientes: 1) Deficiente control de materiales. 2) Temperaturas inadecuadas. 3) Procesos de curado deficientes. 4) Cortes de juntas en tiempos no idóneos. 5) Utilización de maquinaria inapropiada. 6) Modulación de losas fuera de los rangos de esbeltez sin cumplir lo estipulado en normas. Detectadas las fallas del pavimento rígido, la reparación es un; factor que no ha sido operado técnicamente, que revelen las verdaderas causas por las que se originó el deterioro. Debo puntualizar que los "arreglos realizados", afectan directamente a la resistencia y transferencia de carga de las losas adyacentes. Por último, se observa la falta de seguridad industrial para sus trabajadores y deficiente control de tránsito que debe ofrecer la Escuela Politécnica del Ejército Ingeniería Civil César A. Ruiz B. 212 compañía constructora, durante las reparaciones para precautelar la integridad de los usuarios. Referente al análisis de la rehabilitación de la carretera Chone -Canuto- Calceta -Junín – Pimpiguasí, tramo "Junín – Pimpiguasí" abscisa 34+000 – 56+000, motivo central de la presente tesis, y de conformidad a los ensayos y estudios realizados, se concluye que este proyecto fue contratado considerando únicamente un perfil técnico, sin que se haya realizado estudios de suelos, cimentación y hormigones para la capa de rodadura de la estructura del pavimento, es decir no se evaluó con rigurosidad la capacidad portante del suelo, y sin considerar que en esta zona existen arcillas expansivas. Finalmente sobre los resultados de los ensayos de los materiales,- se concluye que los agregados de la cantera de Picoaza que estaba designada como fuente de provisión de estos materiales, no son aptos para ser utilizados en hormigones de alta resistencia, ya que exhiben características flojas que obligan a elevar el contenido de cemento en la mezcla, aparte de los problemas de adherencia a la pasta de cemento debido a la presencia de sustancias arcillosas y aceitosas.

5.1.2. Antecedentes nacionales

a) Diagnóstico del estado situacional de la vía: av. Argentina – av.
 24 de junio por el método: índice de condición de pavimentos 2012

Según Camposano O., García C. (4)

Objetivos: Objetivo General— Identificar en qué estado situacional se encuentra la vía Ingreso a la Ciudad de Chupaca Av. Argentina – Av. 24 de Junio por el método PCI (índice de condición de pavimentos) haciendo un diagnóstico definitivo. ; Objetivos Específicos --Verificar la calidad de desempeño de la vía Ingreso a la Ciudad de Chupaca Av. Argentina-Av. 24 de Junio. - Determinar el deterioro físico (fallas de los pavimentos: grietas, deformación, envejecimiento, etc.), de la vía Ingreso a la Ciudad de Chupaca Av. Argentina – Av. 24 de Junio. - Identificar las alternativas de solución del estado situacional de la vía Ingreso a la Ciudad de Chupaca Av. Argentina – Av. 24 de Junio. 12 - Determinar el nivel de servicio del estado situacional de la vía Ingreso a la Ciudad de Chupaca Av. Argentina – Av. 24 de Junio. - Determinar si el mantenimiento intensivo mejorara la condición del pavimento de la vía Ingreso a la Ciudad de Chupaca Av. Argentina – Av. 24 de Junio

Resultados obtenidos por número de fallas según tipo:

Tabla 1: Tipos de fallas en pavimentos flexibles.

N° DE FALLAS SEGÚN SU TIPO		
FALLA	TIPO DE FALLA EN PAVIMENTO FLEXIBLE	N° DE FALLAS
1	PIEL DE COCODRILO	116
2	EXUDACION	0
3	AGRIETAMIENTO EN BLOQUE	121
4	ABULTAMIENTO Y HUNDIMIENTO	97
5	CORRUGACION	40
6	DEPRESION	0
7	GRIETA DE BORDE	4
8	GRIETA DE RELEXION DE JUNTA	0
9	DESNIVEL CARRIL/VERMA	0
10	GRIETA LONG. Y TRANSVERSAL	657
11	PARCHEO	198
12	PULIMIENTO DE AGREGADO	13
13	HUECOS	403
14	CRUCE DE VIA FERREA	0
15	AHUELLAMIENTO	12
16	DESPLAZAMIENTO	0
17	GRIETA PARABOLICA(SLIPPAGE)	0
18	HINCHAMIENTO	0
19	DESPRENDIMIENTO DE AGREGADOS	2
	TOTAL	1663

Conclusiones; Las fallas localizadas en el diagnóstico de la vía fueron: Piel de Cocodrilo,— Agrietamiento en bloque, Abultamiento y hundimiento, corrugación, grieta de borde, grieta longitudinal y transversal, parcheo, pulimiento de agregado, huecos, Ahuellamiento, y desprendimientos de agregados. Las causas principales de las fallas localizadas en el diagnóstico de la vía son— principalmente: la condición climática de la zona, las cargas de tránsito, materiales de baja calidad y una base inestable. Se puede concluir que el día Sábado corresponde al día donde se evidencia más flujo— vehicular y que estos se registran entre 8 y 3pm. Presentando vehículos de alto tonelaje en un 2% que exceden en la carga máxima permisible generando una de las fallas más frecuentes que son los huecos. En cuanto a las fallas longitudinales y transversales

son producidas por proceso— constructivo incorrecto y alto transito; las grietas longitudinales han sido originadas contracción de la mezcla asfáltica por endurecimiento del bitumen y por acción de transito seccionada, las grietas transversales han sido originadas por insuficiente espesor de pavimento, falta de sobre ancho de las capas inferiores de los bordes, perdida de flexibilidad debido al exceso de filler y envejecimiento del asfalto. En la inspección visual y diagnostico vial realizado al tramo en estudio, mediante el- procedimiento PCI (Índice de condición del Pavimento), se concluyó que el estado actual del pavimento en la Entrada a la Ciudad de Chupaca, Av. Argentina, Av.24 de Junio, se encuentra en un estado regular debido a un valor de PCI de 51, según 107 los rangos de clasificación anteriormente enunciados y confirmados al realizar un recorrido por la vía. Debido al resultado de PCI de la vía y con su Diagnostico Regular, podemos indicar— que el pavimento se encuentra en condiciones de circulación normal, pero que perjudican el tránsito de los vehículos, y no brinda un adecuado confort a los mismos y a los conductores y pasajeros. Según la categoría de mantenimiento sugerido según condición actual de las vías, - para un índice de condición de pavimentos regular, se debe de realizar un mantenimiento intensivo. El método PCI, se realiza para poder determinar las vías que requieren-mantenimiento, rehabilitación, o cambio total de la vía, y así poder plantear los estudios siguientes con un buen análisis de costos y tiempo.

 b) Determinación y evaluación del nivel de incidencia de las patologías del concreto en los pavimentos rígidos de la provincia de Huancabamba departamento de Piura.

Según Espinoza t.⁽⁵⁾

Se puede concluir que el índice promedio de condición del pavimento, del distrito de la provincia de Huancabamba es de 50% correspondiendo a un nivel de regular o estado regular. Se concluye que los pavimentos sufren grandes desperfectos por la mala ejecución y la calidad de los agregados de la zona y la inclemencia del tiempo y que el suelo tiene bastante responsabilidad en dichas grietas. Se concluye que el nivel de incidencia de las patologías de los pavimentos hidráulicos del cercado del distrito de la provincia de Huancabamba es: grietas lineales 40.65%, pulimento de agregados, 29.00%, grietas de esquina 22.77%, escala 7.11%.

c) Determinación y evaluación de las patologías del pavimento de concreto rígido en el barrio de Villon alto – distrito de Huaraz provincia de Huaraz – región Ancash octubre - 2013.

Según Córdova E., Guerrero M., Mautino A. (6)

Este estudio determina las fallas del pavimento de concreto rígido del barrio de Villon alto y evalúa el tipo de deterioro encontrados, para determinar las alternativas de solución del mismo. La recolección de datos fue del tipo visual con toma de muestras, en el lugar de los hechos para luego procesarlo en gabinete. Se concluye que el nivel de incidencia

de las patologías de los pavimentos rígido del barrio Villon alto del distrito de Huaraz.

2.2. Bases teóricas de la investigación

2.2.1. Pavimento

Según Montejo A. (7)

Un pavimento está constituido por un conjunto de capas superpuestas, relativamente horizontales, que se diseñan y se construyen técnicamente con materiales apropiados y adecuadamente compactados. Estas estructuras estratificadas se apoyan sobre la sub rasante de la vía obtenida por el movimiento de tierras en el proceso de exploración y que han de restringir adecuadamente los esfuerzos que las cargas repetidas del tránsito le transmiten durante el periodo para el cual fue diseñada la estructura del pavimento.


2.2.2. Clasificación de los pavimentos

Según Osuna R. (8)

a. Pavimento flexible

Pavimentos formados, por una sub-base y/o base hidráulica o estabilizada, y una superficie de rodamiento, que puede ser: una carpeta de riegos; una carpeta de mezcla asfáltica elaborada en frío o en el lugar, o de mezcla en caliente elaborada en planta, también llamadas de concreto asfáltico, pudiendo tener incluso además un riego de sello aplicado sobre la superficie de la carpeta. Esta serie de capas inicialmente estaban constituidas por materiales con una resistencia a la deformación decreciente conforme la profundidad, de modo análogo a la disminución

de las presiones transmitidas desde la superficie. el aumento de las intensidades y número de aplicaciones de cargas, llevo a los denominados pavimentos rígidos, con capas tratadas o estabilizadas con cemento, o con un espesor muy importante de mezclas asfálticas como las denominadas "full depth", con espesores del orden de 30 cm. estos pavimentos suelen incluirse en el grupo de los flexibles, debido a que tienen un pavimento asfáltico análogo, pero su comportamiento es muy diferente con capas inferiores de igual o mayor rigidez que las superiores, como en el caso de los pavimentos de sección invertida.

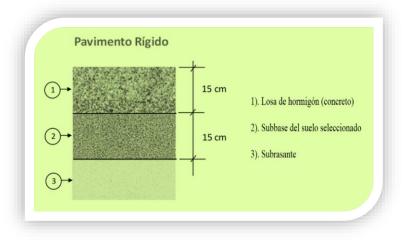

Fuente: Elaboración propia (2017)

Figura 1: Pavimento flexible

b. Pavimento rígido

Se tienen referencias de que la primera franja de pavimento de concreto hidráulico fue construido completamente en el año 1893, desde entonces, el concreto ha sido utilizado extensamente para pavimentar carreteras y aeropuertos así como calles de zonas residenciales y comerciales. El

pavimento rígido típicamente está formado por una base hidráulica o una sub-base y una losa de concreto hidráulico, pudiendo tener o no un refuerzo de acero, en cuyo caso, normalmente se utiliza la malla electro soldada. Los pavimentos rígidos constan de una losa de concreto hidráulico. Por su mayor rigidez distribuyen las cargas verticales sobre un área grande y con presiones muy reducidas, salvo en bordes de losas y juntas sin pasajuntas, las deflexiones o deformaciones elásticas son casi inapreciables. La losa se apoyará en la capa subrasante, si ésta es de buena calidad y el tránsito es ligero, o bien, sobre una capa de material seleccionado, llamada sub-base. Esta capa no tiene funciones estructurales, utilizándose como una superficie de apoyo, capa drenante, plataforma de trabajo, etc. y formada por materiales granulares o bien estabilizada con cemento portland, o inclusive concreto pobre.

Fuente: Elaboración propia (2017)

Figura 2: Pavimento rígido

c. Pavimentos compuestos

Este tipo de pavimento constan de una losa de concreto hidráulico, sobre la cual se tiende y compacta una sobre carpeta de concreto asfáltico, la cual servirá como superficie de rodamiento por la cual circularán vehículos a altas velocidades, siendo la losa el elemento estructural principal. Reúne las ventajas y desventajas de ambos tipos de pavimentos, si bien, aun cuando la carpeta asfáltica puede estar a salvo del fenómeno de la fatiga, su vida útil es corta en comparación con la losa de concreto, requiriendo una conservación similar a la de un pavimento flexible. Otro problema lo constituyen la flexión de la juntas y eventualmente de las grietas de las losas de concreto, aspecto que debe tenerse en cuenta para su diseño.

d. Pavimentos especiales

Son los pavimentos construidos con adoquín de cemento o de piedra debidamente acomodada. A continuación se describen algunas de sus características:

d.1. Adoquines: Existen varios tipos, como el adoquín fabricado macizo, el hueco o el de piedra labrada. Como los empedrados se utilizan en zonas residenciales, turísticas, históricas, etc., con grandes ventajas. Requieren también de una conservación mínima, son poco ruidosos y permiten velocidades de circulación razonables. Su utilización se ha extendido inclusive a patios de maniobras, plataformas, etc., para vehículos pesados y circulación lenta, además en estacionamientos donde se está utilizando

adoquín hueco, permite el crecimiento de pasto en su interior, así como la infiltración de agua al subsuelo, cumpliendo una función ecológica.

d.2. Empedrados: utilizados tanto en poblaciones pequeñas como solución tradicional, o en zonas residenciales, turísticas, o históricas, etc. son duraderos y guardan armonía con los contextos urbanos, aunque producen ruidos y deben circularse a bajas velocidades. Requieren una conservación mínima

2.2.3. Patología en pavimentos

Según Godoy G., Ramírez R. (1)

La patología es el estudio de las enfermedades, como procesos o estados anormales de causas conocidas o desconocidas. A 34 años de la construcción del primer pavimento rígido en asunción y a 15 años de la más reciente etapa de pavimentación con hormigón hidráulico de la ciudad, creímos pertinente realizar una evaluación de la situación funcional y estructural de los pavimentos rígidos de la ciudad y proponer soluciones a los defectos encontrados.

El trabajo pretende determinar el origen de las fallas en los pavimentos rígidos de asunción y con ello reducir la aparición de las mismas, así como bosquejar una política de gestión de mantenimiento vial aplicable a cualquier entorno urbano en el país. Partimos de la consideración que resulta de fundamental importancia llevar a cabo un monitoreo permanente de las obras construidas, para registrar las fallas que se van presentando y establecer una referencia a sus posibles causas. Diferentes mecanismos pueden dar origen a las mismas manifestaciones patológicas. Causas y efectos de las principales manifestaciones patológicas estructurales.

2.2.4. Deterioros más comunes en los pavimentos

Según Osuna R. (8)

a. Definición

Se entenderá por deterioro de un pavimento como la serie de daños y manifestaciones superficiales de la capa de rodadura que perjudican la condición de circulación segura y confortable, y que a s vez son capaces de incrementar los costos de operación vehicular. El deterioro de la superficie es cualquier indicación desfavorable del desempeño del pavimento o señales de falla inminente; cualquier desempeño poco satisfactorio de un pavimento se considera una falla. La finalidad de integrar a esta investigación estos deterioros es como consecuencia después de haber realizado un recorrido por la ciudad, son problemas tan simples y comunes que se presentan en la red vial de la ciudad de Mazatlán. El catálogo es un resumen de las fallas más comunes que se encuentran en la ciudad. En cada uno de los deterioros se incluye una descripción, posibles causas, niveles de severidad, medición y un esquema representativo de la falla. También están incluidas fotografías de las fallas, para ayudar al evaluador a catalogar en campo la falla, como parte de inspecciones viales. En lo que se refiere a las posibles causas, únicamente se presenta una indicación del origen de la falla. Siempre será necesario hacer las investigaciones pertinentes de campo, para establecer la causa definitiva del daño. Los avances tecnológicos para realizar actividades de mantenimiento, unidos con la utilización de nuevos materiales, forzar a revisar periódicamente los documentos que se

relacionen con el mantenimiento vial. Finalmente, se debe señalar que la meta principal de un programa de mantenimiento no es de reparar las fallas, mediante mantenimiento rutinario, sino más bien evitar que las fallas ocurran mediante un mantenimiento preventivo.

Fuente: Elaboración propia (2017).

Figura 3: Fotografía panorámica de la avenida Habilitación Urbana Municipal.

2.2.5. Catálogo de fallas del pavimento

a. Cuadro de catálogo de fallas de pavimento según Osuna. (8)

Tabla 2: Cuadro de catálogo de fallas de pavimento

	Fisura y grietas	Fisuras piel de cocodrilo Fisuras en bloque Fisuras transversal Fisura longitudinal Fisura por reflexión de junta
Deformación en los Pav. de concreto asfaltico	Deformación superficiales de Pav. asfalticos	Ahuellamiento Corrimiento Hundimiento
	Desintegración en los Pav. Asfalticos	Bache

		Peladura	
	Otros deterioros en los Pav.	Exudación de asfalto	
	Asfaltico	Parchado y Reparación	
		Fisuras transversal o diagonal	
		Fisura longitudinal	
		Fisura de esquina	
Daños en pavimentos de concreto hidráulicos	Fisuras	Losas sub-divididas	
00102 010 11101 WW 11000		Fisuras en bloque	
		Fisuras inducidas	
Deformación en los Pav. de concreto hidráulico		Levantamiento de losas	
		Dislocamiento	
		Hundimiento	
Desintegración en los Pav. de concreto hidráulico		Descascaramientos	
		Pulimiento de la superficie	
		Peladuras	
		Bache	
deficiencias de juntas en los Pav. de concreto hidráulico		Deficiencias en material de sello	
Tuvi de concreto maradico		Despostillamiento	
Deficiencias den los Pav. de concreto hidráulico		Fisuras por mal funcionamiento de juntas	
Otros deterioros en los Pav. de concreto hidráulico		Parchados y reparaciones para servicios Públicos	

Fuente: Elaboración propia (2017)

5.2.6. Índice de condición de pavimento (PCI)

a. Objetivos del PCI⁽⁹⁾

Los objetivos que se persiguen con la aplicación del método PCI son:

- Determinar el estado de un pavimento en términos de su integridad estructural y su nivel de servicio.

-Obtener un indicador que permita comparar con un criterio uniforme la condición y comportamiento de los pavimentos.

 Obtener un criterio racional para justificar la programación de obras de mantenimiento y rehabilitación de pavimentos.

- Obtener información relevante de retroalimentación respecto del comportamiento de las soluciones adoptadas en el diseño, evaluación y criterios de mantenimiento de pavimentos. El PCI es un índice numérico que varía desde cero (0), para un pavimento fallado o en mal estado, hasta cien (100) para un pavimento en perfecto estado. En el cuadro se presentan los rangos de psi con la correspondiente descripción cualitativa de la condición del pavimento.

5.2.7. PAVEMENT CONDITION INDEX (PCI)

Para pavimentos asfálticos y de concreto en carreteras (2002)

Según Vásquez V.(21)

21. Blowup - Buckling.

Descripción: Los blowups o buckles ocurren en tiempo cálido, usualmente en una grieta o junta transversal que no es lo suficientemente amplia para permitir la expansión de la losa. Por lo general, el ancho insuficiente se debe a la infiltración de materiales incompresibles en el espacio de la junta. Cuando la expansión no puede disipar suficiente presión, ocurrirá un movimiento hacia arriba de los bordes de la losa (Buckling) o fragmentación en la vecindad de la junta. También pueden ocurrir en los sumideros y en los bordes de las zanjas realizadas para la instalación de servicios públicos.

Niveles de Severidad

L: Causa una calidad de tránsito de baja severidad.

M: Causa una calidad de tránsito de severidad media.

H: Causa una calidad de tránsito de alta severidad.

Medida: En una grieta, un blowup se cuenta como presente en una losa. Sin embargo, si ocurre en una junta y afecta a dos losas se cuenta en ambas. Cuando la severidad del blowup deja el pavimento inutilizable, este debe repararse de inmediato.

Opciones de Reparación

L: No se hace nada. Parcheo profundo o parcial.

M: Parcheo profundo. Reemplazo de la losa.

H: Parcheo profundo. Reemplazo de la losa.

Figura 4: Blowup / Buckling de baja severidad

22. Grieta de esquina.

Descripción: Una grieta de esquina es una grieta que intercepta las juntas de una losa a una distancia menor o igual que la mitad de la longitud de la misma en ambos lados, medida desde la esquina. Por ejemplo, una losa con dimensiones de 3.70 m por 6.10 m presenta una grieta a 1.50 m en un lado y a3.70 m en el otro lado, esta grieta no se considera grieta de esquina sino grieta diagonal; sin embargo, una grieta que intercepta un lado a 1.20 m y el otro lado a 2.40 m si es una grieta de esquina. Una grieta de esquina se diferencia de un descascaramiento de esquina en que aquella se extiende verticalmente a través de todo el espesor de la losa, mientras que el otro intercepta la junta en un ángulo. Generalmente, la repetición de cargas combinada con la perdida de soporte y los esfuerzos de alabeo originan las grietas de esquina.

Niveles de Severidad

L: La grieta está definida por una grieta de baja severidad y el área entre la grieta y las juntas está ligeramente agrietada o no presenta grieta alguna.

M: Se define por una grieta de severidad media o el área entre la grieta y las juntas presenta una grieta de severidad media (M)

H: Se define por una grieta de severidad alta o el área entre la junta y las grietas está muy agrietada.

Medida

La losa dañada se registra como una (1) losa si:

- 1. Sólo tiene una grieta de esquina.
- 2. Contiene más de una grieta de una severidad particular.
- 3. Contiene dos o más grietas de severidades diferentes.

Para dos o más grietas se registrará el mayor nivel de severidad. Por ejemplo, una losa tiene una grieta de esquina de severidad baja y una de severidad media, deberá contabilizarse como una (1) losa con una grieta de esquina media.

Opciones de reparación

L: No se hace nada. Sellado de grietas de más de 3 mm.

M: Sellado de grietas. Parcheo profundo.

H: Parcheo profundo.

Figura 5: Grieta de esquina de alta severidad.

23. Losa dividida.

Descripción: La losa es dividida por grietas en cuatro o más pedazos debido a sobrecarga o a soporte inadecuado. Si todos los pedazos o grietas están contenidos en una grieta de esquina, el daño se clasifica como una grieta de esquina severa.

Niveles de severidad

En el Cuadro 23.1 se anotan los niveles de severidad para losas divididas.

Tabla 3: Niveles de severidad para losa dividida.

Cuadro 23.1. Niveles de Severidad para Losa Dividida

Severidad de la mayoría	Número de pedazos en la losa agrietada		
de las grietas	4 a 5	6 a 8	8 ó más
L	L	L	M
M	М	М	Н
Н	M	M	H

Medida

Si la losa dividida es de severidad media o alta, no se contabiliza otro tipo de daño.

Opciones de reparación

L: No se hace nada. Sellado de grietas de ancho mayor de 3mm.

M: Reemplazo de la losa.

H: Reemplazo de la losa.

24. Grieta de durabilidad "D".

Descripción: Las grietas de durabilidad "D" son causadas por la expansión de los agregados grandes debido al proceso de congelamiento y descongelamiento, el cual, con el tiempo, fractura gradualmente el concreto. Usualmente, este daño aparece como un patrón de grietas paralelas y cercanas a una junta una grieta lineal. Dado que el concreto se satura cerca de las juntas y las grietas, es común encontrar un depósito de color oscuro en las inmediaciones de las grietas "D". Este tipo de daño puede llevar a la destrucción eventual de la totalidad de la losa.

Niveles de severidad

L: Las grietas "D" cubren menos del 15% del área de la losa. La mayoría de las grietas están cerradas, pero unas pocas piezas pueden haberse desprendido.

M: Existe una de las siguientes condiciones:

1. Las grietas "D" cubren menos del 15% del área de la losa y la mayoría de los pedazos se han desprendido o pueden removerse con facilidad.

2. Las grietas "D" cubren más del 15% del área. La mayoría de las grietas están cerradas, pero unos pocos pedazos se han desprendido o pueden removerse fácilmente.

H: Las grietas "D" cubren más del 15% del área y la mayoría de los pedazos se han desprendido o pueden removerse fácilmente.

Medida

Cuando el daño se localiza y se califica en una severidad, se cuenta como una losa. Si existe más de un nivel de severidad, la losa se cuenta como poseedora del nivel de daño más alto. Por ejemplo, si grietas "D" de baja y media severidad están en la misma losa, la losa se registra como de severidad media únicamente.

Opciones de reparación

L: No se hace nada.

M: Parcheo profundo. Reconstrucción de juntas.

H: Parcheo profundo. Reconstrucción de juntas. Reemplazo de la losa.

Figura 06: Grieta de durabilidad de alta severidad.

25. Escala.

Descripción: Escala es la diferencia de nivel a través de la junta. Algunas causas comunes que la originan son:

- 1. Asentamiento debido una fundación blanda.
- 2. Bombeo o erosión del material debajo de la losa.
- 3. Alabeo de los bordes de la losa debido a cambios de temperatura o humedad.

Niveles de Severidad

Se definen por la diferencia de niveles a través de la grieta o junta como se indica en el Cuadro 25.1.

Tabla 4: Niveles de severidad para escala.

Cuadro 25.1 Niveles de Severidad para Escala.

Nivel de severidad	Diferencia en elevación
L	3 a 10 mm
M	10 a 19 mm
Н	Mayor que 19 mm

Medida

La escala a través de una junta se cuenta como una losa. Se cuentan únicamente las losas afectadas.

Las escalas a través de una grieta no se cuentan como daño pero se consideran para definir la severidad de las grietas.

Opciones de reparación

L: No se hace nada. Fresado.

M: Fresado.

H: Fresado.

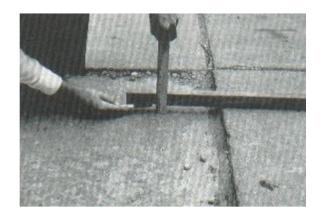


Figura 7: Escala de alta severidad.

26. Daño del sello de la junta.

Descripción: Es cualquier condición que permite que suelo o roca se acumule en las juntas, o que permite la infiltración de agua en forma importante. La acumulación de material incompresible impide que la losa se expanda y puede resultar en fragmentación, levantamiento o descascaramiento de los bordes de la junta. Un material llenante adecuado impide que lo anterior ocurra. Los tipos típicos del daño de junta son:

- 1. Desprendimiento del sellante de la junta.
- 2. Extrusión del sellante.
- 3. Crecimiento de vegetación.
- 4. Endurecimiento del material llenante (oxidación).
- 5. Perdida de adherencia a los bordes de la losa.
- 6. Falta o ausencia del sellante en la junta.

Niveles de Severidad

L: El sellante está en una condición buena en forma general en toda la sección.

Se comporta bien, con solo daño menor.

M: Está en condición regular en toda la sección, con uno o más de los tipos de daño que ocurre en un grado moderado. El sellante requiere reemplazo en dos años.

H: Está en condición generalmente buena en toda la sección, con uno o más de los daños mencionados arriba, los cuales ocurren en un grado severo. El sellante requiere reemplazo inmediato.

Medida

No se registra losa por losa sino que se evalúa con base en la condición total del sellante en toda el área.

Opciones de reparación

L: No se hace nada.

M: Resellado de juntas.

H: Resellado de juntas.

Figura 8: Daño del sello de junta de alta severidad.

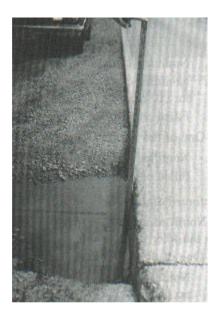
27. Desnivel carril / berma.

Descripción: El desnivel carril / berma es la diferencia entre el asentamiento o erosión de la berma y el borde del pavimento. La diferencia de niveles puede constituirse como una amenaza para la seguridad.

También puede ser causada por el incremento de la infiltración de agua.

Nivel de severidad

L: La diferencia entre el borde del pavimento y la berma es de 25.0 mm a 51.0 mm.


M: La diferencia de niveles es de 51.0 mm a 102.0 mm.

H: La diferencia de niveles es mayor que 102.0 mm.

Medida

El desnivel carril / berma se calcula promediando los desniveles máximo y mínimo a lo largo de la losa. Cada losa que exhiba el daño se mide separadamente y se registra como una losa con el nivel de severidad apropiado. Opciones de reparación

L, M, H: Renivelación y llenado de bermas para coincidir con el nivel del carril.

Figura 9: Desnivel carril / berma de alta severidad.

28. Grietas Lineales (Grietas longitudinales, transversales y diagonales).

Descripción: Estas grietas, que dividen la losa en dos o tres pedazos, son causadas usualmente por una combinación de la repetición de las cargas de tránsito y el alabeo por gradiente térmico o de humedad.

Las losas divididas en cuatro o más pedazos se contabilizan como losas divididas. Comúnmente, las grietas de baja severidad están relacionadas con el alabeo o la fricción y no se consideran daños estructurales importantes. Las grietas capilares, de pocos pies de longitud y que no se propagan en todo la extensión de la losa, se contabilizan como grietas de retracción.

Niveles de severidad

Losas sin refuerzo

L: Grietas no selladas (incluye llenante inadecuado) con ancho menor que 12.0 mm, o grietas selladas de cualquier ancho con llenante en condición satisfactoria. No existe escala.

M: Existe una de las siguientes condiciones:

- 1. Grieta no sellada con ancho entre 12.0 mm y 51.0 mm.
- 2. Grieta no sellada de cualquier ancho hasta 51.0 mm con escala menor que 10.0 mm.
- 3. Grieta sellada de cualquier ancho con escala menor que 10.0 mm.

H: Existe una de las siguientes condiciones:

- 1. Grieta no sellada con ancho mayor que 51.0 mm.
- 2. Grieta sellada o no de cualquier ancho con escala mayor que 10.0 mm.

Losas con refuerzo

L: Grietas no selladas con ancho entre 3.0 mm y 25.0 mm, o grietas selladas de cualquier ancho con llenante en condición satisfactoria. No existe escala.

M: Existe una de las siguientes condiciones:

1. Grieta no sellada con un ancho entre 25.0 mm y 76.0 mm y sin escala.

2. Grieta no sellada de cualquier ancho hasta 76.0 mm con escala menor que 10.0 mm.

3. Grieta sellada de cualquier ancho con escala hasta de 10.0 mm.

H: Existe una de las siguientes condiciones:

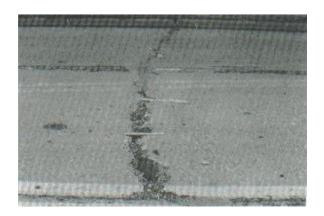
1. Grieta no sellada de más de 76.0 mm de ancho.

2. Grieta sellada o no de cualquier ancho y con escala mayor que 10.0 mm.

Medida

Una vez se ha establecido la severidad, el daño se registra como una losa. Si dos grietas de severidad media se presentan en una losa, se cuenta dicha losa como una poseedora de grieta de alta severidad.

Las losas divididas en cuatro o más pedazos se cuentan como losas divididas.


Las losas de longitud mayor que 9.10 m se dividen en "losas" de aproximadamente igual longitud y que tienen juntas imaginarias, las cuales se asumen están en perfecta condición.

Opciones de reparación

L: No se hace nada. Sellado de grietas más anchas que 3.0 mm.

M: Sellado de grietas.

H: Sellado de grietas. Parcheo profundo. Reemplazo de la losa.

Figura 10: Grietas lineales de alta severidad en losa de concreto simple.

29. Parche grande (mayor de 0.45 m2) y acometidas de servicios públicos.

Descripción: Un parche es un área donde el pavimento original ha sido removido y reemplazado por material nuevo. Una excavación de servicios públicos (utilitycut) es un parche que ha reemplazado el pavimento original para permitir la instalación o mantenimiento de instalaciones subterráneas. Los niveles de severidad de una excavación de servicios son los mismos que para el parche regular.

Niveles de severidad

L: El parche está funcionando bien, con poco o ningún daño.

M: El parche esta moderadamente deteriorado o moderadamente descascarado en sus bordes. El material del parche puede ser retirado con esfuerzo considerable.

H: El parche está muy dañado. El estado de deterioro exige reemplazo.

Medida

Si una losa tiene uno o más parches con el mismo nivel de severidad, se cuenta como una losa que tiene ese daño. Si una sola losa tiene más de un nivel de severidad, se cuenta como una losa con el mayor nivel de severidad. Si la causa del parche es más severa, únicamente el daño original se cuenta.

Opciones para Reparación

L: No se hace nada.

M: Sellado de grietas. Reemplazo del parche.

H: Reemplazo del parche.

Figura 11: Parche grande y acometidas de servicios públicos de alta severidad.

30. Parche pequeño (menor de 0.45 m2).

Descripción: Es un área donde el pavimento original ha sido removido y reemplazado por un material de relleno.

Niveles de Severidad

L: El parche está funcionando bien, con poco o ningún daño.

M: El parche está moderadamente deteriorado. El material del parche puede ser retirado con considerable esfuerzo.

H: El parche está muy deteriorado. La extensión del daño exige reemplazo.

Si una losa presenta uno o más parches con el mismo nivel de severidad, se registra como una losa que tiene ese daño. Si una sola losa tiene más de un nivel de severidad, se registra como una losa con el mayor nivel de daño. Si la causa del parche es más severa, únicamente se contabiliza el daño original.

Opciones para Reparación

L: No se hace nada.

M: No se hace nada. Reemplazo del parche.

H: Reemplazo del parche.



Figura 12: Parche pequeño de severidad media.

31. Pulimento de agregados.

Descripción: Este daño se causa por aplicaciones repetidas de cargas del tránsito. Cuando los agregados en la superficie se vuelven suaves al tacto, se reduce considerablemente la adherencia con las llantas. Cuando la porción del agregado que se extiende sobre la superficie es pequeña, la textura del pavimento no contribuye significativamente a reducir la velocidad del vehículo. El pulimento de agregados que se extiende sobre el concreto es despreciable y suave al tacto. Este tipo de daño se reporta cuando el resultado de un ensayo de

resistencia al deslizamiento es bajo o ha disminuido significativamente respecto a evaluaciones previas.

Niveles de Severidad

No se definen grados de severidad. Sin embargo, el grado de pulimento deberá ser significativo antes de incluirlo en un inventario de la condición y calificarlo como un defecto.

Medida

Una losa con agregado pulido se cuenta como una losa.

Opciones de reparación, M y H: Ranurado de la superficie. Sobre carpeta.

Figura 13: Pulimento de agregados.

32. Popouts.

Descripción: Un Popout es un pequeño pedazo de pavimento que se desprende de la superficie del mismo. Puede deberse a partículas blandas o fragmentos de madera rotos y desgastados por el tránsito.

Varían en tamaño con diámetros entre 25.0 mm y 102.0 mm y en espesor de 13.0 mm a 51.0 mm.

Niveles de severidad

No se definen grados de severidad. Sin embargo, el Popout debe ser extenso antes que se registre como un daño. La densidad promedio debe exceder aproximadamente tres por metro cuadrado en toda el área de la losa.

Medida

Debe medirse la densidad del daño. Si existe alguna duda de que el promedio es mayor que tres Popout por metro cuadrado, deben revisarse al menos tres áreas de un metro cuadrado elegidas al azar.

Cuando el promedio es mayor que dicha densidad, debe contabilizarse la losa.

Opciones de reparación

L, M y H: No se hace nada.

Figura 14: Popout.

33. Bombeo.

Descripción: El bombeo es la expulsión de material de la fundación de la losa a través de las juntas o grietas. Esto se origina por la deflexión de la losa debida a las cargas. Cuando una carga pasa sobre la junta entre las losas, el agua es primero forzada bajo losa delantera y luego hacia atrás bajo la losa trasera. Esta acción erosiona y eventualmente remueve las partículas de suelo lo cual generan una pérdida progresiva del soporte del pavimento. El bombeo puede

identificarse por manchas en la superficie y la evidencia de material de base o subrasante en el pavimento cerca de las juntas o grietas.

El bombeo cerca de las juntas es causado por un sellante pobre de la junta e indica la pérdida de soporte. Eventualmente, la repetición de cargas producirá grietas. El bombeo también puede ocurrir a lo largo del borde de la losa causando perdida de soporte.

Niveles de Severidad

No se definen grados de severidad. Es suficiente indicar la existencia.

Medida

El bombeo de una junta entre dos losas se contabiliza como dos losas. Sin embargo, si las juntas restantes alrededor de la losa tienen bombeo, se agrega una losa por junta adicional con bombeo.

Opciones de reparación

L, M y H: Sellado de juntas y grietas. Restauración de la transferencia de cargas.

Figura 15: Bombeo

34. Punzonamiento.

Descripción: Este daño es un área localizada de la losa que está rota en pedazos. Puede tomar muchas formas y figuras diferentes pero, usualmente, está definido por una grieta y una junta o dos grietas muy próximas, usualmente con 1.52 m entre sí. Este daño se origina por la repetición de cargas pesadas, el espesor inadecuado de la losa, la pérdida de soporte de la fundación o una deficiencia localizada deconstrucción del concreto (por ejemplo, hormigueros)

Niveles de Severidad

Cuadro 34.1. Niveles de Severidad para Punzonamiento

Tabla 5: Niveles de severidad para Punzonamiento

Cuadro 34.1. Niveles de Severidad para Punzonamiento

Severidad de la mayoría de las grietas	Número de pedazos		
	2 a 3	4 a 5	Más de 5
L	L	L	М
M	L	М	Н
Н	М	Н	Н

Medida

Si la losa tiene uno o más punzonamientos, se contabiliza como si tuviera uno en el mayor nivel de severidad que se presente.

Opciones de reparación

L: No se hace nada. Sellado de grietas.

M: Parcheo profundo.

H: Parcheo profundo.

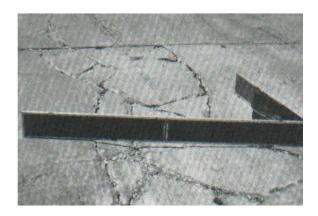


Figura 16: Punzonamiento de alta severidad.

35. Cruce de vía férrea.

Descripción: El daño de cruce de vía férrea se caracteriza por depresiones o abultamientos alrededor delos rieles.

Niveles de severidad

L: El cruce de vía férrea produce calidad de tránsito de baja severidad.

M: El cruce de la vía férrea produce calidad de tránsito de severidad media.

H: El cruce de la vía férrea produce calidad de tránsito de alta severidad.

Medida

Se registra el número de losas atravesadas por los rieles de la vía férrea. Cualquier gran abultamiento producido por los rieles debe contarse como parte del cruce.

Opciones de reparación

L: No se hace nada.

M: Parcheo parcial de la aproximación. Reconstrucción del cruce.

H: Parcheo parcial de la aproximación. Reconstrucción del cruce.

Figura 17: Cruce de vía férrea de severidad media.

36. Desconchamientos, mapa de grietas, craquelado.

Descripción: El mapa de grietas o craquelado (crazing) se refiere a una red de grietas superficiales, finas o capilares, que se extienden únicamente en la parte superior de la superficie del concreto. Las grietas tienden a interceptarse en ángulos de 120 grados. Generalmente, este daño ocurre por exceso de manipulación en el terminado y puede producir el descamado, que es la rotura de la superficie de la losa a una profundidad aproximada de 6.0 mm a 13.0 mm. El descamado también puede ser causado por incorrecta construcción y por agregados de mala calidad.

Niveles de Severidad

L: El craquelado se presenta en la mayor parte del área de la losa; la superficie está en buena condición con solo un descamado menor presente.

M: La losa está descamada, pero menos del 15% de la losa está afectada.

H: La losa esta descamada en más del 15% de su área.

Medida

Una losa descamada se contabiliza como una losa. El craquelado de baja severidad debe contabilizar se únicamente si el descamado potencial es inminente, o unas pocas piezas pequeñas se han salido.

Opciones para Reparación

L: No se hace nada.

M: No se hace nada. Reemplazo de la losa.

H: Parcheo profundo o parcial. Reemplazo de la losa. Sobre carpeta.

Figura 18: Desconchamientos / Mapa de grietas / Craquelado de alta severidad.

37. Grietas de retracción.

Descripción: Son grietas capilares usualmente de unos pocos pies de longitud y no se extienden a lo largo de toda la losa. Se forman durante el fraguado y curado del concreto y generalmente no se extienden a través del espesor de la losa.

Niveles de Severidad

No se definen niveles de severidad. Basta con indicar que están presentes.

Medida

Si una o más grietas de retracción existen en una losa en particular, se cuenta como una losa con grietas de retracción.

Opciones de reparación

L, M y H: No se hace nada.

Figura 19: Grietas de contracción.

38. Descascaramiento de esquina.

Descripción: Es la rotura de la losa a 0.6 m de la esquina aproximadamente. Un descascaramiento de esquina difiere de la grieta de esquina en que el descascaramiento usualmente buza hacia abajo para interceptar la junta, mientras que la grieta se extiende verticalmente a través de la esquina de losa. Un descascaramiento menor que 127 mm medidos en ambos lados desde la grieta hasta la esquina no deberá registrarse.

Niveles de severidad

En el Cuadro 38.1 se listan los niveles de severidad para el descascaramiento de esquina. El descascaramiento de esquina con un área menor que 6452 mm2 desde la grieta hasta la esquina en ambos lados no deberá contarse.

Tabla 6: Niveles de severidad para descaramiento de esquina.

Cuadro 38.1 Niveles de Severidad para Descascaramiento de Esquina.

Profundidad del	Dimensiones de los lados del descascaramiento	
Descascaramiento	127.0 x 127.0 mm a 305.0 x 305.0 mm	Mayor que 305.0 x 305.0 mm
Menor de 25.0 mm	L	L
> 25.0 mm a 51.0 mm	L	М
Mayor de 51.0 mm	М	Н

Medida

Si en una losa hay una o más grietas con descascaramiento con el mismo nivel de severidad, la losa se registra como una losa con descascaramiento de esquina. Si ocurre más de un nivel de severidad, se cuenta como una losa con el mayor nivel de severidad.

Opciones de reparación

L: No se hace nada.

M: Parcheo parcial.

H: Parcheo parcial.

Figura 20: Descascaramiento de esquina de alta severidad.

39. Descascaramiento de junta.

Descripción: Es la rotura de los bordes de la losa en los 0.60 m de la junta. Generalmente no se extiende verticalmente a través de la losa si no que intercepta la junta en ángulo. Se origina por:

1. Esfuerzos excesivos en la junta causados por las cargas de tránsito o por la infiltración de materiales incompresibles. 2. Concreto débil en la junta por exceso de manipulación.

Niveles de Severidad

En el Cuadro 39.1 se ilustran los niveles de severidad para descascaramiento de junta. Una junta desgastada, en la cual el concreto ha sido desgastado a lo largo de toda la junta se califica como de baja severidad.

Tabla 7: Niveles de severidad descaramiento de juntas.

Cuadro 39.1 Niveles de Severidad Descascaramiento de Junta

Fragmentos del Descascaramiento	Ancho del descascaramiento	Longitud del descascaramiento	
		< 0.6m	> 0.6 m
Duros. No puede removerse fácilmente (pueden faltar algunos	< 102 mm	L	L
pocos fragmentos).	> 102 mm	L	L
Sueltos. Pueden removerse y algunos fragmentos pueden	< 102 mm	L	М
faltar. Si la mayoría o todos los fragmentos faltan, el descascaramiento es superficial, menos de 25.0 mm.	>102 mm	L	М
Desaparecidos. La mayoría, o todos los fragmentos han sido	< 102 mm	L	М
removidos.	> 102 mm	М	Н

Medida

Si el descascaramiento se presenta a lo largo del borde de una losa, esta se cuenta como una losa con descascaramiento de junta. Si está sobre más de un borde de la misma losa, el borde que tenga la mayor severidad se cuenta y se registra como una losa. El descascaramiento de junta también puede ocurrir a lo largo de los bordes de dos losas adyacentes. Si este es el caso, cada losa se contabiliza con descascaramiento de junta.

Opciones para Reparación

L: No se hace nada.

M: Parcheo parcial.

H: Parcheo parcial. Reconstrucción de la junta.

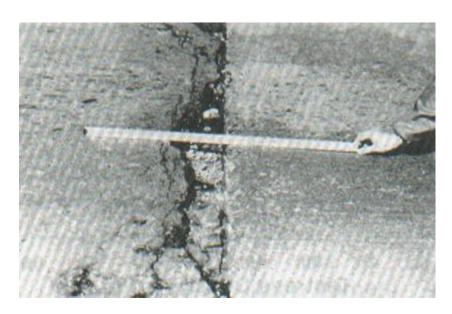


Figura 21: Descascaramiento de junta de alta severidad.

5.2.7.1. Índice de condición del pavimento (PCI – Pavement Condition Índex)

El deterioro de la estructura de pavimento es una función de la clase de daño, su severidad y cantidad o densidad del mismo. La formulación de un índice que tuviese en cuenta los tres factores mencionados ha sido problemática debido al gran número de posibles condiciones. Para superar esta dificultad se introdujeron los "valores deducidos", como un arquetipo de factor de ponderación, con el fin de indicar el grado de afectación que cada combinación de clase de daño, nivel de severidad y densidad tiene sobre la condición del pavimento.

El PCI es un índice numérico que varía desde cero (0), para un pavimento fallado o en mal estado, hasta cien (100) para un pavimento en perfecto estado.

En el Cuadro 1 se presentan los rangos de PCI con la correspondiente descripción cualitativa de la condición del pavimento.

Tabla 8: Rangos de calificación del PCI

Cuadro 1.
RANGOS DE CALIFICACIÓN DEL PCI

Rango	Clasificación
100 – 85	Excelente
85 – 70	Muy Bueno
70 – 55	Bueno
55 – 40	Regular
40 – 25	Malo
25 – 10	Muy Malo
10 – 0	Fallado

El cálculo del PCI se fundamenta en los resultados de un inventario visual de la condición del pavimento en el cual se establecen CLASE, SEVERIDAD y CANTIDAD de cada daño presenta. El PCI se desarrolló para obtener un índice de la integridad estructural del pavimento y de la condición operacional de la superficie. La información de los daños obtenida como parte del inventario ofrece una percepción clara de las causas de los daños y su relación con las cargas o con el clima.

5.2.7. 2. Procedimiento de evaluación de la condición del pavimento

La primera etapa corresponde al trabajo de campo en el cual se identifican los daños teniendo en cuenta la clase, severidad y extensión de los mismos. Esta información se registra en formatos adecuados para tal fin. La Figuras 2 ilustra el formato para la inspección de pavimento de concreto.

5.2.7. 2.1. Unidades de Muestreo:

Se divide la vía en secciones o "unidades de muestreo", cuyas dimensiones varían de acuerdo con los tipos de vía y de capa de rodadura:

a. Carreteras con capa de rodadura en losas de concreto de cemento Portland y losas con longitud inferior a 7.60 m: El área de la unidad de muestreo debe estar en el rango 20 ± 8 losas.

Se recomienda tomar el valor medio de los rangos y en ningún caso definir unidades por fuera de aquellos. Para cada pavimento inspeccionado se sugiere la elaboración de esquemas que muestren el tamaño y la localización de las unidades ya que servirá para referencia futura.

Tabla 9: Formato de exploración de exploración para carreteras con superficie de concreto rígido.

ÍNDICE DE CONDICIÓN DEL PAVIMENTO

PCI-02. CARRETERAS CON SUPERFICIE EN CONCRETO HIDRÁULICO EXPLORACIÓN DE LA CONDICIÓN POR UNIDAD DE MUESTREO ABSCISA INICIAL UNIDAD DE MUESTREO ZONA CÓDIGO VÍA ABSCISA FINAL NÚMERO DE LOSAS INSPECCIONADA POR FECHA Daño No. Daño No. Daño No. Blow up / Buckling. 27 Desnivel Carril / Berma. 34 Punzonamiento. 35 Cruce de vía férrea Grieta de esquina. Grieta lineal. Losa dividida. Parcheo (grande). Desconchamiento 36 Grieta de durabilidad "D". 24 Parcheo (pequeño) 37 Retracción 25 Escala. 31 38 Pulimento de agregados Descascaramiento de esquina Sello de junta. 32 Popouts 39 Descascaramiento de junta 33 Bombeo Daño Severidad No. Losas Densidad (%) Valor deducido **ESQUEMA** 10 9 8 2

Figura 2. Formato de exploración de condición para carreteras con superficie en concreto hidráulico.

5.2.7. 2.2.Determinación de las Unidades de Muestreo para Evaluación: En la "Evaluación De Una Red" vial puede tenerse un número muy grande de unidades de muestreo cuya inspección demandará tiempo y recursos considerables; por lo tanto, es necesario aplicar un proceso de muestreo.

En la "Evaluación de un Proyecto" se deben inspeccionar todas las unidades; sin embargo, de no ser posible, el número mínimo de unidades de muestreo que deben evaluarse se obtiene mediante la Ecuación 1, la cual produce un estimado del PCI \pm 5 del promedio verdadero con una confiabilidad del 95%.

$$n = \frac{N \times \sigma^2}{\frac{e^2}{4} \times (N-1) + \sigma^2}$$
 Ecuación 1.

Figura 22: Ecuación 1

Dónde: n: Número mínimo de unidades de muestreo a evaluar. N: Número total de unidades de muestreo en la sección del pavimento. e: Error admisible en el estimativo del PCI de la sección (e=5%) σ : Desviación estándar del PCI entre las unidades.

Durante la inspección inicial se asume una desviación estándar (σ) del PCI de 10 para pavimento asfáltico (rango PCI de 25) y de 15 para pavimento de concreto (rango PCI de 35) En inspecciones subsecuentes se usará la desviación estándar real (o el rango PCI) de la inspección previa en la determinación del número mínimo de unidades que deben evaluarse.

Cuando el número mínimo de unidades a evaluar es menor que cinco (n < 5), todas las unidades deberán evaluarse.

3.3. Selección de las Unidades de Muestreo para Inspección:

Se recomienda que las unidades elegidas estén igualmente espaciadas a lo largo de la sección de pavimento y que la primera de ellas se elija al azar (aleatoriedad sistemática) de la siguiente manera:

a. El intervalo de muestreo (i) se expresa mediante la Ecuación 2:

$$i = \frac{N}{n}$$
 Ecuación 2.

Figura 23: Ecuación 2

Dónde: N: Número total de unidades de muestreo disponible. n: Número mínimo de unidades para evaluar. i: Intervalo de muestreo, se redondea al número entero inferior (por ejemplo, 3.7 se redondea a 3)

b. El inicio al azar se selecciona entre la unidad de muestreo 1 y el intervalo de muestreo i.

Así, si i = 3, la unidad inicial de muestreo a inspeccionar puede estar entre 1 y 3. Las unidades de muestreo para evaluación se identifican como (S), (S + 1), (S + 2), etc.

Siguiendo con el ejemplo, si la unidad inicial de muestreo para inspección seleccionada es 2 y el intervalo de muestreo (i) es igual a 3, las subsiguientes unidades de muestreo a inspeccionar serían 5, 8, 11, 14, etc. Sin embargo, si se requieren cantidades de daño exactas para pliegos de licitación (rehabilitación), todas y cada una de las unidades de muestreo deberán ser inspeccionadas.

3.4. Selección de Unidades de Muestreo Adicionales:

Uno de los mayores inconvenientes del método aleatorio es la exclusión del proceso de inspección y evaluación de algunas unidades de muestreo en muy mal estado. También puede suceder que unidades de muestreo que tienen daños que sólo se presentan una vez (por ejemplo, "cruce de línea férrea") queden incluidas de forma inapropiada en un muestreo aleatorio.

Para evitar lo anterior, la inspección deberá establecer cualquier unidad de muestreo inusual e inspeccionarla como una "unidad adicional" en lugar de una "unidad representativa" o aleatoria. Cuando se incluyen unidades de muestreo

adicionales, el cálculo del PCI es ligeramente modificado para prevenir la extrapolación de las condiciones inusuales en toda la sección.

5.2.7. 2.3. Evaluación de la Condición:

El procedimiento varía de acuerdo con el tipo de superficie del pavimento que se inspecciona. Debe seguirse estrictamente la definición de los daños de este manual para obtener un valor del PCI confiable.

La evaluación de la condición incluye los siguientes aspectos:

a. Equipo. • Odómetro manual para medir las longitudes y las áreas de los daños. • Regla y una cinta métrica para establecer las profundidades de los Ahuellamiento o depresiones. • Manual de Daños del PCI con los formatos correspondientes y en cantidad suficiente para el desarrollo de la actividad.

b. Procedimiento. Se inspecciona una unidad de muestreo para medir el tipo, cantidad y severidad de los daños de acuerdo con el Manual de Daños, y se registra la información en el formato correspondiente. Se deben conocer y seguir estrictamente las definiciones y procedimientos de medida los daños. Se usa un formulario u "hoja de información de exploración de la condición" para cada unidad muestreo y en los formatos cada renglón se usa para registrar un daño, su extensión y su nivel de severidad.

c. El equipo de inspección deberá implementar todas las medidas de seguridad para su desplazamiento en la vía inspeccionada, tales como dispositivos de señalización y advertencia para el vehículo acompañante y para el personal en la vía.

5.2.7. 3. Cálculo del PCI de las unidades de muestreo

Al completar la inspección de campo, la información sobre los daños se utiliza para calcular el PCI. El cálculo puede ser manual o computarizado y se basa en los "Valores Deducidos" de cada daño de acuerdo con la cantidad y severidad reportadas.

5.2.7. 3.1. Cálculo para Carreteras con Capa de Rodadura Asfáltica:

Etapa 1. Cálculo de los Valores Deducidos:

1. a. Totalice cada tipo y nivel de severidad de daño y regístrelo en la columna TOTAL del formato PCI-01. El daño puede medirse en área, longitud ó por número según su tipo.

1. b. Divida la CANTIDAD de cada clase de daño, en cada nivel de severidad, entre el ÁREA TOTAL de la unidad de muestreo y exprese el resultado como porcentaje. Esta es la DENSIDAD del daño, con el nivel de severidad especificado, dentro de la unidad en estudio.

1. c. Determine el VALOR DEDUCIDO para cada tipo de daño y su nivel de severidad mediante las curvas denominadas "Valor Deducido del Daño" que se adjuntan al final de este documento, de acuerdo con el tipo de pavimento inspeccionado.

Etapa 2. Cálculo del Número Máximo Admisible de Valores Deducidos (m)

2. a. Si ninguno ó tan sólo uno de los "Valores Deducidos" es mayor que 2, se usa el "Valor Deducido Total" en lugar del mayor "Valor Deducido Corregido", CDV, obtenido en la Etapa 4. De lo contrario, deben seguirse los pasos 2.b. y 2.c.

2. b. Liste los valores deducidos individuales deducidos de mayor a menor.

2. c. Determine el "Número Máximo Admisible de Valores Deducidos" (m),

$$m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$$

Figura 24: Ecuación 3

Dónde: mi: Número máximo admisible de "valores deducidos", incluyendo fracción, para la unidad de muestreo i. HDVi: El mayor valor deducido individual para la unidad de muestreo i.

2. d. El número de valores individuales deducidos se reduce a m, inclusive la parte fraccionaria. Si se dispone de menos valores deducidos que m se utilizan todos los que se tengan.

Etapa 3. Cálculo del "Máximo Valor Deducido Corregido", CDV.

El máximo CDV se determina mediante el siguiente proceso iterativo:

- 3. a. Determine el número de valores deducidos, q, mayores que 2.0.
- 3. b. Determine el "Valor Deducido Total" sumando TODOS los valores deducidos individuales.
- 3. c. Determine el CDV con q y el "Valor Deducido Total" en la curva de corrección pertinente al tipo de pavimento.
- 3. d. Reduzca a 2.0 el menor de los "Valores Deducidos" individuales que sea mayor que 2.0 y repita las etapas 3.a. a 3.c. hasta que q sea igual a 1.
- 3. e. El máximo CDV es el mayor de los CDV obtenidos en este proceso.
- Etapa 4. Calcule el PCI de la unidad restando de 100 el máximo CDV obtenido en la Etapa 3.
- 4.2. Cálculo para Pavimentos con Capa de Rodadura en Concreto de Cemento Portland:

Etapa 1. Cálculo de los Valores Deducidos.

- 1. a. Contabilice el número de LOSAS en las cuales se presenta cada combinación de tipo de daño y nivel de severidad en el formato PCI-02.
- b. Divida el número de LOSAS contabilizado en 1.a. entre el número de LOSAS de la unidad y exprese el resultado como porcentaje (%) Esta es la DENSIDAD por unidad de muestreo para cada combinación de tipo y severidad de daño.
- 1. c. Determine los VALORES DEDUCIDOS para cada combinación de tipo de daño y nivel de severidad empleando la curva de "Valor Deducido de Daño" apropiada entre las que se adjuntan a este documento.

Etapa 2. Cálculo del número Admisible Máximo de Deducidos (m)

Proceda de manera idéntica a lo establecido para vías con capa de rodadura asfáltica, como se describió anteriormente.

Etapa 3. Cálculo del "Máximo Valor Deducido Corregido", CDV.

Proceda de manera idéntica a lo establecido para vías con capa de rodadura asfáltica, pero usando la curva correspondiente a pavimentos de concreto.

Etapa 4. Calcule el PCI restando de 100 el máximo CDV.

En la Figura 3 se presenta un formato para el desarrollo del proceso iterativo de obtención del "Máximo Valor Deducido Corregido", CDV.

Tabla 10: Formato para la obtención del máximo valor deducido corregido.

PAVEMENT CONDITION INDEX FORMATO PARA LA OBTENCIÓN DEL MÁXIMO VALOR DEDUCIDO CORREGIDO

No.	Valores Deducidos				Total	q	CDV		
1									
2									
3									
4									

Figura 3. Formato para las iteraciones del cálculo del CDV.

5.2.7. 4. Cálculo del PCI de una sección de pavimento.

Una sección de pavimento abarca varias unidades de muestreo. Si todas las unidades de muestreo son inventariadas, el PCI de la sección será el promedio de los PCI calculados en las unidades de muestreo.

Si se utilizó la técnica del muestreo, se emplea otro procedimiento. Si la selección de las unidades de muestreo para inspección se hizo mediante la técnica aleatoria sistemática o con base en la representatividad de la sección, el PCI será el promedio de los PCI de las unidades de muestreo inspeccionadas. Si se usaron unidades de muestreo adicionales se usa un promedio ponderado calculado de la siguiente forma:

$$PCI_{S} = \frac{\left[\left(N - A\right) \times PCI_{R}\right] + \left(A \times PCI_{A}\right)}{N}$$
 Ecuación 4.

Figura 25: Ecuación 4

Dónde: PCIS: PCI de la sección del pavimento. PCIR: PCI promedio de las unidades de muestreo aleatorias o representativas. PCIA: PCI promedio de las unidades de muestreo adicionales. N: Número total de unidades de muestreo en la sección. A: Número adicional de unidades de muestreo inspeccionadas.

III. Metodología

3.1. Diseño de la investigación

Para el diseño de la investigación, los principales métodos que se utilizaron en la investigación, entre otros. Estos desarrollados de la siguiente forma:

- a) la investigación será desarrollada, con la ayuda de planos, ejes y tramos proyectados facilitando la aplicación de métodos como cálculos de áreas, siendo posible utilizar software para facilitar el procesamiento de datos y reducir errores en las evaluaciones de los estudios realizados.
- b) la metodología a utilizar, para el desarrollo del proyecto de tesis será:
 - recopilación de antecedentes preliminares, etapa en la cual se procederá a realizar la búsqueda de información, observación, toma de datos para la evaluación y validación de los ya existentes. de forma que dicha información sea necesaria para cumplir con los objetivos establecidos en el proyecto.
 - en el presente estudio de aplicación para la determinación y evaluación los diferentes tipos de patologías, están basados mediante tramos, las cuales de manera conjunta nos proporcionara obtener completamente el resultado estadístico y porcentual de la evaluación total realizada al perímetro analizado contemplado en el presente proyecto.
 - el diseño y método de investigación, se realizará de la siguiente manera:

Tabla 11: Ideograma de diseño de investigación.

	М	\rightarrow O \rightarrow A \rightarrow]	E o R	
M= Muestra	O= Observación	A= Análisis	E= Evaluación	R= Resultados

3.2. Universo y población

Para el presente proyecto de investigación, el universo está dado por la delimitación geográfica que ésta contempla, teniendo como referencia la longitud total de la vía, por lo que se tomará una muestra y ésta será dividida en tramos, para su respectiva determinación y evaluación de las patologías del pavimento de la avenida Habilitación Urbana Municipal del distrito de Callería, provincia de coronel portillo, departamento de Ucayali.

a) Población

Se seleccionara por paños los pavimentos de la superficie de la avenida Habilitación Urbana Municipal, distrito de Callería, provincia de Coronel Portillo, departamento de Ucayali,

b) Muestra

La muestra en estudio de la investigación comprendió de un inicio la avenida Centenario hasta la avenida Túpac Amaru del distrito de Callería, provincia de Coronel Portillo, departamento de Ucayali. Es necesario que las unidades de muestra sean fácilmente reubicables, a fin de que sea posible la verificación de la información de fallas existentes, la exanimación de variaciones de la unidad de muestra con el tiempo y las inspecciones futuras de la misma unidad de muestra si fuera necesario.

c) Muestreo

El muestreo comprende un total de cinco cuadras que empieza de la avenida Centenario hasta la avenida Túpac Amaru, es un tramo de un alto índice de tráfico vehicular ya que nos lleva al mercado

minorista de Pucallpa y es donde comienza la primera etapa de pavimentación de la avenida Habilitación Urbana Municipal que hoy en la actualidad ya tiene 10 años de haber sido inaugurado

El muestreo se llevará a cabo siguiendo el procedimiento detallado a continuación:

- 1. Identificar tramos o áreas en el pavimento con diferentes usos en el plano de distribución de la red, tales como caminos y estacionamientos.
- 2. Dividir cada tramo en secciones basándose en criterios como diseño del pavimento, historia de construcción, tráfico y condición del mismo.
- 3. Dividir las secciones establecidas del pavimento en unidades de muestra.
- 4. Identificar las unidades de muestras individuales a ser inspeccionadas de tal manera que permita a los inspectores, localizarlas fácilmente sobre la superficie del pavimento.
- 5. seleccionar las unidades de muestra a ser inspeccionadas. El número de unidades demuestra a inspeccionar puede variar de la siguiente manera: considerando todas las unidades de muestra de la sección, considerando un número de unidades de muestras que nos garantice un nivel de confiabilidad del 95% o considerando un número menor de unidades de muestra.
- 5.1. Todas las unidades de muestra de la sección pueden ser inspeccionadas para determinar el valor de PCI promedio en la sección.
 Este tipo de análisis es ideal para una mejor estimación del mantenimiento y reparaciones necesarias.

5.2. El número mínimo de unidades de muestra "n" a ser inspeccionadas en una sección dada, para obtener un valor estadísticamente adecuado (95% de confiabilidad), es calculado empleando la ecuación 1 y redondeando el valor obtenido de "n" al próximo número entero mayor.

3.3. Diseño y Operacionalización de las variables

Tabla 12: Definición y Operacionalización de las variables

Variables	Definición conceptual	Dimensiones	Definición operacional	Indicadores
Patología del pavimento	La determinación o establecimiento de las patologías encontradas en los paños de la calzada de la Avenida Habilitación	Los tipos de patologías más comunes que se presentan en los pavimentos son agrupados en 4 categorías: 1. Fisuras y grietas	variabilidad en	Tipo, forma de falla.
	urbana Municipal Distrito de Callería, provincia de coronel portillo, departamento de Ucayali.	 Deformaciones superficiales Desintegración de pavimentos o desprendimiento. Afloramientos y otras fallas. 	grado de afectación	Baja (leve) (1) Medio (moderado) (2) Alto (severo) (3)

Fuente: Elaboración propia (2017)

3.4. Técnicas e instrumentos

3.4.1. técnicas: La técnica empleada será la evaluación visual, la cual será determinante para iniciar la toma de datos, considera como método de recolección de información de la muestra, según el análisis de muestreo. Donde

la toma de datos es fundamental contar con los instrumentos necesarios para la elaboración de la misma.

3.4.2. Instrumentos:

- cámara fotográfica, la cual nos permitirá detallar las diferentes patologías encontradas con el fin de tener mejores perspectivas de las áreas comprometidas que están en estudio.
- Cuaderno de apuntes o tablas de ingreso de datos para la evaluación, la cual será necesaria para mantener un orden adecuado en el proceso de investigación y posterior evaluación.
- Planos de planta y elevación de la avenida Habilitación Urbana Municipal, la cual proporcionará mayor exactitud en la recopilación y evaluación de muestras obtenidas, ésta siendo representada por paños y tramos.
- Wincha y/o regla para realizar las diferentes mediciones, tales como áreas totales y áreas afectadas en los elementos de concreto, paños, con el fin de garantizar una evaluación detallada de los daños que se presenten en los diferentes tramos.
- Libros y/o manuales de referencia, para conocer los diferentes tipos de patologías en pavimento de concreto.

Para realizar el presente informe de tesis se llegó a utilizar el software básico que todo profesional debe saber cómo lo son:

Microsoft Word es un software destinado al procesamiento de textos.

Excel es un programa informático desarrollado y distribuido por Microsoft Corp. Se trata de un software que permite realizar tareas contables y financieras gracias a sus funciones, desarrolladas específicamente para ayudar a crear y trabajar con hojas de cálculo.

PowerPoint es uno de los programas de presentación más extendidos. Es ampliamente utilizado en distintos campos de la enseñanza, los negocios, etc.

AutoCAD es un software reconocido a nivel internacional por sus amplias capacidades de edición, que hacen posible el dibujo digital de planos de edificios o la recreación de imágenes en 3D; es uno de los programas más usados por arquitectos, ingenieros, diseñadores industriales y otros.

CorelDraw es una aplicación informática de diseño gráfico vectorial, es decir, que usa fórmulas matemáticas en su contenido.

Photoshop es el nombre popular de un programa informático de edición de imágenes. Su nombre completo es Adobe **Photoshop**

Adobe Illustrator es el nombre o marca comercial oficial que recibe uno de los programas más famosos de la casa Adobe, junto con sus hermanos Adobe Photoshop y Adobe Flash, y que se trata esencialmente de una aplicación de creación y manipulación vectorial en forma de taller de arte que trabaja de maquetación y diseño

3.5. Plan de análisis

El plan de análisis adoptado, estará comprendido de la siguiente manera:

- El análisis se realizará, teniendo el conocimiento general de la ubicación del área que está en estudio. Se aplicara el método del PCI para una mejor evaluación.

- Evaluando de manera general, podremos determinar los diferentes tipos de patologías que existen y según ello realizar los cuadros de evaluación en base al método del PCI.
- Procedimiento de recopilación de información de campo, mediante mediciones para obtener cuadros informativos de tipos de patologías.
- Cuadros de ámbito de la investigación.

3.6. Matriz de consistencia

Tabla 13: Matriz de consistencia

Título : Determinación y evaluación del estado situacional de la pavimentación de la av. Habitación Urbana Municipal en la ciudad de Pucallpa – 2017

Caracterización del problema

la venida habilitación urbana municipal está ubicado en el distrito de Callería, provincia de Coronel Portillo, departamento de Ucayali, fue inaugurada en el año 2007 teniendo actualmente 10 años de funcionamiento y los cuales ya se está presentando en ella un deterioro considerable lo largo de toda la avenida. Por lo tanto necesariamente se hará una inspección a lo largo de los tramos escogidos para realizar la evaluación del estado actual de la vía.

Enunciado del problema

Objetivos de la investigación

objetivos generales

determinar y evaluar las patologías de la avenida habilitación urbana municipal del distrito de Callería, provincia de Coronel Portillo, y así obtener el estado y condición del servicio de la avenida pavimentada, según los diferentes tipos de patologías que la misma presenta, estos justificados mediante resultados de evaluación como referencia las patologías existentes actualmente.

Objetivos específicos

 a) Identificar y determinar los tipos de patologías del concreto en los diferentes paños que conforman la vía, distrito de Callería, provincia de Coronel Portillo, departamento de Ucayali.

Marco teórico y conceptual antecedentes

Se consultó en diferente tesis y estudios específicos y realizados de manera nacional e internacional, referente en patologías en pavimentos de concreto.

Bases teóricas

a) Pavimento rígido

El pavimento rígido o pavimento hidráulico, se compone de losas de concreto hidráulico que algunas veces presentan acero de refuerzo. Esta losa va sobre la base o Subbase y ésta sobre la subrasante. Este tipo de pavimentos no permite deformaciones de las capas inferiores.

El pavimento rígido tiene un costo inicial más elevado que el pavimento flexible y su período de vida varía entre 20 y 40 años.

Metodología tipo de investigación

Por el tipo de investigación el presente proyecto reúne las condiciones metodológicas de una investigación tipo aplicada, no experimental, de corte transversal y tipo descriptivo Junio 2017.

Nivel de investigación

El nivel de la investigación para el presente estudio, de acuerdo a la naturaleza del estudio de la investigación, reúne por su nivel las características de un estudio de tipo descriptivo, explicativo y correlativo.

Diseño de la investigación

el universo o la población

a) muestra

-dimensiones

b) muestreo
 definición y Operacionalización
 de las variables
 -variable
 -definición conceptual

Referencias bibliográficas

- (1) Prunell s. análisis de los factores que producen el deterioro de los pavimentos rígidos. [Tesis para la obtención del título de ingeniero civil]. La plata, argentina; 2011. http://lemac.frlp.utn.edu.ar/wpc ontent/uploads/2014/05/lemac memoria2013.pdf
- (2) Ruiz c. análisis de los factores que producen el deterioro de los pavimentos rígidos. [Tesis para la obtención del título de ingeniero civil]. Sangolquí ecuador: escuela politécnica del ejército; 2011.http://repositorio.espe.edu. ec/bitstream/21000/3033/1/t-espe-030924.pdf
- (3) Espinoza t. determinación y evaluación del nivel de incidencia de las patologías del concreto en los pavimentos rígidos de la provincia de Huancabamba, departamento de

¿En qué medida la determinación y evaluación de las patologías del pavimento de la avenida Habitación Urbana Municipal del distrito de Callería, provincia de Coronel	b) Evaluar los diferentes elementos y áreas comprometidas las cuales presenten diferentes tipos de patologías, con el fin de obtener resultados mediante porcentajes y estadísticas patológicas encontradas a lo	El mantenimiento que requiere es mínimo y se orienta generalmente al tratamiento de juntas de las losas. b)Patologías en pavimentos Las patologías en pavimentos de	-definición operacional -indicadores técnicas e instrumentos plan de análisis	Piura. [Tesis para optar al título de ingeniero civil]. Piura, Perú: universidad católica los ángeles de Chimbote; 2010. http://es.scribd.com/doc/103596 390/patologia-vimentos#scribd (4) Córdova e., guerrero m.,
Portillo, departamento de Ucayali, nos permitirá obtener el estado actual y condición de servicio de dicha avenida en funcionamiento?	largo de la avenida Habilitación Urbana Municipal. c) Mediante los resultados de la evaluación, poder obtener el estado actual y la condición de servicio en la que se encuentra la avenida Habilitación Urbana Municipal, distrito de Callería, provincia de coronel portillo, departamento de Ucayali.	concreto se definen como el estudio sistemático de los procesos y características de las enfermedades o los defectos y		Mautino a. determinación y evaluación del nivel de incidencia de las patologías del concreto en los pavimentos rígidos del barrio índice de condición de pavimentos en Aeropuertos (PCI). Norma ASTM d 5340.Lima. Http://alacpa.org/index_archivo s/astmd53 40-metcalc-pci-esprev0.pdf

3.7. Principios éticos

- Nosotros como alumnos de la carrera profesional de ingeniería civil, en un futuro estaremos al servicio de la sociedad, teniendo como obligación en este proceso adquirir conocimiento de buena calidad para posteriormente contribuir al bienestar humano, dando importancia primordial a la seguridad y adecuada utilización de los recursos en el desempeño de cada tarea profesional que nos sean asignadas.
- Como alumnos, debemos fomentar y defender la integridad, el honor y la dignidad de nuestra carrera profesional, capacitándonos constantemente para crecer e ir adquiriendo el profesionalismo necesario para competir en el mundo laboral.
- Así pues como principios éticos, debemos comprometernos con:
 - a) La relación con la sociedad: en un futuro estaremos en toda la capacidad de desarrollar e innovar con proyectos que beneficien a la sociedad, así como acreditar o autorizar planos, memorias, investigaciones.
 - b) La relación con el público: en este proceso de alcanzar el título de ingeniero civil uno se tiene que comprometer y practicar los valores fundamentales que un profesional tiene que tener para con su sociedades los informes objetivos que presentemos deben ser sencillos y fáciles de comprender, teniendo justificación razonable de las decisiones que se adopten, así mismo estar en capacitación constante a fin de desarrollar proyectos innovadores y útiles a la sociedad.

- c) La competencia y perfeccionamiento: con los conocimientos y exigencias que nos dan los docentes y por nuestro propio interés uno tiene que comprometerse en llegar muy lejos, ser competitivo en todo momento y dejar bien en alto nuestro nombre, el nombre de nuestra casa de estudios y la de nuestra carrera profesional.
- d) El ejercicio profesional: podremos hacer la publicidad de nuestros servicios profesionales de manera verídica, pudiendo mencionar los lugares de donde hayamos prestado nuestros servicios o donde actualmente estamos laborando.

IV. Resultados

4.1. Análisis de resultados

A continuación se presenta el resumen de los anexos y gráficos procesados de los paños del Pavimento Rígido de la avenida Habilitación Urbana Municipal del Distrito de Callería, Provincia de Coronel Portillo, Región Ucayali – 2017. Evaluadas de acuerdo al siguiente orden:

- Determinación del número mínimo de unidades de muestreo a evaluar.
- Nivel de Índice de Condición de Pavimento, para cada cuadra evaluada de la avenida Habilitación Urbana Municipal del Distrito de Callería, Provincia de Coronel Portillo, Región Ucayali 2017.

- Tipos de patologías existentes en cada Cuadra de la avenida Habilitación Urbana Municipal del Distrito de Callería, Provincia de Coronel Portillo, Región Ucayali – 2017.
- Nivel de Índice de Condición de Pavimento promedio de las cinco cuadras evaluadas de la avenida Habilitación Urbana Municipal del Distrito de Callería, Provincia de Coronel Portillo, Región Ucayali – 2017.

Determinación de las Unidades de Muestreo para Evaluación

Ubicación del área de estudio. Tabla 14: Determinación de las unidades de muestreo

CUADRAS PAÑOS Ecuación 1. 1RA 22 22 22

Donde:

- n: Numero minimo de unidades de muestreo a evaluar.
- N: Numero total de unidades de muestreo en la sección del
- e: Error admisible en el estimativo del PCI de la sección (e=5%)
- : Desviacion estandar del PCI entre la unidades

Selección de Unidades de Muestreo para Inspección: $\frac{N}{}$ Ecuación 2. 110 109.97

Donde:

22

22 110

15 0.5

109.97

2DA

3RA

4TA

5TA

N= σ=

e=

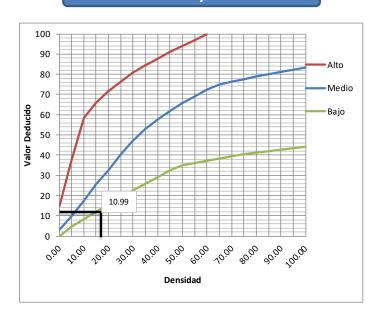
n=

N: Numero total de unidades de muestreo disponible.

n: Numero minimo de unidades para evaluar.

i: Intervalo de muestreo, se redondea al numero entero inferior (por ejemplo, 3.7 se redondea a 3)

1	si la unidad inicial de muestreo para la inspeccion seleccionada es 1
2	el intervalo de muestreo (i) es igual a 1.00
3	las subsiguientes unidades de muestreo a inspeccionar serian 2,3,4110



PRIMERA CUADRA DE LA AVENIDA HABILITACION URBANA MUNICIPAL-CALLERIA-CORONEL PORTILLO-UCAYALI

Tabla 15: Hoja de inspección, cálculo de "m" y VDC (UM-01). PAVIMENTO DE CONCRETO RIGIDO HOJA DE INSPECCION DE CONDICIONES PARA UNIDAD DE MUESTRA Bach. Luis Diego Huaman Cordova TIPO DE FALLA INSPECCIONADO POR: N° Avenida Habilitacion Urbana Municipal Blow Up/Buckling CALLE: N° DE PAÑOS: 22 22 Grieta de Esquina 23 TIPO DE USO: Vehicular Losa Dividida CUADRA: 24 Grieta de Durabilidad "D" FECHA: Jun-17 25 Escala TIEMPO DE CONSTRUCCION: 10 AÑOS Daño del Sello de Junta 0+000 AL 0+300 27 Desnivel de Carril/Berma Progresiva 28 Grieta Lineal 29 Parche Grande 30 Parche Pequeño Pulimento de Agregados 31 32 Popouts 33 Bombeo Cuadra Nº1 34 Punzonamiento 35 Cruce de Via Ferrea 36 Desconchamiento 37 Retracción. Descascaramiento de Esquina. 38 Cuadra Nº2 39 Descascaramiento de Junta. NIVELES DE SEVERIDAD SEVERIDAD BAJA В Cuadra Nº3 2 SEVERIDAD MEDIA M 3 SEVERIDAD ALTA **VALOR DE DEDUCIDO** N° DE LOSAS N° TIPO DE FALLA N/S SEVERIDAD DENSIDAD % (VD) SEVERIDAD BAJA 13.64 10.99 21 Blow Up/Buckling 3 26 Daño del Sello de Junta 3 SEVERIDAD ALTA 22 4.00 31 Pulimento de Agregados 2 SEVERIDAD MEDIA 22 100.00 9.70 10.99

Tabla 16: Cálculo del VR- falla 21-UM-01

21. BLOW UP / BUCKLING

21. BLOW UP / BUCKLING

Densidad	\	/alor deducid	o
Delisidad	В	M	Α
0.00		3.00	15.00
5.00	4.40	9.60	37.30
10.00	8.30	17.50	58.40
15.00	12.00	25.40	65.80
20.00	15.50	32.40	71.60
25.00	19.00	40.60	76.50
30.00	22.40	47.20	80.70
35.00	25.80	52.80	84.40
40.00	29.10	57.60	87.80
45.00	32.40	61.90	90.90
50.00	34.90	65.80	93.80
55.00	36.20	69.20	97.00
60.00	37.30	72.50	100.00
65.00	38.40	74.80	
70.00	39.40	76.30	
75.00	40.30	77.60	
80.00	41.20	79.00	
85.00	42.00	80.10	
90.00	42.70	81.20	
95.00	43.50	82.20	
100.00	44.20	83.20	

INTERPOLACION PARA HALLAR

EL VALOR DEDUCIDO

DENSIDAD 13.64

1)	15.00	-	10.00	=	5.00
	15.00	-	13.64	=	1.36
2)	1.36	/	5.00	=	0.27
3)	12.00	-	8.30	=	3.70
4)	0.27	*	3.70	=	1.01
5)	12.00	-	1.01	=	10.99

VALOR DEDUCIDO (VD)

10.99

Tabla 17: Cálculo del VR- falla 26-UM-01

26 DAÑO DE SELLO DE JUNTAS

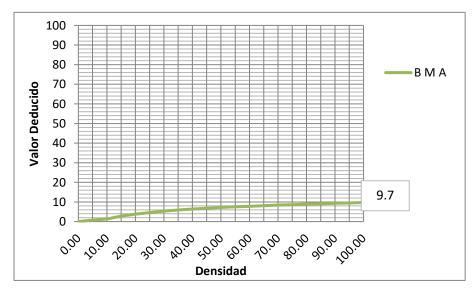
L=2PUNTOS M=4 PUNTOS H=8 PUNTOS

El sello de junta no esta relacionada por la densidad. La severidad de daño es determinado por la condición del sellador en general para la unidad de muestra en particular.

Los valores reducidos para los tres niveles de severidad son:

Bajo: 2 puntos

Medio: 4 puntos


Alto: 8 puntos

4.00

Fuente: Elaboración propia (2017)

Tabla 18: Cálculo del VR- falla 31-UM-01

31. PULIMENTO DE AGREGADOS

31. PULIMENTO DE AGREGADOS

Densidad	Valor deducido
Delisidad	ВМА
0.00	0.00
5.00	0.80
10.00	1.30
15.00	2.80
20.00	3.80
25.00	4.60
30.00	5.30
35.00	5.90
40.00	6.40
45.00	6.80
50.00	7.20
55.00	7.50
60.00	7.80
65.00	8.10
70.00	8.40
75.00	8.60
80.00	8.90
85.00	9.10
90.00	9.30
95.00	9.50
100.00	9.70

Fuente: Elaboración propia (2017)

INTERPOLACION PARA HALLAR EL VALOR DEDUCIDO

DENSIDAD

100.00

VALOR REDUCIDO (VD)

Tabla 19: Cálculo del número máximo admisible de fallas permisibles UM-01.

	1		ALCULU D	EL INDIVIER	NO IVIANIIV	IO ADIVIISII	BLE DE FALLA PERMI	IIDA		
m =	1+(9/98)	*(100-HDV)								
								CALII	FICACION DE	L PCI
Donde:								RANGO	CALIFIC	CACION
m=	Numero	permitido d	le VRs inc	luyendo fr	acciones	debe ser m	nenor o igual a 10)	100-85	EXCE	LENTE
VAR=	Valor ind	ividual mas	alto de V	/R.				85 - 70	MUY E	BUENO
								70 - 55	BUI	ENO
VAR=	10.99	Valor redu	ıcido mas	alto				55 - 40	REG	JLAR
								40 - 25	MA	ALO
m=	9.17	numero admisible de deducidos m					25 - 10	MUY MALO		
								10 - 00	FALI	.ADO
CALCUL	O DEL VAI	LOR DEDUC	IDO CORF	REGIDO (VI	DC) DE LA	CUADRA 1				
			CAL	CULO DEL	VALOR D	EDUCIDO C	ORREGIDO (VDC)			
Nº				VALORES	DEDUCIDO	<u>os</u>		VDT	q	VDC
1	10.99	9.70	4.00					24.69	3	14.28
2	10.99	9.70	2					22.69	2	18.27
3	10.99	2	2					14.99	1	14.99
4										
5										
6										
7										

Fuente: Elaboración propia (2017)

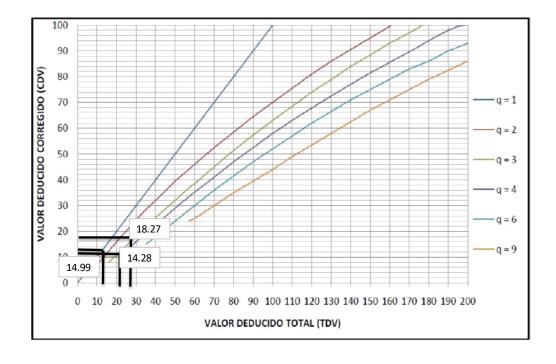


Figura 26: Grafico de valor deducido total de UM-01.

Tabla 20: interpolación de VDC, cálculo del PCI y VDC (UM-01).

INTERPOL	ACION PARA	HALLAR					
VALORES I	DEDUCIDOS C	ORREGIDOS					
VDT	24.69	1)	27.00	-	20.00	=	7.00
q3	14.28		27.00	-	24.69	=	2.31
		2)	2.31	/	7.00	=	0.33
		3)	15.90	-	11.00	=	4.90
		4)	0.33	*	4.90	=	1.62
		5)	15.90	-	1.62	=	14.28
VDT	22.69	1)	27.00	-	20.00	=	7.00
q2	18.27		27.00	-	22.69	=	4.31
		2)	4.31	/	7.00	=	0.62
		3)	21.90	-	16.00	=	5.90
		4)	0.62	*	5.90	=	3.63
		5)	21.90	-	3.63	=	18.27

VDT	14.99	1)	16.00	-	11.00	=	5.00
q1	14.99		16.00	-	14.99	=	1.01
		2)	1.01	/	5.00	=	0.20
		3)	16.00	-	11.00	=	5.00
		4)	0.20	*	5.00	=	1.01
		5)	16.00	-	1.01	=	14.99

Valores				Valores	Deducidos Co	rregidos			
Deducidos	q1	q2	q3	q4	q5	q6	q7	q8	q9
0	0.00								
10	10.00								
11	11.00	8.00							
16	16	12.40	8.00						
20	20	16.00	11.00						
27	27.00	21.90	15.90	14.00					
30	30.00	24.50	18.00	16.00					
35	35.00	28.50	21.70	19.20	17.10	15.00			
40	40.00	32.00	25.40	22.50	20.20	18.00			
50	50.00	39.50	32.00	29.00	26.50	24.00			
57	57.00	44.00	36.90	33.40	30.80	28.20	26.80	25.40	24.00
60	60.00	46.00	38.50	35.20	32.60	30.00	28.30	26.60	25.00
70	70.00	52.50	45.00	41.00	38.50	36.00	34.00	32.00	30.00
80	80.00	58.50	51.40	47.00	44.20	41.50	39.30	37.10	35.00
90	90.00	64.50	57.40	52.50	49.70	47.00	44.50	42.00	39.50
100	100.00	70.00	63.00	58.00	55.00	52.00	49.30	46.60	44.00
110		75.50	68.50	63.00	60.00	57.00	54.30	51.60	49.00
120		81.00	74.00	67.80	64.90	60.00	59.20	56.40	53.50
130		86.00	78.90	72.50	69.50	65.00	63.70	60.90	58.00
140		90.50	84.00	77.00	74.00	71.00	68.20	65.40	62.50
150		95.00	88.40	81.50	78.20	75.00	72.30	69.60	67.00
160		95.50	93.00	85.50	82.20	79.00	76.30	73.60	71.00
161		100.00	93.40	86.00	82.70	79.40	76.70	74.00	71.40
170			97.00	89.60	86.30	83.00	80.30	77.60	75.00
177			100.00	92.60	88.80	85.10	82.70	80.30	77.80
180				94.00	90.00	86.00	83.70	81.40	79.00
190				98.00	94.00	90.00	87.50	85.00	82.50
195				99.50	95.50	91.50	89.10	86.70	84.30
200				100.00	96.50	93.00	90.70	88.40	86.00

Tabla 21: Calculo PCI UM-01.

CÁLCULO DEL ÍNDICE DE CONDICIÓN DE PAVIMENTO (PCI), DEL PAVIMENTO RÍGIDO DE LA 1RA CUADRA DE LA AVENIDA TUPAC AMARU

DE LA IRA COMBRADE LA ITA				
CAL	CALIFICACION DEL PCI			
RANGO	CALIFICACION			
100-85	EXCELENTE			
85 - 70	MUY BUENO			
70 - 55	BUENO			
55 - 40	REGULAR			
40 - 25	MALO			
25 - 10	MUY MALO			
10 - 00	FALLADO			

MAX.	18.27		
PCI = 100 -	PCI = 100 - MAX. VDC		
PCI			

Fuente: Elaboración propia (2017)

N°	TIPO DE FALLA	DENSIDAD %	PORCENTAJE REAL %
21	Blow Up/Buckling	13.64%	6.38%
26	Daño del Sello de Junta	100.00%	46.81%
31	Pulimento de Agregados	100.00%	46.81%
		213.64%	100%

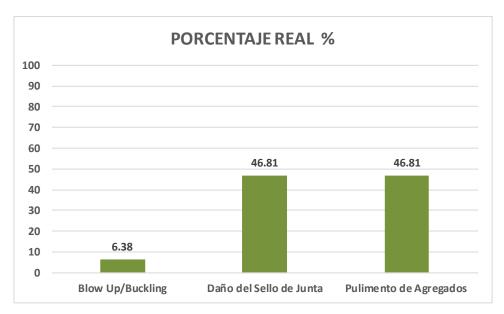


Figura 27: Porcentajes de fallas y grafico del PCI (UM-01).

La unidad de muestra U-1 tiene 22 paños y pertenece a la primera cuadra en estudio de la avenida Habilitación Urbana Municipal se ubica entre la avenida Centenario y la Calle S/N1 tomando la calzada del sentido de transito de la Av. Centenario hacia la Calle S/N1, las fallas registradas con nivel de severidad baja son Blow Up/Buckling, con severidad media Pulimento de Agregados y con severidad alta Daño del Sello de Junta, como se aprecia en la siguiente tabla se obtuvieron los siguiente valores deducidos continuando con el procedimiento del máximo valor deducido corregido 18.27 dándonos como resultado un PCI de 81.73 que nos indica que el pavimento es **muy bueno.**

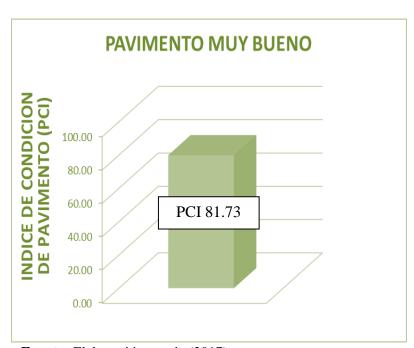


Figura 28: grafico del PCI (UM-01).

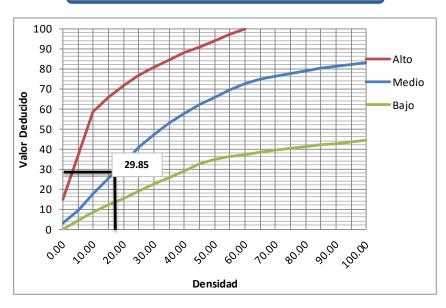

SEGUNDA CUADRA DE LA AVENIDA HABILITACION URBANA MUNICIPAL-CALLERIA-CORONEL PORTILLO-UCAYALI

Tabla 22: Hoja de inspección, cálculo de "m" y VDC (UM-02).

- woi	22. 110ju	de inspección, c			-		,				
	PAVIMENTO DE CONCRETO RIGIDO HOJA DE INSPECCION DE CONDICIONES PARA UNIDAD DE MUESTRA										
	CCIONADO POR				1		N°		TIPO DE FAL	.LA	
CALLE		enida Habilitacion Urb	ana Mu	nicipal			21	Blow Up/Bucl	0		
	PAÑOS:	22					22	Grieta de Esc			
	DE USO:	Vehicular					23	Losa Dividida			
CUAD		2					24	Grieta de Dur	rabilidad "D"		
FECH	-	Jun-17					25	Escala			
		CCION: 10 AÑOS					26	Daño del Sell			
Progre	siva	0+300 AL 0+440					27	Desnivel de C	Carril/Berma		
	2		3				28	Grieta Lineal			
- (c	Av. Centenario		ersitari				29	Parche Grand			
	Av. Cellin		0				30	Parche Pequ	eño		
	an Mai						31	Pulimento de	Agregados		
	Cuadra N	To. Habili					32	Popouts			
	Cuagra P	V1 (acion					33	Bombeo			
		Urbana					34	Punzonamier	nto		
		Municipa		Universitatia			35	Cruce de Via	Ferrea		
		Ĭ		Itaria		36	Desconchamiento				
	Cuad	lra N°2					37	Retracción.			
							38	Descascaramiento de Esquina.			
		+ \ \ \					39	Descascaran	niento de Junta.		
J	Cua	idra N°3						NIVELES DE SEVERIDAD			
		_AV LIOO	ue Yupanqui				1	SE	VERIDAD BAJA		В
							2	SE\	ÆRIDAD MEDIA		M
							3	SE	VERIDAD ALTA		Α
N°	TIF	PO DE FALLA	N/S	:	SEVERID	DAD		N° DE LOSAS	DENSIDAD %	VALO	R DE DEDUCIDO (VD)
21	Blow Up/Buckling]	2	SEVERID/	AD MED	OIA		4	18.18		29.85
26	Daño del Sello de	e Junta	2	SEVERID/	AD MED	OIA		22	-		4.00
31	Pulimento de Agr	egados	2	SEVERID/	AD MED)IA		22	100.00		9.70
32	Popouts		2	SEVERIDA	AD MED	OIA		3	13.64		2.08
34	Punzonamiento		2	SEVERIDA	AD MED	OIA		6	27.27		46.11
36	Desconchamien	to	2	SEVERID/	AD MED	OIA		7	31.82		19.05
38	Descascaramien	to de Esquina.	2	SEVERIDA	AD MED	OIA		6	27.27		9.16
											46.11

Tabla 23: Cálculo del VR- falla 21-UM-02

21. BLOW UP / BUCKLING

21. BLOW UP / BUCKLING

Donaidad	Valor deducido				
Densidad	В	M	Α		
0.00		3.00	15.00		
5.00	4.40	9.60	37.30		
10.00	8.30	17.50	58.40		
15.00	12.00	25.40	65.80		
20.00	15.50	32.40	71.60		
25.00	19.00	40.60	76.50		
30.00	22.40	47.20	80.70		
35.00	25.80	52.80	84.40		
40.00	29.10	57.60	87.80		
45.00	32.40	61.90	90.90		
50.00	34.90	65.80	93.80		
55.00	36.20	69.20	97.00		
60.00	37.30	72.50	100.00		
65.00	38.40	74.80			
70.00	39.40	76.30			
75.00	40.30	77.60			
80.00	41.20	79.00			
85.00	42.00	80.10			
90.00	42.70	81.20			
95.00	43.50	82.20			
100.00	44.20	83.20			

Fuente: Elaboración propia (2017)

INTERPOLACION PARA HALLAR EL VALOR DEDUCIDO

DENSIDAD 18.18

1)	20.00	-	15.00	=	5.00
•	20.00	-	18.18	=	1.82
٠.	1.82	/	5.00	=	0.36
3)	32.40	-	25.40	=	7.00
4)	0.36	*	7.00	=	2.55
5)	32.40	-	2.55	=	29.85

VALOR REDUCIDO (VD)

Tabla 24: Cálculo del VR- falla 26-UM-02

26 DAÑO DE SELLO DE JUNTAS

L=2PUNTOS M=4 PUNTOS H=8 PUNTOS

El sello de junta no esta relacionada por la densidad. La severidad de daño es determinado por la condición del sellador en general para la unidad de muestra en particular.

Los valores reducidos para los tres niveles de severidad son:

Bajo: 2 puntos

Medio: 4 puntos

Alto: 8 puntos

4.00

Tabla 25: Cálculo del VR- falla 31-UM-02

31. PULIMENTO DE AGREGADOS

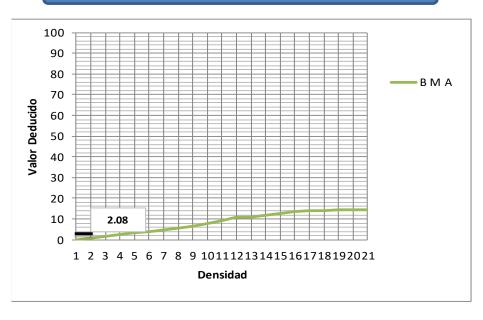
31. PULIMENTO DE AGREGADOS

Densidad	Valor deducido
Densidad	B M A
0.00	0.00
5.00	0.80
10.00	1.30
15.00	2.80
20.00	3.80
25.00	4.60
30.00	5.30
35.00	5.90
40.00	6.40
45.00	6.80
50.00	7.20
55.00	7.50
60.00	7.80
65.00	8.10
70.00	8.40
75.00	8.60
80.00	8.90
85.00	9.10
90.00	9.30
95.00	9.50
100.00	9.70

INTERPOLACION PARA HALLAR EL VALOR DEDUCIDO

DENSIDAD

0.00


1)	100.00	-	100.00	=	0.00
_	100.00	-	0	=	100
2)	/			=	0
3)	9.70	-	9.70	=	0
4)	0 *		0	=	0
5)	9.7	-	0	=	9.7

VALOR REDUCIDO (VD)

9.70

Tabla 26: Cálculo del VR- falla 32-UM-02

32. POPOUTS

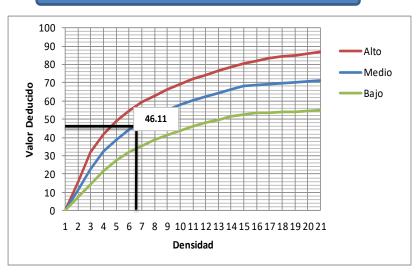
Valor deducido **Densidad** BMA0.00 0.00 5.00 0.70 10.00 1.50 15.00 2.30 20.00 3.20 25.00 4.00 4.80 30.00 35.00 5.70 6.70 40.00 8.00 45.00 50.00 9.10 55.00 11.10 60.00 11.10 11.90 65.00 70.00 12.70 75.00 13.40 80.00 13.90 85.00 14.10 14.30 90.00 95.00 14.40

INTERPOLACION PARA HALLAR EL VALOR DEDUCIDO

DENSIDAD 13.64

1)	15.00	-	10.00	=	5.00
_	15.00	-	13.64	=	1.36
2)_	1.36	/	5	=	0.272
3)	2.30	-	1.50	=	0.8
4)	0.272	*	0.8	=	0.2176
5)	2.3	-	0.2176	=	2.08

VALOR DEDUCIDO (VD)


2.08	

Fuente: Elaboración propia (2017)

14.60

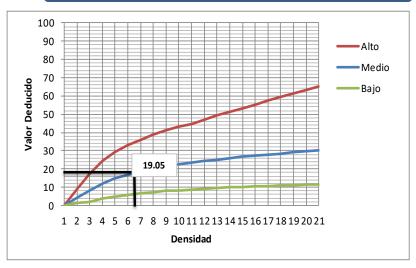
Tabla 27: Cálculo del VR- falla 34-UM-02

34. PUNZONAMIENTO

Valor deducido Densidad В М Α 0.00 0.00 0.00 0.00 5.00 7.30 11.60 15.60 10.00 14.50 22.90 31.80 15.00 21.60 32.30 41.90 20.00 27.36 39.00 49.10 25.00 31.90 44.20 54.60 30.00 35.60 48.40 59.20 35.00 38.80 52.00 63.00 41.50 40.00 55.10 66.30 45.00 43.90 57.80 69.30 46.10 60.30 71.90 50.00 55.00 48.10 62.50 74.30 76.40 60.00 49.80 64.50 65.00 51.50 66.40 78.40 70.00 52.70 68.00 80.30 75.00 53.30 68.90 82.00 80.00 83.40 53.60 69.40 85.00 53.90 69.90 84.30 90.00 54.20 70.30 85.10 95.00 54.50 70.80 86.00 100.00 54.80 71.20 86.80

Fuente: Elaboración propia (2017)

INTERPOLACION PARA HALLAR EL VALOR DEDUCIDO


DENSIDAD 27.27

1)	30.00	-	25.00	=	5.00
_	30.00	-	27.27	=	2.73
2)_	2.73	/	5	=	0.546
3)	48.40	-	44.20	=	4.2
4)	0.546	*	4.2	=	2.2932
5)	48.4	-	2.2932	=	46.11

VALOR DEDUCIDO (VD)

Tabla 28: Cálculo del VR- falla 36-UM-02

36. MAPA DE GRIETAS / CRAQUELADAO

36. MAPA DE GRIETAS/CRAQUELADO

Densidad	Valor deducido				
Delisidad	В	M	Α		
0.00	0.00	0.00	0.00		
5.00	1.20	4.20	9.30		
10.00	2.10	8.00	17.30		
15.00	3.80	11.90	24.20		
20.00	5.00	14.60	29.10		
25.00	5.90	16.70	33.00		
30.00	6.70	18.50	36.10		
35.00	7.30	20.00	38.70		
40.00	7.90	21.20	41.00		
45.00	8.30	22.40	43.00		
50.00	8.80	23.40	44.80		
55.00	9.20	24.30	47.00		
60.00	9.50	25.10	49.20		
65.00	9.90	25.90	51.20		
70.00	10.20	26.60	53.20		
75.00	10.50	27.30	55.20		
80.00	10.70	27.90	57.30		
85.00	11.00	28.50	59.30		
90.00	11.20	29.00	61.30		
95.00	11.40	29.50	63.30		
100.00	11.70	30.00	65.30		

Fuente: Elaboración propia (2017)

INTERPOLACION PARA HALLAR EL VALOR DEDUCIDO DENSIDAD

31.82

1)	35.00	-	30.00	=	5.00
	35.00	-	31.82	=	3.18
2)_	3.18	/	5	=	0.636
3)	20.00	-	18.50	=	1.5
4)	0.636	*	1.5	=	0.954
5)	20	-	0.954	=	19.05

VALOR DEDUCIDO (VD)

Tabla 29: Cálculo del VR- falla 38-UM-02

38. DESCASCARAMIENTO DE ESQUINA

38. DESCARAMIENTO DE ESQUINA

Damaidad	Valor deducido							
Densidad	В	M	Α					
0	0.00	0.00	0.00					
5	0.50	1.60	3.30					
10	1.30	3.10	7.00					
15	2.00	4.70	10.10					
20	2.70	5.90	13.20					
25	4.40	8.30	15.70					
30	5.80	10.20	17.70					
35	6.90	11.90	19.30					
40	8.00	13.30	20.80					
45	8.90	14.50	22.10					
50	9.70	15.60	23.20					
55	10.40	16.70	24.30					
60	11.10	17.60	25.20					
65	11.70	18.40	26.10					
70	12.20	19.20	26.90					
75	12.80	19.90	27.60					
80	13.30	20.60	28.30					
85	13.70	21.23	29.00					
90	14.20	21.90	29.60					
95	14.60	22.40	30.20					
100	15.00	23.00	30.80					

Fuente: Elaboración propia (2017)

INTERPOLACION PARA HALLAR EL VALOR DEDUCIDO

DENSIDAD

27.27

1)	30.00	-	25.00	=	5.00
_	30.00	-	27.27	=	2.73
2)_	2.73 /		5	=	0.546
3)	10.20	-	8.30	=	1.9
4)	0.546 *		1.9	=	1.0374
5)	10.2	-	1.0374	=	9.1626

VALOR DEDUCIDO (VD)

Tabla 30: Cálculo del número máximo admisible -UM-02

1 uviu	Tubu 30. Calculo del numero maximo admisible -011-02										
CALCULO DEL NUMERO MAXIMO ADMISIBLE DE FALLA PERMITIDA											
m =	1+(9/98)*(100-HDV)									
								CALIF	ICACION DI	EL PCI	
Donde:								RANGO	CALIFIC	CACION	
m=	Numero pe	ermitido de	VRs incluye	ndo fraccio	nes (debe s	er menor o i	gual a 10)	100-85	EXCE	LENTE	
VAR=	Valor indiv	idual mas a	lto de VR.					85 - 70	MUYE	BUENO	
								70 - 55	BUI	ENO	
VAR=	46.11	Valor redu	cido mas alt	to				55 - 40	REGI	JLAR	
								40 - 25	MA	ALO	
m=	5.95	numero ad	misible de	deducidos n	n			25 - 10	MUY MALO		
								10 - 00	FALL	ADO	
CALCULO	DEL VALOR DE	DUCIDO CORR	EGIDO (VDC)	DE LA CUADRA	A 2						
			CA	ALCULO DEL V	ALOR DEDUCI	DO CORREGIDO	(VDC)				
Nº			VALORES	DEDUCIDOS				VDT	q	VDC	
1	46.11	29.85	19.05	9.70	9.16	4.00		117.87	6	59.36	
2	46.11	29.85	19.05	9.70	9.16	2.00		115.87	5	62.88	
3	46.11	29.85	19.05	9.70	2.00	2.00		108.71	4	62.35	
4	46.11	29.85	19.05	2.00	2.00	2.00		101.01	3	63.55	
5	46.11	29.85	2.00	2.00	2.00	2.00		83.96	2	60.88	
6	46.11	2.00	2.00	2.00	2.00	2.00		56.11	1	56.11	

Fuente: Elaboración propia (2017)

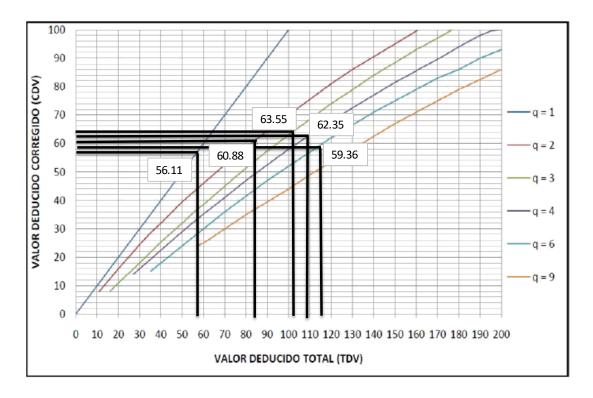


Figura 29: Grafico de valor deducido total-UM-02

Tabla 31: interpolación de VDC, cálculo del PCI (UM-02).

INTERPOL	ACION PARA HA	LLAR					
VALORES I	DEDUCIDOS COR	REGIDOS					
VDT	117.87	1)	120.00	-	110.00	=	10.00
q6	59.3604		120.00	-	117.87	=	2.132
		2)	2.132	/	10	=	0.2132
		3)	60.00	-	57.00	=	3
		4)	0.2132	*	3	=	0.6396
		5)	60	-	0.6396	=	59.36
VDT	115.868	1)	120.00	-	110.00	=	10.00
q5	62.87532		120.00	-	115.868	=	4.132
_		2)	4.132	/	10	=	0.4132
		3)	64.90	-	60.00	=	4.9
		4)	0.4132	*	4.9	=	2.02468
		5)	64.9	-	2.02468	=	62.88
VDT	56.11	1)	57.00	-	50.00	=	7.00

VDT	56.11	1)	57.00	-	50.00	=	7.00
q1	56.11		57.00	-	56.11	=	0.89
		2)	0.89	/	7.00	=	0.13
		3)	57.00	-	50.00	=	7.00
		4)	0.13	*	7.00	=	0.89
		5)	57.00	-	0.89	=	56.11
VDT	83.96	1)	90.00	-	80.00	=	10.00
q2	60.8772		90.00	-	83.962	=	6.038
		2)	6.038	/	10	=	0.6038
		3)	64.50	-	58.50	=	6
		4)	0.6038	*	6	=	3.6228
		5)	64.5	-	3.6228	=	60.88
VDT	101.01	1)	110.00	-	100.00	=	10.00
q3	63.5544		110.00	-	101.008	=	8.992
		2)	8.992	/	10	=	0.8992
		3)	68.50	-	63.00	=	5.5
		4)	0.8992	*	5.5	=	4.9456
		5)	68.5	-	4.9456	=	63.55
VDT	108.708	1)	110.00	-	100.00	=	10.00
q4	62.354		110.00	-	108.708	=	1.292
		2)	1.292	/	10	=	0.1292
		3)	63.00	-	58.00	=	5
		4)	0.1292	*	5	=	0.646
		5)	63	-	0.646	=	62.35

MAX	63.55
PCI = 100 -	
PCI	

Tabla 32: cuadro de VDC (UM-02).

Valores	Valores Deducidos Corregidos								
Deducidos	q1	q2	q3	q4	q5	q6	q7	q8	q9
0	0.00								
10	10.00								
11	11.00	8.00							
16	16.00	12.40	8.00						
20	20.00	16.00	11.00						
27	27.00	21.90	15.90	14.00					
30	30.00	24.50	18.00	16.00					
35	35.00	28.50	21.70	19.20	17.10	15.00			
40	40.00	32.00	25.40	22.50	20.20	18.00			
50	50.00	39.50	32.00	29.00	26.50	24.00			
57	57.00	44.00	36.90	33.40	30.80	28.20	26.80	25.40	24.00
60	60.00	46.00	38.50	35.20	32.60	30.00	28.30	26.60	25.00
70	70.00	52.50	45.00	41.00	38.50	36.00	34.00	32.00	30.00
80	80.00	58.50	51.40	47.00	44.20	41.50	39.30	37.10	35.00
90	90.00	64.50	57.40	52.50	49.70	47.00	44.50	42.00	39.50
100	100.00	70.00	63.00	58.00	55.00	52.00	49.30	46.60	44.00
110		75.50	68.50	63.00	60.00	57.00	54.30	51.60	49.00
120		81.00	74.00	67.80	64.90	60.00	59.20	56.40	53.50
130		86.00	78.90	72.50	69.50	65.00	63.70	60.90	58.00
140		90.50	84.00	77.00	74.00	71.00	68.20	65.40	62.50
150		95.00	88.40	81.50	78.20	75.00	72.30	69.60	67.00
160		95.50	93.00	85.50	82.20	79.00	76.30	73.60	71.00
161		100.00	93.40	86.00	82.70	79.40	76.70	74.00	71.40
170			97.00	89.60	86.30	83.00	80.30	77.60	75.00
177			100.00	92.60	88.80	85.10	82.70	80.30	77.80
180				94.00	90.00	86.00	83.70	81.40	79.00
190				98.00	94.00	90.00	87.50	85.00	82.50
195				99.50	95.50	91.50	89.10	86.70	84.30
200				100.00	96.50	93.00	90.70	88.40	86.00

Fuente: Elaboración propia (2017).

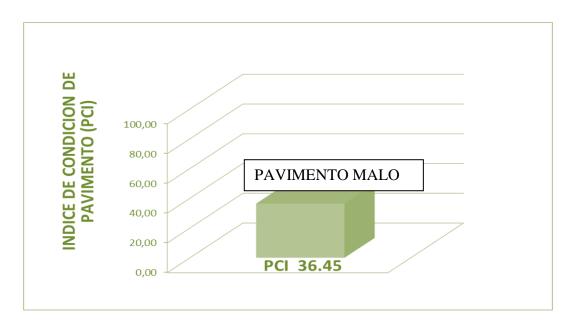
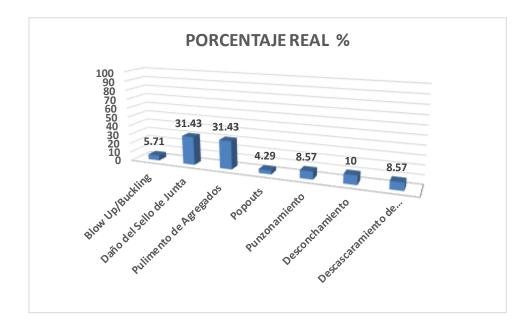



Figura 30: Grafico del PCI – UM-02

N°	TIPO DE FALLA	DENSIDAD %	PORCENTAJE REAL %
21	Blow Up/Buckling	18.18%	5.71%
26	Daño del Sello de Junta	100.00%	31.43%
31	Pulimento de Agregados	100.00%	31.43%
32	Popouts	13.64%	4.29%
34	Punzonamiento	27.27%	8.57%
36	Desconchamiento	31.82%	10.00%
38	Descascaramiento de Esquin	27.27%	8.57%
		318.18%	100.00%

Fuente: Elaboración propia (2017)

Figura 31: Grafico de porcentajes de fallas – UM-02

La unidad de muestra U-2 tiene 22 paños pertenece a la segunda cuadra en estudio de la avenida Habilitación Urbana Municipal se ubica entre la Calle S/N1 y la siguiente Calle S/N2 tomando la calzada del sentido de transito de Calle S/N1 hacia la Calle S/N2, las fallas registradas con nivel de severidad media son Blow Up/Buckling, Daño del Sello de Junta, Pulimento de Agregados, Popouts, Punzonamiento, Desconchamientos ,Descascaramiento de Esquina como se aprecia en la siguiente

tabla se obtuvieron los siguiente valores deducidos continuando con el procedimiento del máximo valor deducido corregido 63.55 dándonos como resultado un PCI de 36.45 que nos indica que el pavimento es **malo.**

TERCERA CUADRA DE LA AVENIDA HABILITACION URBANA MUNICIPAL-CALLERIA-CORONEL PORTILLO-UCAYALI

Tabla 33: Hoja de inspección, cálculo de "m" y VDC (UM-03)

		HOJA DE INSP			DE CONCR			UESTRA		
INSPECCIONADO	POR:	Bach. Luis Diego	Huaman	Cordo	/a	N°		TIPO DE FAL	_LA	
CALLE:	Aven	iida Habilitacion Url	ana Mu	nicipal		21	Blow Up/Buc	kling		
N° DE PAÑOS:		22				22	Grieta de Esc	quina		
TIPO DE USO:		Vehicular				23	Losa Dividida	l		
CUADRA:		3				24	Grieta de Dui	rabilidad "D"		
FECHA:		Jun-17				25	Escala			
TIEMPO DE CON	STRUCC	CION: 10 AÑOS				26	Daño del Sel	lo de Junta		
Progresiva		0+440 AL 0+594				27	Desnivel de C	Carril/Berma		
						28	Grieta Lineal			
Wood	ntenario		versitar			29	Parche Gran	de		
Av. Cel			8			30	Parche Pequ	eño		
n Martir	1	±				31	Pulimento de	Agregados		
Cua	dra N°ı	abilitaci				32	Popouts			
	85	on Urba				33	Bombeo			
	a a a a a a a a a a a a a a a a a a a				34 Punzonamiento					
		ersitaria		35	Cruce de Via	Ferrea				
		No				36	Desconcham	niento		
	Cuadra	a N°2				37	Retracción.			
						38	B8 Descascaramiento de Esquina.			
	C	ra N°3				39	1	niento de Junta.		
_	Cuau	ra N 3	e Yupanqui				NI	VELES DE SEVERI	DAD	
		AVE				1	SE [*]	VERIDAD BAJA		В
						2	SE\	VERIDAD MEDIA		M
						3		VERIDAD ALTA		A
						Ť				
N°	TIPO	DE FALLA	N/S		SEVERIDAD	,	N° DE LOSAS	DENSIDAD %	VALOF	R DE DEDUCIDO (VD)
22 Grieta de E	squina		3	SEVERI	DAD ALTA		5	22.73		44.67
25 Escala	25 Escala				DAD BAJA		22	100.00		30.10
26 Daño del Sello de Junta				SEVERI	DAD ALTA		12			8.00
27 Desnivel de	e Carril/B	erma	2	SEVERI	DAD MEDIA		22	100.00		19.80
31 Pulimento de Agregados 2 SEVE				SEVER	IDAD MED	IA	22	100.00		9.70
36 Desconchamiento 2				SEVER	IDAD MED	IA	6	27.27		17.52
39 Descascar	amiento	de Junta.	3	SEVER	IDAD ALTA	ı	22	100.00		54.90
										54.90

Tabla 34: Cálculo del VR- falla 22-UM-03

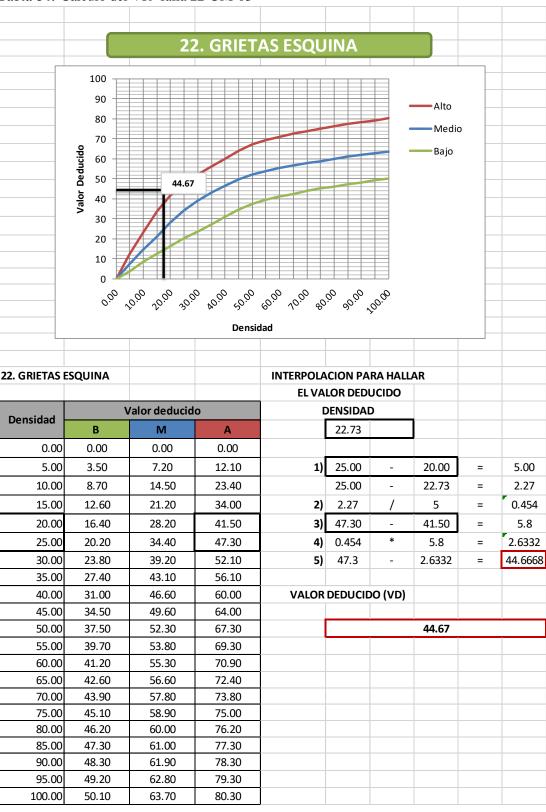


Tabla 35: Cálculo del VR- falla 25-UM-03

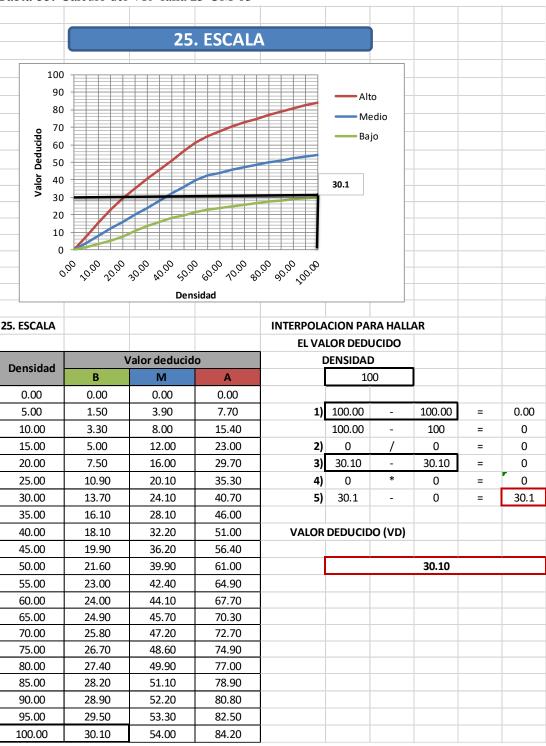


Tabla 36: Cálculo del VR- falla 26-UM-03

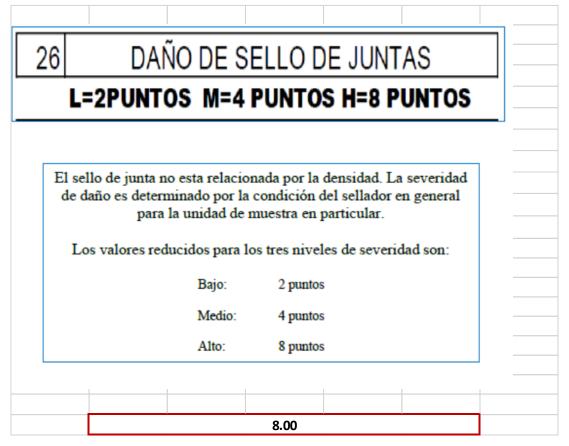


Tabla 37: Cálculo del VR- falla 27-UM-03

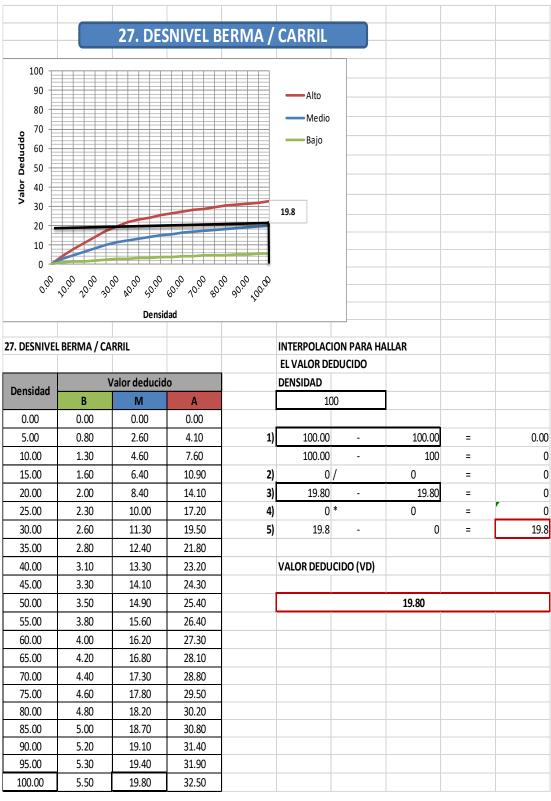


Tabla 38: Cálculo del VR- falla 31-UM-03

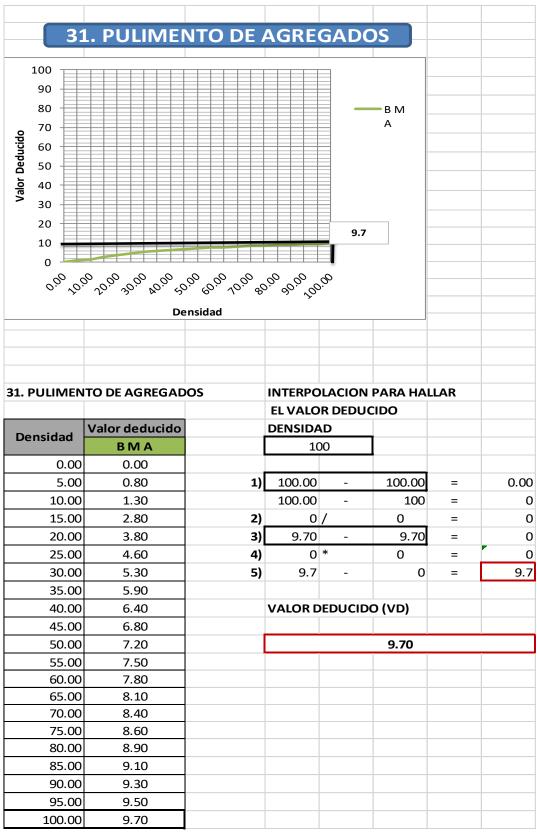


Tabla 39: Cálculo del VR- falla 36-UM-03

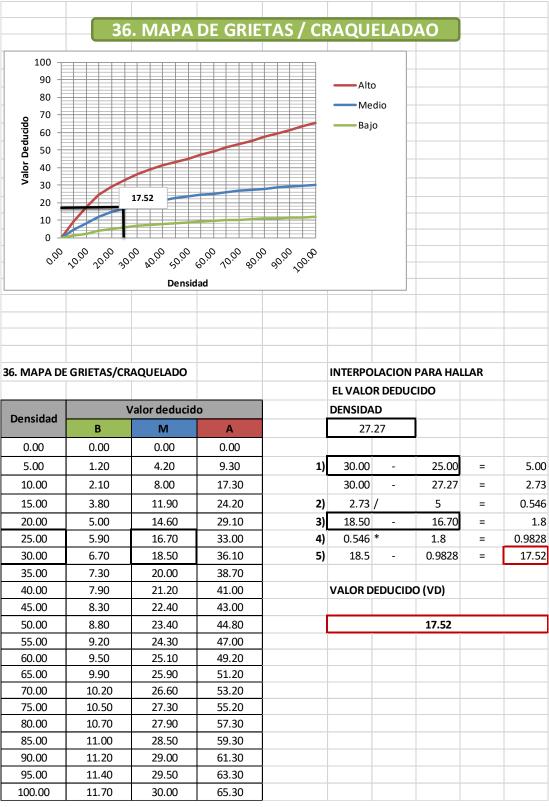


Tabla 40: Cálculo del VR- falla 39-UM-03

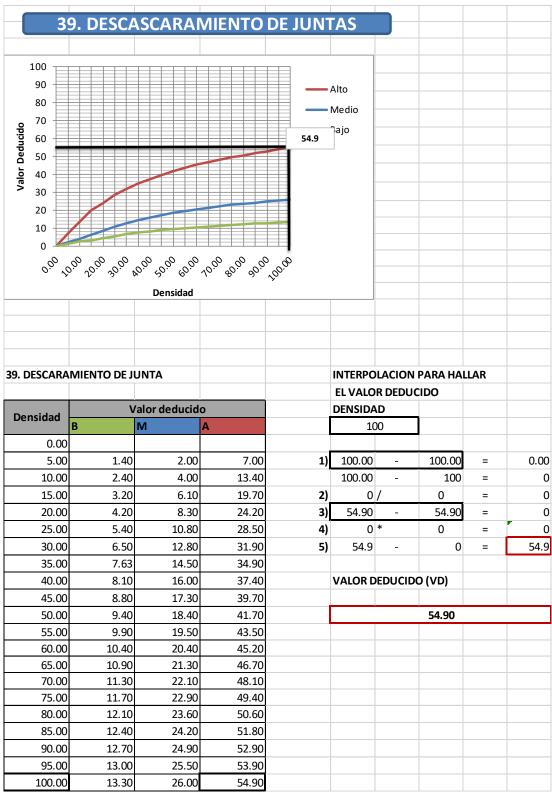


Tabla 41: Cálculo del número máximo admisible de fallas permitidas y VDC -UM-03

	1	1	CALCUL	O DEL NUMI	RO MAXIM	O ADMISIBLE	DE FALLA PERMITIDA	T.		
m =	1+(9/98)*(100-HDV)								
								RANGO DE	CALIFICACIO	ON DEL PO
Donde:								RANGO	CALIFIC	CACION
m=	Numero p	ermitido de \	VRs incluyen	do fraccione	es (debe ser	menor o igu	al a 10)	100-85	EXCE	ENTE
VAR=	Valor indiv	idual mas al	to de VR.					85 - 70	MUY E	UENO
								70 - 55	BUE	NO
VAR=	54.90	Valor reduc	ido mas alto)				55 - 40	REGI	JLAR
								40 - 25	MA	LO
m=	5.14	numero ad	misible de d	educidos m				25 - 10	MUY	MALO
								10 - 00	FALL	ADO
CALCULO	DEL VALO	R DEDUCIDO	CORREGIDO	(VDC) DE LA	CUADRA 2					
				CALCULO DI	L VALOR D	EDUCIDO COR	REGIDO (VDC)			
Nº			VALORES	DEDUCIDOS				VDT	q	VDC
1	54.90	44.67	30.10	19.80	17.52	9.70		176.69	6	85.01
2	54.90	44.67	30.10	19.80	17.52	2.00		168.99	5	85.89
3	54.90	44.67	30.10	19.80	2.00	2.00		153.47	4	82.89
4	54.90	44.67	30.10	2.00	2.00	2.00		135.67	3	81.79
5	54.90	44.67	2.00	2.00	2.00	2.00		107.57	2	74.16
6	54.90	2.00	2.00	2.00	2.00	2.00		64.90	1	64.90

Tabla 42: interpolación de VDC, cálculo del PCI (UM-03).

INTERPOL	ACION PARA I	HALLAR					
VALORES	DEDUCIDOS C	ORREGIDOS					
VDT	176.69	1)	177.00	-	170.00	=	7.00
q6	85.01		177.00	-	176.69	=	0.3128
		2)	0.3128	/	7	=	0.04
		3)	85.10	-	83.00	=	2.1
		4)	0.04	*	2.10	=	0.09384
		5)	85.1	-	0.09384	=	85.01
VDT	168.99	1)	170.00	-	161.00	=	9.00
q5	85.89		170.00	-	168.9872	=	1.0128
		2)	1.0128	/	9	=	0.112533333
		3)	86.30	-	82.70	=	3.6
		4)	0.11253333	*	3.6	=	0.40512
		5)	86.3	-	0.40512	=	85.89

VDT	64.90	1)	70.00	-	60.00	=	10.00
q1	64.9		70.00	-	64.90	=	5.10
		2)	5.10	/	10.00	=	0.51
		3)	70.00	-	60.00	=	10.00
		4)	0.51	*	10.00	=	5.10
		5)	70.00	-	5.10	=	64.90
VDT	107.57	1)	110.00	-	100.00	=	10.00
q2	74.16		110.00	-	107.57	=	2.43
		2)	2.43	/	10	=	0.243
		3)	75.50	-	70.00	=	5.5
		4)	0.243	*	5.5	=	1.3365
		5)	75.5	-	1.3365	=	74.16
VDT	135.67	1)	140.00	-	130.00	=	10.00
q3	81.79		140.00	-	135.67	=	4.33
		2)	4.33	/	10	=	0.433
		3)	84.00	-	78.90	=	5.1
		4)	0.433	*	5.1	=	2.2083
		5)	84	-	2.2083	=	81.79
VDT	153.47	1)	160.00	-	150.00	=	10.00
q4	82.89		160.00	-	153.47	=	6.53
		2)	6.53	/	10	=	0.653
		3)	85.50	-	81.50	=	4
		4)	0.653	*	4	=	2.612
		5)	85.5	-	2.612	=	82.89

MAX	. VDC	85.89
PCI = 100 -	MAX. VDC	
PCI	14.11	

Tabla 43: Cuadro de VDC-UM-03

Valores	Valores Ded	ucidos Correg	gidos						
Deducidos	q1	q2	q3	q4	q5	q6	q7	q8	q9
0	0.00								
10	10.00								
11	11.00	8.00							
16	16.00	12.40	8.00						
20	20.00	16.00	11.00						
27	27.00	21.90	15.90	14.00					
30	30.00	24.50	18.00	16.00					
35	35.00	28.50	21.70	19.20	17.10	15.00			
40	40.00	32.00	25.40	22.50	20.20	18.00			
50	50.00	39.50	32.00	29.00	26.50	24.00			
57	57.00	44.00	36.90	33.40	30.80	28.20	26.80	25.40	24.00
60.00	60.00	46.00	38.50	35.20	32.60	30.00	28.30	26.60	25.00
70.00	70.00	52.50	45.00	41.00	38.50	36.00	34.00	32.00	30.00
80.00	80.00	58.50	51.40	47.00	44.20	41.50	39.30	37.10	35.00
90.00	90.00	64.50	57.40	52.50	49.70	47.00	44.50	42.00	39.50
100.00	100.00	70.00	63.00	58.00	55.00	52.00	49.30	46.60	44.00
110.00		75.50	68.50	63.00	60.00	57.00	54.30	51.60	49.00
120.00		81.00	74.00	67.80	64.90	60.00	59.20	56.40	53.50
130.00		86.00	78.90	72.50	69.50	65.00	63.70	60.90	58.00
140.00		90.50	84.00	77.00	74.00	71.00	68.20	65.40	62.50
150.00		95.00	88.40	81.50	78.20	75.00	72.30	69.60	67.00
160.00		95.50	93.00	85.50	82.20	79.00	76.30	73.60	71.00
161.00		100.00	93.40	86.00	82.70	79.40	76.70	74.00	71.40
170.00			97.00	89.60	86.30	83.00	80.30	77.60	75.00
177.00			100.00	92.60	88.80	85.10	82.70	80.30	77.80
180.00				94.00	90.00	86.00	83.70	81.40	79.00
190.00				98.00	94.00	90.00	87.50	85.00	82.50
195				99.50	95.50	91.50	89.10	86.70	84.30
200				100.00	96.50	93.00	90.70	88.40	86.00

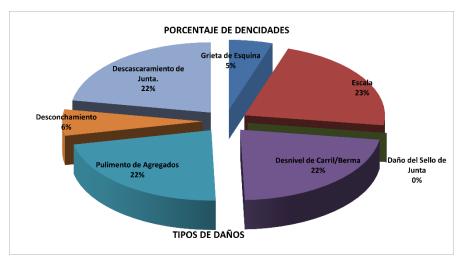


Figura 32: Porcentajes de fallas (UM-03).

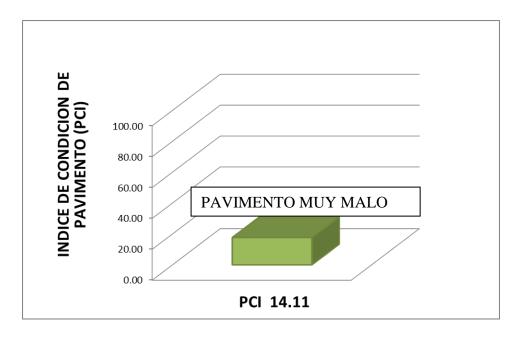


Figura 33: Gráfico del PCI (UM-03).

La unidad de muestra U-3 tiene 22 paños pertenece a la tercera cuadra en estudio de la avenida Habilitación Urbana Municipal se ubica entre la calle S/N2 y avenida Lloque Yupanqui, tomando la calzada del sentido de transito de la calle S/N2 hacia la avenida Lloque Yupanqui, las fallas registradas con nivel de severidad baja Escala, de severidad Desnivel de Carril/Berma, Pulimento de Agregados, Desconchamiento y de alta severidad Grieta de Esquina, Daño del Sello de Junta, Descascaramiento de Junta, como se aprecia en la siguiente tabla se obtuvieron los siguiente valores deducidos continuando con el procedimiento del máximo valor deducido corregido 85.89 dándonos como resultado un PCI de 14.11 que nos indica que el pavimento es **muy malo.**

CUARTA CUADRA DE LA AVENIDA HABILITACION URBANA MUNICIPAL-CALLERIA-CORONEL PODTII I OLICAVALI

Tabla 44: Hoja de inspección, cálculo de "m" y VDC (UM-04)

		HOJA DE INS			E CONCRE			LIFSTRA			
		HOUADEING	1 200,010	DE OOK	DIGIGIALOT	71177	JITIDAD DE III	<u> </u>			
INSPECCIONADO	POR:	Bach. Luis Diego	Huaman	Cordov	a	N°		TIPO DE FAL	LA	J.	
CALLE:	Aven	ida Habilitacion U				21	Blow Up/Bucl				
N° DE PAÑOS:		22				22	Grieta de Esc	uina			
TIPO DE USO:		Vehicular				23	Losa Dividida				
CUADRA:		4				24	Grieta de Dur	abilidad "D"			
FECHA:		Jun-17				25	Escala				
TIEMPO DE CONS	STRUCC	CION: 10 AÑOS				26	Daño del Sell	o de Junta			
Progresiva		0+594 AL 0+839				27	Desnivel de C	Carril/Berma			
						28	Grieta Lineal				
	1		1 1			29	Parche Grand	de			
Cuadra	N°3					30	Parche Pequ	eño			
		Av Lloque Yupanqui	niversitä			31					
Av Lloque Yupanqui	lar.	1	iria			32	Popouts				
	TV el Rao	1				33					
Cuadra N°4						34	Punzonamier	nto			
						35	Cruce de Via	Ferrea			
	Centro	comercial 🕒				36	Desconcham	iento			
		1				37	Retracción.				
	Cuadr					38	38 Descascaramiento de Esquina.				
		Mercado Minorista 🕞				39	Descascaran	niento de Junta.			
<u> </u>			+	Univ			NI	VELES DE SEVERI	DAD		
				SI SUM		1	SE	VERIDAD BAJA		В	
					_	2	SEVERIDAD MEDIA			M	
						3	SE	VERIDAD ALTA		Α	
N°	TIPO	DE FALLA	N/S		SEVERIDAD		N° DE LOSAS	DENSIDAD %	VALO	R DE DEDUCIDO (VD)	
25 Escala			2	SEVERID	AD MEDIA		16	72.73		48.60	
26 Daño del Se	ello de Ji	unta	2	SEVERID	AD MEDIA		22	-		4.00	
28 Grieta Linea	al		2	SEVERID	AD MEDIA		6	27.27		20.54	
31 Pulimento o	de Agreg	ados	2	SEVERID	AD MEDIA		16	72.73		8.60	
32 Popouts			2	SEVERID	AD MEDIA		2	9.09		1.35	
38 Descascaramiento de Esquina. 2 SEVERIDAD ME					AD MEDIA		16	72.73		19.90	
39 Descascara	39 Descascaramiento de Junta. 2 SEVERIDAD M						16	72.73		22.90	
										48.60	

Tabla 45: Cálculo del VR- falla 25-UM-04

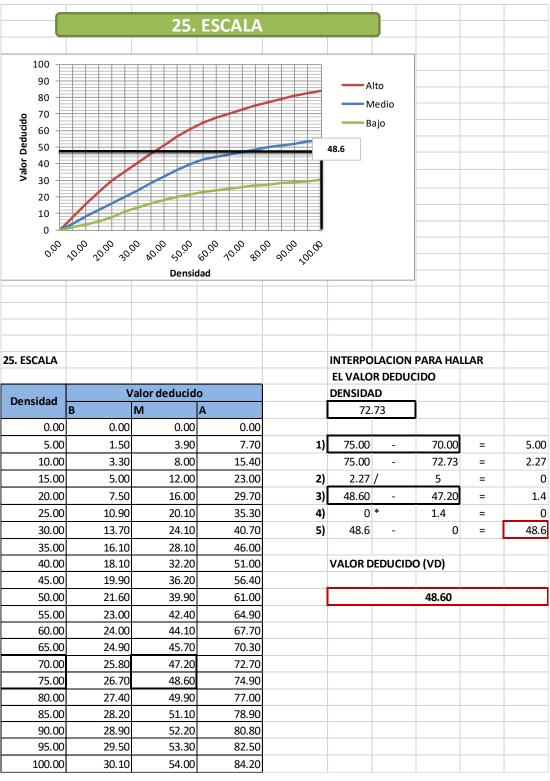


Tabla 46: Cálculo del VR- falla 26-UM-04

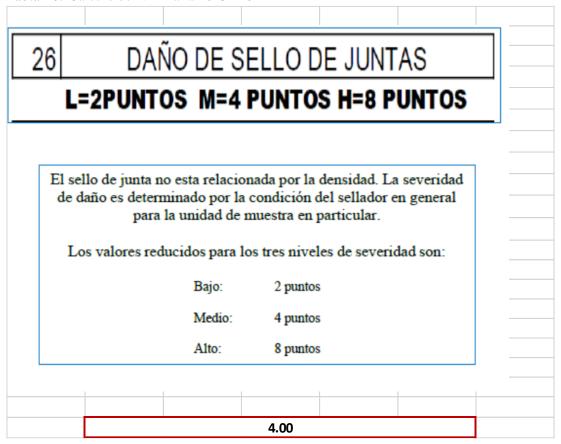


Tabla 47: Cálculo del VR- falla 28-UM-04

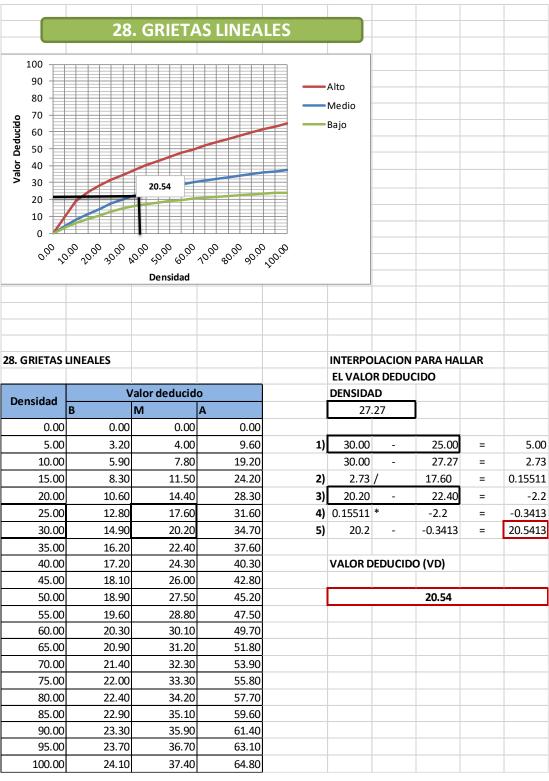


Tabla 48: Cálculo del VR- falla 31-UM-04

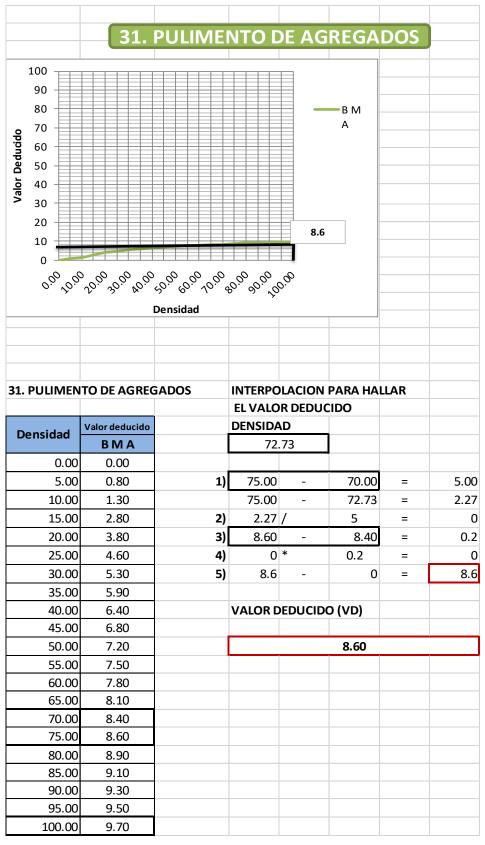
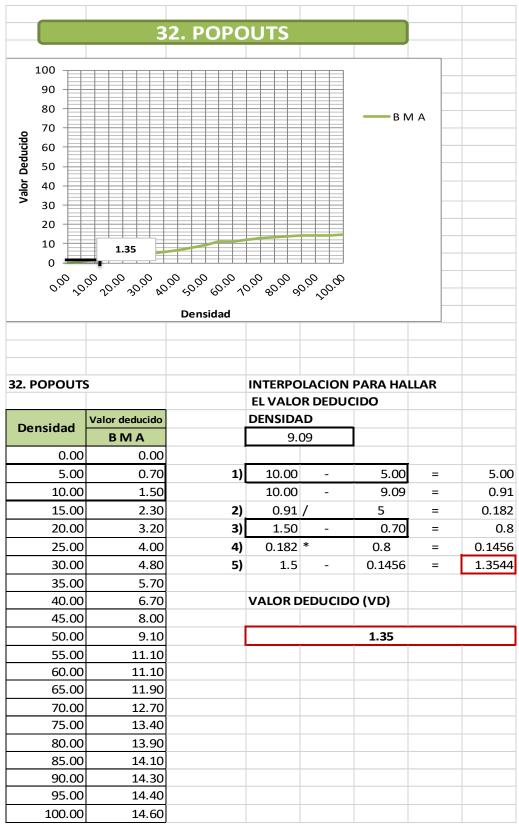



Tabla 49: Cálculo del VR- falla 32-UM-04

38. DESCASCARAMIENTO DE ESQUINA 100 90 Alto 80 Medio 70 Valor Deducido - Bajo 60 50 40 30 19.9 20 10 \$0 20 O SO Densidad 38. DESCARAMIENTO DE ESQUINA INTERPOLACION PARA HALLAR **EL VALOR DEDUCIDO** Valor deducido DENSIDAD Densidad 72.73 0.00 0.00 0.00 0 5 0.50 1.60 3.30 1) 75.00 70.00 5.00 10 1.30 3.10 7.00 75.00 72.73 2.27 2.00 4.70 10.10 15 2) 2.27 / 5 0 = 20 2.70 5.90 13.20 3) 19.90 19.20 0.7 0 * 25 4.40 8.30 15.70 4) 0.7 0 = 5.80 30 10.20 17.70 5) 19.9 = 19.9 35 6.90 11.90 19.30 VALOR DEDUCIDO (VD) 40 8.00 13.30 20.80 45 8.90 14.50 22.10 50 9.70 15.60 23.20 19.90 55 10.40 16.70 24.30 60 11.10 17.60 25.20 11.70 18.40 26.10 65 70 12.20 19.20 26.90 12.80 19.90 27.60 75 80 13.30 20.60 28.30 85 13.70 21.23 29.00

Tabla 50: Cálculo del VR- falla 38-UM-04

14.20

14.60

15.00

90

95

100.00

21.90

22.40

23.00

29.60

30.20

30.80

Tabla 51: Cálculo del VR- falla 39-UM-04

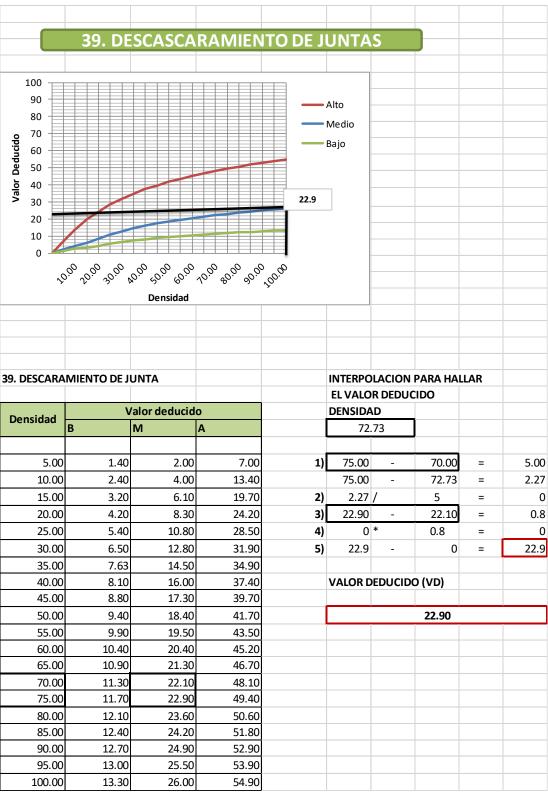


Tabla 52: Cálculo del número máximo admisible de fallas permitidas (UM-04)

			CALCUL	O DEL NUMI	ERO MAXIM	O ADMISIBLE	DE FALLA PERMITIDA			
	4 . (0 (00)*/	100 1101/								
m =	1+(9/98)*(100-HDV)						RANGO DE	CALIFICACIO	ON DEL PC
Donde:								RANGO		CACION
m=	Numero pe	ermitido de \	VRs incluyen	do fraccione	es (debe ser	menor o igu	al a 10)	100-85	EXCEI	ENTE
VAR=	Valor indiv	ridual mas al	to de VR.					85 - 70	MUY E	BUENO
								70 - 55	BUE	NO
VAR=	48.60	Valor reduc	ido mas alto)				55 - 40	REGI	JLAR
								40 - 25	MA	\LO
m=	5.72	numero ad	misible de d	educidos m				25 - 10	MUY	MALO
								10 - 00	FALL	ADO
CALCULO	DEL VALOR	R DEDUCIDO	CORREGIDO	(VDC) DE LA	CUADRA 2					
				CALCULO DI	EL VALOR D	EDUCIDO COR	RREGIDO (VDC)			
Nº			VALORES	DEDUCIDOS				VDT	q	VDC
1	48.60	22.90	20.54	19.90	8.60	4.00		124.54	6	62.27
2	48.60	22.90	20.54	19.90	8.60	2.00		122.54	5	66.07
3	48.60	22.90	20.54	19.90	2.00	2.00		115.94	4	65.85
4	48.60	22.90	20.54	2.00	2.00	2.00		98.04	3	61.90
5	48.60	22.90	2.00	2.00	2.00	2.00		79.50	2	58.20
6	48.60	2.00	2.00	2.00	2.00	2.00		58.60	1	58.60
										1

Tabla 53: interpolación de VDC, cálculo del PCI (UM-04).

	· meerpon	teron de vi	oc, carcar	0 401 1 01	(01.1 0 1).		
INTERPOL	ACION PARA	HALLAR					
VALORES I	DEDUCIDOS C	ORREGIDOS					
VDT	124.54	1)	130.00	-	120.00	=	10.00
q6	62.270625		130.00	-	124.54	=	5.45875
		2)	5.45875	/	10	=	0.545875
		3)	65.00	-	60.00	=	5
		4)	0.545875	*	5	=	2.729375
		5)	65	-	2.729375	=	62.27
VDT	122.54125	1)	130.00	-	120.00	=	10.00
q5	66.068975		130.00	-	122.54125	=	7.45875
		2)	7.45875	/	10	=	0.745875
		3)	69.50	-	64.90	=	4.6
		4)	0.745875	*	4.6	=	3.431025
		5)	69.5	-	3.431025	=	66.07

VDT	58.60	1)	60.00	-	57.00	=	3.00
q1	58.6		60.00	-	58.60	=	1.40
		2)	1.40	/	3.00	=	0.47
		3)	60.00	-	57.00	=	3.00
		4)	0.47	*	3.00	=	1.40
		5)	60.00	-	1.40	=	58.60
VDT	79.50	1)	80.00	-	70.00	=	10.00
q2	58.2		80.00	-	79.5	=	0.5
		2)	0.5	/	10	=	0.05
		3)	58.50	-	52.50	=	6
		4)	0.05	*	6	=	0.3
		5)	58.5	-	0.3	=	58.20
VDT	98.04	1)	100.00	-	90.00	=	10.00
q3	61.90		100.00	-	98.04125	=	1.95875
		2)	1.95875	/	10	=	0.195875
		3)	63.00	-	57.40	=	5.6
		4)	0.195875	*	5.6	=	1.0969
		5)	63	-	1.0969	=	61.90
VDT	115.94	1)	120.00	-	110.00	=	10.00
q4	65.85		120.00	-	115.94125	=	4.05875
		2)	4.05875	/	10	=	0.405875
		3)	67.80	-	63.00	=	4.8
		4)	0.405875	*	4.8	=	1.9482
		5)	67.8	-	1.9482	=	65.85

MAX	. VDC	66.07
PCI = 100 -	MAX. VDC	
PCI	33.93	

Tabla 54: cuadro de VDC (UM-04).

Valores				Valores	Deducidos Co	rregidos			
Deducidos	q1	q2	q3	q4	q5	q6	q7	q8	q9
0	0.00								
10	10.00								
11	11.00	8.00							
16	16.00	12.40	8.00						
20	20.00	16.00	11.00						
27	27.00	21.90	15.90	14.00					
30	30.00	24.50	18.00	16.00					
35	35.00	28.50	21.70	19.20	17.10	15.00			
40	40.00	32.00	25.40	22.50	20.20	18.00			
50	50.00	39.50	32.00	29.00	26.50	24.00			
57	57.00	44.00	36.90	33.40	30.80	28.20	26.80	25.40	24.00
60	60.00	46.00	38.50	35.20	32.60	30.00	28.30	26.60	25.00
70	70.00	52.50	45.00	41.00	38.50	36.00	34.00	32.00	30.00
80	80.00	58.50	51.40	47.00	44.20	41.50	39.30	37.10	35.00
90	90.00	64.50	57.40	52.50	49.70	47.00	44.50	42.00	39.50
100	100.00	70.00	63.00	58.00	55.00	52.00	49.30	46.60	44.00
110		75.50	68.50	63.00	60.00	57.00	54.30	51.60	49.00
120		81.00	74.00	67.80	64.90	60.00	59.20	56.40	53.50
130		86.00	78.90	72.50	69.50	65.00	63.70	60.90	58.00
140		90.50	84.00	77.00	74.00	71.00	68.20	65.40	62.50
150		95.00	88.40	81.50	78.20	75.00	72.30	69.60	67.00
160		95.50	93.00	85.50	82.20	79.00	76.30	73.60	71.00
161		100.00	93.40	86.00	82.70	79.40	76.70	74.00	71.40
170			97.00	89.60	86.30	83.00	80.30	77.60	75.00
177			100.00	92.60	88.80	85.10	82.70	80.30	77.80
180				94.00	90.00	86.00	83.70	81.40	79.00
190				98.00	94.00	90.00	87.50	85.00	82.50
195				99.50	95.50	91.50	89.10	86.70	84.30
200				100.00	96.50	93.00	90.70	88.40	86.00

Figura 34: Gráfico del PCI (UM-04).

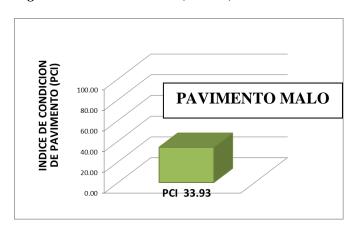


Tabla 55: Cuadro de porcentajes de fallas -UM-04

N°	TIPO DE FALLA	DENSIDAD %	%
25	Escala	100.00	22.22
26	Daño del Sello de Junta	0.00	0.00
28	Grieta Lineal	37.50	8.33
31	Pulimento de Agregados	100.00	22.22
32	Popouts	12.50	2.78
38	Descascaramiento de Esquina.	100.00	22.22
39	Descascaramiento de Junta.	100.00	22.22
			100.00

La unidad de muestra U-4 tiene 22 paños pertenece a la cuarta cuadra en estudio de la avenida Habilitación Urbana Municipal se ubica entre la avenida Lloque Yupanqui y la calle S/N3, tomando la calzada del sentido de transito de la avenida Lloque Yupanqui hacia la calle S/N3, las fallas registradas con nivel de severidad media son Escala, Daño del Sello de Junta, Grieta Lineal, Pulimento de Agregados, Popouts, Descascaramiento de Esquina, Descascaramiento de Junta, como se aprecia en la siguiente tabla se obtuvieron los siguiente valores deducidos continuando con el procedimiento del máximo valor deducido corregido 66.07 dándonos como resultado un PCI de 33.93 que nos indica que el pavimento es **malo.**

4.2. Resultados

a) De acuerdo al análisis hecho en campo en la superficie del pavimento de la avenida Habilitación Urbana Municipal, distrito de Calleria, provincia de Coronel Portillo, departamento de Ucayali, se obtuvo la descripción de las unidades de muestras evaluadas.

Nuestra área de estudio comprende al Pavimento Rígido de la Avenida Habilitación Urbana Municipal desde la Avenida Centenario hasta la Avenida Túpac Amaru – carril derecho, para la cual hemos seleccionado 05 unidades de muestra distribuidas en toda la longitud del pavimento que la conforman sin considerar las intersecciones.

Las unidades de muestra que se seleccionaron son:

- U-M 01: desde la Avenida Centenario hasta la calle S/N1; con 22 paños.
- U-M 02: desde calle S/N1 hasta la calle S/N2; con 22 paños.
- U-M 03: desde calle S/N2 hasta la Avenida Lloque Yupanqui; con 22 paños.
- U-M 04: desde Avenida Lloque Yupanqui hasta la calle S/N3; con 22 paños.
- U-M 05: desde la calle S/N3 hasta la Avenida Túpac Amaru; con 22 paños.

El número total de paños que se evaluaron son 110 paños del carril derecho de la avenida Habilitación Urbana Municipal, que se seleccionaron de acuerdo a ciertas características como la homogeneidad de los paños, el sentido de flujo vehicular y las condiciones a las que están expuestos.

De acuerdo a los objetivos trazados en nuestro estudio se procedió a determinar los tipos de patología que se encontraron en el pavimento de la

Avenida Habilitación Urbana Municipal desde la Avenida Centenario hasta la Avenida Túpac Amaru – Carril derecho, tomando datos de campo mediante una inspección identificando cada una de las patologías que se encontraron.

Se detallan a continuación el número total de losas evaluadas, los tipos de patologías que se identificaron y el grado de afectación al pavimento en estudio.

Tabla 56: Identificación final de patologías.

NUMERO TOTAL DE LOSAS	110

nº	Descripcion	Nº De losas afectadas	% Densidad	
21	Blow Up/Buckling	7	6.36	%
22	Grieta de Esquina	11	10.00	%
25	Escala	44	40.00	%
26	Daño del Sello de Junta	100	90.91	%
27	Desnivel de Carril/Berma	22	20.00	%
28	Grieta Lineal	6	5.45	%
31	Pulimento de Agregados	88	80.00	%
32	Popouts	5	4.55	%
34	Punzonamiento	6	5.45	%
36	Desconchamiento	13	11.82	%
38	Descascaramiento de Esquina.	50	45.45	%
39	Descascaramiento de Junta.	66	60.00	%

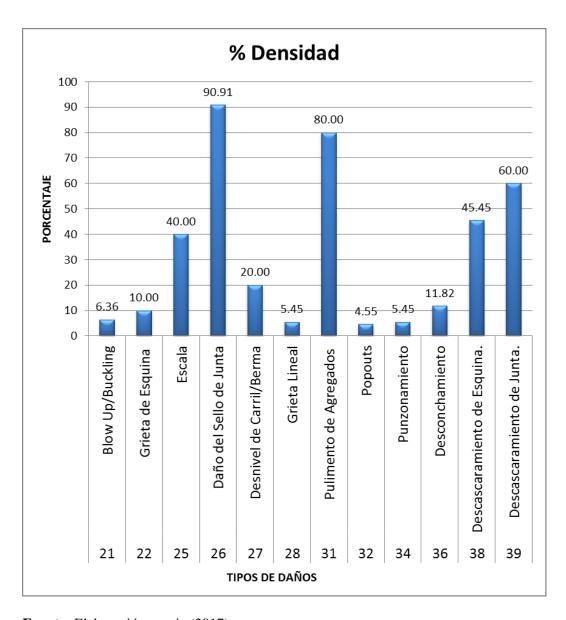


Figura 35: Cuadro estadísticos de porcentaje densidades.

Tabla 57: Cuadro de análisis de resultados

Muestra	Cuadra	N° Paños	PCI UNID	Calificación	PCI	CALF.
777.5.04	0.4			3.6		
UM-01	01	22	81.73	Muy Bueno		
UM-02	02	22	36.45	Malo		
UM-03	03	22	14.11	Muy Malo	43.18	REGULAR
UM-04	04	22	33.93	Malo		
UM-05	05	22	49.72	Regular		

En esta tabla podemos apreciar las unidades de muestra de las 5 cuadras en evaluación, los números de paños evaluados por unidad de muestra lo PCI correspondiente a cada unidad de muestra y un resumen general de todo los paños obteniendo y el PCI general promedio de 43.18 lo cual nos quiere decir que el índice de la condición de su pavimento la avenida Habilitación Urbana Municipal esta con una calificación **regular.**

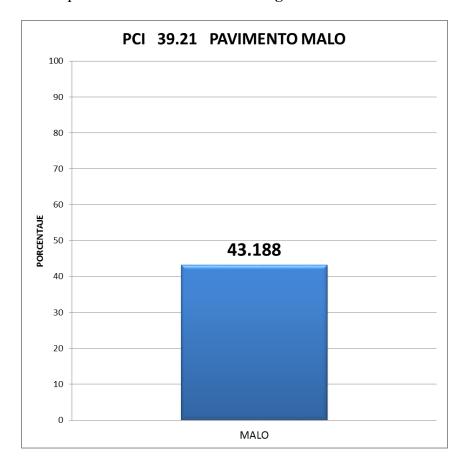


Figura 36: Grafico PCI promedio de la avenida Habilitación Urbana Municipal.

V. Conclusiones

De acuerdo a la inspección, análisis y evaluación realizada en el campo con las unidades de muestreo 01. 02, 03, 04, 05, obtuvimos el porcentaje y el nivel de severidad de las diferentes fallas que posee el pavimento rígido de la avenida habilitación urbana municipal, distrito de calleria, provincia de coronel portillo, departamento de Ucayali.

Tipos de falla:

- 21. blow up/bukling: Porcentaje de daño (6.05%), nivel de severidad baja.
- **22. grieta de esquina:** Porcentaje de daño (5%), nivel de severidad baja.
- 25. escala: Porcentaje de daño (22.5%), nivel de severidad media.
- **26.** daño de sello de junta: Porcentaje de daño (39.12%), nivel de severidad alta.
- **27. desnivel de carril/berma:** Porcentaje de daño (22%), nivel de severidad media.
- 28. grieta lineal: Porcentaje de daño (8.33%), nivel de severidad media.
- **31. pulimento de agregados:** Porcentaje de daño (30.62%), nivel de severidad media.
- **32. popouts:** Porcentaje de daño (3.53%), nivel de severidad baja.
- **34. punzonamiento:** Porcentaje de daño (8.57%), nivel de severidad media.

- **36. desconchamiento:** Porcentaje de daño (8.00%), nivel de severidad baja.
- **38. descascaramiento de esquina:** Porcentaje de daño (15.39%), nivel de severidad media.
- **39. descascaramieno de junta:** Porcentaje de daño (22.11%), nivel de severidad media.

Como resultados obtuvimos un pavimento de estado **REGULAR**.

Aspectos complementarios

- -Realizar el diseño apropiado de la estructura del pavimento (rígido), en cuanto a las fuerzas actuantes para las cuales serán utilizadas.
- -Definir la pendiente adecuada para evitar acumulación de líquidos que puedan dañar la estructura.
- -Antes de ejecutar todo tipo de pavimentación, realizar un estudio completo del estado situacional del sistema de agua y desagüe.
- -Evaluar las vialidades y determinar el grado de severidad de los diferentes deterioros para implementar reparaciones menores y garantizar la vida útil de la estructura de pavimento rígido.
- -Realizar el sellado de las juntas longitudinales y transversales con materiales compresibles (silicón) para evitar la filtración de agua y materiales incompresibles.

Se recomienda constante mantenimiento con un presupuesto anual para los distintos tramos de la avenida Habilitación Urbana Municipal.

Referencias bibliográficas

- (1) Godoy G., Ramírez., patología de pavimentos rígidos de la ciudad de asunción Uruguay, repositorio [seriada en línea] 2006 [citado 2014 junio 18] disponible en:http://ing.una.py/pdf/1er-congreso-nacional-ingcivil/01pa-vi01.pdf.
- (2) **Prunell S**. análisis de los factores que producen el deterioro de los pavimentos rígidos. [Tesis para la obtención del título de ingeniero civil]. [La Plata, Argentina; 2011], disponible en:

http://lemac.frlp.utn.edu.ar/wp-ntent/uploads/2014/05/lemacmemoria2013.pdf.

(3) Ruiz c. análisis de los factores que producen el deterioro de los pavimentos rígidos. [Tesis para la obtención del título de ingeniero civil]. Sangolquí, ecuador: escuela politécnica del ejército; 2011, disponible en:

http://repositorio.espe.edu.ec/bitstream/21000/3033/1/t-espe-030924.pdf.

- **(4) Camposano O., García C**., Diagnóstico del estado situacional de la vía: av. argentina av. 24 de junio por el método: índice de condición de pavimentos-2012 [Tesis para la obtención del título de ingeniero civil], disponible en: http://cip.org.pe/imagenes/temp/tesis/45203801.pdf
- (5) Espinoza t. determinación y evaluación del nivel de incidencia de las patologías del concreto en los pavimentos rígidos de la provincia de Huancabamba, departamento de Piura. Universidad católica los ángeles de Chimbote; 2010.Piura, Perú, [Tesis para optar al título de ingeniero civil], disponible en:http://es.scribd.com/doc/103596390/patologia-pavimentos#scribd.
- (6) Córdova E., Guerrero m., Mautino a. determinación y evaluación del nivel de incidencia de las patologías del concreto en los pavimentos rígidos del barrio Índice de condición de pavimentos en aeropuertos (PCI). Norma ASTM d 5340. Lima; disponible en: http://alacpa.org/index_archivos/astmd5340-metcalc-pciesprev0.pdf 32.
- (7) **Montejo**, **A.** pavimentos, constitución y conceptos generales. Enágora (ed.), ingeniería de pavimentos para carreteras. 2002[seriada en línea] [citado 2014 jun. 10], disponible en:

http://librosscribd.blogspot.com/2012/10/ingenieria-de-pavimentos-para.html.

- **(8) Osuna, R.** propuesta para la implementación de un sistema de administración de pavimentos para la red vial de la ciudad de mazatlán, sin. Universidad nacional autónoma de méxico.2002 [seriada en línea] [citado 2015 junio], disponible en: http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/2547/o sunaruiz.pdf?sequence=1.
- (9) Norma ASTM d 5340 índice de condición de pavimentos en aeropuertos (PCI). Alacpa [seriada en línea] 2005 [citado 2014 junio 14] disponible en http://alacpa.org/index_archivos/astmd5340-metcalc-pci-esprev0.pdf.
- (10) Villareal G., ingeniería sismo resistente, blogspot [seriado en línea] 2013 [citado 2015 enero 20], disponible en https://ingjeltoncalero.files.wordpress.com/2014/02/libro-ingenieria-sismo-resistente-prc3a1cticas-y-exc3a1menes-upc.pdf.
- (11) Rivva E., durabilidad y patología del concreto, Asocem [seriado en línea] 2006 [citado 2015enero21], disponible en http://www.asocem.org.pe/bivi/re/dt/cons/durabilidad_patologia.pdf.
- (12) Rivva E., durabilidad del concreto, Scribd [seriado en línea] 2014 [citado 2015 enero 21], disponible en http://es.scribd.com/doc/228390919/capitulo-1-durabilidad-concreto-pdf#scribd.
- (13) Núñez D., durabilidad y patologías del hormigón, Scribd [seriado en línea] 2014 [citado 2015 enero 23], disponible en https://prezi.com/ot4q-i-9jpyy/copy-of-durabilidad-y-patologias-del-hormigon/.
- (14) Arango S., causa de daños en el concreto, Slideshare [seriado en línea] 2013 [citado 2015 enero 23], disponible en http://es.slideshare.net/sergiopap/patologia-del-concreto-causas-de-daos-en-el-concreto.
- (15) Corral J., patología de la construcción grietas y fisuras en obras de hormigón, Redalyc [seriado en línea] 2004 [citado 2015 enero 25], disponible en http://www.redalyc.org/pdf/870/87029104.pdf.
- (16) Vivas M., patología del acero y concreto, Slideshare [seriado en línea] 2013 [citado 2015 enero 25], disponible en http://es.slideshare.net/miguelvivas2/proyecto-de-patologa-del-acero-y-concreto.

- (17) William A. Robertson., Nazario Sauceda., Ron Olive., Condición de las calles evaluación de la infraestructura vial ciudad de los ángeles. Departamento de obras públicas agencia de mantenimiento de calles, septiembre 2008., disponible en: http://bss.lacity.org/State_Streets/2008_State_of_the_Streets_Spanish.pdf
- (18) Luis Ricardo Vásquez Varela., Automatización del cálculo del índice de condición del pavimento (PCI). Universidad nacional de Colombia. Manizales. 2010. Disponible en: http://www.camineros.com/docs/cam036.pdf
- (19) Darter, Hall y Kuo, Support under Portland Cement Concrete Pavements, Report 372 NCHRP Transportation Research Board, 1995; disponible en: https://books.google.com.pe/books?id=0DkPhUxezmEC&pg=PA46&lpg=PA46&dq=Darter, +Hall+y+Kuo,+Support+Under+Portland+Cement+Concrete+Pavements,++Report+372+N CHRP+%E2%80%93+Transportation+Research+Board,+1995&source=bl&ots=VthdBa6sig &sig=st4plSB42ehaVLL3W4UP9pILX9Q&hl=es-419&sa=X&ved=0ahUKEwiS9OLt1PDNAhVIKyYKHQanBg0Q6AEIGjAA#v=onepage&q=Darter%2C%20Hall%20y%20Kuo%2C%20Support%20Under%20Portland%20Cement%20Concrete%20Pavements%2C%20%20Report%20372%20NCHRP%20%E2%80%93%20 Transportation%20Research%20Board%2C%201995&f=false
- (20) **Dujisin, D**., Diseño de Pavimentos de Hormigón, Instituto Chileno del Cemento y del Hormigón, 1985; disponible en: http://www.bcn.cl/catalogo/detalle_libro?bib=12311&tipo_busqueda=basica&busqueda=Dujisin%20Quiroz,%20Dusan%20&

Anexos:

		R	CHIZ CARRET	TERAS	DE CONDICIÓN CON SUPERFIC	DE EN CONCR	ETO HID		10					
	ZONA		EXPLORACIO		LA CONDICION CISA INICIAL	POR UNIDAD I		STREO AD DE N	L/PSTI	EO.				
	- Colon			JANSEY	1 000		-	01				1		
	CÓDIG	OVIA		ABSC	DSA FINAL		printment	PO DE	LOSAS					
	WODE	CIONADA POR		0	£ 300		FECH	2				3		
	- Contractor	Houman	ractora	1			Acceptance	20/	,					
	No.	Date	V 101	No.	- 1 1/2 / S S S S S S S S S S	ALC: U	No.	Daho						
		Blow up / Buckling		4000	Descrivel Carrill Grieta Irvesi.	Вета.		Punts						
		Cretz de esquina. Losa dividida.			Parcheo (grand	(6).	36	47.15	on va	1307				
	-	Grieta de durabilid	ev.	200	Pucheo (pequ	0.00	37	Retra	colón					
	25	Escala.			Pulmento de a	gregados.	38			nento de				
	26	Sello de junta.		32	Popous Borrbeo		10	Desc	CAUP 2	- O	parel.			
	Datio	Severidad	No. Lots	8100		Valor dedució	6 E50	EMA	T					
	21	boja	03			10.99	0	0	0					
	26	Alta	22		-	4						15		
	31	Media	22		100.00		0							
	21	1 IERON			100	1-1-						9		
	1		9 11								0			
	-						1					8		
	-	1			1		-							
	-	-			1		-	-			7			
	-	-		-			-							
	-			-			-	1	1	3	4			
		Pasement Cood					_		_	_	_			
Fuente: Elab	oració	n propia	(2017)											
Figura 37: Fi	cha de	e campo l	JM-01).						- 4		Spull	J. Limo	a Vá

Tabla 5: Formato de exploración de condición para carreteras con superficie en concreto hidráulico.

ÍNDICE DE CONDICIÓN DEL PAYMENTO PCI-42. CARRETERAS CON SUPERFICIE EN CONCRETO HIDRÁULICO

		EXPLORACI	ON DE	LA CONDICIÓ	N POR UNIDAD	DE MU	ESTRE	0					7
ZONA	1		ABS	CISA INICIAL		UNC	DAD DE	MU	EST	REO			
-	CÓDIGO VÍA		-	t 300		0-02							
CODN			ABSCISA FINAL			NUM	EROD	ELO	SAS	1			
			0	0 + 440			2						
PART OF THE PART O	ECCIONADA POR		-			FEC	HA.						
Bala		Cordova				Ja	1_29	17				4	
No.	Dano		No.	Daño		No.	Dan	0					
25	Bow up / Bucklin		27	Desnivel Carri	/Berna.	34		tonar		100			
22	Grietz de esquire	1	28	Grieta lineal.		35		a de					
	Losa dividida		29	Parcheo Igran	36	Des	conci	ani	enip				
24	Grieta de durabili	dad To".		30 Parcheo (pequeño)		37	4	Refracción Descascaramiento de esquina					
26	Escala.		31 Pulmento de agregados		38	- Section			UMARC	100			
20	Seto de jurta.	200	32	Popouts	diseason.	39	Desc	asca	ram	ento	Ó0	unta	
Date	Severidad	Mr. Luca	33	Sombeo									
Uano	Sevended	No. Losa	5	Densidad (%)	Valor dedució	ESQU	EMA						
21	Media	04		18-18	29.85	0	0	0		0		0	
26	Medio	22		-	4								- 11
31	Media	22		100.00	9.70	0	0	0		0		0	
32	Media	03		13.64	2.08								9
34	Media	06		27:27	46.11	0	0	0		0		0	
36	Media	07		31.82	19.05								
38	Hedia	06		27.27	9-16	0	0	0		0		0	
						0	0	0		0		0	
									3				

Fuente: Pavement Condition index (PCI) para pavimentos asfálticas y de concreto su carreteras (2002)

Fuente: Elaboración propia (2017)

Figura 38: Ficha de campo (UM-02).

INGENIBRO CIVIL

Tabla 5: Formato de exploración de rundición para carreteras con superfície en concreto

ÍNDICE DE CONDICIÓN DEL PAVIMENTO PC-42. CARRETERAS CON SUPERFICIE EN CONCRETO HIDRÁULICO

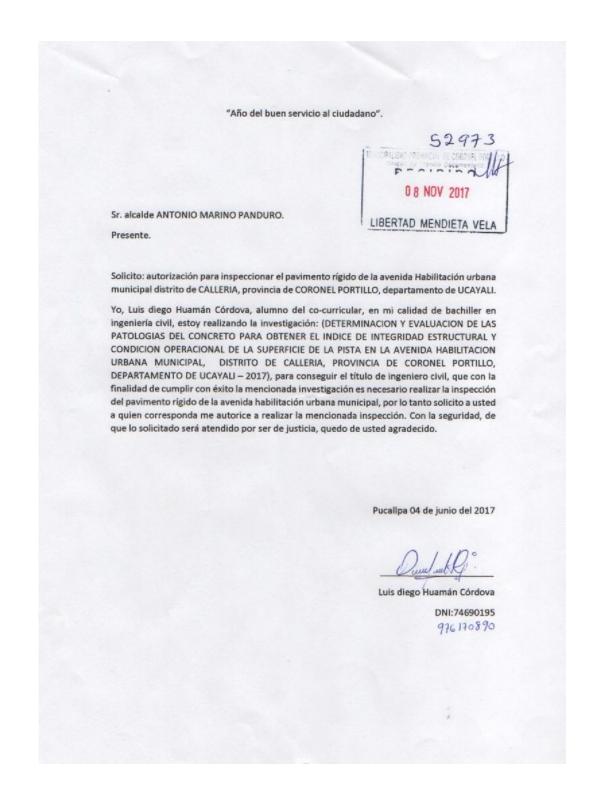
	EXPLORACE	ON DE	LA CONDICION	POR UNIDAD D	EMUE	STREO			111	3
		ABSC	SA NICIAL		UND	I 30 OL	MUEST	REO		
CÓDIGO VÍA					U-03 NUMERO DE LOSAS					
		8	1594	1000	22					
CCIONADA POR					FECH	A				
. Hoaman	Cordova		10000		Jan.				88	
		100	100000		1000	1 2000				
A STATE OF THE PARTY OF THE PAR	ALC: NO	1500	The state of the s	Berma.	1000	10000	-	(67)		
		1000	The state of the s		100	Chice de via fêrrea				
		0.5	Leading of the		111					
213000000000000000000000000000000000000	NO TV.	The last the			10-F0	CONTROL OF THE PARTY OF THE PAR				
	-			120	10000	****	-	40 500	_	
2010 00 11.07		1	1911		- 15	Lesc	anca a	nena	os lucio	
Severidad	No. Loss	100	Section 1	Valor deducido	ESQU	EMA				-
Alta	05		22.73	44.67	0	0	0	0	0	
Baja	22		100.00	30.10						,
Alta	12		-	8.00	0	0	0	0	0	
Media	22		100.00	19.80						1
Media	22		100.00	9.70	0	0	0	0	0	
Media	06		27.27	17.52						1
Alta	22	100	100.00	54-90	0	0	0	0	0	
	- 0				0	0	0	0	0	
700								3	4	
	COONADA POR A. Horamon Date Bow up 1 Bucking Grata de expure Losa dividos Solte de jurta Severidad Alta Baja Al fa Media Media Media Media	O VIA CHORADA POR Moramon Cordova Daho Bow up/Bucking Grees de esquina. Losa dividad Sile de jurta. Sile de jurta. Sile de jurta. Sile de jurta. Al Ha OS Baja 22 Al Ha 12 Media 22 Media 22 Media 22 Media 22 Media 06	ABSI O VIA ABSI ABSI ABSI ABSI O VIA ABSI	ABSCISA RRICIAL O + 490 ABSCISA FRIAL O + 594 CKONADA POR I. Horizon Cordova Dafo No. Daho Blow up i Pucking 27 Dusswer Carel Greeta de excura. 28 Greeta linest Losa dividica. 29 Parchee igran Greeta de durabidada 10'. 30 Parchee igran Salle de jurta. 32 Popouls Alfa 05 22-73 Baja 22 Joo. co Al fa 12 Media 22 Joo. co Media 22 Joo. co Media 06 27-2-7	ARSCISA PRICIAL O 1490 ARSCISA FINAL O 1594 CHONADA POR ARSCISA FINAL O 1594 CHONADA POR ARSCISA FINAL O 1594 Dafe Bow up i Bucking Zi Desnvel Ceril / Berna. Create de excuina. Losa dividos. Zi Partire lipanole. Create de durabilidad D'. 30 Partire lipanole. Salle de jurta. 31 Plimento de agregados. Salle de jurta. 32 Popouls. Salle de jurta. 33 Bombeo Severidad No. Losas Densidad (%) Valor deducido Alfa OS ZZ-73 44-67 Baja 22 ao. co 30-10 Al fa 12	ABSOSA RICIAL UNDD O 1/4 490 O 1/4 490 O 1/4 ASSOSA FINAL O 1/594 Defe Description of the property of the prop	ABSCISA RICIAL O + 490 ABSCISA FINAL O + 594 CHONADA POR ABSCISA FINAL O + 594 TECHA Dafo No. Dafo Box 100 Bo	December December	ABSCISA RICIAL Q+490 ABSCISA FINAL Q+594 FECHA CHAPMEN Cordova Dato No. Dato Box up i Bucking 27 Decreus Card i Berma 34 Pusuonamento Creta de esquina. 28 Greta linest 15 Chico de via timas Losa dividos. 29 Pasches (papulos). 31 Petracolo Solte de jurita 32 Populas 33 Populas 34 Pusuonamento Solte de jurita 32 Populas 33 Decocacaramento Solte de jurita 32 Populas 33 Decocacaramento Alfa 05 22-73 44-67 Baja 22 Joo. co 30. 10 Al fa 12 — 8-00 Nedia 22 Joo. co 9-7-5 Media 22 Joo. co 544-90 0 0 0 0 0 0 0	ABSCISA RICIAL Q+440 ABSCISA FINAL Q-594 CXCINADIA POR

Fuente: Pavement Condition index (PCI) para pavimentos asfalticos y de concreto en carreteras (2002)

Fuente: Elaboración propia (2017)

Figura 39: Ficha de campo (UM-03).

Table 5: Formato de exploración de condición para carreteras con superficie en concreto bidestatico.


ÍNDICE DE CONDICIÓN DEL PAVIMENTO PCI-42, CARRETERAS CON SUPERFICIE EN CONCRETO HIDRÁULICO

ZONA			ABSC	ISA IHCIAL		UNIDA	DDE	NUESTR	EO		
cópig	DODGO VÍA			+599 XSAFINAL		U-OY NUMERO DE LOSAS					
			0	+ 839		22	3				
	CCIONADA POR					FECH	_				
	. Husman C	ordova.			- 2000	-	-201				
No.	Daho		No.	Dano		No.	Daho	-			
21	Blow up / Buching.		27	Desrivel Carri	Berma.	34	2.7	namen			
22	Grieta de esquina. Losa dividida		28	Greta lineal.		35	Cruce de via terma				
24	Greta de durabilida	4.50	30	STATE STATE AND ADDRESS OF THE PARTY OF THE		37	Descondiamento Retracción				
25	Escala.	u v.	31	STORY STORY AND ADDRESS OF THE PARTY OF THE		38	1000	SCOTO?	ento d	0 0550	ira
	Selle de junta.		32			39	-	escaram	-		
			33	Bombec	A STATE OF		-				
Daño	Severidad	No. Less	II.	Densided (%)	Valor deducida	ESQU	EMA				
25	Media	16	19	72.73	48.60	0		0	0	0	
26	Medio	22		-	4.00						1
28	Media	6		27.27	20.54	0	0	0	0	0	
31	Media	16	41	72.73	8-60						1
32	Media	2		9.09	1.55	0	0	0	0	0	
38	Media	16		72.73	19.90						
39	Media	16		27.73	22.90	0	0	0	0	0	
						0	0	0			
						1		2	3		

Fuente: Pavement Condition index (PCI) para pavimentos sofalticos y de concreto en carreteras (2002)

Fuente: Elaboración propia (2017)

Figura 40: Ficha de campo (UM-04).

Figura 41: Solicitud para el estudio del pavimento de la avenida habilitación urbana municipal (2017).

> Instrumentos utilizados en campo.

Figura 42: Libreta de apuntes

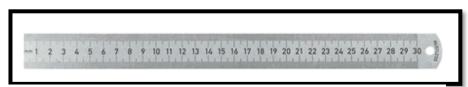


Figura 43: Regla milimetrada de metal

Figura 44: Wincha de 50 metros

Figura 45: casco de seguridad

Figura 46: Cámara fotográfica

Tabla 58: Matriz de consistencia

Título : Determinación y evaluación del estado situacional de la pavimentación de la av. Habitación Urbana Municipal en la ciudad de Pucallpa – 2017

Caracterización del problema

la venida habilitación urbana municipal está ubicado en el distrito de Callería, provincia de Coronel Portillo, departamento de Ucayali, fue inaugurada en el año 2007 teniendo actualmente 10 años de funcionamiento y los cuales ya se está presentando en ella un deterioro considerable lo largo de toda la avenida. Por lo tanto necesariamente se hará una inspección a lo largo de los tramos escogidos para realizar la evaluación del estado actual de la vía.

Enunciado del problema

Objetivos de la investigación

objetivos generales

determinar y evaluar las patologías de la avenida habilitación urbana municipal del distrito de Callería, provincia de Coronel Portillo, y así obtener el estado y condición del servicio de la avenida pavimentada, según los diferentes tipos de patologías que la misma presenta, estos justificados mediante resultados de evaluación como referencia las patologías existentes actualmente.

Objetivos específicos

d) Identificar y determinar los tipos de patologías del concreto en los diferentes paños que conforman la vía, distrito de Callería, provincia de Coronel Portillo, departamento de Ucayali.

Marco teórico y conceptual antecedentes

Se consultó en diferente tesis y estudios específicos y realizados de manera nacional e internacional, referente en patologías en pavimentos de concreto.

Bases teóricas

a) Pavimento rígido

El pavimento rígido o pavimento hidráulico, se compone de losas de concreto hidráulico que algunas veces presentan acero de refuerzo. Esta losa va sobre la base o Subbase y ésta sobre la subrasante. Este tipo de pavimentos no permite deformaciones de las capas inferiores.

El pavimento rígido tiene un costo inicial más elevado que el pavimento flexible y su período de vida varía entre 20 y 40 años.

Metodología tipo de investigación

Por el tipo de investigación el presente proyecto reúne las condiciones metodológicas de una investigación tipo aplicada, no experimental, de corte transversal y tipo descriptivo Junio 2017.

Nivel de investigación

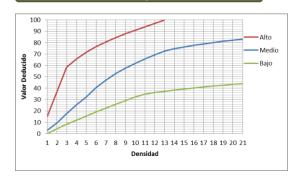
El nivel de la investigación para el presente estudio, de acuerdo a la naturaleza del estudio de la investigación, reúne por su nivel las características de un estudio de tipo descriptivo, explicativo y correlativo.

Diseño de la investigación

el universo o la población

- c) muestra
- d) muestreo definición y Operacionalización de las variables -variable -definición conceptual -dimensiones

Referencias bibliográficas

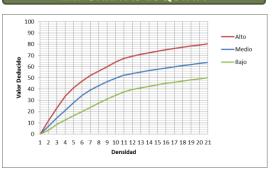

- (1) Prunell s. análisis de los factores que producen el deterioro de los pavimentos rígidos. [Tesis para la obtención del título de ingeniero civil]. La plata, argentina; 2011. http://lemac.frlp.utn.edu.ar/wpc ontent/uploads/2014/05/lemac memoria2013.pdf
- (2) Ruiz c. análisis de los factores que producen el deterioro de los pavimentos rígidos. [Tesis para la obtención del título de ingeniero civil]. Sangolquí ecuador: escuela politécnica del ejército; 2011.http://repositorio.espe.edu. ec/bitstream/21000/3033/1/t-espe-030924.pdf
- (3) Espinoza t. determinación y evaluación del nivel de incidencia de las patologías del concreto en los pavimentos rígidos de la provincia de Huancabamba, departamento de

¿En qué medida la	e)	Evaluar los diferentes	El mantenimiento que requiere	-definición operacional	Piura. [Tesis para optar al título
determinación y	Ĺ	elementos y áreas	es mínimo y se orienta	-indicadores	de ingeniero civil]. Piura, Perú:
evaluación de las		comprometidas las cuales	generalmente al tratamiento de		universidad católica los ángeles
patologías del pavimento		presenten diferentes tipos	juntas de las losas.	técnicas e instrumentos	de Chimbote; 2010.
de la avenida Habitación		de patologías, con el fin de		plan de análisis	http://es.scribd.com/doc/103596
Urbana Municipal del		obtener resultados mediante	b)Patologías en pavimentos		390/patologia-vimentos#scribd
distrito de Callería,		porcentajes y estadísticas			
provincia de Coronel		patológicas encontradas a lo	Las patologías en pavimentos de		(4) Córdova e., guerrero m.,
Portillo, departamento		largo de la avenida	concreto se definen como el		Mautino a. determinación y
de Ucayali, nos		Habilitación Urbana	estudio sistemático de los		evaluación del nivel de
permitirá obtener el		Municipal.	procesos y características de las		incidencia de las patologías del
estado actual y	f)	Mediante los resultados de	enfermedades o los defectos y		concreto en los pavimentos
condición de servicio de		la evaluación, poder obtener	daños que puede sufrir el		rígidos del barrio índice de
dicha avenida en		el estado actual y la	concreto, su causa y sus		condición de pavimentos en
funcionamiento?		condición de servicio en la	consecuencias.		Aeropuertos (PCI). Norma
		que se encuentra la avenida	Patologías		ASTM d 5340.Lima.
		Habilitación Urbana	-fisuras y		Http://alacpa.org/index_archivo
		Municipal, distrito de	grietas		s/astmd53
		Callería, provincia de	-deformaciones superficiales;		40-metcalc-pci-esprev0.pdf
		coronel portillo,	-desintegración de pavimentos o		
		departamento de Ucayali.	desprendimientos		
			-afloramientos y otras fallas		

Tabla 59 : Valores deducidos tipo de falla (21)

Tabla 60: Valores deducidos tipo de falla (22)

21. BLOW UP / BUCKLING

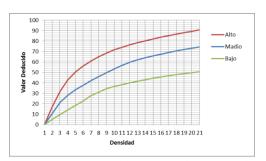


21. BLOW UP / BUCKLING

Danaidad	v	alor deducid	lo
Densidad	В	М	Α
0,00		3,00	15,00
5,00	4,40	9,60	37,30
10,00	8,30	17,50	58,40
15,00	12,00	25,40	65,80
20,00	15,50	32,40	71,60
25,00	19,00	40,60	76,50
30,00	22,40	47,20	80,70
35,00	25,80	52,80	84,40
40,00	29,10	57,60	87,80
45,00	32,40	61,90	90,90
50,00	34,90	65,80	93,80
55,00	36,20	69,20	97,00
60,00	37,30	72,50	100,00
65,00	38,40	74,80	
70,00	39,40	76,30	
75,00	40,30	77,60	
80,00	41,20	79,00	
85,00	42,00	80,10	
90,00	42,70	81,20	
95,00	43,50	82,20	
100,00	44,20	83,20	

Fuente: Elaboración propia (2017).

22. GRIETAS ESQUINA

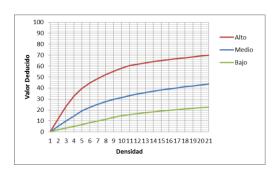


22. GRIETAS ESQUINA

Danaidad	V	alor deducid	lo
Densidad	В	М	Α
0,00	0,00	0,00	0,00
5,00	3,50	7,20	12,10
10,00	8,70	14,50	23,40
15,00	12,60	21,20	34,00
20,00	16,40	28,20	41,50
25,00	20,20	34,40	47,30
30,00	23,80	39,20	52,10
35,00	27,40	43,10	56,10
40,00	31,00	46,60	60,00
45,00	34,50	49,60	64,00
50,00	37,50	52,30	67,30
55,00	39,70	53,80	69,30
60,00	41,20	55,30	70,90
65,00	42,60	56,60	72,40
70,00	43,90	57,80	73,80
75,00	45,10	58,90	75,00
80,00	46,20	60,00	76,20
85,00	47,30	61,00	77,30
90,00	48,30	61,90	78,30
95,00	49,20	62,80	79,30
100,00	50,10	63,70	80,30

Tabla 61: Valores deducidos tipo de falla (23)

23. LOSA DIVIDIDA

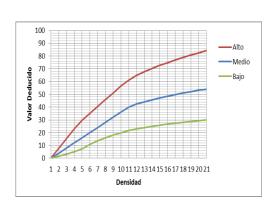

23. LOSA DIVIDIDA

	Valor deducido							
Densidad	В	M	A					
0,00	0,00	0,00	0,00					
5,00	5,10	10,70	17,00					
10,00	9,80	21,50	32,00					
15,00	14,20	28,20	42,70					
20,00	18,60	33,30	50,30					
25,00	22,90	37,90	56,20					
30,00	27,90	42,20	61,00					
35,00	31,00	46,10	65,10					
40,00	34,50	49,90	68,60					
45,00	36,60	53,40	71,80					
50,00	38,50	56,80	74,00					
55,00	40,20	59,80	76,30					
60,00	41,70	62,00	78,40					
65,00	43,10	64,00	80,30					
70,00	44,50	65,80	82,10					
75,00	45,70	67,50	83,70					
80,00	46,80	69,10	85,30					
85,00	47,90	70,50	86,80					
90,00	48,90	71,90	88,10					
95,00	49,90	73,30	89,40					
100,00	50,80	74,50	90,70					

Fuente: Elaboración propia (2017)

Tabla 62: Valores deducidos tipo de falla (24)

24. GRIETA DE DURABILIDAD

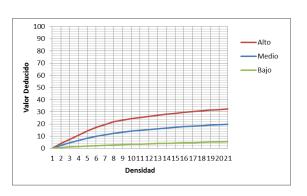


24. GRIETA DE DURABILIDAD

Densidad	v	alor deducid	lo
Densidad	В	М	Α
0,00	0,00	0,00	0,00
5,00	2,00	5,00	11,70
10,00	3,60	10,00	23,40
15,00	5,20	14,50	32,80
20,00	6,70	19,00	39,40
25,00	8,30	22,40	44,50
30,00	9,90	25,20	48,70
35,00	11,50	27,60	52,30
40,00	13,20	29,60	55,30
45,00	14,70	31,40	58,10
50,00	15,70	33,00	60,40
55,00	16,60	34,50	61,70
60,00	17,50	35,80	62,90
65,00	18,30	37,10	64,00
70,00	19,00	38,20	65,00
75,00	19,70	39,20	65,90
80,00	20,30	40,20	66,80
85,00	20,90	41,20	67,60
90,00	21,40	42,00	68,40
95,00	22,00	42,90	69,20
100,00	22,50	43,70	69,90

Tabla 63: Valores deducidos tipo de falla (25)

25. ESCALA

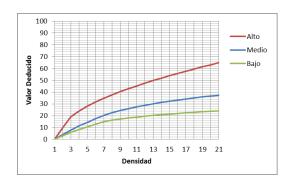

25. ESCALA

Densidad	v	alor deducid	lo
Densidad	В	М	Α
0,00	0,00	0,00	0,00
5,00	1,50	3,90	7,70
10,00	3,30	8,00	15,40
15,00	5,00	12,00	23,00
20,00	7,50	16,00	29,70
25,00	10,90	20,10	35,30
30,00	13,70	24,10	40,70
35,00	16,10	28,10	46,00
40,00	18,10	32,20	51,00
45,00	19,90	36,20	56,40
50,00	21,60	39,90	61,00
55,00	23,00	42,40	64,90
60,00	24,00	44,10	67,70
65,00	24,90	45,70	70,30
70,00	25,80	47,20	72,70
75,00	26,70	48,60	74,90
80,00	27,40	49,90	77,00
85,00	28,20	51,10	78,90
90,00	28,90	52,20	80,80
95,00	29,50	53,30	82,50
100,00	30,10	54,00	84,20

Fuente: Elaboración propia (2017)

Tabla 64: Valores deducidos tipo de falla (27)

27. DESNIVEL BERMA / CARRIL

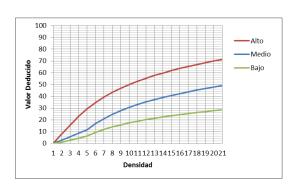

27. DESNIVEL BERMA / CARRIL

Damaidad	v	Valor deducido							
Densidad	В	М	Α						
0,00	0,00	0,00	0,00						
5,00	0,80	2,60	4,10						
10,00	1,30	4,60	7,60						
15,00	1,60	6,40	10,90						
20,00	2,00	8,40	14,10						
25,00	2,30	10,00	17,20						
30,00	2,60	11,30	19,50						
35,00	2,80	12,40	21,80						
40,00	3,10	13,30	23,20						
45,00	3,30	14,10	24,30						
50,00	3,50	14,90	25,40						
55,00	3,80	15,60	26,40						
60,00	4,00	16,20	27,30						
65,00	4,20	16,80	28,10						
70,00	4,40	17,30	28,80						
75,00	4,60	17,80	29,50						
80,00	4,80	18,20	30,20						
85,00	5,00	18,70	30,80						
90,00	5,20	19,10	31,40						
95,00	5,30	19,40	31,90						
100,00	5,50	19,80	32,50						

Tabla 65: Valores deducidos tipo de falla (28)

Tabla 66: Valores deducidos tipo de falla (29)

28. GRIETAS LINEALES

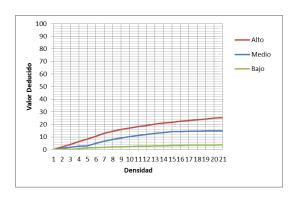


28. GRIETAS LINEALES

Densidad	V	alor deducid	lo
Delisidad	В	М	Α
0,00	0,00	0,00	0,00
5,00	3,20	4,00	9,60
10,00	5,90	7,80	19,20
15,00	8,30	11,50	24,20
20,00	10,60	14,40	28,30
25,00	12,80	17,60	31,60
30,00	14,90	20,20	34,70
35,00	16,20	22,40	37,60
40,00	17,20	24,30	40,30
45,00	18,10	26,00	42,80
50,00	18,90	27,50	45,20
55,00	19,60	28,80	47,50
60,00	20,30	30,10	49,70
65,00	20,90	31,20	51,80
70,00	21,40	32,30	53,90
75,00	22,00	33,30	55,80
80,00	22,40	34,20	57,70
85,00	22,90	35,10	59,60
90,00	23,30	35,90	61,40
95,00	23,70	36,70	63,10
100,00	24,10	37,40	64,80

Fuente: Elaboración propia (2017)

29. PARCHEO GRANDE

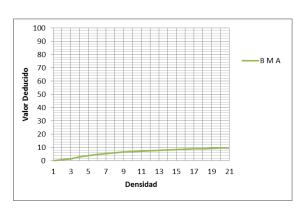

29. PARCHEO GRANDE

Damaidad	Valor deducido						
Densidad	В	М	Α				
0,00	0,00	0,00	0,00				
5,00	1,10	2,90	8,00				
10,00	2,70	5,80	15,70				
15,00	4,30	8,80	23,20				
20,00	6,30	11,70	29,50				
25,00	9,40	16,90	34,60				
30,00	11,90	21,10	39,40				
35,00	14,00	24,70	43,50				
40,00	15,80	27,80	47,00				
45,00	17,50	30,50	50,10				
50,00	18,90	33,00	52,90				
55,00	20,20	35,20	55,40				
60,00	21,40	37,20	57,70				
65,00	22,50	39,00	59,80				
70,00	23,50	40,70	61,80				
75,00	24,50	42,30	63,60				
80,00	25,40	43,80	65,30				
85,00	26,20	45,20	66,90				
90,00	27,00	46,60	68,50				
95,00	27,70	47,80	69,90				
100,00	28,40	49,00	71,20				

Tabla 67: Valores deducidos tipo de falla (30)

Tabla 68: Valores deducidos tipo de falla (31)

30. PARCHEO PEQUEÑO

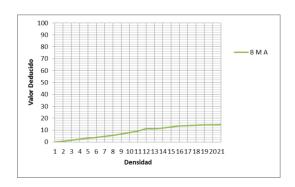


30. PARCHEO (PEQUEÑO)

Densidad	Valor deducido						
Densidad	В	М	Α				
0,00	0,00	0,00	0,00				
5,00	0,00	0,90	2,20				
10,00	0,00	1,70	4,20				
15,00	0,60	2,60	6,30				
20,00	1,10	3,00	8,40				
25,00	1,50	5,00	10,50				
30,00	1,80	6,60	12,90				
35,00	2,00	8,00	14,50				
40,00	2,20	9,20	15,90				
45,00	2,40	10,20	17,10				
50,00	2,60	11,20	18,20				
55,00	2,70	12,00	19,20				
60,00	2,90	12,90	20,10				
65,00	3,00	13,50	21,00				
70,00	3,10	14,40	21,70				
75,00	3,30	14,40	22,40				
80,00	3,40	14,50	23,10				
85,00	3,50	14,60	23,70				
90,00	3,60	14,70	24,30				
95,00	3,60	14,80	24,90				
100,00	3,70	14,80	25,40				

Fuente: Elaboración propia (2017)

31. PULIMENTO DE AGREGADOS


31. PULIMENTO DE AGREGADOS

Donaidad	Valor deducido
Densidad	BMA
0,00	0,00
5,00	0,80
10,00	1,30
15,00	2,80
20,00	3,80
25,00	4,60
30,00	5,30
35,00	5,90
40,00	6,40
45,00	6,80
50,00	7,20
55,00	7,50
60,00	7,80
65,00	8,10
70,00	8,40
75,00	8,60
80,00	8,90
85,00	9,10
90,00	9,30
95,00	9,50
100,00	9,70

Tabla 69: Valores deducidos tipo de falla (32)

Tabla 70: Valores deducidos tipo de falla (33)

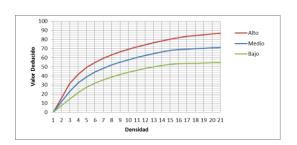
32. POPOUTS

						D	ensid	ad					
		1	3	5	7	9	11	13	15	17	19	21	
	0				_								
	10												
	20					-							
Š	30	\blacksquare						_	_				
5	40												
Valor Deducido	50	\blacksquare											
Ĭ	60	\blacksquare											
용	70												— BIVI A
	80												— в м а
	90												
	100	\blacksquare											

33. BOMBEO

32. POPOUTS

Densidad	Valor deducido
Densidad	BMA
0,00	0,00
5,00	0,70
10,00	1,50
15,00	2,30
20,00	3,20
25,00	4,00
30,00	4,80
35,00	5,70
40,00	6,70
45,00	8,00
50,00	9,10
55,00	11,10
60,00	11,10
65,00	11,90
70,00	12,70
75,00	13,40
80,00	13,90
85,00	14,10
90,00	14,30
95,00	14,40
100,00	14,60

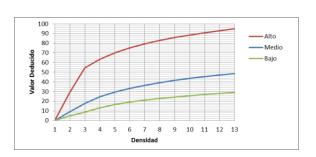

33. BOMBEO

Densidad	Valor deducido
Densidad	BMA
0,00	0,00
5,00	3,60
10,00	6,70
15,00	9,50
20,00	12,20
25,00	14,90
30,00	17,40
35,00	19,90
40,00	22,50
45,00	24,30
50,00	26,10
55,00	27,60
60,00	29,40
65,00	30,90
70,00	32,50
75,00	34,00
80,00	34,90
85,00	35,70
90,00	36,50
95,00	37,20
100,00	38,00

Fuente: Elaboración propia (2017).

Tabla 71: Valores deducidos tipo de falla (34)

34. PUNZONAMIENTO

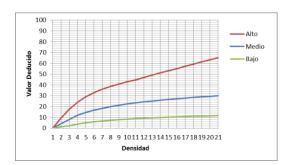

34. PUNZONAMIENTO

D id. d	Va	0	
Densidad	В	Α	
0,00	0,00	0,00	0,00
5,00	7,30	11,60	15,60
10,00	14,50	22,90	31,80
15,00	21,60	32,30	41,90
20,00	27,36	39,00	49,10
25,00	31,90	44,20	54,60
30,00	35,60	48,40	59,20
35,00	38,80	52,00	63,00
40,00	41,50	55,10	66,30
45,00	43,90	57,80	69,30
50,00	46,10	60,30	71,90
55,00	48,10	62,50	74,30
60,00	49,80	64,50	76,40
65,00	51,50	66,40	78,40
70,00	52,70	68,00	80,30
75,00	53,30	68,90	82,00
80,00	53,60	69,40	83,40
85,00	53,90	69,90	84,30
90,00	54,20	70,30	85,10
95,00	54,50	70,80	86,00
100,00	54,80	71,20	86,80

Fuente: Elaboración propia (2017).

Tabla 72: Valores deducidos tipo de falla (35)

35. CRUCE DE VIA FERREA

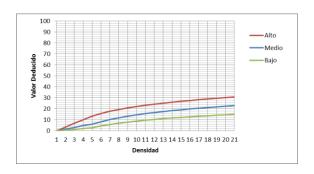

35. Cruce de Via Ferrea

D	Valor deducido									
Densidad	В	М	Α							
0,00	0,00	0,00	0,00							
5,00	4,70	9,10	29,00							
10,00	8,60	17,60	54,30							
15,00	13,20	24,60	63,50							
20,00	16,50	29,50	70,00							
25,00	19,00	33,40	75,10							
30,00	21,10	36,50	79,30							
35,00	22,90	39,20	82,80							
40,00	24,40	41,50	85,80							
45,00	25,70	43,50	88,50							
50,00	26,90	45,40	90,90							
55,00	28,00	47,00	93,00							
60,00	29,00	48,50	95,00							
65,00										
70,00										
75,00										
80,00										
85,00										
90,00										
95,00										
100,00										

Tabla 73: Valores deducidos tipo de falla (36)

Tabla 74: Valores deducidos tipo de falla (38)

36. MAPA DE GRIETAS / CRAQUELADAO

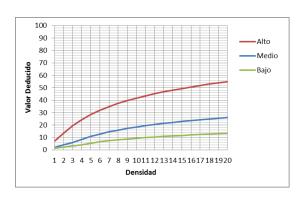


36. MAPA DE GRIETAS/CRAQUELADO

Donaidad	Valor deducido						
Densidad	В	М	Α				
0,00	0,00	0,00	0,00				
5,00	1,20	4,20	9,30				
10,00	2,10	8,00	17,30				
15,00	3,80	11,90	24,20				
20,00	5,00	14,60	29,10				
25,00	5,90	16,70	33,00				
30,00	6,70	18,50	36,10				
35,00	7,30	20,00	38,70				
40,00	7,90	21,20	41,00				
45,00	8,30	22,40	43,00				
50,00	8,80	23,40	44,80				
55,00	9,20	24,30	47,00				
60,00	9,50	25,10	49,20				
65,00	9,90	25,90	51,20				
70,00	10,20	26,60	53,20				
75,00	10,50	27,30	55,20				
80,00	10,70	27,90	57,30				
85,00	11,00	28,50	59,30				
90,00	11,20	29,00	61,30				
95,00	11,40	29,50	63,30				
100,00	11,70	30,00	65,30				

Fuente: Elaboración propia (2017).

38. DESCASCARAMIENTO DE ESQUINA



38. DESCARAMIENTO DE ESQUINA

Dansidad	Va	alor deducid	o
Densidad	В	М	Α
0	0,00	0,00	0,00
5	0,50	1,60	3,30
10	1,30	3,10	7,00
15	2,00	4,70	10,10
20	2,70	5,90	13,20
25	4,40	8,30	15,70
30	5,80	10,20	17,70
35	6,90	11,90	19,30
40	8,00	13,30	20,80
45	8,90	14,50	22,10
50	9,70	15,60	23,20
55	10,40	16,70	24,30
60	11,10	17,60	25,20
65	11,70	18,40	26,10
70	12,20	19,20	26,90
75	12,80	19,90	27,60
80	13,30	20,60	28,30
85	13,70	21,23	29,00
90	14,20	21,90	29,60
95	14,60	22,40	30,20
100	15,00	23,00	30,80

Tabla 75: Valores deducidos tipo de falla (39)

39. DESCASCARAMIENTO DE JUNTAS

39. DESCARAMIENTO DE JUNTA

Dansidad	Valor deducido							
Densidad	В	Α						
5,00	1,40	2,00	7,00					
10,00	2,40	4,00	13,40					
15,00	3,20	6,10	19,70					
20,00	4,20	8,30	24,20					
25,00	5,40	10,80	28,50					
30,00	6,50	12,80	31,90					
35,00	7,63	14,50	34,90					
40,00	8,10	16,00	37,40					
45,00	8,80	17,30	39,70					
50,00	9,40	18,40	41,70					
55,00	9,90	19,50	43,50					
60,00	10,40	20,40	45,20					
65,00	10,90	21,30	46,70					
70,00	11,30	22,10	48,10					
75,00	11,70	22,90	49,40					
80,00	12,10	23,60	50,60					
85,00	12,40	24,20	51,80					
90,00	12,70	24,90	52,90					
95,00		25,50	53,90					
100,00		26,00	54,90					

Figura 47: Vista panorámica de la avenida Habilitación Urbana Municipal (2017)

Figura 48: Vista panorámica de la avenida Habilitación Urbana Municipal (2017)

Figura 49: Vista panorámica de la cuadra 01 de la avenida Habilitación Urbana Municipal (2017)

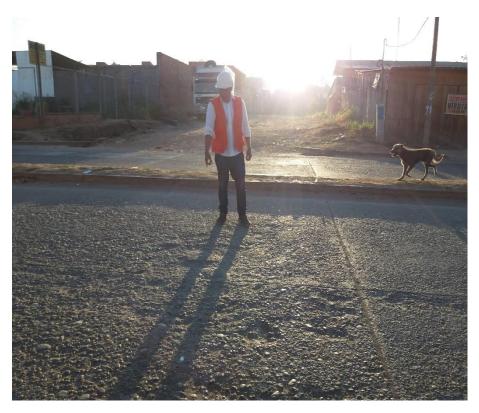

Figura 50: Pulimentos de agregados cuadra 01 de la avenida Habilitación Urbana Municipal (2017)

Figura 51: Punzonamiento en la cuadra 02 de la avenida Habilitación Urbana Municipal (2017)

Figura 52: Desconchamiento en la cuadra 02 de la avenida Habilitación Urbana Municipal (2017)

Figura 53: Punzonamiento, descascaramiento, pulimentos de agregados en la cuadra 02 de la avenida Habilitación Urbana Municipal (2017)

Figura 54: Punzonamiento, descascaramiento, pulimentos de agregados en la cuadra 03 de la avenida Habilitación Urbana Municipal (2017)

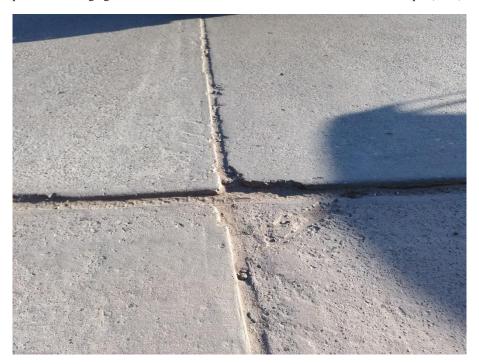

Figura 55: Punzonamiento, descascaramiento, dañó de sello de junta, grieta de esquina, pulimentos de agregados en la cuadra 03 de la avenida Habilitación Urbana Municipal (2017)

Figura 56: Punzonamiento, descascaramiento, dañó de sello de junta, grieta de esquina, pulimentos de agregados en la cuadra 03 de la avenida Habilitación Urbana Municipal (2017)

Figura 57: Punzonamiento, descascaramiento, dañó de sello de junta, grieta de esquina, pulimentos de agregados en la cuadra 04 de la avenida Habilitación Urbana Municipal (2017)

Figura 58: Descascaramiento, dañó de sello de junta, grieta de es quina en la cuadra 04 de la avenida Habilitación Urbana Municipal (2017)

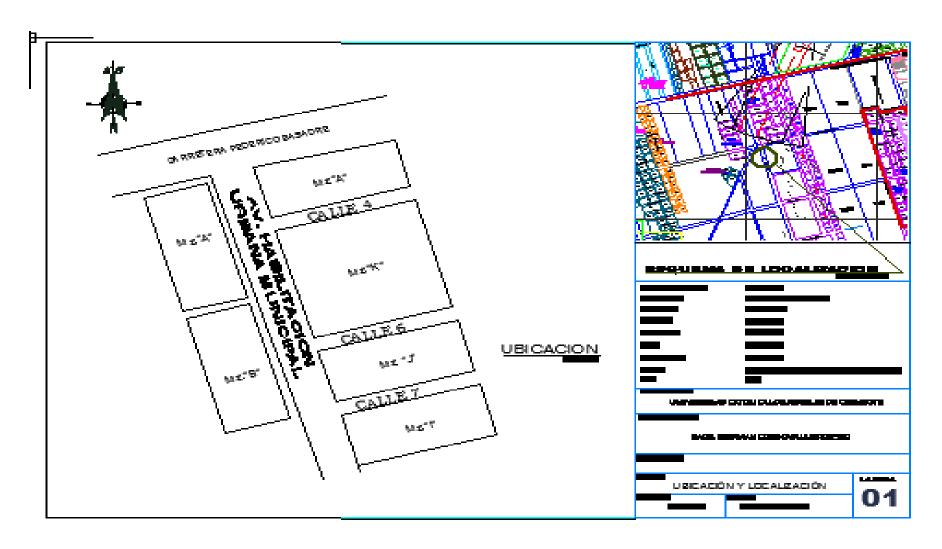


Figura 59: Escala, descascaramiento, dañó de sello de junta, pulimentos de agregados en la cuadra 04 de la avenida Habilitación Urbana Municipal (2017)

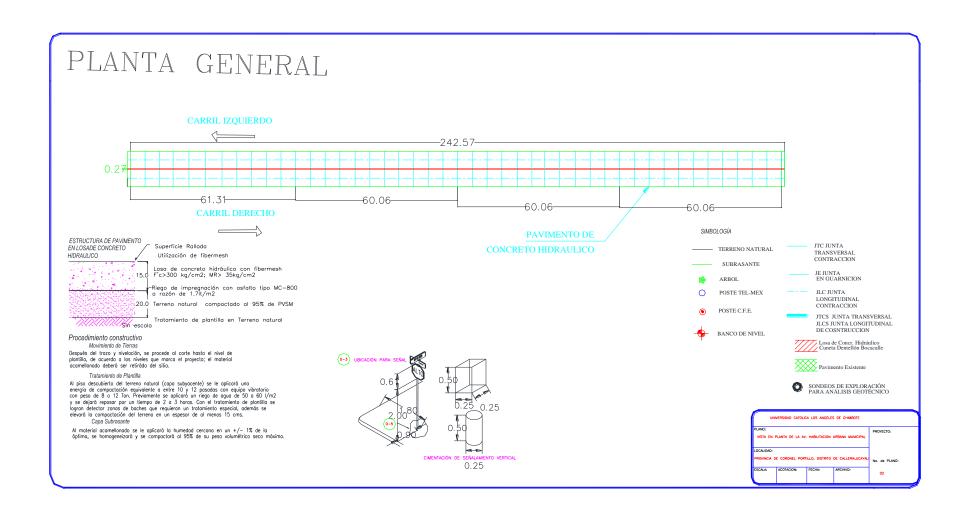
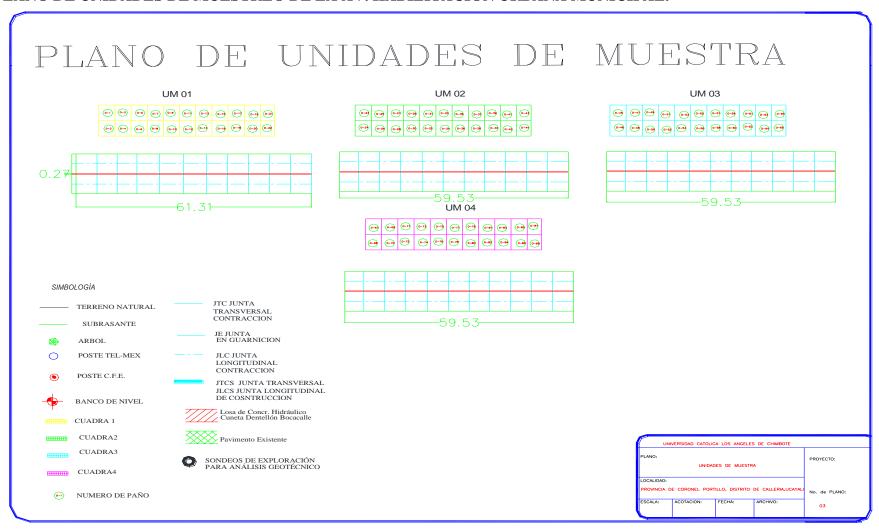
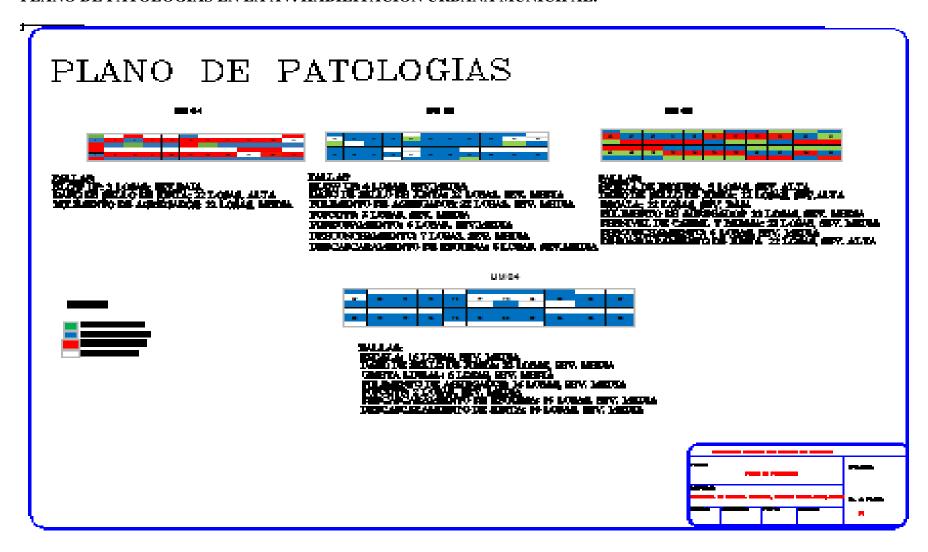


Figura 60: Punzonamiento, descascaramiento, dañó de sello de junta, grieta de esquina, pulimentos de agregados en la cuadra 04 de la avenida Habilitación Urbana Municipal (2017)


PLANOS:


ISTA EN PLANTA DE LA AVENIDA HABILITACION URBANA MUNICIPAL.

PLANO DE UNIDADES DE MUESTREO DE LA AV. HABILITACION URBANA MUNICIPAL.

PLANO DE PATOLOGIAS EN LA AV. HABILITACION URBANA MUNICIPAL.

