

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TÍTULO DE LA TESIS:

DETERMINACIÓN Y EVALUACIÓN DE LAS
PATOLOGÍAS DEL CONCRETO PARA OBTENER EL
ÍNDICE DE INTEGRIDAD ESTRUCTURAL DEL
PAVIMENTO Y CONDICIÓN OPERACIONAL DE LA
SUPERFICIE DEL JIRÓN SAN MARTÍN, DISTRITO Y
PROVINCIA DE SATIPO, REGIÓN JUNÍN, ENERO –
2017.

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

BACH. HOPPEN MIGUEL ROBERT REYNER

ASESOR:

ING. DENNYS ORTIZ LLANTO

SATIPO – PERÚ

2017.

Hoja firma del jurado asesor

Ing. Francisco Oropeza Ascarza
Presidente
Ing. Juan Gabriel Dionisio Isla
Secretario
Ing. Geovany Vílchez Casas
Miembro

Hoja de agradecimiento y/o dedicatoria

Agradecimiento

A Dios quien me dio fortaleza la vida y salud, poder permitirme cumplir este logro.

Gracias ala Universidad
Católica los Ángeles de
Chimbote, a todo los
catedráticos por los
conocimientos compartidos

Dedicatoria

A mi madre Grimanesa Miguel Soto por su incesante afecto de lucha. A mi padre Rubén Hoppen Terreros

por su aporte y confianza.

A mi Tío Alex Hoppen Terreros

por su apoyo incondicional.

A mis abuelos por que siempre me
enseñaron desde pequeño a luchar, por
sus ejemplos de perseverancia y
constancia, quienes siempre me
motivaron a seguir adelante.

Resumen

La presente tesis tiene como problema, ¿en qué medida, determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional de la superficie del Jirón San Martín, Distrito y Provincia de Satipo, Región Junín, Enero – 2017, nos permitirá obtener un índice de integridad estructural del pavimento y operacional de su superficie?, el objetivo general, determinar el índice de condición del pavimento de concreto del Jirón San Martín, distrito y Provincia de Satipo, Región Junín, Enero – 2017, metodología empleada de tipo observacional, descriptivo, transversal, nivel de investigación, cuantitativo, el diseño de investigación, no experimental, la población, esta dada por la delimitación geográfica del Distrito y Provincia de Satipo Región Junín, muestra Se evaluó el Jirón San Martín una longitud, de 1139.85 m, a nivel de pavimento rígido, una longitud 986.65m a nivel de afirmado, una longitud de 153.20 m, resultado, obtenidos; son: Descascaramiento de junta de severidad baja 22.29%, descascaramiento de esquina de severidad baja 14.01%, daño sello de junta de severidad media 12.18%, popoust 11.92%, desconchamiento, mapa de grietas craquelado de severidad baja 10.14%, grieta de esquina de severidad media 9.27%, Parche grande mayor a 0.45m2 de severidad baja 5.70%, Parche grande mayor a 0.45m2 de severidad media 4.71%, Grieta de esquina de severidad alta 2.58%, Descascaramiento de esquina de severidad media 1.92%, Grietas lineales de severidad media 1.87%, Punzonamiento de severidad media 1.63%, Grietas lineales de severidad baja 1.34%.

Palabra clave: patología del concreto, tipos de daño en pavimento rígido.

Abastract

Does the present thesis have as problem, in what measure, determination and evaluation of the pathologies of the concrete to obtain the index of structural integrity of the pavement and operational condition of the surface of the Shred San Martin, District and County of Satipo, Region Junín, January. 2017, will it allow us to obtain an index of structural integrity of the pavement and operational condition of its surface? Does the present thesis have as problem, in what measure, determination and evaluation of the pathologies of the concrete to obtain the index of structural integrity of the pavement and operational condition of the surface of the Shred San Martin, District and County of Satipo, Region Junín, January. 2017, will it allow us to obtain an index of structural integrity of the pavement and operational condition of its surface?, the general objective, to determine the index of condition of the pavement of concrete of the Shred San Martin, district and County of Satipo, Region Junín, January. 2017, used methodology of observational, descriptive, traverse type, investigation level, quantitative, the investigation design, not experimental, the population, this given by the geographical delimitation of the District and County of Satipo Region Junín, it shows the Shred San Martin a longitude it was evaluated, of 1139.85 m, at level of rigid pavement, a longitude 986.65m at level of having affirmed, a longitude of 153.20 m, result, obtained; they are: Shelling of meeting of severity low 22.29%, shelling of corner of severity low 14.01%, I damage stamp of meeting of severity half 12.18%, popoust 11.92%, desconchamiento, map of cracks craquelado of severity low 10.14%, crack of corner of severity half 9.27%, Patch big bigger to 0.45m2 of severity low 5.70%, Patch big bigger to 0.45m2 of severity half 4.71%, Crack of corner of severity high 2.58%, Shelling of corner of severity half 1.92%, lineal Cracks of severity half 1.87%, Punzonamiento of severity half 1.63%, lineal Cracks of severity low 1.34%.

Key word: pathology of the concrete, types of damage in rigid pavement.

Contenido

1.	Titulo d	le la Tesis	i
2.	Hoja Fi	rma del Jurado	ii
3.	Hoja de	agradecimiento y/o dedicatoria	
	3.1.	Agradecimiento	iii
	3.2.	Dedicatoria	iv
4.	Resume	en y abastract	
	4.1.	Resumen	v
	4.2.	Abastract	vi
5.	Conteni	ido	vii
6.	Índice d	le figuras, tablas	X
I.	Introdu	cción	1
II.	Revisió	n de literatura	4
	2.1.	Antecedentes	4
	2.1.1.	Antecedentes Internacionales	4
	2.1.2.	Antecedentes Nacionales	8
	2.2.	Bases teóricas de la investigación	20
	2.2.1.	Definición Pavimento	20
	2.2.2.	Clasificación de los Pavimentos	22
	2.2.3.	Elementos que Integran un Pavimento Rígido	24
	2.2.4.	Tipos de Pavimento Rígido	26
	2.2.5.	Evaluación de pavimentos	27
	2	2.2.5.1. Importancia de la evaluación del pavimento	27
	2	2.3.5.1. Objetividad en la evaluación de un pavimento	28
		2.3.6. Ramal	28

vii

			2.3.6.1.	Sección	28
	2.3.7.	Patología de Concreto	•••••		28
	2.3.8.	Patología en Pavimento			29
		2.3.9. Procedimiento según la metodo	logía Índice	de Condició	n del
		pavimento (PCI) NORMA ASTM 6433.			30
III.	Metod	ología	•••••	•••••	77
	3.1. T	ipo de investigación	•••••		77
	3.2. N	Vivel de la investigación	••••••		77
	3.3.	Diseño de la investigación			77
	3.4.	Población y muestra	•••••		79
	3.4.1.	Población			79
			3.	4.2. Muest	ra 79
	3.4.3.	Muestreo			79
	3.5.	Definición y operacionalización de variable	es		81
	3.5.1.	Variables independiente			81
	3.3.1.	variables dependiente	••••••		81
	3.6.	Técnicas e instrumento	•••••••		82
	3.7.	Plan de análisis	••••••		83
	3.8.	Matriz de consistencia			84
	3.9.	Principios éticos			87
IV.	Resulta	dos	•••••••	•••••	88
	4.1.	Resultado			88
	4.2	Resumen de resultados			216
	4.3.	Análisis de resultado			218
V.	Conclus	iones			222
	5.1. Con	clusionesviii			222

5.2. Recomendaciones	229
Referencias bibliográficas	230
Anexos	233

Índice de figuras y tablas

6.1.	Figuras

Figura 1.	Estructura típica de un pavimento flexible	22
Figura 2.	Estructura Típica de un pavimento rígido	23
Figura 3.	Estructura típica de un pavimento articulado	24
Figura 4.	Formato para las interaciones del cálculo del CDV	38
Figura 5.	Blowup buckling de baja severidad	40
Figura 6.	Blowup buckling de baja severidad	41
Figura 7.	Blowup buckling de baja severidad	41
Figura 8.	Grieta de esquina de baja severidad	43
Figura 9.	Grieta de esquina de severidad media	43
Figura 10.	Grieta de esquina de severidad alta	43
Figura 11.	Losa dividida de baja severidad	45
Figura 12.	Losa dividida de severidad media	45
Figura 13.	Losa dividida de alta severidad	45
Figura 14.	Grieta de durabilidad D baja severidad	47
Figura 15.	Grieta de durabilidad D severidad media	47
Figura 16.	Grieta de durabilidad D alta severidad	47
Figura 17.	Escala de baja severidad	49
Figura 18.	Escala de severidad media	49
Figura 19.	Escala de alta severidad	49
Figura 20.	Daño del sello de junta de baja severidad	51
Figura 21.	Daño del sello de junta de severidad media	51
Figura 22.	Daño del sello de junta de alta severidad	51

Figura 23.	Desnivel carril berma de baja severidad	53
Figura 24.	Desnivel carril berma de severidad media	53
Figura 25.	Desnivel carril berma de alta severidad	53
Figura 26.	Grietas lineales de baja severidad en losa de concreto simple	
		56
Figura	27. Grietas lineales de media severidad en losa de concre	tc
	reforzado	56
Figura 28.	Grietas lineales de alta severidad en losa de concreto simple .:	57
Figura	29. Parche grande y acometidas de servicios públicos de ba	ıja
	severidad	58
Figura 30.	Parche grande y cometidas de servicios públicos de severida	ad
	media	58
Figu	ra 31. Parche grande y acometidas de servicios públicos de al	lta
	severidad	59
Figura 32.	Parche pequeño de baja severidad	50
Figura 33.	Parche pequeño de severidad media	50
Figura 34.	Parche pequeño de alta severidad	50
Figura 35.	Pulimento de agregados	51
Figura 36.	Popouts	53
Figura 37.	Bombeo	54
Figura 38.	Bombeo	54
Figura 39.	Punzonamiento de baja severidad	56
Figura 40.	Punzonamiento de severidad media	56
Fioura 41	Punzonamiento de alta severidad	56

Figura 42.	Cruce de vía férrea de baja severidad6
Figura 43.	Cruce de vía férrea de media severidad
Figura 44.	Cruce de vía férrea de alta severidad
Figura 45.	Desconchamiento mapa de grietas craquelado de baja severidad
	69
Figura 46.	Desconchamiento mapa de grietas craquelado de severidad
	media70
Figura 47.	Desconchamiento Mapa de grietas Craquelado de alta
	severidad70
Figura 48.	Grietas de retracción
Figura 49.	Descascaramiento de esquina de baja severidad
Figura 50.	Descascaramiento de esquina de severidad media73
Figura 51.	Descascaramiento de esquina de alta severidad73
Figura 52.	Descascaramiento de junta de baja severidad75
Figura 53.	Descascaramiento de junta de severidad media75
Figura 54.	Descascaramiento de junta de alta severidad76
Figura 55.	Ideograma del diseño de investigación
Figura 56.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de esquina (38L), identificado en la unidad
	de muestra 01 de la cuadra 06 del Jirón San Martín90
Figura 57.	Ábaco y tabla para hallar el valor deducido, de
	descascaramiento de esquina (38M), identificado en la unidad
	de muestra 01 de la cuadra 06 del Jirón San Martín91
Figura 58	Ábaco y tabla para hallar el valor deducido, del daño

	popoust, identificado en la unidad de muestra 01 de la cuadra	
	06 del Jirón San Martín	92
Figura 59.	Ábaco y tabla para hallar el valor deducido, de l daño grieta	ì
	lineales (28M), identificado en la unidad de muestra 01 de la	
	cuadra 06 del Jirón San Martín	93
Figura 60.	Ábaco y tabla para hallar el valor deducido, del daño grietas	
	lineales (28L), identificado en la unidad de muestra 01 de la	
	cuadra 06 del Jirón San Martín	94
Figura 61.	Ábaco y tabla para hallar el valor deducido, del daño	
	punzonamiento (34M), identificado en la unidad de muestra ()1
	de la cuadra 06 del Jirón San Martín	95
Figura 62.	Ábaco y tabla para hallar el valor deducido, del daño	
	descascaramiento de esquina (39L), identificado en la unidad	
	de muestra 01 de la cuadra 06 del Jirón San Martín	96
Figura 63.	Ábaco y tabla para hallar el valor deducido, parche grande	
	mayor a 0.45m2 (29M), identificado en la unidad de muestra	
	01 de la cuadra 06 del Jirón San Martín	97
Figura 64.	Cuadro para hallar el valor deducido del daño sello de junta	
	(26M) identificado en la unidad de muestra 01 de la cuadra 0	6
	del Jirón San Martín	۵Q

Figura 65.	Cuadro para el cálculo del máximo valor deducido corregido
	VDC, de la unidad de muestra 01 del Jirón San Martin 98
Figura 66.	Ábaco para hallar el máximo valor deducido corregido de la
	unidad de muestra 01, del Jirón San Martín99
Figura 67.	Interpolación para hallar el valor deducido corregidos en la
	unida de muestra 01
Figura 68.	Rango de calificación del Índice de Condición del Pavimento
	PCI, en la unidad de muestra 01, del Jirón San Martín, cuadra
	06100
Figura 69. (Grafico cálculo del índice de condición del pavimento PCI, en la
	unidad de muestra 01, del Jirón San Martín, cuadra 06 101
Figura 70.	Grafico de patología con mayor incidencia en la unidad de
	muestra 01 del Jirón San Martín, cuadra 06102
Figura 71.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de esquina (38L), identificado en la unidad
	de muestra 02 de la cuadra 06 del Jirón San Martín104
Figura 72.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de esquina (38M), identificado en la unidad
	de muestra 02, cuadra 06 del Jirón San Martín
Figura 73.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de junta (39L), identificado en la unidad de
	muestra 02, cuadra 06 del Jirón San Martín106
Figura 74.	Ábaco y tabla para hallar el valor deducido, del daño grieta de
	esquina (22M), identificado en la unidad de muestra 02, cuadra

	06 del Jirón San Martín
Figura 75.	Ábaco y tabla para hallar el valor deducido, del daño popoust
	(32), identificado en la unidad de muestra 02, cuadra 06 del
	Jirón San Martín
Figura 76.	Ábaco y tabla para hallar el valor deducido, del daño parche
	grande mayor a 0.45m2 (29M), identificado en la unidad de
	muestra 02, cuadra 06 del Jirón San Martín109
Figura 77. C	Cuadro para hallar el valor deducido, del daño sello de junta
	(26M), identificado en la unidad de muestra 02, cuadra 06 del
	Jirón San Martín
Figura 78.	Cuadro para el cálculo del máximo valor de deducido
	corregido VDC, de la unidad de muestra 02 del Jirón Sar
	Martín, cuadra 06110
Figura 79.	Abaco para hallar el máximo valor deducido corregido de la
	unidad de muestra 02 del Jirón San Martín, cuadra 06111
Figura 80.	Interpolacion para Hallar el valor deducido corregido en la
	unidada de muestra 02
Figura 81.	Rango de calificacion del Indice de Condicion del Pavimento
	PCI, en la unidad de muestra 02, cuadra 06 del Jiron San Martín
	112
Figura	82. Cálculo del índice de condición del pavimento PCI, en la
	unidad de muestra 02 del Jirón san Martín en la cuadra 06 113
Figura	83. Gráficos de patologías con mayor incidencia en la unidad de
	muestra 02 del Jirón san Martín, cuadra 06

Figura 84.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de esquina (38L), identificado en la unidad
	de muestra 03, cuadra 07 del Jirón San Martín116
Figura 85.	Ábaco y tabla para hallar el valor deducido, del daño grieta de
	esquina (22M), identificado en la unidad de muestra 03,
	cuadra 07 del Jirón San Martín117
Figura 86.	Ábaco y tabla para hallar el valor deducido, del daño popoust
	(32), identificado en la unidad de muestra 03, cuadra 07 del
	Jirón San Martín
Figura 87.	Ábaco y tabla para hallar el valor deducido, del daño parche
	grande mayor a 0.45m2 (29M), identificado en la unidad de
	muestra 03, cuadra 07 del Jirón San Martín119
Figura 88.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de junta (39L), identificado en la unidad de
	muestra 03, cuadra 07 del Jirón San Martín120
Figura 89.	Ábaco y tabla para hallar el valor deducido, del daño
	desconchamiento mapa de grietas craquelado (36L),
	identificado en la unidad de muestra 03, cuadra 07 del Jirón
	San Martín
Figura 90.	Ábaco y tabla para hallar el valor deducido, del daño grietas
	lineales (28L), identificado en la unidad de muestra 03, cuadra
	07 del Jirón San Martín
Figura 91.	Cuadro para hallar el valor deducido, del daño sello de junta
	(26M), identificado en la unidad de muestra 03, cuadra 07 del

	Jiron San Martin
Figura 92.	Cuadro, Cálculo del máximo valor de deducido corregido VDC
	de la unidad de muestra 03 del Jirón San Martín, cuadra07 123
Figura 93	. Ábaco para hallar el máximo valor deducido corregido de la
	unidad de muestra 03del Jirón San Martín, cuadra 07 124
Figura 9	4. Interpolación para hallar el valor deducido corregido en la
	unidad de muestra 03
Figura 9	5. Rango de calificación del Índice de Condición del Pavimento
F	PCI unidad de muestra 03, cuadra 07 del Jirón San Martín 125
Figura 96.	Cálculo del Índice de Condición del Pavimento del PCI, en la
	unidad de muestra 03 del Jirón San Martín, cuadra 07 126
Figura 97	7. Grafico de patologías con mayor incidencia en la unidad de
	muestra 03 del Jirón San Martín, cuadra 07
Figura 98.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de esquina (38L), identificado en la unidad
	de muestra 04, cuadra 07 del Jirón San Martín
Figura 99.	Ábaco y tabla para hallar el valor deducido, del daño parche
	grande mayor a 0.45m2 (29M), identificado en la unidad de
	muestra 04, cuadra 07 del Jirón San Martín130
Figura 100.	Ábaco y tabla para hallar el valor deducido, del daño grieta
	de esquina (22M), identificado en la unidad de muestra 04,
	cuadra 07 del Jirón San Martín
Figura 101.	Ábaco y tabla para hallar el valor deducido, de l daño grietas
	lineales (28M), identificado en la unidad de muestra 04,

	cuadra 07 del Jirón San Martín
Figura 102.	Ábaco y tabla para hallar el valor deducido, del daño popoust
	(32), identificado en la unidad de muestra 04, cuadra 07 del
	Jirón San Martín
Figura 103.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de junta (36L), identificado en la unidad de
	muestra 04, cuadra 07 del Jirón San Martín134
Figura 104.	Ábaco y tabla para hallar el valor deducido, del daño
	desconchamiento mapa de grietas craquelado (36L),
	identificado en la unidad de muestra 04, cuadra 07 del Jirón
	San Martín. 135
Figura 105.	Cuadro para hallar el valor deducido, del daño sello de junta
	(26M), identificado en la unidad de muestra 04, cuadra 07 del
	Jirón San Martín
Figura 106.	Cuadro cálculo del máximo valor de deducido corregido
	VDC, de la unidad de muestra 04 del Jirón San Martín, cuadra
	07136
Figura 107.	Ábaco para hallar el máximo valor deducido corregido de la
	unidad de muestra 04 del Jirón San Martín, cuadra137
Figura 108.	Interpolación para hallar el valor deducido corregido en la
	unidad de muestra 04138
Figura 909.	Rango de calificación del Índice de Condición del Pavimento
	PCI, en la unidad de muestra 04, cuadra 07del Jirón San
	Martín

Figura 110.	Cálculo del Indice de Condición del Pavimento del PCI en la
	unidad de muestra 04 del Jirón San Martín, cuadra 07139
Figura 111.	Grafico de patologías con mayor incidencia en la unidad de
	muestra 04 Jirón San Martín, cuadra 07140
Figura 112.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de esquina (38L), identificado en la unidad
	de muestra 05, cuadra 08 del Jirón San Martín142
Figura 113.	Ábaco y tabla para hallar el valor deducido, del daño grieta de
	esquina (22M), identificado en la unidad de muestra 05,
	cuadra 08 del Jirón San Martín143
Figura 114.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de junta (39L), identificado en la unidad de
	muestra 05, cuadra 08 del Jirón San Martín144
Figura 115.	Ábaco y tabla para hallar el valor deducido, del daño parche
	grande mayor a 0.45m2 (29L), identificado en la unidad de
	muestra 05, cuadra 08 del Jirón San Martín145
Figura 116.	Ábaco y tabla para hallar el valor deducido, del daño popoust
	(32L), identificado en la unidad de muestra 05, cuadra 08 del
	Jirón San Martín
Figura 117.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento mapa de grietas craquelado (36L),
	identificado en la unidad de muestra 05, cuadra 08 del Jirón
	San Martín
Figura 118.	Cuadra para hallar el valor deducido, del daño sello de junta

	(26M), identificado en la unidad de muestra 05, cuadra 08 del
	Jirón San Martín
Figura 119	. Cuadro cálculo del máximo valor deducido corregido VDC, de
	la unidad de muestra 05 del Jirón San Martín cuadra 08 148
Figura 1	20. Ábaco para hallar el máximo valor deducido corregido de la
	unidad de muestra 05 del Jirón San Martín, cuadra 08 149
Figura .	121. Interpolación para hallar el valor deducidos corregido en la
	unidad de muestra 05
Figura 122.	Rango de calificación del Índice de Condición del Pavimento
	PCI, unidad de muestra 05
Figura 123.	Calculo del Índice de Condición del pavimento PCI, en la
	unidad de muestra 05 del Jirón San Martín, cuadra 08 151
Figura 124.	Grafico de patologías con mayor incidencia en la unidad de
	muestra 05 del Jirón San Martín, cuadra 08
Figura 125.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de esquina (38L), identificado en la unidad
	de muestra 06, cuadra 08 del Jirón San Martín
Figura 126.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de junta (39L), identificado en la unidad de
	muestra 06, cuadra 08 del Jirón San Martín155
Figura 127.	Ábaco y tabla para hallar el valor deducido, del daño parche
	grande mayor a 0.45m2 (29L), identificado en la unidad de
	muestra 06, cuadra 08 del Jirón San Martín156
Figura 128.	Ábaco y tabla para hallar el valor deducido, del daño popoust

(32), identificado en la unidad de muestra 06, cuadra 08 del
Jirón San Martín
Figura 129. Cuadro para hallar el valor deducido, del daño sello de junta
(26M), identificado en la unidad de muestra 06, cuadra 08 del
Jirón San Martín158
Figura 130. Cuadro, cálculo del máximo valor de deducido corregido
VDC, de la unidad de muestra 06 del Jirón San Martín, cuadra
08158
Figura 131. Ábaco para hallar el máximo valor deducido corregido de la
unidad de muestra 06 del Jirón San Martín, cuadra 08 159
Figura 132 Interpolación para hallar el valor deducido corregido en la
unidad de muestra 06160
Figura 133. Rango de calificación del Índice de Condición del Pavimento
PCI unidad de muestra 06160
Figura 113. Cálculo del Índice de Condición del Pavimento PCI, en la
unidad de muestra 06, del Jirón San Martín, cuadra 08 161
Figura 135. Grafico de patologías con mayor incidencia en la unidad de
muestra 06 del Jirón San Martín, cuada 08162
Figura 136. Ábaco y tabla para hallar el valor deducido, del daño
descascaramiento de esquina (28L), identificado en la unidad
de muestra 07, cuadra 08 del Jirón San Martín
Figura 137. Ábaco y tabla para hallar el valor deducido, del daño
descascaramiento de junta (39L), identificado en la unidad de
muestra 07 cuadra 08 del Iirón San Martín 165

Figura 138. Abaco y tabla para hallar el valor deducido, del daño grieta de	e
esquina (22H), identificado en la unidad de muestra 07,	
cuadra 08 del Jirón San Martín1	l 66
Figura 139. Ábaco y tabla para hallar el valor deducido, del daño popoust	t
(32), identificado en la unidad de muestra 07, cuadra 08 del	
Jirón San Martín1	167
Figura 140. Ábaco y tabla para hallar el valor deducido, del daño parche	
grande mayor a 0.45m2 (29L), identificado en la unidad de	
muestra 07, cuadra 08 del Jirón San Martín1	168
Figura 141. Ábaco y tabla para hallar el valor deducido, del daño parche	
grande mayor a 0.45m2 (29M), identificado en la unidad de	
muestra 07, cuadra 08 del Jirón San Martín1	169
Figura 142. Cuadro para hallar el valor deducido, del daño sello de junta	
(26M), identificado en la unidad de muestra 07, cuadra 08 de	el
Jirón San Martín1	170
Figura 143. Cuadro, cálculo del máximo valor deducido corregido VDC	,
de la unidad de muestra 07 del Jirón San Martín, cuadra	08.
1	170
Figura 144. Ábaco para hallar el valor deducido corregido de la unidad de	3
muestra 07 del Jirón San Martín, cuadra 081	171
Figura 145. Interpolación para hallar el valor deducido corregido en la	
unidad de muestra 071	172
Figura 146. Rango de calificación del Índice de Condición del Pavimen	to
PCI unidad de muestra 07	172

Figura 147.	Cálculo del Indice de Condición del Pavimento del PCI, en la
	unidad de muestra 07 del Jirón San Martín, cuadra 08173
Figura 148.	Grafico de patologías con mayor incidencia en la unidad de
	muestra 07 del Jirón San Martín, cuadra 08174
Figura 149.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento esquina (38L), identificado en la unidad de
	muestra 08, cuadra 09 del Jirón San Martín176
Figura 150.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de junta (39L), identificado en la unidad de
	muestra 08, cuadra 09 del Jirón San Martín177
Figura 151.	Ábaco y tabla para hallar el valor deducido del daño popoust
	(32), identificado en la unidad de muestra 08, cuadra 09 del
	Jirón San Martín
Figura 152.	Ábaco y tabla para hallar el valor deducido del daño
	desconchamiento, mapa de grietas craquelado (36L),
	identificado en la unidad de muestra 08, cuadra 09 del Jirón
	San Martín. 179
Figura 153.	Cuadro para hallar el valor deducido del daño sello de junta
	(26M), identificado en la unidad de muestra 08, cuadra 09 del
	Jirón San Martín
Figura 154.	Cuadro cálculo del máximo valor de deducido corregido
	VDC, de la unidad de muestra 08 del Jirón San Martín, cuadra
	08180

muestra 08 del Jirón San Martín de la cuadra 09181
Figura 156. Interpolación para hallar el valores deducido corregido en la
unidad de muestra 08
Figura 157. Rango de calificación del Índice de Condición del Pavimento
PCI unidad de muestra 08
Figura 158. Cálculo del Índice de Condición del Pavimento PCI, en la
unidad de muestra 08 del Jirón San Martín, cuadra 09
183
Figura 159. Grafico de patologías con mayor incidencia en la unidad de
muestra 08 del Jirón San Martín, cuadra 08184
Figura 160. Ábaco y tabla para hallar el valor deducido, del daño
descascaramiento de esquina (38L), identificado en la unidad
de muestra 09, cuadra 09 del Jirón San Martín
Figura 161. Ábaco y tabla para hallar el valor deducido, del daño
deescascaramiento de junta (39L), identificado en la unidad
de muestra 09, cuadra 09 del Jirón San Martín
Figura 162. Ábaco y tabla para hallar el valor deducido, del daño
popoust (32), identificado en la unidad de muestra 09, cuadra
09 del Jirón San Martín
Figura 163. Ábaco y tabla para hallar el valor deducido, del daño
desconchamiento mapa de grieta craquelado (36L),
identificado en la unidad de muestra 09, cuadra 09 del Jirón
San Martín189
Figura 164. Ábaco y tabla para hallar el valor deducido, del daño parche

	grande mayor a 0.45m2 (29L), identificado en la unidad de
	muestra 09, cuadra 09 del Jirón San Martín190
Figura 165.	Cuadro para hallar el valor deducido, del daño sello de junta
	(36L), identificado en la unidad de muestra 09, cuadra 09 de
	Jirón San Martín
Figura 166.	Cuadro, cálculo del máximo valor de deducido corregido
	VDC, de la unidad de muestra 09 del Jirón San Martín, cuadr
	09
Figura 167.	Ábaco para hallar el máximo valor deducido corregido en la
	unidad de muestra 09 del Jirón San Martín, cuadra 09 192
Figura 168.	Interpolación para hallar el valor deducido corregido en la
	unidad de muestra 09
Figura 169.	Rango de calificación del índice de condición del pavimento en
	la unidad de muestra 09
Figura	170. Cálculo del Índice de Condición del Pavimento PCI, en 1
	unidad de muestra 09 del Jirón San Martín, cuadra 09 194
Figura 171.	Grafico de patologías con mayor incidencia en la unidad d
	muestra 09 del Jirón San Martín, cuadra 0919
Figura 172.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de esquina (38L), identificado en la unidad
	de muestra 10, cuadra 10 del Jirón San Martín193
Figura 173.	Ábaco y tabla para hallar el valor deducido, del daño
	descascaramiento de junta (39L), identificado en la unidad de
	muestra 10 cuadra 10 del Jirón San Martín 199

Figura 174.	Abaco y tabla para hallar el valor deducido, del daño popoust
	(32), identificado en la unidad de muestra 10, cuadra 10 del
	Jirón San Martín
Figura 175.	Ábaco y tabla para hallar el valor deducido, del daño
	desconchamiento mapa de grietas craquelado (36L),
	identificado en la unidad de muestra 10, cuadra 10 del Jirón
	San Martín
Figura 176.	Cuadro para hallar el valor deducido, del daño sello de junta
	(26M), identificado en la unidad de muestra 10, cuadra 10 del
	Jirón San Martín
Figura 177.	Cuadro, cálculo del máximo valor de deducido corregido
	VDC, de la unidad de muestra 10 del Jirón San Martín, cuadra
	10
Figura 178.	Ábaco para hallar el máximo valor deducido corregido en la
	unidad de muestra 10 del Jirón San Martín, cuadra 10 202
Figura 179.	Interpolación para hallar el valor deducido corregido en la
	unidad de muestra 10
Figura 180.	Rango de calificación del Índice de Condición del Pavimento
	PCI en la unidad de muestra 10203
Figura 181.	Cálculo del Índice de Condición del Pavimento PCI, en la
	unidad de muestra 10 del Jirón San Martín, cuadra 09 204
Figura 182.	Grafico de patología con mayor incidencia en la unidad de
	muestra 10 del Jirón San Martín, cuadra 10205
Figura 183.	Ábaco y tabla para hallar el valor deducido, del daño

descascaramiento de esquina (38L), identificado en la unidad de
muestra 11, cuadra 10 del Jirón San Martín207
Figura 184. Ábaco y tabla para hallar el valor deducido, del daño
descascaramiento de junta (39L), identificado en la unidad de
muestra 11, cuadra 10 del Jirón San Martín208
Figura 185. Ábaco y tabla para hallar el valor deducido, del daño grietas de
esquina (22M), identificado en la unidad de muestra 11, cuadra
10 del Jirón San Martín
Figura 186. Ábaco y tabla para hallar el valor deducido, del daño parche
grande mayor a 0.45m2 (29L), identificado en la unidad de
muestra 11, cuadra 10 del Jirón San Martín210
Figura 187. Cuadro para hallar el valor deducido, del daño sello de junta
(26M), identificado en la unidad de muestra 11, cuadra 10 del
Jirón San Martín211
Figura 188. Cuadro cálculo del máximo valor de deducido corregido VDC,
de la unidad de muestra 11 del Jirón San Martin, cuadra10
211
Figura 189. Ábaco para hallar el máximo valor deducido corregido de la
unidad de muestra 11 del Jirón San Martín, cuadra 10212
Figura 190. Interpolación para hallar el valor deducido corregido en la
unidad de muestra 11213
Figura 191. Rango de calificación del Índice de Condición del Pavimento
PCI en la unidad de muestra 11213
Figura 192. Cálculo del Índice de Condición del Pavimento PCI, en la

	unidad de muestra 11 del Jirón San Martin, cuadra 10214
Figura 193.	Grafico de patologías con mayor incidencias en la unidad de
	muestra 11 del Jirón San Martin, cuadra 10215
Figura 194.	Grafico resumen general de incidencias y nivel de severidad de
	las patologías en las cuadras 6, 7, 8, 9, 10 del Jirón san Martín
	Distrito y Provincia de Satipo, Región Junín216
Figura 195.	Grafico, Índice de Condición del Pavimento dé cada unidad de
	muestra de las cuadras 6, 7, 8, 9, 10 del Jirón San Martín 217
Figura 196.	Grafico Índice de Condición del pavimento PCI, general de las
	cuadra 6, 7, 8, 9,10, del Jirón San Martín Distrito y Provincia
	de Satipo Región Junín218
Figura 197.	Solicitud presentada a la municipalidad provincial de satipo
	para realizar trabajo de investigación234
Figura 198.	Carta de aceptación por la municipalidad provincial de satipo
	para realizar trabajo de investigación en el pavimento rígido
	del Jirón San Martín
Figura 199.	Tabla, Cuadro recolección de datos de campo de la unidad de
	muestra 01
Figura 200.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 02
Figura 201.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 03
Figura 202.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 04 242

Figura 203.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 05
Figura 204.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 06
Figura 205.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 07
Figura 206.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 08
Figura 207.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 09
Figura 208.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 10
Figura 209.	Tabla, cuadro recolección de datos de campo de la unidad de
	muestra 11
Figura 210.	Fotografía con vista panorámica en la cuadra 06, del Jirón San
	Martín distrito y provincia de satipo250
Figura 211.	Fotografía con vista panorámica en la cuadra 10 del Jirón San
	Martín distrito y provincia de satipo
Figura 212.	Fotografía con presencia descascaramiento de esquina de
	nivel de severidad media (38L), en la unidad de muestra 01,
	del Jirón San Martín, cuadra 06
Figura 213.	Fotografía con presenta punzonamiento de nivel de severidad
	medio (38M), identificado en la unidad de muestra, del Jirón
	San Martín, cuadra 06

Figura 214. Fotografia con presencia, descascaramiento de junta de
severidad bajo (39L), identificado en la unidad de muestra01
del Jirón San Martín, cuadra 06252
Figura 215. Fotografia con presencia, grietas lineales de nivel de severidad
media (28M), identificado en la unidad de muestra 01, del
Jirón San Martín, cuadra 06252
Figura 216. Fotografía con presenta, popoust (32), identificado en la unidad
de muestra 01, del Jirón San Martín, cuadra 06253
Figura 217. Fotografía de presencia, parche grande mayor a 0.45m2 de
nivel de severidad media (34), identificado en la unidad de
muestra 01 del Jirón San Martín, cuadra 06253
Figura 218. Fotografía con presencia descascaramiento de esquina de nivel
de severidad media (38L), identificada en la unidad de muestra
02 del Jirón San Martín, cuadra 06254
Figura 219. Fotografía con presencia, descascaramiento de esquina de nivel
de severidad media (38M), identificado en la unidad de
muestra 02 del Jirón San Martín, cuadra 06254
Figura 220. Fotografía con presencia, descascaramiento de junta de nivel
de severidad bajo (39L) identificado en la unidad de muestra
02 del Jirón San Martín, cuadra 06255
Figura 221. Fotografía, grieta de esquina presenta escala de nivel de
severidad media (22M), identificado en la unidad de muestra
02, del Jirón San Martín, cuadra 06255
Figura 222. Fotografia con presencia, popoust (32), identificada en la

unidad de muestra 02, del Jirón San Martín, cuadra 06256
Figura 223. Fotografía con presencia descascaramiento de esquina de nivel
de severidad bajo (38L), identificado en la unidad de muestra
03, del Jirón San Martín, cuadra 07256
Figura 224. Fotografía con presencia grieta de esquina de nivel de
severidad bajo (22M), identificado en la unidad de muestra 03
del Jirón San Martín, cuadra 07257
Figura 225. Fotografía con presencia, popoust (32), identificado en la
unidad de muestra 03 del Jirón San Martín, cuadra 07 257
Figura 226. Fotografía con presencia, parche grande mayor a 0.45m2 de
nivel de severidad baja (29L), identificado en la unidad de
muestra 03, del Jirón San Martín, cuadra 07258
Figura 227. Fotografia con presencia, descascaramiento de esquina de nive
de severidad baja (38L), identificado en la unidad de muestra
04 del Jirón San Martín, cuadra 07258
Figura 228. Fotografía, grieta de esquina, presenta escala de nivel de
severidad medio (22M), identificado en la unidad de muestra
04, del Jirón San Martín, cuadra 07259
Figura 229. Fotografia con presencia, daño sello de junta de nivel de
severidad medio (26M), identificado en la unidad de muestra
04 del Jirón San Martín, cuadra 07259
Figura 230. Fotografia con presencia descascaramiento de junta de nivel de
severidad bajo (39L), identificado en la unidad de muestra 04
dal Jirán San Martín, ayadra 07

Figura 231. Fotografía con presencia, popoust (32), identificado en la
unidad de muestra 04 del Jirón San Martín, cuadra 07 260
Figura 232. Fotografía con presencia, descascascaramiento de esquina de
nivel de severidad baja (38L), identificada en la unidad de
muestra 05 del Jirón San Martín, cuadra 08261
Figura 233. Fotografia con presencia, grieta de esquina de nivel de
severidad medio (22M), identificado en la unidad de muestra
05 del Jirón San Martín, cuadra 08261
Figura 234. Fotografía con presencia, descascaramiento de junta de nive
de severidad baja (39L), identificado en la unidad de muestra
05, del Jirón San Martín, cuadra 08262
Figura 235. Fotografia con presencia parche grande mayor a 0.45m2 de
nivel de severidad baja (29L), identificado en la unidad de
muestra 05, del Jirón San Martín, cuadra 08262
Figura 236. Fotografía con presencia, desconchamiento mapa de grietas
craquelado de nivel de severidad baja (36L), identificado en la
unidad de muestra 05, del Jirón San Martín, cuadra 08 263
Figura 237. Fotografía con presencia, descascaramiento de esquina de nive
de severidad bajo (38L), identificada en la unidad de muestra
06, del Jirón San Martín, cuadra 08263
Figura 238. Fotografía con presencia parche grande mayor a 0.45m2 de
nivel de severidad bajo (29L), identificado en la unidad de
muestra 06 del Jirón San Martín, cuadra 08264
Figura 230 Fotografía con presencia daño sello de junta de nivel de

	severidad Media (26M), identificado en la unidad de muestra
	06, del Jirón San Martín, cuadra 08264
Figura 240.	Fotografía con presencia, descascaramiento de esquina nivel
	de severidad baja (38L), identificada en la unidad de muestra
	07, del Jirón San Martín, cuadra 08265
Figura 241	. Fotografía con presencia, grieta de esquina de nivel de
	severidad baja (22H), identificado en la unidad de muestra 07
	del Jirón San Martín, cuadra 08265
Figura 242	. Fotografía con presencia, popoust (32), identificado en la
	unidad de muestra 07, del Jirón San Martín, cuadra 08 266
Figura 243	. Fotografía con presencia daño sello de junta de nivel de
	severidad medio (26M) identificado en la unidad de muestra 07
	del Jirón San Martín, cuadra 08266
Figura 244.	Fotografía con presencia, parche grande mayor a 0.45m2 de
	nivel de severidad media (29M), identificada en la unidad de
	muestra 07 del Jirón San Martín, cuadra 08267
Figura 245.	Fotografía con presencia descascaramiento de esquina de nivel
	de severidad baja (38L), identificado en la unidad de muestra
	08 del Jirón San Martín, cuadra 09267
Figura 246.	Fotografía con presencia descascaramiento de junta de nivel de
	severidad baja (39L), identificado en la unidad de muestra 08,
	del Jirón San Martín, cuadra 09268
Figura 247	. Fotografía con presencia daño sello de junta de nivel de
	, recognition con presentata dano sente de junta de iniver de

	08, del Jirón San Martín, cuadra 09268
Figura 248.	Fotografía con presencia descascaramiento de esquina de nivel
	de severidad baja (38L), identificado en la unidad de muestra
	09 del Jirón San Martín, cuadra 09269
Figura 249.	. Fotografía con presencia, daño sello de junta de nivel de
	severidad medio (26M), identificado en la unidad de muestra
	09, del Jirón San Martín, cuadra 09269
Figura 250.	Fotografía con presencia descascaramiento de junta de nivel de
	severidad bajo (39L), identificado en la unidad de muestra 09
	del Jirón San Martín, cuadra 09270
Figural 25	1. Fotografía con presencia, parche grande mayor a 0.45m2 de
	nivel severidad baja (29L), identificado en la unidad de
	muestra 08, del Jirón San Martín, cuadra 09270
Figura 252.	Fotografía con presencia, descascaramiento de esquina de nivel
	de severidad baja (38L), identificado en la unidad de muestra
	10, del Jirón San Martín, cuadra 10271
Figura 253.	Fotografía con presencia descascaramiento de esquina de nivel
	de severidad baja (38L), identificado en la unidad de muestra
	10, del Jirón San Martín, cuadra 10271
Figura 254	. Fotografía con presencia daño sello de junta de nivel de
	severidad medio (26M), identificado en la unidad de muestra
	10, del Jirón San Martín, cuadra 10272
Figura 255.	Fotografía con presencia descascaramiento de esquina de nivel
	de severidad baja (38L), identificado en la unidad de muestra

		11, del Jirón San Martín, cuadra 10272
	Figura 256	. Fotografía con presencia, grieta de esquina de nivel de
		severidad media (22M), identificado en la unidad de muestra
		11, del Jirón San Martín, cuadra 10273
	Figura 257.	Fotografía con presencia, descascaramiento de junta de nivel
		de severidad bajo (39L), identificado en la unidad de muestra
		11, del Jirón San Martín, cuadra 10273
	Figura 258.	Fotografía con presencia, parche grande mayor a 0.45m2 de
		nivel de severidad bajo (29L), identificado en la unidad de
		muestra 11, del Jirón San Martín, cuadra 10274
	Figura 259.	Fotografía con presencia, daño sello de junta de nivel de
		severidad medio (26M), identificado en la unidad de muestra
		11, del Jirón San Martín, cuadra 10274
	Figura 232	C. Instrumentos utilizados en la evaluación GPS, cámara
	1	fotográfica, fluxómetro, Wincha, escalímetro, calculadora 275
	Figura 233.	Plano de localización nacional
	Figura 234.	Plano de localización provincial
	Figura 235.	Plano de ubicación del estudio
	Figura 236.	Plano de muestreo de la cuadra 06, 07, 08, 09 del Jirón San
		Martín
6.2.	Tablas	
	Tabla 1	Índice de Condición del Pavimento31
	Tabla 2	Cuadro niveles de severidad para losa dividida44
	Tabla 3	Cuadro nivel de severidad para escala48

Tabla 4	Cuadro niveles de severidad para el punzonamiento65
Tabla 5	Cuadro nivel de severidad para descascaramiento de esquina .72
Tabla 6	Cuadro nivel de severidad descascaramiento de junta74
Tabla 7	Cuadro de operacionalización de variables81
Tabla 8	Matriz de consistencia84
Tabla 9	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 0189
Tabla 10	cuadro de patologías con mayor incidencia en la unidad
	muestra 01, cuadra 06 del Jirón San Martín 101
Tabla 11	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 02103
Tabla 12	cuadro de patologías con mayor incidencia en la unidad de
	muestra 02, cuadra 06, del Jirón San Martín113
Tabla 13	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 03115
Tabla 14	cuadro de patologías con mayor incidencia de la unidad de
	muestra 03, de la cuadra 07, del Jirón San Martín126
Tabla 15	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 04128
Tabla 16	cuadro de patologías con mayor incidencia en la unidad de
	muestra 04, cuadra 07, del Jirón San Martín140
Tabla 17	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 05141
Tabla 18	cuadro de patologías con mayor incidencia en la unidad de

	muestra 05, cuadra 08, del Jirón San Martín151
Tabla 19	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 06
Tabla 20	cuadro de patologías con mayor incidencia en la unidad de
	muestra 06, cuadra 08 del Jirón San Martín161
Tabla 21	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 07163
Tabla 22	cuadro de patologías con mayor incidencia en la unidad de
	muestra 07, cuadra 08 del Jirón San Martín173
Tabla 23	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 08
Tabla 24	cuadro de patologías con mayor incidencia de la unidad de
	muestra 08 de la cuadra 09 del Jirón San Martín183
Tabla 25	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 09185
Tabla 26	cuadro de patologías con mayor incidencia en la unidad de
	muestra 09, cuadra 09 del Jirón San Martín194
Tabla 27	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 10196
Tabla 28	cuadro de patologías con mayor incidencia en la unidad de
	muestra 10, cuadra 10, del Jirón San Martín204
Tabla 29	Hoja de inspección de condición para la unidad de muestra
	método PCI, unidad de muestra 11206
Tabla 30	cuadro de patologías con mayor incidencia en la unidad de

	muestra 11, cuadra 10 del Jirón San Martín	.214
Tabla 31	cuadro general de resumen de incidencias y nivel de sever	ridac
	de las patologías en las cuadra 6, 7, 8, 9, 10, del Jirón	San
	Martín Distrito y Provincia de Satipo	.216
Tabla 32 cuadro, de resultado individual y general de PCI de las unidad		
	de muestra de las cuadras 6, 7, 8, 9, 10 del Jirón San Ma	artín
	Distrito y Provincia de Satipo, Región Junín	.217
Tabla 33	hoja de inspección de condiciones para unidad de muestra	233
Tahla 34	anexado matriz de consistencia	.236

I. Introducción

El Jirón San Martín se encuentra ubicado en el Distrito de Satipo, Provincia de Satipo, Región Junín, en la margen izquierda del río Satipo, se localiza a 11° 15′23" latitud sur, 74° 42′35" de longitud este y a una altura promedia de 640 m.s.n.m.

En el Plan de Desarrollo Urbano de la Municipalidad Provincial de Satipo, el Jirón San Martín es una vía con dos tipos de Secciones, la Sección S-S es considerada como vía Especial, y la Sección T-T es considerada como vía Local, el presente estudio comprende la Sección T-T, el Jirón San Martín comprende 12 cuadras, de las cuales 10 cuadras se encuentran pavimentadas y 2 cuadras en condición de afirmado, el presente trabajo de investigación determino el Índice de condición del pavimento de 5 cuadras pavimentadas, las cuales se han dividido en 11 unidades de muestra.

El pavimento rígido del Jirón San Martin, se encuentran afectada por diferentes tipos de patologías como: Descascaramiento de juntas descascaramiento de esquina, desconchamiento, mapa de grietas craquelado, popoust, daño sello de junta, grietas de esquina, grietas lineales, parche grande mayor a 0.45m2, punzonamiento, a causa del tiempo de servicio, factores climáticos, falta de mantenimiento preventivo y correctivo por parte de la Municipalidad Provincial de Satipo, por todo lo descrito anteriormente fue necesario llevar acabo un trabajo de investigación. Teniendo como **problema**, ¿En qué medida, determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional de la superficie del Jirón San Martín, Distrito y Provincia de Satipo, Región Junín, Enero – 2017, nos

permitirá obtener un índice de integridad estructural del pavimento y condición operacional de su superficie?.

Objetivo general de la presente tesis es determinar el índice de condición del pavimento de concreto del Jirón San Martín, distrito y Provincia de Satipo, Región Junín, Enero – 2017 a partir de su determinación y evaluación de las patologías del mismo. Así mismo los objetivos específicos son:

Identificar los tipo de patologías en el pavimento rígido que existen en el Jirón San Martín, Distrito de Satipo, Provincia de Satipo, Región Junín, Enero – 2017.

Obtener el índice de condición del pavimento Rígido, en el Jirón san Martín, Distrito y Provincia de Satipo, Región Junín, Enero – 2017.

Evaluar la integridad estructural del pavimento y la condición operacional de la superficie del pavimento de concreto en el Jirón San Martín, Distrito y Provincia de Satipo, Región Junín, Enero – 2017.

El presente trabajo de investigación se **justifica**, por la necesidad de conocer el estado actual del pavimento rígido en el Jirón San Martín, Distrito de Satipo, Provincia de Satipo, Región Junín. Según el tipo de patologías identificadas, se indicara el grado de afectación que cada combinación de clase de daño, nivel de severidad y densidad tiene sobre la condición del pavimento en el Jirón San Martín, Distrito de Satipo, Provincia de Satipo, Región Junín, la **metodología empleada**, el tipo de investigación es observacional, descriptivo, transversal, el nivel de la investigación es cuantitativo el diseño de la investigación, no experimental se desarrolló siguiendo el método Índice de Condición del Pavimento (PCI) de la norma ASTM D6433, **resultados** en el pavimento rígido

del Jirón San Martín de las cuadra 6, 7, 8, 9, 10 del Distrito y Provincia de Satipo, Región Junín, en la unidad de muestra 01 se obtuvo como resultado un PCI 73.66 que se encuentra en un estado **muy bueno**, la unidad demuestra 02 se obtuvo un PCI 79.89 que se encuentra en un estado **muy bueno**, unidad de muestra 03 se obtuvo un PCI 74.31 que se encuentra en un estado **muy bueno**, en la unidad de muestra 04 se obtuvo un PCI 72.33 que se encuentra en un estado **muy bueno**, unidad de muestra 05 se obtuvo un PCI 80.34 que se encuentra en un estado **muy bueno**, unidad de muestra 06 se obtuvo un PCI 86.43 que se encuentra en un estado **excelente**, unidad de muestra 07 se obtuvo un PCI 75.90 que se encuentra en un estado **muy bueno**, unidad de muestra 08 se obtuvo un PCI 82.15 de estado **muy bueno**, unidad de muestra 09 se obtuvo PCI 82.10 de estado **muy bueno**, unidad de muestra 10 se obtuvo un PCI 82.02 se encuentra en un estado **muy bueno**, en **conclusión** el índice de condición del pavimento de la cuadra 6, 7, 8, 9, 10, del Jirón San Martin con un PCI = 79.13 de condición = **muy bueno**.

II. Revisión de la Literatura

2.1. Antecedentes

2.1.1. Antecedentes Internacionales

- a) "El estado de las vías de pavimento rígido y su incidencia en la circulación del tráfico pesado de la planta holcim latacunga del cantón latacunga provincia de cotopaxi", Abato Ecuador, 2015.
 Higuera V. (1), El objetivo de esta tesis de investigación es estudiar como el estado de las vías del pavimento rígido inciden en la circulación del tráfico pesado. Teniendo como resultado resultados, en las 248 losa analizadas se encontraron las siguiente fallas, pudiendo una losa tener una o mas falla. Las cuales son:
 - 5 Fallas roturas de esquina, 65 fallas fisuras longitudinales, transversales y diagonales. 9 Falla fisura de durabilidad, 127 Fallas de daño de juntas, 13 fallas de bache grande y corte para instalaciones, 1 falla de asentamiento o falla, 10 Fallas de losa fragmentada, 37 Fallas de desprendimiento de junta, 16 fallas desprendimiento de esquina.

Y llego a las **conclusiones**:

- En las losas analizadas la mayor parte de problemas que encontramos son de daño de juntas que pueden ser causadas por la falta de utilización de un producto adecuado para el sello.
- Encontramos deterioros de losas con presencia de fisuras en un porcentaje menor pero de igual preocupación tal vez por causa del largo de los paños que pasan los 5 m. la mala ejecución de las juntas y en algunos casos la no ejecución de dichas juntas.

- Los desprendimientos en junta y de esquina son otros de los problemas que aparecen a lo largo de la vía que se pueden deber a las cargas que pasan por la vía diariamente.
- Los datos obtenidos con la observación de campo nos sirvió para la determinación de la condición del pavimento mediante el método PCI. cronograma de rehabilitación e inclusive una estrategia de inversión.
- b) Evaluación del estado físico de la carretera de concreto hidráulico empalme puerto Sandino – puente Gloria, del municipio de Nagarote, departamento de León, Maruga, marzo 2013.

Rodríguez M. ⁽²⁾, el objetivo de esta tesis es, evaluar el estado físico de la superficie de la carretera de concreto hidráulico. Los resultados presentados se dividen en cuarto secciones donde la primera parte esta conformado por los deterioros que aparentemente son causados por falta de sellos que presenta el tramo estudiado en su mayoría, es decir despostillamiento (transversales y longitudinales) agrietamiento de esquina.

Análisis de deterioros causados por falta de sello.

Análisis de las gritas transversales

Análisis de los deterioros relacionados con la apariencia.

Análisis de los daños adicionales. Llego a las conclusiones:

 Mediante la realización del presente estudio, se logran detectar gran cantidad de daños ya sea pre y/o pots- costructivos, de los cuales se pueden llegar amuchas conclusiones, ya sea a los métodos utilizados, el equipo, la mano de obra. Y la incidencia de las obras de confinamiento lateral, el volumen de transito presente, entre otras. Previo a la muestra, donde también se puede llegar a otro tipo de conclusiones, algunas de las mencionadas anteriormente se citan a continuación.

- En la carretera de concreto hidráulico elegida para el presente estudio, los deterioros encontrados en tramo muestra de 6.5km longitud (calculo según el PCI), ubicado entre puerto Sandino y el empalme puerto Sandino presento 12 tipos de deterioros, dentro de los cuales 2 son de carácter adicional.
- Los daños registrados fueron: despostillamiento longitudinal, despostillamiento longitudinal, despostillamiento transversal, agrietamiento de esquina, grietas transversales y longitudinales, agrietamiento por contracción plástica. Cavidades, descascaramientos, baches, agregados pulidos, escalonamiento entre carril y acotamiento y separaciones entre losas.
- c) "Análisis superficial y mantenimiento del hormigón hidráulico de la carretera Chone canuto-calceta Junín pueblo nuevo pimpiguasí, tramo "pueblo nuevo pimpiguasí", Ecuador, 2011.
 - **Tóala J.** ⁽³⁾, Su trabajo de investigación tiene como **objetivo**, evaluar el estado superficial del pavimento de hormigón hidráulico construido. Los **resultados** del presente análisis, se han ajustado a

los datos obtenidos en la investigación de campo, tomando como base los fundamentos que enuncia la norma ASTM D6433-99 recomendadas para realizar un PCI.

Los resultados logrados al termino del proceso de investigación indican claramente que en las unidades de muestras del pavimento rígido compuesto por losas de hormigón hidráulico, se manifiesta dos tipos de fallo más acentuado como son las grietas de equina con severidad muy baja, luego le sigue los fallos de grietas lineales con severidad muy baja, las demás tipos de fallos que se presentan son mínimas pero no dejan de ser importantes para su mantenimiento futuro. Se han identificado muestras con deterioros homogéneos en el pavimento en estudio y con ellas se tomara las medidas correctivas a nivel de Mantenimiento.

Actualmente el índice de condición general y su nivel de servicio en las unidades de muestras de este tramo de carretera, no es preocupante, pero el inoportuno mantenimiento llevara problemas posteriores. Llego a las **conclusiones**:

• La inspección visual del pavimentos de hormigón hidráulico que realizado a través del método PCI, está reconocido mundialmente como una buena herramienta para realizar los planes de mantención y reparación de pavimentos, por consiguiente el estándar de calidad del tramo Pueblo Nuevo - Pimpiguasí es excelente, pero sin duda es importante recordar que un planificado mantenimiento reduce considerablemente los

- posibles deterioros que lleven a una reposición de losas.
- Se manifiestan cinco tipos de fallos, siendo el más acentuado las grietas de esquina con severidad muy baja, luego le siguen los fallos de grietas lineales con severidad muy baja, las demás tipos de fallos que se presentan son mínimos pero no dejan de ser importantes para su mantenimiento futuro.
- De acuerdo a las fichas de evaluación se aprecia que la mayoría de fallas son fisuras longitudinales, transversales y fisuras en bloque, en los niveles leve.

2.1.2. Antecedentes Nacionales.

 a) "Determinación y evaluación de las patologías del concreto en el pavimento rígido de las calles del distrito de pariacoto, provincia de Huaraz, región Ancash, junio – 2014"

Menacho T. ⁽⁴⁾, el trabajo de investigación tiene como objetivo, determinar y evaluar las patologías del concreto en el pavimento rígido de las calles del distrito de Pariacoto, provincia de Huaraz, Región de Ancash. Obteniendo como resultado, habiendo concluido la investigación en el distrito de Pariacoto, provincia de Huaraz, departamento de Ancash se puede indicar que las 5 patologías encontradas con mayor presencia son, las grietas lineales, daño de sello de juntas, losa dividida, pulimiento de agregados, grieta de esquina las cuales fueron tomadas como medidas de medición.

Grietas lineal: Se puede indicar que la mayoría de las 5 calles estudiadas del distrito de Pariacoto estas grietas dividen a las losas

en 2 o tres pedazos, las grietas lineales son causadas por la repetición de las cargas de tránsito en las calles estudiadas se encontraron grietas menores a 13mm.

Daño de sello de juntas: Debido al desprendimiento del sellante de la junta y la falta de mantenimiento de la mayoría de las calles estudiadas, el cual permite la infiltración de agua, por lo tanto la acumulación de material incompresible impide que la losa se expanda y resulta en fragmentación.

Losa dividida: La losa del pavimento rígido están divididos en cuatro a mas pedazos debido a sobrecarga o a soporte inadecuado producto de la repetición de cargas pesadas a la calzadas.

Pulimiento de agregados: Este daño es causado debido aplicaciones repetidas de cargas de tránsito, esto permite que los agregados en la superficie se vuelven suaves al tacto y se reduce considerablemente la adherencia con las llantas.

Grieta de esquina: Se presenta generalmente problemas del inadecuado soporte de la fundación (suelos no mejorados o de inferior calidad portante). Esta investigación ha cumplido los objetivos establecidos, determinando el PCI = 60, estado bueno, para las 5 calles estudiadas del distrito de Pariacoto, implicando con ello la importancia del mantenimiento, limpieza y protección que se debe tener en los pavimentos rígidos por parte del municipio, para evitar mayores daños y se mantenga el nivel o estado Actual. Y llego al las conclusiones:

- El índice promedio de condición del pavimento, para el pavimento rígido de las 5 calles estudiadas del distrito de Pariacoto provincia de Huaras, departamento de Ancash es de 60 y se concluye su estado de conservación es bueno y con ello la importancia del planeamiento para su mantenimiento de las calles por parte del municipio para evitar mayor daños y se mantenga el nivel o estado actual.
- Las patologías del concreto con mayor presencia o incidencia en las 440 losas de pavimento rígido evaluadas en las 5 calles del distrito de Pariacoto son:

Grietas lineal: con 128 losas de pavimento rígido, que hacen un 29.09%. Daño de sello de juntas: con 94 losas de pavimento rígido, que hacen un 21.36%.

Losa dividida: con 67 losas de pavimento rígido, que hacen un 15.23%.

Pulimiento de agregados: con 54 losas de pavimento rígido, que hacen un 12.27%.

Grieta de esquina: con 46 losas de pavimento rígido, que hacen un 10.45%.

Popoust: con 35 losas de pavimento rígido, que hacen un 7.95%. Parcheo pequeño: con 12 losas de pavimento rígido, que hacen un 2.73%.

Descascaramiento de esquina: con 4 losas de pavimento rígido, que hacen un 0.91%.

- Se concluyen que las losas del pavimento rígido de las calles Av.
 Gonzáles Prada, Jr. Los Ángeles, Jr. Miguel A. Morán, Jr. Miguel
 Zbignew, del distrito de Pariacoto, se encuentra en nivel bueno
 porque tiene 8 años de vida útil y la calle Jr. San Martí se encuentra en estado regular.
- b) "Determinación y evaluación de las patologías del concreto en el pavimento rígido de las calles del distrito de san Luis - provincia de Carlos Fermín Fitzcarrald- región Ancash, junio-2014".

Aranda J. ⁽⁵⁾, el **objetivo** de esta investigación es determinar y evaluar las patologías del concreto en el pavimento rígido de las calles del distrito de San Luis, provincia Carlos Fermín Fitzcarrald, Región Ancash.

Resultados:

A continuación se detalla las fallas más resaltantes por cada calle evaluada:

Av. Ramón Castilla:

Las patologías de concreto con mayor presencia o incidencia en la Av. Ramón Castilla en el distrito de San Luis son:

- Pulimiento de agregado con 141 paños, que hacen un 96.58 %.
- Grietas de retracción con 19 paños, que hacen un 15.01%.
- Parcheo grande con 08 paños, que hacen un 5.48 %.
- Parcheo pequeño con 01 paños, que hacen un 0.68%.
- Popouts con 01 paños, que hacen un 0.68 %.

Av. Fitzcarrald:

Las patologías de concreto con mayor presencia o incidencia en la Av. Fitzcarrald, son:

- Pulimiento de Agregado con 25 paños, que hacen un 62.50 %.
- Grietas lineales con 15 paños, que hacen un 37.50 %.
- Descascaramiento de Esquina con 9 paños, que hacen un 22.50
 %.
- Losa dividida con 05 paños, que hacen un 12.50 %.
- Escala con 4 paños, que hacen un 10.00 %.

Jr. 6 de Junio:

Las patologías de concreto con mayor presencia o incidencia en el Jr. 6 de Junio, son:

- Grietas lineales con 26 paños, que hacen un 81.26 %.
- Pulimiento de agregado con 14 paños, que hacen un 43.75 %.
- Grietas de esquina con 08 paños, que hacen un 25.00 %.
- Escala con 07 paños, que hacen un 21.88 %.
- Parcheo grande con 03 paños, que hacen un 9.38 %.
- Grietas de retracción con 03 paños, que hacen un 9.38 %.
- Descascaramiento de esquina, con 02 paños, que hacen un 6.25 %.
- Losa dividida con 02 paños, que hacen un 6.25 %.
- Parcheo pequeño con 01 paño, que hacen un 3.13 %.

Jr. Túpac Amaru:

Las patologías de concreto con mayor presencia o incidencia en el Jr.

Tupac Amaru, son:

- Grietas lineales con 35 paños, que hacen un 92.11 %.
- Pulimiento de agregados con 26 paños, que hacen un 68.42 %.
- Escala con 08 paños, que hacen un 21.05 %.
- Losa dividida con 03 paños, que hacen un 7.89 %.
- Grietas de Esquina con 02 paños, que hacen un 5.26%.

Jr. 28 de Julio:

Las patologías de concreto con mayor presencia o incidencia en el Jr. 28 de julio son:

- Pulimiento de Agregado con 101 paños, que hacen un 78.91 %.
- Grietas lineales con 42 paños, que hacen un 32.81 %.
- Grietas de retracción con 30 paños, que hacen un 23.44%.
- Parcheo grande con 12 paños, que hacen un 9.38 %.
- Popouts con 09 paños, que hacen un 7.03 %.
- Parcheo pequeño con 03 paños, que hacen un 2.34%.
- Escala con 02 paños, que hacen un 1.56 %.
- Daño de sello de juntas con 01 paño, que hacen un 0.78%.

Conclusiones:

• El índice promedio de condición de pavimento, para las calles del distrito de San Luis, provincia de Carlos Fermin Fitzcarrald, departamento de Ancash es 49 y se concluye que su estado de conservación es regular, con ello la importancia del planeamiento de su rehabilitación de algunas calles y mantenimiento de otros, por otra parte el municipio deberá tomar acciones para evitar mayor daño de los pavimentos en las calles para mantener así el

nivel o estado actual hasta el inicio de su rehabilitación o reconstrucción. Las patologías del concreto con mayor presencia o incidencia en las 384 paños evaluadas de las calles del distrito de San Luis, son:

Pulimento de agregados con 307 paños, que hacen un 79.95 % de densidad.

Grietas de lineales con 118 paños, que hacen un 30.73 % de densidad.

Grietas de retracción con 52 paños, que hacen un 13.54 % de densidad.

Parche grande con 23 paños, que hacen 5.99 %. de densidad. Descascaramiento de esquina con 11 paños, que hacen un 2.86 % de densidad. Escala con 21 paños, que hacen un 5.47 % De densidad.

Losa dividida con 10 paños, que hacen un 2.60 %. de densidad.

Parche pequeño con 05 paños, que hacen 1.30 %. de densidad.

Popouts con 10 paños, que hacen un 2.60 %. de densidad Daño de Sello de Juntas con 01 paños, que hacen 0.26 % de densidad.

Grietas Esquina con 01 paño, que hacen 2.60 % de densidad. Se concluye que el pavimento de las calles de la av. Fitzcarrald, el Jr.

Tupac Amaru y el Jr. 6 de Junio del distrito de San Luis se encuentra en nivel de PCI malo, la calle del Jr. 28 de Julio se encuentran en un nivel de PCI regular y la calle de la Av. Ramón

- Castilla se encuentra en un nivel de PCI muy bueno, todas de acuerdo a las fallas encontradas durante el proceso de estudio.
- Se puede concluir que el pavimento de las calles que tienen una antigüedad de 8 y 15 años de construcción que son las calles del Jr. Tupac Amaru, Jr. 6 de junio y la Av. Fitzcarrald no tuvieron un adecuado mantenimiento y el uso de ellas influyen directamente en el deterioro de las superficies de las calles ,su valor de PCI son de clasificación malo , mientras que la calle del Jr 28 de Julio tiene una antigüedad de 6 años construcción en la cual se obtuvo un valor de PCI Regular y en la Av. Ramón Castilla con 2 años de antigüedad se obtuvo un PCI Muy Bueno debido a su menor tiempo de construcción y a su mantenimiento permanente.
- c) "Determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional en las principales pistas de la urbanización casuarinas primera etapa distrito de nuevo Chimbote, provincia de Santa, departamento de Ancash, julio 2014".

Sáenz B. ⁽⁶⁾, el **objetivo** de esta investigación es determinar un índice de condición de pavimento, para las pistas de las calles de la urbanización Casuarinas del distrito de nuevo Chimbote, provincia de Santa y departamento de Ancash.

Resultado:

Agrupando los resultados desde la unidad de muestra u1 hasta la

unidad de muestra u63, sin considerar las unidades u48, u49 y u50 en las cuales las fallas no son representativas para el área de la unidad a inspeccionar, después las pistas de la urb. Casuarinas presenta un PCI promedio de 76.74, lo que corresponde a un pavimento muy bueno.

El mayor valor de PCI lo tiene la unidad de muestra u22, igual a 97.82 y de condición excelente. El menor PCI, de 12.59, corresponde a la unidad de muestra u38 de estado muy malo.

Las fallas más frecuentes encontradas en las distintas unidades de muestra son: Pulimento de agregados y desnivel carril/berma tanto con un nivel de severidad bajo y medio. Este tipo de deterioro del pavimento, se localizaron en casi todas las unidades de muestra inspeccionadas. A veces cubrían toda el área de la unidad, o parte de ella, pero la mayoría de las unidades muestra este tipo de falla.

La densidad, es el porcentaje de paños de la unidad de muestra en la que se encuentra una determinada falla. Por ejemplo, si la falla tipo pulimento de agregados, con un nivel de severidad alto tiene una densidad de 27.02 %, quiere decir que 27.02 % del área de la unidad de muestra está afectado por el pulimento de agregados con un nivel de severidad alto.

La unidad de muestra u6, es la unidad con un índice de condición de pavimento bajo con 13.16 y un máximo valor deducido de 86.84 con fallas de pulimiento de agregados, huecos y desnivel carril/berma. La unidad u36, es la segunda unidad con un índice

de condición de pavimento bajo con17.99 y un máximo valor deducido de 82.01 con fallas de pulimiento de agregados y huecos de media y alta severidad. Llego a las **conclusiones:**

- se ha determinado el estado en que se encuentra la red de pavimento de las pistas de la urb. Casuarinas se inspeccionaron un total de 63 unidades de muestra de las cuales las unidades u48, u49 y u50 no se obtuvieron valores, debido a que las fallas inspeccionadas no son representativas para el área de las unidades de muestra, de las otras unidades de muestra se obteniendo los siguientes resultados (gráfico N° 123). El 41.67 % del total de unidades de muestra inspeccionadas presentan un estado de pavimento excelente (PCI entre 85 y 100); después le sigue un 35.00 % de unidades en estado muy bueno (PCI entre 70 y 85); 13.33 % en estado bueno (PCI entre 55 y 70), 5.00 % en estado malo (PCI entre 25 y 40) y un 3.33 % en un estado muy malo (PCI entre 10 y 25). No se encontraron pavimentos fallados (PCI entre 0 y 10).
- La integridad estructural del pavimento de cada unidad de muestra, define la condición del pavimento. Las unidades u3, u4, u8, u9, u11, u12, u13, u14, u15, u18, u19, u20, u21, u22, u26, u28, u29, u30, u31, u45, u56, u57, u58, u59 y u60 obtuvieron un PCI entre 87.05 y 97.82, lo que corresponde a un estado excelente. Las unidades u7, u10, u16, u17, u23, u24, u25, u27, u39, u40, u41, u42, u43, u44, u46, u47, u51, u52, u53,

u62 y u63 alcanzaron un PCI entre 76.07 y 84.96, que quiere decir un pavimento de condición muy buena. Las unidades u2, u5, u32, u34, u37, u54, u55 y u61alcanzaron un PCI entre 61.15 y 69.02 que quiere decir un pavimento de condición buena. las unidades u1, u33 yu35 alcanzaron un PCI entre 28.35 y 36.46 que quiere decir un pavimento de condición mala. las demás unidades de muestra alcanzaron un PCI de 17.49 (u36), 13.16 (u6) y 12.59 (u38), que quiere decir un pavimento de condición muy mala. Finalmente, tomando todas las unidades de muestra, se calcula el PCI ponderado del pavimento de las veredas de la urb. Casuarinas, resultado igual a 77.17, es decir, que el estado real del pavimento de la vía analizada, es muy bueno.

- Las patologías encontradas en las veredas de la Urb. Casuarinas son: el pulimento de agregados, piel de cocodrilo, desnivel carril/berma, grieta de borde, parcheo y acometidas de servicio público, abultamiento y hundimiento, huecos y grietas longitudinales y transversales.
- La unidad de muestra que presenta mayores patologías y por ende un PCI de 36.46 que quiere decir un índice de condición mala, es la unidad u1, con pulimiento de agregados, piel de cocodrilo, abultamiento y hundimiento, parcheo y acometidas de servicio público y desnivel carril/berma.
- Las patologías más frecuentes encontradas son el pulimento

de agregados y desnivel carril/berma con un nivel de severidad tanto baja como media. Casi todas las unidades de muestra presentaron estos dos tipos de falla, pero con densidades variables; con esto se concluye que la condición operacional de la superficie de las pistas provoca un tránsito incómodo para el tránsito de los vehículos.

d) "Determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional de la superficie del boulevard de surco, distrito de san Borja, provincia de Lima, región de Lima, enero 2014".

Pacheco C. 2014 ⁽⁷⁾, en este trabajo de investigación tiene como objetivó, determinar el índice de condición del pavimento rígido del Boulevard de Surco, distrito de San Borja, provincia de Lima, región de Lima, a partir de la determinación y evaluación de las patologías del mismo. Llegando a los resultados, se ha determinado el estado en que se encuentra la red de pavimento rígido del Boulevard de Surco que consta de un tramo de 2406 metros lineales. Este tramo se divide en 15 secciones o cuadras. Se inspeccionaron un total de 387 losas de pavimento rígido de dimensiones homogéneas con muy pequeñas distorsiones de 6.0 m x 6.00m. Las patologías o fallas encontradas en el pavimento del Boulevard de Surco en el distrito de San Borja son: Rotura de Esquina, Losa Dividida, Daño Sello de junta, grieta lineal, parche grande punzonamiento,

desprendimiento de superficial, desprendimiento de junta.

El 53.3 % del total de los tramos evaluados presentan un estado de pavimento "bueno" (PCI entre 55 y 70); un 33.4 %, en estado "muy bueno" (PCI entre 70 y 85), y únicamente un 13.3 % en un estado "regular" (PCI entre 40 y 55). No se encontraron pavimentos fallados. Y llego a las **conclusiones:**

- Los sectores desde la cuadra 11 a 12 presentan índices que las clasifican como regular por lo que se propone intervenir en la evaluación de causas de daños y efectuar las reparaciones respectivas. Tales acciones permitirán elevar el índice y mejorar la calcificación general de condición de pavimento de todo el Boulevard de Surco.
- Es constante la presencia de da
 ño de severidad leve en la mayor
 ía de sello de juntas por lo que se requiere intervenir en la reposici
 ón del sello debido a que ésta condici
 ón de da
 ño origina la aparici
 ón de otros da
 ños relacionados con la filtraci
 ón de agua hacia la sub rasante.
- El valor PCI general de todo el tramo es 65.22 que clasifica como "bueno" a la condición de pavimento rígido separado por juntas del Boulevard de Surco.
- El efecto de la existencia de la falla por grieta lineal en la mayoría de losas analizadas en nivel de severidad bajo con una abertura < 13 mm pueden ser selladas conforme la abertura crezca y mantener el valor PCI actual.

2.2. Bases Teóricos de la Investigación

2.2.1. Definición de pavimento

Norma CE010 Pavimentos Urbanos SENCICO. (8), estructura compuesta por capas que apoya en toda su superficie sobre el terreno preparado para soportarla durante un lapso denominado Período de diseño y dentro de un rango de serviciabilidad. Esta definición

incluye pistas, estacionamientos, aceras o veredas, pasajes peatonales y ciclovías.

Montejo F. ⁽⁹⁾, un pavimento está constituido por un conjunto de capas superpuestas, relativamente horizontales, que se diseñan y construyen técnicamente con materiales apropiados y adecuadamente compactados. Estas estructuras estratificadas se apoyan sobre la subrasante de una vía obtenida por el movimiento de tierras en el proceso de exploración y que han de resistir adecuadamente los esfuerzos que las cargas repetidas del tránsito le transmiten durante el período para el cual fue diseñada la estructura del pavimento.

Bardales C, Cheng G. ⁽¹⁰⁾, el pavimento es el conjunto de capas de material seleccionado que reciben en forma directa las cargas del tránsito y las transmiten a los estratos inferiores en forma disipada, proporcionando una superficie de rodamiento, la cual debe funcionar eficientemente.

Pinilla J. ⁽¹¹⁾, un pavimento es una estructura vial formada por una o varias capas de materiales seleccionados, capaz de resistir las cargas impuestas por el tránsito y la acción del medio ambiente y de transmitir al suelo de apoyo esfuerzos y deformaciones tolerables por éste. Desde el punto de vista estructural, un pavimento transmite en forma adecuada las cargas hacia el terreno de fundación, es decir, sin rotura de los materiales o deformaciones exageradas para la estructura. Universidad de costa rica, LanammeUCR. Mav ⁽¹²⁾, parte superior de la carretera, aeropuerto, o área de parqueo. Incluye todas las capas

que descansan sobre el suelo original y consiste de todos los elementos estructurales o capas, incluyendo los espaldones.

2.2.2. Clasificación de los pavimentos

Molsave I, Giraldo I, Maya J. (13),

a) Pavimentos flexibles

Este tipo de pavimentos están formados por una carpeta bituminosa apoyada generalmente sobre dos capas no rígidas, la base y la subbase. No obstante puede prescindirse de cualquiera de estas dependencias de las necesidades particulares de cada obra.

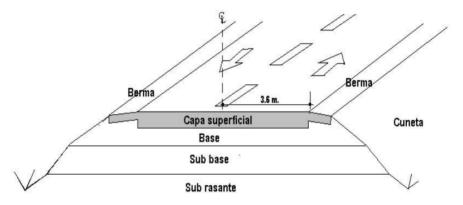


Figura 1. Estructura típica de pavimentos flexible.

b) Pavimento rígido

Son aquellos que fundamentalmente están constituidos por una losa de concreto hidráulico, apoyada sobre la subrasante o sobre una capa, de material seleccionado, la cual se denomina subbase del pavimento rígido. Debido a la alta rigidez del concreto hidráulico así como de su elevado coeficiente de elasticidad, la distribución de los esfuerzos se produce en una zona muy amplia. Además como el concreto es capaz de resistir, en ciertos grados, esfuerzos a la tensión, el

comportamiento de un pavimento rígido es suficientemente satisfactorio aun cuando existan zonas débiles en la subrasante. La capacidad estructural de un pavimento rígido depende de la resistencia de las losas y por lo tanto, el apoyo de las capas subyacentes ejerce poca influencia en el diseño del espesor del pavimento.

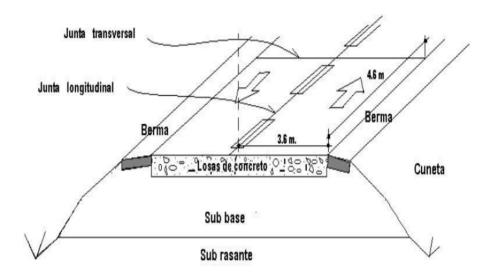


Figura 2. Estructura Típica de un pavimento rígido.

c) Pavimento articulado

Los pavimentos articulados están compuestos por una capa de rodadura que está elaborada con bloques de concreto prefabricado, llamados adoquines, de espesor uniforme e iguales entre sí. Esta puede ir sobre una capa delgada de arena la cual, a su vez, se apoya sobre la capa de base granular o directamente sobre la subrasante, dependiendo de la calidad de esta y de la magnitud y frecuencia de las cargas por dicho pavimento.

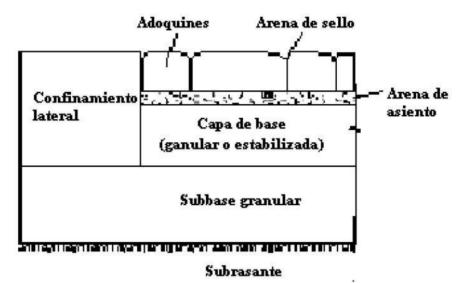


Figura 3. Estructura típica de un pavimento articulado.

2.2.3. Elementos que integran un Pavimento Rígido.

Atamirano K. (14),

a) Subrasante

Es la capa de terreno de una carretera que soporta la estructura de pavimento y que se extiende hasta una profundidad que no afecte la carga de diseño que corresponde al tránsito previsto. Esta capa puede estar formada en corte o relleno y una vez compactada debe tener las secciones transversales y pendientes especificadas en los planos finales de diseño.

El espesor de pavimento dependerá en gran parte de la calidad de la subrasante, por lo que ésta debe cumplir con los requisitos de resistencia, incompresibilidad e inmunidad a la expansión y contracción por efectos de la humedad, por consiguiente, el diseño de un pavimento es esencialmente el ajuste de la carga de diseño por rueda a la capacidad de la subrasante.

b) Subbase

Es la capa de la estructura de pavimento destinada fundamentalmente a soportar, transmitir y distribuir con uniformidad las cargas aplicadas a la superficie de rodadura de pavimento, de tal manera que la capa de subrasante la pueda soportar absorbiendo las variaciones inherentes a dicho suelo que puedan afectar a la subbase. La subbase debe controlar los cambios de volumen y elasticidad que serían dañinos para el pavimento.

Se utiliza además como capa de drenaje y contralor de ascensión capilar de agua, protegiendo así a la estructura de pavimento, por lo que generalmente se usan materiales granulares. Al haber capilaridad en época de heladas, se produce un hinchamiento del agua, causado por el congelamiento, lo que produce fallas en el pavimento, si éste no dispone de una subrasante o subbase adecuada. Esta capa de material se coloca entre la subrasante y la capa de base, sirviendo como material de transición, en los pavimentos flexibles.

c) Superficie de rodadura

Es la capa superior de la estructura de pavimento, construida con concreto hidráulico, por lo que debido a su rigidez y alto módulo de elasticidad, basan su capacidad portante en la losa, más que en la capacidad de la subrasante, dado que no usan capa de base. En general, se puede indicar que el concreto hidráulico distribuye mejor las cargas hacia la estructura de pavimento.

2.2.4. Tipos de Pavimentos Rígidos

AASHTO-93. (15), los diversos tipos de pavimentos de concreto pueden ser clasificados, en orden de menor a mayor costo inicial, de la siguiente manera:

- a) Pavimentos de concreto simple.
 - Sin pasadores.
 - Con pasadores.
- **b)** Pavimentos de concreto reforzado con juntas

a) Pavimento de concreto simple

- Sin pasadores, son pavimentos que no presentan refuerzo de acero ni elementos para transferencia de cargas, ésta se logra a través de la trabazón (interlock) delos agregados entre las caras agrietadas debajo de las juntas aserradas o formadas. Para que esta transferencia sea efectiva, es necesario que se use un espaciamiento corto entre juntas. Están constituidos por losas de dimensiones relativamente pequeñas, en general menores de 6 m de largo y 3.5 m de ancho.
- Con pasadores, los pasadores (dowels) son pequeñas barras de acero liso, que se colocan en la sección transversal del pavimento, en las juntas de contracción. Su función estructural es transmitir las cargas de una losa a la losa contigua, mejorando así las condiciones de deformación en las juntas.

b) Pavimento de concreto reforzado con juntas

Los pavimentos reforzados con juntas contienen además del refuerzo, pasadores para la transferencia de carga en las juntas de contracción. Este refuerzo puede ser en forma de mallas de barras de acero o acero electrosoldado. El objetivo de la armadura es mantener las grietas que pueden llegar a formarse bien unidas, con el fin de permitir una buena transferencia de cargas y de esta manera conseguir que el pavimento se comporte como una unidad estructural.

2.2.5. Evaluación de Pavimentos

Armijos C. ⁽¹⁶⁾, la evaluación de pavimentos consiste en un informe, en el cual se presenta el estado en el que se halla la superficie del mismo, para de esta manera poder adoptar las medidas adecuadas de reparación y mantenimiento, con las cuales se pretende prolongar la vida útil de los pavimentos, es así que es de suma importancia elegir y realizar una evaluación que sea objetiva y acorde al medio en que se encuentre.

2.2.5.1. Importancia de Evaluación de Pavimentos

La evaluación del pavimentos es importante, pues permitirá conocer a tiempo los deterioros presentes en la superficie, y de esta manera realizar las correcciones, consiguiendo con ello brindar al usuario una serviciabilidad optima.

2.2.5.2. Objetividad en la Evaluación de un Pavimento

La objetividad en la evaluación de pavimentos juega un papel primordial, pues se necesita personas verdaderamente capacitadas para que realicen las evaluaciones, de no ser así, dichas pruebas pueden perder credibilidad con el tiempo y no podrán ser comparadas, además, es importante que se escoja un modelo de evaluación que se encuentre estandarizado para poder decir que se ha realizado una evaluación verdaderamente objetiva.

2.2.6. Ramal

Vásquez L. (17) parte de una red como una calle o carretera.

Los ramales suelen ser ivedentes y cumplen una función dentro de la red.

2.2.6.1. Sección parte homogénea en la cual se divide un ramal.

- Los factores a considerar en la definiciones de secciones son:
- Transito.
- historia del pavimento.
- categoría del pavimento.
- condición.

2.2.7. Patología del Concreto

Rivva I. 2006 ⁽¹⁸⁾, patología del concreto se define como el estudio sistemático de los procesos y características de las "enfermedades" o los "defectos y daños" que pueden sufrir el concreto, sus causas, sus consecuencias y remedios, en resumen este trabajo se entiende por

patología a aquella parte de la durabilidad que se refiere a los signos, causas posibles diagnostico del deterioro que experimenta las estructuras del concreto.

Rincón J. ⁽¹⁹⁾, la patología del concreto. El concreto esta formado por: cemento, áridos agua y aditivos. Estos componentes dependiendo de su propia composición y combinación con agentes externos pueden interactuar de manera que se produzcan fisuraciones en el concreto que puedan la corrosión de armaduras por la penetración de agentes que deterioran las armaduras. Numerosos agentes externos también pueden producir patologías en el concreto. Erosiones la erosión del concreto, que es uno de los deterioros mas frecuentes se manifiesta por la perdida de una capa superficial de configuración espesor y extensión variables. Las acciones más comunes que puedan actuar son: por abrasión mecánica desgaste superficial de piso, losas y pavimentos de concreto en zonas expuestas a tráficos intenso de vehículos o equipo y/o en áreas de maniobras y transcripción.

2.2.8. Patología en Pavimento

Godoy G., Ramírez R. ⁽²⁰⁾, la patología es el estudio de las enfermedades, como procesos o estados anormales de causas conocidas o desconocidas. A 34 años de la construcción del primer pavimento rígido en Asunción y a 15 años de la más reciente etapa de pavimentación con hormigón hidráulico de la ciudad, creímos pertinente realizar una evaluación de la situación funcional y estructural de los pavimentos rígidos de la ciudad y proponer

soluciones a los defectos encontrados. El trabajo pretende determinar el origen de las fallas en los pavimentos rígidos de Asunción y con ello reducir la aparición de las mismas, así como bosquejar una política de gestión de mantenimiento vial aplicable a cualquier entorno urbano en el país. Partimos de la consideración que resulta de fundamental importancia llevar a cabo un monitoreo permanente de las obras construidas, para registrar las fallas que se van presentando y establecer una referencia a sus posibles causas.

2.2.9. Procedimiento según la Metodología Índice de Condición del Pavimento (PCI) NORMA ASTM 6433

Vásquez L. ⁽²¹⁾, el deterioro de la estructura de pavimento es una función de la clase de daño, su severidad y cantidad o densidad del mismo. La formulación de un índice que tuviese en cuenta los tres factores mencionados ha sido problemática debido al gran número de posibles condiciones. Para superar esta dificultad se introdujeron los "valores deducidos", como un arquetipo de factor de ponderación, con el fin de indicar el grado de afectación que cada combinación de clase de daño, nivel de severidad y densidad tiene sobre la condición del pavimento.

El PCI es un índice numérico que varía desde cero (0), para un pavimento fallado o en mal estado, hasta cien (100) para un pavimento en perfecto estado. En el tabla 1 se presentan los rangos de PCI con la correspondiente descripción cualitativa de la

condición del pavimento.

Tabla 1 Índice de Condición del Pavimento

25 - 10

Rango de Clasificación		
Clasificado		
Excelente		
Muy Bueno		
Bueno		
Regular		
Malo		

Fuente: Varela L. (2002). Manual índice de condición del pavimento (p. 2)

1. Fundamentos del Método del PCI

El cálculo del PCI se fundamenta en los resultados de un inventario visual de la condición del pavimento en el cual se establecen clase, severidad y cantidad de cada daño presenta. El PCI se desarrolló para obtener un índice de la integridad estructural del pavimento y de la condición operacional de la superficie. La información de los daños obtenida como parte del inventario ofrece una percepción clara de las causas de los daños y su relación con las cargas o con el clima

Muy Malo

2. Procedimiento de Evaluación condiciones del Pavi|mento

La primera etapa corresponde al trabajo de campo en el cual se identifican los daños teniendo en cuenta la clase, severidad y extensión de los mismos.

3. Unidades de muestreo

Carreteras con capa de rodadura en losas de concreto de cemento Pórtland y losas con longitud inferior a 7.60 m: El área de la unidad de muestreo debe estar en el rango 20 ± 8 losas.

4. Determinación de las unidades de muestreo para evaluación.

En la "Evaluación de una Red" puede tenerse un número muy grande de unidades de muestreo cuya inspección demandará tiempo y recursos considerables; por lo tanto, es necesario aplicar un proceso de muestreo.

En la "Evaluación de un Proyecto" se deben inspeccionar todas las unidades; sin embargo, de no ser posible, el número mínimo de unidades de muestreo que deben evaluarse se obtiene mediante la Ecuación, la cual produce un estimado del PCI \pm 5 del promedio verdadero con una confiabilidad del 95%.

$$n = \frac{N s^{2}}{((e^{2}/4)^{*}(N-1) + s^{2})}$$

n: Número mínimo de unidades de muestreo a evaluar.

N: Número total de unidades de muestreo en la sección del pavimento.

e: Error admisible en el estimativo del PCI de la sección (e = 5%)

S: Desviación estándar del PCI entre las unidades.

Durante la inspección inicial se asume una desviación estándar (s) del PCI de 15 para pavimento de concreto (rango PCI de

35) En inspecciones subsecuentes se usará la desviación estándar real (o el rango PCI) de la inspección previa en la determinación del número mínimo de unidades que deben evaluarse.

Cuando el número mínimo de unidades a evaluar es menor que cinco (n < 5) todas las unidades deberán evaluarse.

5. Selección de las unidades de muestreo para inspección

Se recomienda que las unidades elegidas estén igualmente espaciadas a lo largo de la sección de pavimento y que la primera de ellas se elija al azar (aleatoriedad sistemática) de la siguiente manera:

a). El intervalo de muestreo (i) se expresa mediante la Ecuación.

I _

N: Número total de unidades de muestreo disponible.

n: Número mínimo de unidades para evaluar.

i: Intervalo de muestreo, se redondea al número entero inferior (por ejemplo, 3.7 se redondea a 3)

b). El inicio al azar se selecciona entre la unidad de muestreo 1 y el intervalo de muestreo i. Así, si: i = 3, la unidad inicial de muestreo a inspeccionar puede estar entre 1 y 3. Las unidades de muestreo para evaluación se identifican como (S), (S + 1), (S + 2), etc siguiendo con el ejemplo, si la unidad inicial de muestreo para inspección seleccionada es 2 y el intervalo de muestreo (i) es igual a 3, las subsiguientes unidades de

muestreo a inspeccionar serían 5, 8, 11, 14, etc.

Sin embargo, si se requieren cantidades de daño exactas para pliegos de licitación (rehabilitación), todas y cada una de las unidades de muestreo deberán ser inspeccionadas.

6. Selección de unidades de muestreo adicionales

Uno de los mayores inconvenientes del método aleatorio es la exclusión del proceso de inspección y evaluación de algunas unidades de muestreo en muy mal estado. Para evitar lo anterior, la inspección deberá establecer cualquier unidad de muestreo inusual e inspeccionarla como una "unidad adicional" en lugar de una "unidad representativa" o aleatoria. Cuando se incluyen unidades de muestreo adicionales, el cálculo del PCI es ligeramente modificado para prevenir la extrapolación de las condiciones inusuales en toda la sección.

7. Evaluación de la condición

El procedimiento varía de acuerdo con el tipo de superficie del pavimento que se inspecciona. Debe seguirse estrictamente la definición de los daños de este manual para obtener un valor del PCI confiable.

La evaluación de la condición incluye los siguientes aspectos:

Equipo:

- Odómetro para medir las longitudes y las áreas de los daños.
- Regla y una cinta métrica para establecer las profundidades de las depresiones en el pavimento.

8. Calculo de PCI en la unidad de muestreo

Se dividen las secciones de la red de pavimentos en unidades de inspección.

La unidad de inspección es el área de pavimento para evaluación y calificación del PCI.

- Se determina el número de unidades de inspección para la evaluación.
- Se hace la inspección de la condición superficial mediante la metodología PCI, de acuerdo con el tipo de pavimento.
- Se calcula el PCI de cada unidad de inspección y se preparan reportes para cada sección de la redvial.
- Calculo del PCI para una Unidad de Inspección al completar el inventario de daños se emplea esta información para calcular el PCI de cada unidad de inspección.
- El cálculo puede ser manual o computarizado y se basa en los "Valores Deducibles" de cada daño de acuerdo con la cantidad y severidad reportadas.
- El proceso se divide en cuatro etapas:
- ✓ Obtener los valores deducibles de cada daño encontrado en las unidades de inspección.
- ✓ Calcular cuántos de dichos valores deducibles se pueden emplear en el cálculo del PCI.

- ✓ Ponderar el efecto de los valores deducibles en un único valor deducible corregido (CDV).
- ✓ Calcular el PCI restando de 100 el valor deducible corregido.

a) Etapa 01: Calculo de los Valores Deducibles

- Sume el número de losas afectadas por cada tipo de daño con su nivel de severidad y regístrelo como total de losas.
- Divida el total de losas de cada clase de daño y nivel de severidad entre el número de losas de la unidad de inspección y exprese el resultado como porcentaje. Esta es la densidad del daño, con su respectivo nivel de severidad, para la unidad de inspección en estudio.
- Determine el valor deducible para cada tipo de daño y su nivel de severidad mediante las curvas denominadas "Valor Deducible del Daño" de acuerdo con la densidad obtenida.
- b) Etapa 02: Cálculo del número máximo admisible de valores para el cálculo del PCI de la unidad de inspección
 - Si ninguno o sólo un valor deducible es mayor que dos (> 2), es decir, hay pocos daños y son de baja severidad, sume todos los valores deducibles y reste dicho resultado de 100. El valor obtenido es el PCI de la unidad de inspección.
 - En caso contrario, es decir, si dos o más valores deducibles son mayores que dos (> 2) proceda de la siguiente forma:
 - Ordene los valores deducibles de mayor a menor.

9. Determine el número máximo admisible de valores deducibles con la siguienteecuación:

$$m = 1 + (9/98)*(100 - HDV)$$

 m = Número máximo admisible de valores deducibles para el cálculo del PCI en la unidad de inspección.

 $\mathbf{HDV} = \mathbf{Maximo}$ valor deducible encontrado para los daños de la unidad de inspección.

El número de valores deducibles individuales se reduce a m_i, incluyendo la parte fraccional. Si se dispone de un número de deducidos menor que m_i, se emplean todos los valores obtenidos.

c) Etapa 03: Cálculo del Valor Deducible Corregido Máximo (CDV).

Determine el número de valores deducibles mayores que 2.0. Este valor es q.

- Determine el valor deducible total sumando todos los valores deducibles.
- Determine el CDV con el q y el valor deducible total en la curva de corrección para pavimentos concreto hidráulico en vías y estacionamientos.
- Reduzca a dos (2) el menor de los valores deducibles que sea mayor que dos (> 2) y repita las etapas 3.a. a 3.c. hasta que q sea igual a 1.

- Identifique el mayor de los CDV obtenidos en este proceso iterativo.
- d) Etapa 4: Calcule el PCI Restando de 100 el Máximo CDV
 Obtenido en el Paso Anterior.

En la figura 4 se presenta un formato para el desarrollo del proceso iterativo de obtención del máximo valor deducido corregido, CDV.

No.		Va	lore	s Dec	ducid	os		Total	q	CDV
1										
2										
3										
4										

Figura 4. Formato para las interaciones del cálculo del CDV.

10. Manual de daños

Cuando se realiza la inspección de daños, debe evaluarse la calidad de tránsito para determinar el nivel de severidad de daños tales como las corrugaciones, para la presente investigación. A continuación se presenta una guía general de ayuda para establecer el grado de severidad de la calidad de tránsito.

L: (Low: Bajo): Se perciben las vibraciones en el vehículo (por ejemplo, por corrugaciones) pero no es necesaria una reducción de velocidad en aras de la comodidad o la seguridad; o los abultamientos o hundimientos individuales causan un ligero rebote del vehículo pero creando poca incomodidad. Para el caso de la presente investigación esta será recorrida a pie y se observara el grado de abultamientos o hundimientos.

M: (Medium): Medio: Las vibraciones en el vehículo son significativas y se requiere alguna reducción de la velocidad en aras de la comodidad y la seguridad; o los abultamientos o hundimientos individuales causan un rebote significativo, creando incomodidad.

H: (High: Alto): Las vibraciones en el vehículo son tan excesivas que debe reducirse la velocidad de forma considerable en aras de la comodidad y la seguridad; o los abultamientos o hundimientos individuales causan un excesivo rebote del vehículo, creando una incomodidad importante o un alto potencial de peligro o daño severo al vehículo.

La calidad de tránsito se determina recorriendo la sección de pavimento en un automóvil de tamaño estándar a la velocidad establecida por el límite legal. Las secciones de pavimento cercanas a señales de detención deben calificarse a la velocidad de desaceleración normal de aproximación a la señal.

Manual de daños en vías con superficie concreto de cemento pórtland

blowup – buckling

Descripción: Los blowups o buckles ocurren en tiempo cálido, usualmente en una grieta o junta transversal que no es lo suficientemente amplia para permitir la expansión de la losa. Por lo general, el ancho insuficiente se debe a la infiltración de materiales incompresibles en el espacio de la junta. Cuando

la expansión no puede disipar suficiente presión, ocurrirá un movimiento hacia arriba de los bordes de la losa (Buckling) o fragmentación en la vecindad de la junta. También pueden ocurrir en los sumideros y en los bordes de las zanjas realizadas para la instalación de servicios públicos.

Niveles de severidad

L: Causa una calidad de tránsito de baja severidad.

M: Causa una calidad de tránsito de severidad media.

H: Causa una calidad de tránsito de alta severidad.

Medida

En una grieta, un blowup se cuenta como presente en una losa. Sin embargo, si ocurre en una junta y afecta a dos losas se cuenta en ambas. Cuando la severidad del blowup deja el pavimento inutilizable, este debe repararse de inmediato.

Opciones de Reparación

L: No se hace nada. Parcheo profundo o parcial.

M: Parcheo profundo. Reemplazo de la losa.

H: Parcheo profundo. Reemplazo de la losa

Figura 5. Blowup Buckling de baja severidad.

Figura 6. Blowup Buckling de baja severidad.

Figura 7. Blowup Buckling de baja severidad.

> Grieta de esquina

Descripción: Una grieta de esquina es una grieta que intercepta las juntas de una losa a una distancia menor o igual que la mitad de la longitud de la misma en ambos lados, medida desde la esquina. Por ejemplo, una losa con dimensiones de 3.70 m por 6.10 m presenta una grieta a 1.50 m en un lado y a 3.70 m en el otro lado, esta grieta no se considera grieta de esquina sino grieta diagonal; sin embargo, una grieta que intercepta un lado a 1.20 m y el otro lado a 2.40 m si es una grieta de esquina. Una grieta de esquina se diferencia de un descascaramiento de esquina en que aquella se extiende verticalmente a través de todo el espesor de la losa, mientras que el otro intercepta la junta en un ángulo.

Generalmente, la repetición de cargas combinada con la perdida de soporte y los esfuerzos de alabeo originan las grietas de esquina.

Niveles de Severidad.

L: La grieta está definida por una grieta de baja severidad y el área entre la grieta y las juntas está ligeramente agrietada o no presenta grieta alguna.

M: Se define por una grieta de severidad media o el área entre la grieta y las juntas presenta una grieta de severidad media.

H: Se define por una grieta de severidad alta o el área entre la junta y las grietas esta muy agrietada.

Medida

La losa dañada se registra como una (1) losa si:

- 1. Sólo tiene una grieta de esquina.
- 2. Contiene más de una grieta de una severidad particular.
- **3.** Contiene dos o más grietas de severidades diferentes. Para dos o más grietas se registrará el mayor nivel de severidad. Por ejemplo, una losa tiene una grieta de esquina de severidad baja y una de severidad media, deberá contabilizarse como una (1) losa con una grieta de esquina media.

Opciones de reparación.

L: No se hace nada. Sellado de grietas de más de 3 mm.

M: Sellado de grietas parche profundo.

H: parche profundo.

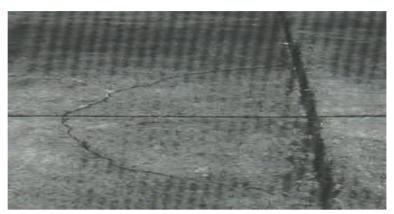


Figura 8. Grieta de esquina de baja severidad.

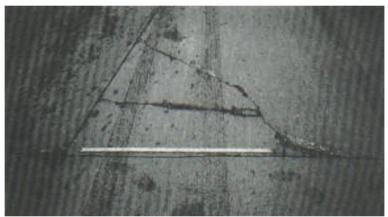


Figura 9. Grieta de esquina de severidad media.

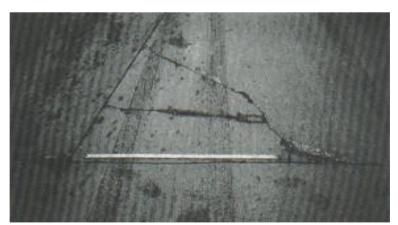


Figura 10. Grieta de esquina de severidad alta.

> Losa dividida

Descripción: La losa es dividida por grietas en cuatro o más pedazos debido a sobrecarga o a soporte inadecuado. Si todos los pedazos o grietas están contenidos en una grieta de esquina, el daño se clasifica como una grieta de esquina severa.

En la tabla 2 se anotan los niveles de severidad para losas divididas.

Tabla 2 cuadro niveles de severidad para losa dividida

Severidad la	Numero de	e pedazos en la los	sa agrietada
Mayoría de las grietas	4 a 5	6 a 8	9 a mas
L	L	L	M
M	M	M	Н
Н	M	M	Н

Fuente: Varela L. (2002). Manual índice de condición del pavimento (p. 50)

Medida

Si la losa dividida es de severidad media o alta, no se contabiliza otro tipo de daño.

Opciones de reparación

L: No se hace nada. Sellado de grietas de ancho mayor de 3mm.

M: Reemplazo de la losa.

H: Reemplazo de la losa.

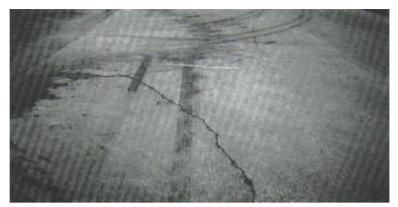


Figura 11. Losa dividida de baja severidad.

Figura 12. Losa dividida de severidad media.

Figura 13. Losa dividida de alta severidad.

> Grita de durabilidad "d"

Descripción: Las grietas de durabilidad "D" son causadas por la expansión de los agregados grandes debido al proceso de congelamiento y descongelamiento, el cual, con el tiempo, fractura gradualmente el concreto. Usualmente, este daño aparece como un patrón de grietas paralelas y cercanas a una junta o a una grieta lineal. Dado que el concreto se satura cerca de las juntas y las grietas, es común encontrar un depósito de color oscuro en las inmediaciones de las grietas "D". Este tipo de daño puede llevar a la destrucción eventual de la totalidad de la losa.

Niveles de severidad.

L: Las grietas "D" cubren menos del 15% del área de la losa.

La mayoría de las grietas están cerradas, pero unas pocas piezas pueden haberse desprendido.

M: Existe una de las siguientes condiciones:

- Las grietas "D" cubren menos del 15% del área de la losa y la mayoría de los pedazos se han desprendido o pueden removerse con facilidad.
- 2. Las grietas "D" cubren más del 15% del área. La mayoría de las grietas están cerradas, pero unos pocos pedazos se han desprendido o pueden removerse fácilmente.

H: Las grietas "D" cubren más del 15% del área y de la losa y mayoría de los pedazos se han desprendido o pueden removerse fácilmente.

Medida

Cuando el daño se localiza y se califica en una severidad, se cuenta como una losa. Si existe más de un nivel de severidad, la losa se cuenta como poseedora del nivel de daño más alto. Por ejemplo, si grietas "D" de baja y media severidad están

en la misma losa, la losa se registra como de severidad media únicamente.

Opciones de reparación

L: No se hace nada.

M: Parcheo profundo. Reconstrucción de juntas.

H: Parcheo profundo. Reconstrucción de juntas. Reemplazo de la losa

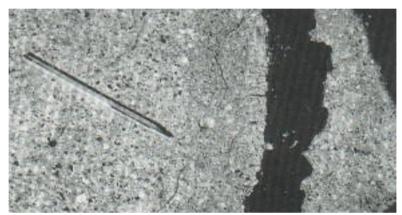


Figura 14. Grieta de durabilidad D baja severidad.

Figura 15. Grieta de durabilidad de severidad media.

Figura 16. Grieta de durabilidad de alta severidad.

Escala

Descripción: Escala es la diferencia de nivel a través de la junta. Algunas causas comunes que la originan son:

- 1. Asentamiento debido una fundación blanda.
- 2. Bombeo o erosión del material debajo de la losa.
- Alabeo de los bordes de la losa debido a cambios de temperatura o humedad.

Niveles de severidad

Se definen por la diferencia de niveles a través de la grieta o junta como se indica en el siguiente cuadro 3 A 10 mm a 19.

Tabla 3 Cuadro niveles de severidad para escala

Nivel de	Diferencia en		
Severidad	Elevación		
L	3 a 10mm		
M	10 a 19mm		
Н	Mayor que 19mm		

Fuente: Varela L. (2002). Manual índice de condición del pavimento (p. 54).

Medida

La escala a través de una junta se cuenta como una losa. Se cuentan únicamente las losas afectadas. Las escalas a través de una grieta no se cuentan como daño pero se consideran para definir la severidad de las grietas.

Opciones de reparación.

L: No se hace nada. Fresado.

M: Fresado.

H: Fresado.

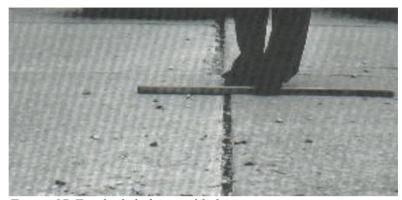


Figura 17. Escala de baja severidad.

Figura 18. Escala de severidad media.

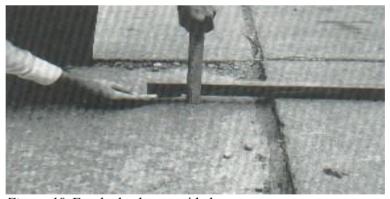


Figura 19. Escala de alta severidad.

Daño del sello de la junta

Descripción: Es cualquier condición que permite que suelo o roca se acumule en las juntas, o que permite la infiltración

de agua en forma importante. La acumulación de material incompresible impide que la losa se expanda y puede resultar en fragmentación, levantamiento o descascaramiento de los bordes de la junta. Un material llenante adecuado impide que lo anterior ocurra. Los tipos típicos del daño de junta son:

- 1. Desprendimiento del sellante de la junta.
- 2. Extrusión del sellante.
- 3. Crecimiento de vegetación.
- **4.** Endurecimiento del material llenante (oxidación).
- 5. Perdida de adherencia a los bordes de la losa.
- **6.** Falta o ausencia del sellante en la junta.

Niveles de Severidad

L: El sellante está en una condición buena en forma general en toda la sección. Se comporta bien, con solo daño menor.

M: Está en condición regular en toda la sección, con uno o más de los tipos de daño que ocurre en un grado moderado. El sellante requiere reemplazo en dos años.

H: Está en condición generalmente buena en toda la sección, con uno o más de los daños mencionados arriba, los cuales ocurren en un grado severo. El sellante requiere reemplazo inmediato.

Medida

No se registra losa por losa sino que se evalúa con base en la condición total del sellante en toda el área.

Opciones de reparación

L: No se hace nada.

M: Resellado de juntas.

H: Resellado de juntas.

Figura 20. Daño del sello de junta de baja severidad.

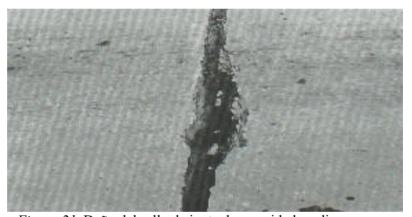


Figura 21. Daño del sello de junta de severidad media.

Figura 22. Daño del sello de junta de alta severidad.

> Desnivel carril / berma

Descripción: El desnivel carril / berma es la diferencia entre el asentamiento o erosión de la berma y el borde del pavimento.

La diferencia de niveles puede constituirse como una amenaza para la seguridad. También puede ser causada por el incremento de la infiltración de agua.

Nivel de severidad

L: La diferencia entre el borde del pavimento y la berma es de 25.0 mm a 51.0 mm.

M: La diferencia de niveles es de 51.0 mm a 102.0 mm.

H: La diferencia de niveles es mayor que 102.0 mm.

Medida

El desnivel carril berma se calcula promediando los desniveles máximo y mínimo a lo largo de la losa. Cada losa que exhiba el daño se mide separadamente y se registra como una losa con el nivel de severidad apropiado.

Opciones de reparación

L, M, H: Renivelación y llenado de bermas para coincidir con el nivel del carril.

Figura 23. Desnivel carril / berma de baja severidad.

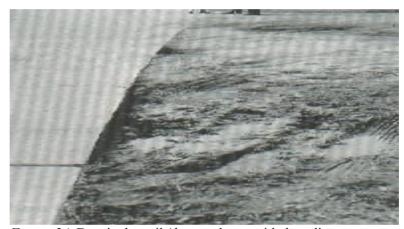


Figura 24. Desnivel carril / berma de severidad media.

Figura 25. Desnivel carril / berma de alta severidad.

Grietas lineales (grietas longitudinales, transversales, y diagonales)

Descripción: Estas grietas, que dividen la losa en dos o tres pedazos, son causadas usualmente por una combinación de la

repetición de las cargas de tránsito y el alabeo por gradiente térmico o de humedad. Las losas divididas en cuatro o más pedazos se contabilizan como losas divididas. Comúnmente, las grietas de baja severidad están relacionadas con el alabeo o la fricción y no se consideran daños estructurales importantes. Las grietas capilares, de pocos pies de longitud y que no se propagan en todo la extensión de la losa, se contabilizan como grietas de retracción.

Niveles de severidad

Losas sin refuerzo

L: Grietas no selladas (incluye llenante inadecuado) con ancho menor que 12.0 mm, o grietas selladas de cualquier ancho con llenante en condición satisfactoria. No existe escala.

M: Existe una de las siguientes condiciones:

- 1. Grieta no sellada con ancho entre 12.0 mm y 51.0 mm.
- 2. Grieta no sellada de cualquier ancho hasta 51.0 mm con escala menor que 10.0 mm.
- Grieta sellada de cualquier ancho con escala menor que 10.0 mm.

H: Existe una de las siguientes condiciones:

- 1. Grieta no sellada con ancho mayor que 51.0 mm.
- 2. Grieta sellada o no de cualquier ancho con escala mayor que 10.0 mm.

Losas con refuerzo

L: Grietas no selladas con ancho entre 3.0 mm y 25.0 mm, o grietas selladas de cualquier ancho con llenante en condición satisfactoria.

No existe escala.

M: Existe una de las siguientes condiciones:

- Grieta no sellada con un ancho entre 25.0 mm y 76.0 mm y sin escala.
- 2. Grieta no sellada de cualquier ancho hasta 76.0 mm con escala menor que 10.0 mm.
- 3. Grieta sellada de cualquier ancho con escala hasta de 10.0 mm.
- **H:** Existe una de las siguientes condiciones:
- 1. Grieta no sellada de más de 76.0 mm de ancho.
- 2. Grieta sellada o no de cualquier ancho y con escala mayor que 10.0 mm.

Medida

Una vez se ha establecido la severidad, el daño se registra como una losa. Si dos grietas de severidad media se presentan en una losa, se cuenta dicha losa como una poseedora de grieta de alta severidad. Las losas divididas en cuatro o más pedazos se cuentan como losas divididas. Las losas de longitud mayor que 9.10 m se dividen en "losas" de aproximadamente igual longitud y que tienen juntas

imaginarias, las cuales se asumen están en perfecta condición.

Opciones de reparación

L: No se hace nada. Sellado de grietas más anchas que 3.0 mm.

M: Sellado de grietas.

H: Sellado de grietas. Parcheo profundo. Reemplazo de la losa.

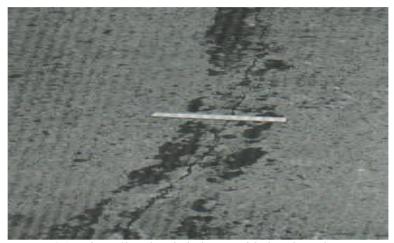


Figura 26. Grietas lineales de baja severidad en losa de concreto simple.

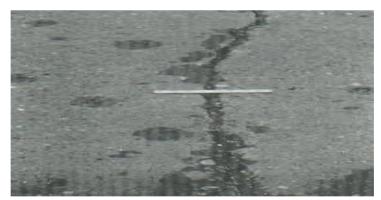


Figura 27. Grietas lineales de severidad media en losa de concreto reforzado.

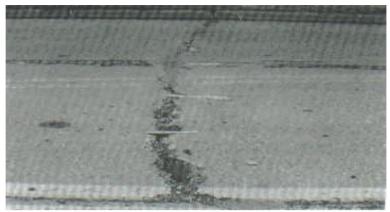


Figura 28. Grietas lineales de alta severidad en losa de concreto simple.

> Parche grande (mayor de 0.45m2)

Descripción: Un parche es un área donde el pavimento original ha sido removido y reemplazado por material nuevo. Una excavación de servicios públicos (utility cut) es un parche que ha reemplazado el pavimento original para permitir la instalación o mantenimiento de instalaciones subterráneas. Los niveles de severidad de una excavación de servicios son los mismos que para el parche regular.

Niveles de severidad.

L: El parche esta funcionando bien, con poco o ningún daño.

M: El parche esta moderadamente deteriorado o moderadamente descascarado en sus bordes. El material del parche puede ser retirado con esfuerzo considerable.

H: El parche esta muy dañado. El estado de deterioro exige reemplazo.

Medida

Si una losa tiene uno o más parches con el mismo nivel de

severidad, se cuenta como una losa que tiene ese daño. Si una sola losa tiene más de un nivel de severidad, se cuenta como una losa con el mayor nivel de severidad. Si la causa del parche es más severa, únicamente el daño original se cuenta.

Opciones para reparación

L: No se hace nada.

M: Sellado de grietas. Reemplazo del parche.

H: Reemplazo del parche.

Figura 29. Parche grande y acometidas de servicios públicos de baja severidad.

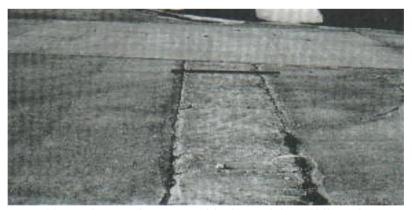


Figura 30. Parche grande y acometida de servicios públicos de severidad media.

Figura 31. Parche grande y acometidas de servicios públicos de alta severidad.

Parche pequeño (menor de 0.45 m²)

Descripción: Es un área donde el pavimento original ha sido removido y reemplazado por un material de relleno.

Niveles de severidad

L: El parche está funcionando bien, con poco o ningún daño.

M: El parche está moderadamente deteriorado. El material del parche puede ser retirado con considerable esfuerzo.

H: El parche esta muy deteriorado. La extensión del daño exige reemplazo.

Medida

Si una losa presenta uno o más parches con el mismo nivel de severidad, se registra como una losa que tiene ese daño. Si una sola losa tiene más de un nivel de severidad, se registra como una losa con el mayor nivel de daño. Si la causa del parche es más severa, únicamente se contabiliza el daño original.

Opciones para reparación

L: No se hace nada.

M: No se hace nada. reemplazo del parche.

H: Reemplazo del parche.

Figura 32. Parche pequeño de baja severidad.

Figura 33. Parche pequeño de severidad media.

Figura 34. Parche pequeño de alta severidad

> Pulimento de agregado

Descripción: Este daño se causa por aplicaciones repetidas de cargas del tránsito. Cuando los agregados en la superficie se vuelven suaves al tacto, se reduce considerablemente la

adherencia con las llantas. Cuando la porción del agregado que se extiende sobre la superficie es pequeña, la textura del pavimento no contribuye significativamente a reducir la velocidad del vehículo. El pulimento de agregados que se extiende sobre el concreto es despreciable y suave al tacto. Este tipo de daño se reporta cuando el resultado de un ensayo de resistencia al deslizamiento es bajo o ha disminuido significativamente respecto a evaluaciones previas.

Niveles de severidad

No se definen grados de severidad. Sin embargo, el grado de pulimento deberá ser significativo antes de incluirlo en un inventario de la condición y calificarlo como un defecto.

Medida

Una losa con agregado pulido se cuenta como una losa.

Opciones de reparación

L, M y H: Ranurado de la superficie. Sobrecarpeta.

Figura 35. Pulimento de agregados.

Popouts

Descripción: Un popouts es un pequeño pedazo

pavimento que se desprende de la superficie del mismo.

Puede deberse a partículas blandas o fragmentos de madera

rotos y desgastados por el tránsito. Varían en tamaño con

diámetros entre 25.0 mm y 102.0 mm y en espesor de 13.0 mm

a 51.0 mm.

Niveles de severidad

No se definen grados de severidad. Sin embargo, el popouts

debe ser extenso antes que se registre como un daño. La

densidad promedio debe exceder aproximadamente tres por

metro cuadrado en toda el área de la losa.

Medida

Debe medirse la densidad del daño. Si existe alguna duda de

que el promedio es mayor que tres popouts

cuadrado, deben revisarse al menos tres áreas de un metro

cuadrado elegidas al azar. Cuando el promedio es mayor que

dicha densidad, debe contabilizarse la losa.

Opciones de reparación

L, M y H: No se hace nada.

62



Figura 36. Popoust.

▶ Bombeo

Descripción: El bombeo es la expulsión de material de la fundación de la losa a través de las juntas o grietas. Esto se origina por la deflexión de la losa debida a las cargas. Cuando una carga pasa sobre la junta entre las losas, el agua es primero forzada bajo losa delantera y luego hacia atrás bajo Esta acción erosiona y eventualmente la losa trasera. remueve las partículas de suelo lo cual generan una perdida progresiva del soporte del pavimento. El bombeo puede identificarse por manchas en la superficie y la evidencia de material de base o subrasante en el pavimento cerca de las juntas o grietas. El bombeo cerca de las juntas es causado por un sellante pobre de la junta e indica la pérdida soporte. Eventualmente, la repetición de cargas producirá grietas. El bombeo también puede ocurrir a lo largo del borde de la losa causando perdida de soporte.

Niveles de severidad

No se definen grados de severidad. Es suficiente indicar la

existencia.

Medida

El bombeo de una junta entre dos losas se contabiliza como dos losas. Sin embargo, si las juntas restantes alrededor de la losa tienen bombeo, se agrega una losa por junta adicional con bombeo.

Opciones de reparación

L, M y H: Sellado de juntas y grietas. Restauración de la transferencia de cargas.

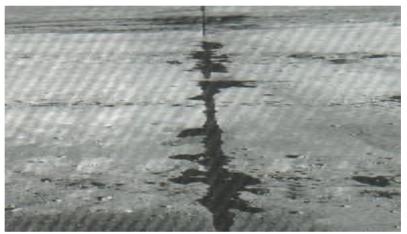


Figura 37. Bombeo.

Figura 38. Bombeo.

> Punzonamiento

Descripción: Este daño es un área localizada de la losa que está rota en pedazos. Puede tomar muchas formas y figuras diferentes pero, usualmente, está definido por una grieta y una junta o dos grietas muy próximas, usualmente con 1.52 m entre sí. Este daño se origina por la repetición de cargas pesadas, el espesor inadecuado de la losa, la pérdida de soporte de la fundación o una deficiencia localizada de construcción del concreto (por ejemplo, hormigueros).

Tabla 4 Cuadro niveles de severidad para el punzonamiento

Severidad de la mayoría de las	Número de pedazos					
grietas	2 a 3	4 a 5	Más de 5			
L	L	L	M			
M	L	M	Н			
Н	M	Н	Н			

Fuente: Varela L (2002). Manual incide de condición del pavimento (p. 70).

Medida

Si la losa tiene uno o más punzonamientos, se contabiliza como si tuviera uno en el mayor nivel de severidad que se presente.

Opciones de reparación

L: No se hace nada. Sellado de grietas.

M: Parcheo profundo.

H: Parcheo profundo.

Figura 39. Punzonamiento de baja severidad.

Figura 40. Punzonamiento de severidad media.

Figura 41. Punzonamiento de alta severidad.

> Cruce de vía férrea

Descripción: El daño de cruce de vía férrea se caracteriza por depresiones o abultamientos alrededor de los rieles.

Niveles de severidad

L: El cruce de vía férrea produce calidad de tránsito de baja severidad.

M: El cruce de la vía férrea produce calidad de tránsito de severidad media.

H: El cruce de la vía férrea produce calidad de tránsito de alta severidad.

Medida

Se registra el número de losas atravesadas por los rieles de la vía férrea. Cualquier gran abultamiento producido por los rieles debe contarse como parte del cruce.

Opciones de reparación

L: No se hace nada.

M: Parcheo parcial de la aproximación. Reconstrucción del cruce.

H: Parcheo parcial de la aproximación. Reconstrucción del cruce.

Figura 42. Cruce de vía férrea de baja severidad.

Figura 43. Cruce de vía férrea de media severidad.

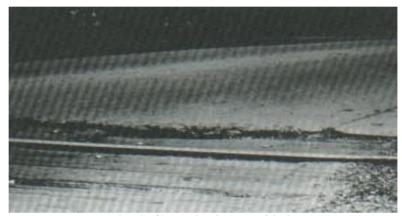


Figura 44. Cruce de vía férrea de alta severidad.

> Desconchamiento, mapa de grietas, craquelado

Descripción: El mapa de grietas o craquelado (crazing) se refiere a una red de grietas superficiales, finas o capilares, que se extienden únicamente en la parte superior de la superficie del concreto. Las grietas tienden a interceptarse en ángulos de 120 grados. Generalmente, este daño ocurre por exceso de manipulación en el terminado y puede producir el descamado, que es la rotura de la superficie de la losa a una profundidad aproximada de 6.0 mm a 13.0 mm. El descamado también puede ser causado por incorrecta construcción y por agregados de mala calidad.

Niveles de severidad

L: El craquelado se presenta en la mayor parte del área de la losa; la superficie esta en buena condición con solo un descamado menor presente.

M: La losa está descamada, pero menos del 15% de la losa está afectada.

H: La losa esta descamada en más del 15% de su área.

Medida

Una losa descamada se contabiliza como una losa. El craquelado de baja severidad debe contabilizarse únicamente si el descamado potencial es inminente, o unas pocas piezas pequeñas se han salido.

Opciones para reparación

L: No se hace nada.

M: No se hace nada. Reemplazo de la losa.

H: Parcheo profundo o parcial. Reemplazo de la losa.

Sobrecarpeta.

Figura 45. Desconchamiento / Mapa de grietas / Craquelado de baja severidad.

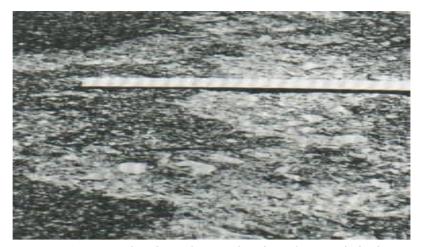


Figura 46. Desconchamiento / Mapa de grietas / Craquelado de severidad media.

Figura 47. Desconchamiento / Mapa de grietas / Craquelado de alta severidad.

> Grietas de retracción

Descripción: Son grietas capilares usualmente de unos pocos pies de longitud y no se extienden a lo largo de toda la losa. Se forman durante el fraguado y curado del concreto y generalmente no se extienden a través del espesor de la losa.

Niveles de severidad

No se definen niveles de severidad. Basta con indicar que están presentes.

Medida

Si una o más grietas de retracción existen en una losa en particular, se cuenta como una losa con grietas de retracción.

Opciones de reparación

L, M y H: No se hace nada.

Figura 48. Grietas de contracción.

> Descascaramiento de esquina

Descripción: Es la rotura de la losa a 0.6 m de la esquina aproximadamente. Un descascaramiento de esquina difiere de la grieta de esquina en que el descascaramiento usualmente buza hacia abajo para interceptar la junta, mientras que la grieta se extiende verticalmente a través de la esquina de losa. Un descascaramiento menor que 127 mm medidos en ambos lados desde la grieta hasta la esquina no deberá registrarse.

Niveles de severidad

En en la tabla 5 se listan los niveles de severidad para el descascaramiento de esquina. El descascaramiento de esquina con un área menor que 6452mm2 desde la grieta hasta la

esquina en ambos lados no deberá contarse.

Tabla 5 Cuadro nivel de severidad para descascaramiento de esquina

Profundidad de descascaramiento	Dimensiones de los lados del descascaramiento				
	127.0 x 127mm a 305.0 x 305.0mm	Mayor que 305.0 x 305.0mm			
Menor de 25.0mm	L	L			
>25.0mm a 51.0 mm	L	M			
Mayor de 51.0mm	M	Н			

Fuente: Varela L. (2002). Manual índice de condición del pavimento (77).

Medida

Si en una losa hay una o más grietas con descascaramiento con el mismo nivel de severidad, la losa se registra como una losa con descascaramiento de esquina. Si ocurre más de un nivel de severidad, se cuenta como una losa con le mayor nivel de severidad.

Opciones de reparación

L: No se hace nada.

M: Parcheo parcial.

H: Parcheo parcial.

Figura 49. Descascaramiento de esquina de baja severidad.

Figura 50. Descascaramiento de esquina de severidad media.

Figura 51. Descascaramiento de esquina de alta severidad.

Descascaramiento de junta

Descripción: Es la rotura de los bordes de la losa en los 0.60 m de la junta. Generalmente no se extiende verticalmente a través de la losa si no que intercepta la junta en ángulo. Se origina por:

1. Esfuerzos excesivos en la junta causados por las cargas de

tránsito o por la infiltración de materiales incompresibles.

2. Concreto débil en la junta por exceso de manipulación.

Niveles de Severidad

En la tabla 6 se ilustran los niveles de severidad para descascaramiento de junta. Una junta desgastada, en la cual el concreto ha sido desgastado a lo largo de toda la junta se califica como de baja severidad.

Tabla 6 Cuadro nivel de severidad descascaramiento de junta

Fragmento del descascaramiento	Ancho del descascarami ento	Longitud descascar	
		<0.6m	>0.6m
Duros. No pueden removerse fácilmente (pueden faltar algunos	< 102mm	L	L
pocos fragmentos).	>102mm	L	L
Sueltos. Pueden removerse y algunos fragmentos pueden faltar. Si la mayoría o todo los	<102mm	L	M
fragmentos faltan, el descascaramiento es superficial, menos de 25.0mm.	>102mm	L	M
Desaparecidos. La mayoría o todos	<102mm	L	M
los fragmentos han sido removidos.	>102mm	M	Н

Fuente: Varela L. (2002). Manual índice de condición del pavimento (p. 79).

Medida

Si el descascaramiento se presenta a lo largo del borde de una losa, esta se cuenta como una losa con descascaramiento de junta. Si está sobre más de un borde de la misma losa, el borde que tenga la mayor severidad se cuenta y se registra como una losa. El descascaramiento de junta también puede

ocurrir a lo largo de los bordes de dos losas adyacentes. Si este es el caso, cada losa se contabiliza con descascaramiento de junta.

Opciones para reparación

L: No se hace nada.

M: Parcheo parcial.

H: Parcheo parcial. Reconstrucción de la junta.

Figura 52. Descascaramiento de junta de baja severidad.

Figura 53. Descascaramiento de junta de severidad media.

Figura 54. Descascaramiento de junta de alta severidad.

III. Metodología

3.1. El Tipo de investigación.

Tipo de Investigación, es observacional, (no existe intervención del investigador) Descriptivo, (porque describe la realidad encontrada sin alterarla), Transversal, (por que toda las variables son medidas en una sola ocasión).

3.2. Nivel de la investigación de la tesis

El nivel de la investigación es cuantitativa, porque trata de ser lo más objetivó y se usa magnitudes numéricas que pueden ser tratados mediante herramientas del campo de la estadística.

3.3. Diseño de la investigación.

El diseño de la investigación no es experimental, porque no habrá manipulación de las variables, el investigador observa lo que ocurre de forma natural, sin intervenir de manera alguna.

La metodología a utilizar, para el desarrollo adecuado al estudio con el fin de dar cumplimiento a los objetivos planteados es:

- ✓ Se efectuó siguiendo el método PCI Índice de Condición de Pavimentos, de la norma ASTM D6433.
- ✓ Se recopilo los antecedentes preliminares: En esta etapa se realizó la búsqueda, el ordenamiento, análisis y validación de los datos existentes y de toda la información necesaria que ayuden a cumplir con las metas de este estudio.
- ✓ El diseño de la investigación se realizó a través de un Ideograma o Esquema de investigación el cual aplica los procedimientos de la

metodología del Índice de Condición del Pavimento (PCI), son:

- Muestreo de estudio

El presente estudio en el Jirón San Martín se evaluó una sección (las cuadra 6, 7, 8, 9, 10) con una longitud de 496.04m, las cuales nos genero 11 unidades de muestra, se inspeccionaron todo las unidades.

- Observación de patologías

Se inspeccionó individualmente cada unidad de muestra y se registró tamaño de la losa, longitud de la sección los tipos de daños que existen y su nivel de severidad y cantidad, en el formato de campo de esta forma se realizo en las 11 unidades de muestra.

- análisis de patologías

Se analizó los datos obtenidos en la inspección de campo, para poder ordenarla, organizarla y clasificarla de acuerdo a la información requerida.

- Avaluación de patologías

Se efectuó la evaluación según la metodología del índice de condición del pavimento (PCI) de la norma ASTM D6433.

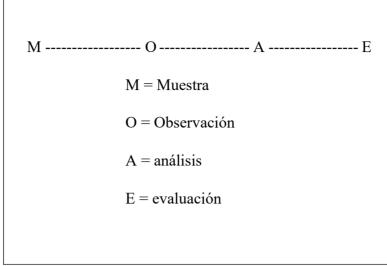


Figura 55. Ideograma del diseño de investigación.

3.4. Población y Muestra

3.2.1. población

Para la presente investigación la población esta dado por la delimitación geográfica del Distrito y Provincia de Satipo Región Junín.

3.2.2. Muestra.

Se evaluó el Jirón San Martín que comprende una longitud total de 1139.85 m, de los cuales a nivel de pavimento rígido tiene una longitud de 986.65 m y a nivel de afirmado tiene una longitud de 153.20 m.

3.2.4. Muestreo.

Se evaluó el pavimento rígido del Jirón San Martín para lo cual se **incluye** lo siguiente:

- Unidad de muestra 01 longitud 52.30 m de 26 losas, ubicado el la cuadra 06.
- Unidad de muestra 02 longitud 48.30 m de 24 losas, ubicado en

la cuadra 06.

- Unidad de muestra 03 longitud 52.30 m de 26 losas, ubicado en la cuadra 07.
- Unidad de muestra 04 longitud 52.30 m de 26losas, ubicado en la cuadra 07.
- Unidad de muestra 05 longitud 52.30 m de 26 losas, ubicado en la cuadra 08.
- Unidad de muestra 06 longitud 48.30m de 24 losas, ubicado en la cuadra 08.
- Unidad de muestra 07 longitud 40.60 m de 20 losas, ubicado en la cuadra 08.
- Unidad de muestra 08 longitud 40.60m de 20 losas, ubicado en la cuadra 09.
- Unidad de muestra 09 longitud 40.60 m de 20 losas, ubicado en la cuadra 09.
- Unidad de muestra 10 longitud 36.12m de 18 losas, ubicado en la cuadra 10.
- Unidad de muestra11 longitud 32.32 m de 16 losas, ubicado en la cuadra 10.

Las cuadras no consideradas en el presente estudio pertenecen a otra Sección de estudio.

3.5. Definición y operacionalización de las variables

3.5.1. Variables independientes

se tiene como variable independiente a las diferentes patologías del pavimento.

3.5.2. Variables dependientes

Se tiene como variable dependiente al estado del pavimento rígido del Jirón San Martín Distrito y Provincia de Satipo Región Junín.

Tabla 7 Cuadro de operacionalización de variables

	Op	eracionalidad de Va	ariable	
Variables	Definición Conceptual	Dimensiones	Definición Operacional	Indicadores
Patología del concreto.	La patología es el estudio de las enfermedade s, como procesos o estados anormales de causas conocidas o desconocidas . (Godoy G., Ramírez R. 2006) ¹⁹ .	Tipos de patologías que afectan al pavimento rígido Descascaramiento de esquina. Descascaramiento de junta. Popouts. Punzonamiento. Grietas lineales. Grietas de esquina. Losa dividida. Parche grande mayor a 0.45m2.	Mediante una observación visual, y luego se realizara una ficha técnica de evaluación.	Tipo de falla Clase de falla nivel de severidad. Baja Leve (1) Medio Moderad o (2) Alto Severo (3)

Fuente: Elaboración Propia (2017).

3.6. Técnicas e Instrumentos

La técnica empleada será la evaluación visual, la cual será determinante para iniciar la toma de datos, considera como método de recolección de información de la muestra, según el análisis de muestreo.

Para la toma de datos es fundamental contar con los instrumentos necesarios para la elaboración de la misma, tales como:

Equipo.

- Wincha para medir las longitudes y las áreas de los daños.
- Cámara fotográfica, la cual nos permitirá a detallar las diferentes patologías encontradas, con el fin de tener mayores representaciones en el área en estudio.
- GPS. instrumento que se utilizó para determinar las coordenadas geográficas del estudio.
- Calculadora. para hacer los cálculos manuales.
- Regla y una cinta métrica.
- Libros y/o Manual de Daños del PCI con los formatos correspondientes y en cantidad suficiente para el desarrollo de la actividad.
- Computadora equipo que se utilizo para procesamiento de información.

3.7. Plan de análisis

Los resultados estarán comprendidos por lo siguiente:

- Se evaluó, determinado la sección que asta constituida por las cuadra
 6, 7, 8, 9, 10, nos genero 11 unidades de muestra, se recolecto los datos de cada unidad de muestra en un formato de campo.
- Se determino los tipos y nivel de severidad, incidencias de las patologías por cada unidad de muestra y general a través de los valores deducidos.
- Se cálculo el índice de clasificación por cada unidad de muestra y general de la sección correspondiente.
- Se uso programas de Excel para el cálculo y elaboración de los cuadros y gráficos estadísticos.

3.8. Matriz de consistencia

Tabla 8: Matriz de consistencia

Determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional de la superficie del Jirón San Martín, Distrito y Provincia de Satipo, Región Junín, Enero – 2017.

Problema	Objetivo General	Marco teórico conceptual	Metodología	Referencias Bibliografía
Caracterización Del problema El Jirón San Martín se encuentra ubicado en el Distrito de Satipo, Provincia de Satipo, Región Junín, en la margen izquierda del río Satipo, se localiza a 11° 15'23" latitud sur, 74° 42'35" de longitud este y a una altura promedia de 640 m.s.n.m. El pavimento rígido del Jirón San Martin, se encuentran afectada por diferentes tipos de patologías como: Descascaramiento de juntas descascaramiento de esquina, desconchamiento, mapa de grietas craquelado, popoust, daño sello de junta,	Determinar el índice de condición del pavimento de concreto del Jirón San Martín, distrito y Provincia de Satipo, Región Junín, Enero – 2017 a partir de su determinación y evaluación de las patologías del mismo. Objetivos específico a) Identificar los tipo de patologías en el pavimento rígido que existen en el Jirón San Martín,	Antecedentes Se consulto en diferentes y estudios específicos realizados de manera nacionales e internacionales referente a patología en pavimentos, fruto a ello se hallaron: Antecedente internacionales Antecedente nacionales Bases teóricas. Concepto de Pavimento (Norma CE010 Pavimentos Urbanos SENCICO) ⁹ Estructura compuesta por capas que apoya en toda su superficie sobre el terreno preparado para soportarla durante un lapso denominado Período de Diseño y dentro de un rango de	Tipo de la investigación El estudio a realizarse es del tipo observacional, descriptivo, transversal. Nivel de la investigación Cuantitativo. Diseño de la investigación. MOAE M: muestra O: observación A: análisis E: Evaluación Población o muestra La población esta dado por la delimitación geográfica del Distrito y Provincia de Satipo, Región Junín. a) Muestra. Se evaluó el Jirón San Martín que comprende una longitud total de 1139.85 m de los cuales a nivel pavimento rígido tiene una longitud de 986.65 m y a nivel de	(1) Rodríguez T. evaluación del estado físico de la carretera de concreto hidráulico empalme puerto sandino – puente gloria, del municipio de <u>nagarote</u> , departamento de león. [seriado en line] 2013 [citado 2016 diciembre 14], disponible en: http://165.98.12.83/512/1/UCANI3595.PD (2) Tóala J. "Análisis superficial y mantenimiento del hormigón hidráulico de la carretera Chone-Canuto-Calceta-Junín-Pueblo Nuevo – Pimpiguasí, tramo "Pueblo Nuevo -Pimpiguasí". [Tesis para obtener el titulo de ingeniero civil]. Portoviejo – Manabí: Ecuador: Universidad técnica de Manabí Centro de Estudio Pos Grado; 2011. (3) Menacho T. "Determinación y evaluación de las patologías del concreto en el pavimento rígido de las calles del Distrito de pariacoto, provincia de

grietas de esquina, grietas lineales, parche grande 0.45m2.mayor punzonamiento, a causa del tiempo de servicio, factores climáticos. falta de mantenimiento preventivo y correctivo por parte de la Municipalidad Provincial de Satipo, por todo lo descrito anteriormente fue necesario llevar acabo un trabajo de investigación.

Enunciado del problema

;En aué medida. Determinación evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional de la superficie del Jirón San Martín, Distrito y Provincia de Satipo, Región Junín, Enero – 2017, nos permitirá obtener un índice de integridad estructural del pavimento y condición operacional de su superficie?.

Distrito y Provincia de Satipo, Región Junín, Enero – 2017.

b) Obtener el índice de condición del pavimento Rígido, en el Jirón San Martín, Distrito y Provincia de Satipo, Región Junín, Enero – 2017.

Evaluar la

c)

integridad estructural del pavimento y condición operacional de la superficie de pavimentos concreto en el Jirón San Martín, Distrito de Provincia Satipo, Región Junín, Enero 2017.

Serviciabilidad. Esta definición incluye pistas, estacionamientos, aceras o veredas, pasajes peatonales y ciclovías.

de

los

pavimentos Pavimentos flexibles

Clasificación

Este tipo de pavimentos están formados por una carpeta bituminosa apovada generalmente sobre dos capas no rígidas, la base y la subbase. No obstante puede prescindirse de cualquiera de estas dependencias de las necesidades particulares de cada obra.

Pavimento rígido Pavimento articulado Patología del concreto

Patología del concreto se define como el estudio sistemático de los procesos y características de las "enfermedades" o los "defectos y daños" que pueden sufrir el concreto,

afirmado tiene una longitud de 153.20 m.

b) Muestreo.

Se evaluó el pavimento rígido del Jirón san Martín para lo cual se **incluye** lo siguiente:

Definición y operacionalización de las variables

Variables independientes

Se tiene como variable independiente a las diferentes patologías del pavimento.

Variable dependiente

Se tiene como variable dependiente al estado del pavimento rígido del Jirón San Martín Distrito y Provincia de Satipo Región Junín.

Técnicas e instrumento. Plan de análisis.

La técnica empleada será la evaluación visual, la cual será determinante para iniciar la toma de datos. Huaraz, Región Ancash, junio – 2014". Repositorio [seriado en línea] 2014 [citado 2016 diciembre 25], disponible en:

http://erp.uladech.edu.pe/bibliotecavirtua l/?ejemplar=00000036043

(4) Aranda J. "Determinación y evaluación de las patologías del concreto en el pavimento rígido de las calles del Distrito de San Luis - Provincia de Carlos Fermín Fitzcarrald- Región Ancash, junio-2014". Repositorio [seriado en línea] 2014 [citado 2017 enero12], disponible en:_

http://erp.uladech.edu.pe/bibliotecavir tual/?ejemplar=00000036025

(5) Saens O. "Determinación evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional en las principales pistas de la urbanización casuarinas primera etapa - distrito de nuevo Chimbote, provincia de santa, departamento de Ancash, julio 2014". Repositorio [seriado en línea] 2014 [citado 2017 enero 5], disponible en:

Entre otros.

Tipos de Patologías que se presentan en la estructura de pavimento de concreto.

Fuente: Elaboración Propia (2017).

3.9. Principios éticos

a) Ética en la recolección de datos

La recolección de datos son las patologías del concreto en el pavimento de cada unidad de muestra, debemos comprometernos ser claros en el lugar de inspección para así poder tener resultado satisfactorio.

b) Ética para el inicio de la evaluación

En la evaluación se tuvo en conocimiento por los daños que por los cuales a sido afectados la superficie del pavimento rígido del Jirón San Martín en las cuadra 6, 7, 8, 9, 10 utilizando la metodología el Índice de condición del pavimento de la norma ASTM D6433, y se solicito el permiso a la municipalidad antes de hacer el estudio, así poder cumplir el trabajo de investigación.

c) Ética en la solución de resultados

Se obtuvo los resultados en la evalucion de cada unidad de muestra, el índice de clasificación, el tipo y nivel de severidad de las patologías.

Se verificaron a criterio del evaluador si los cálculos de las evaluaciones concuerdan con lo encontrado en la zona de estudio basados a la realidad de la misma.

d) Ética para la solución de análisis

Se tuvo en conocimiento los daños por las cuales haya sido afectado los elementos estudiados propios del proyecto. Tener en cuenta y proyectarse en lo que respecta al área afectada al cual posteriormente ser considerada para la reparación.

IV. Resultados

4.1. Resultados

Determinar el índice de condición del pavimento de concreto del Jirón San Martín, distrito y Provincia de Satipo, Región Junín, Enero – 2017. Se dividió en ramal, luego sección y unidades de muestra en los cuales nos genero 11 unidades de muestras, cada uno de estas unidades de muestra harán que la interpretación de la información y su análisis sean mas precisa, a partir de su determinación y evaluación de las patologías del mismo, por lo cual presentamos a continuación los resultados de los datos obtenidos de manera objetiva, y lógica mostrados a través de tablas y gráficos descritos e interpretados.

- calculo de los valores deducidos por unidad de muestra y de cada daño.
- El nivel de severidad de las patologías en cada unidad de muestra en el estudio y general.
- Índice de condición del pavimento por cada unidad de muestra y general del estudio.

Unidad de muestra 01 cuadra 06 del Jirón Sam Martín.

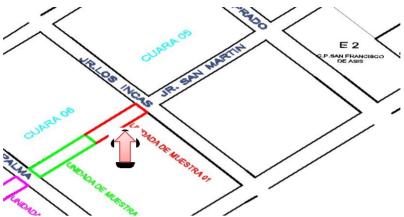
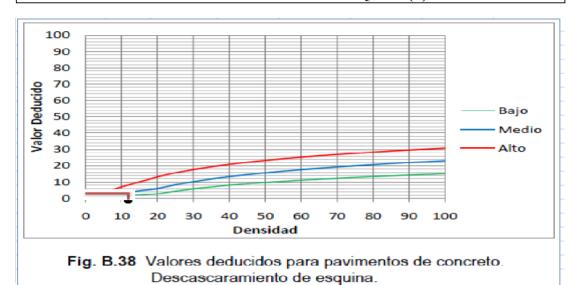



Tabla 9 Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 01

muestra	a U I									
	ADECH		UNIV	ERSIDAI) CATÓL	CA LOS ÁI	NGELES DI	Е СНІМВ	ВОТЕ	
(UL	ADECUA S			FA	CULTAD	DE INGEN	IERÍA CIV	IL .		
	Н	OJA DE II	NSPECCIÓ	N DE CO	NDICION	ES PARA U	JNIDAD DE	E MUEST	RA	
				1	MÉTODO	PCI				
Ramal:	Jirón	San Martín				Unidad de	Muestra: 01	l - ubicada	en la cua	dra 06
Sección:	ión: Cuadras 6,7,8,9 y 10 Longitud 496.04m					Fecha:		Enero- 2	017	
Distrito:	, , , ,					Numero de	Numero de losas: 26			
Provincia	a: Satip	o				Área Total		350.48n		
Región:	Juníi						es de la Losa			
Evaluado	r: Robe	rt Reyner I	Hoppen Migu	ıel		Área de la	losa:	13.48m	12	
					DAÑO					
	up - Buck						nto de Agreg	ado		
	de Equina					32 Popouts				
23 Losa	Dividida					33 Bombeo)			
24 Grieta	a de Durab	ilidad "D"				34 Punzona	amiento			
25 Escal							e Vía Férrea			
		o de Junta					chamiento, N	Iapa de G	rietas	
	vel Carril					Craquelado				
	rietas Lineales (Grietas Longitudinales,				de Retracció					
	sales y Di		5 2)	38 Descascaramiento de Esquina m2) 39 Descascaramiento de Junta						
		(mayor 0.4		2)		39 Descaso	caramiento d	e Junta		
30 Parch	e Pequeno		gual 0.45m2	2)				1		
	1	2	3	4	5	6	7	8	9	10
A	32	32, 39L	32, 28L	32	32	39L, 32	32	32	38M	32, 39L
В	29M		32			38L	34M	28L	38L	39L
C	32	28M,38L	29M,28M							
D	39L	38M	29M,28M							
	Da	año	Sever	ridad	Nume	ro de losa	Densid	lad%	Valor	Deducido
	38 L 3 12% 1.58				.58					
	38 M			2 8%		2.50				
	32			11	11 42%			7.22		
	28 M			3 12%			1.02			
	28 L			2	8%	6	4	.82		
		26	N				4			
		34 29	N			1	4%			0.34
	4	29	N	1		3	129			7.00
	F1.1	.,	· (2017)			5	199	%	4	.00

Fuente: Elaboración propia (2017).

38. DESCASCARAMIENTO DE ESQUINA (L).

INTERPOLACION PARA HLLAR EL VALOR DEDUCIDO

DENSIDAD					
12	12.00				
15-10 =		5.00			
15 - 12 =		3.00			
4.10/10.00	=	0.60			
2 - 1.30 =		0.70			
0.41*6.50	=	0.42			
2.00 - 0.42	_	1.58			

	VALOR DEDUCIDO
ı	1.58

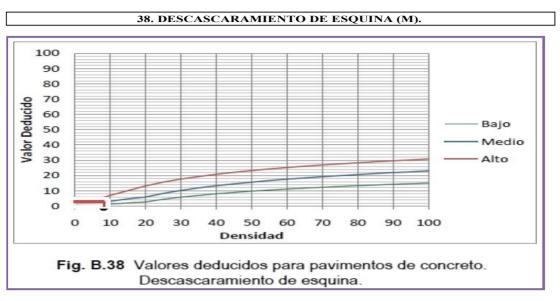

38. Descascaramiento de Esquina.						
D	Valor Deducido					
Densidad	В	M	A			
0.00	0.00	0.00	0.00			
5.00	0.50	1.60	3.30			
10.00	1.30	3.10	7.00			
15.00	2.00	4.70	10.10			
20.00	2.70	5.90	13.20			
25.00	4.40	8.30	15.70			
30.00	5.80	10.20	17.70			
35.00	6.90	11.90	19.30			
40.00	8.00	13.30	20.80			
45.00	8.90	14.50	22.10			
50.00	9.70	15.60	23.20			
55.00	10.40	16.70	24.30			
60.00	11.10	17.60	25.20			
65.00	11.70	18.40	26.10			
70.00	12.20	19.20	26.90			
75.00	12.80	19.90	27.60			
80.00	13.30	20.60	28.30			
85.00	13.70	21.30	29.00			
90.00	14.20	21.90	29.60			
95.00	14.60	22.40	30.20			
100.00	15.00	23.00	30.80			

Figura 56. Ábaco y cuadro para hallar el valor deducido, del daño descascaramiento de esquina (38L), identificado en la unidad de muestra 01 de la cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 1.58, a través de la densidad = 12.00, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 56.

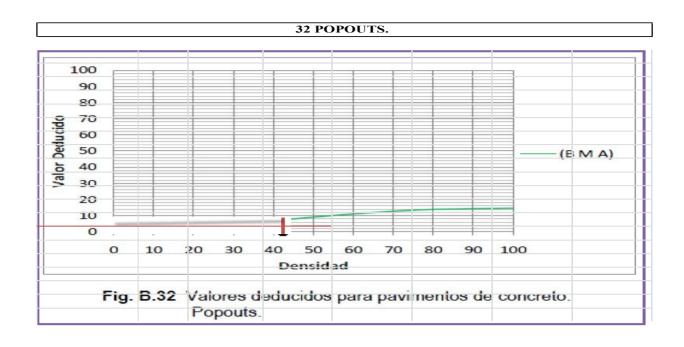

NTERPOLACIÓN PARA LAR EL VALOR DEDU	38 De	scascaramie	nto de Esqu	ina.
	ъ	Val	or Deducido	
SIDAD	Densidad	В	M	A
	0.00	0.00	0.00	0.00
	5.00	0.50	1.60	3.30
5.00	10.00	1.30	3.10	7.00
2.00	15.00	2.00	4.70	10.10
= 0.40	20.00	2.70	5.90	13.20
1.50	25.00	4.40	8.30	15.70
0.60	30.00	5.80	10.20	17.70
2.50	35.00	6.90	11.90	19.30
	40.00	8.00	13.30	20.8
	45.00	8.90	14.50	22.1
CIDO	50.00	9.70	15.60	23.20
	55.00	10.40	16.70	24.30
	60.00	11.10	17.60	25.20
	65.00	11.70	18.40	26.10
	70.00	12.20	19.20	26.9
	75.00	12.80	19.90	27.60
	80.00	13.30	20.60	28.30
	85.00	13.70	21.30	29.00
	90.00	14.20	21.90	29.60
	95.00	14.60	22.40	30.20
	100.00	15.00	23.00	30.80

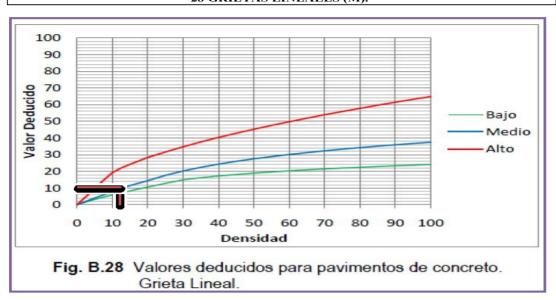
Figura 57. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38M), identificado en la unidad de muestra 01 de la cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 2.50, a través de la densidad =8.00, de nivel de severidad = M.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 57.

INTERPOLACIÓN PA HALLAR EL VALOR DED	32. Popouts (Desprendimientos).		
DENSIDAD 42.00	Densidad	Valor Deducido B M A	
12.00	0.00	0.00	
45.00-40.00 = 5.00	5.00	0.70	
45.00-42 = 3.00	10.00	1.50	
3.00/5.00 = 0.60	15.00	2.30	
8 - 6.70 = 1.30	20.00	3.20	
1.30*0.60 = 0.78	25.00	4.00	
8.00 - 0.78 = 7.22	30.00	4.80	
	35.00	5.70	
	40.00	6.70	
VALOR DEDUCIDO	45.00	8.00	
7.22	50.00	9.10	
	55.00	10.10	
	60.00	11.10	
	65.00	11.90	
	70.00	12.70	
	75.00	13.40	
	80.00	13.90	
	85.00	14.10	
	90.00	14.30	
	95.00	14.40	
	100.00	14.60	


Figura 58. Ábaco y tabla para hallar el valor deducido, del daño popoust, identificado en la unidad de muestra 01 de la cuadra 06 del Jirón San Martín.

Descripción e interpretación:

Ábaco se obtiene un valor deducido de 7.22, a través de la densidad = 42.00

Se realiza el proceso de interpolación, como se puede apreciar en la figura 58.

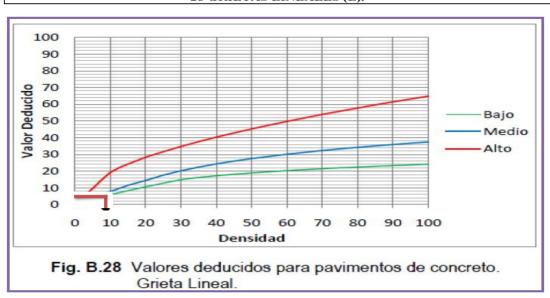
28 GRIETAS LINEALES (M).

INTERPOLACIÓN PARA
HALLA EL VALOR DEDUCIDO

DENSIDAD
12.00
15.00-10.00 = 5.00
15.00 - 12.00 = 3.00
3.00/5.00 = 0.60
11.50 - 7.80 = 0.80
0.80*0.60 = 0.48
11.50 - 0.48 = 11.02

VALOR DEDUCIDO
11.02

28	Transversales y Diagonales)							
		alor Deduci						
Densidad	В	M	Α					
0.00	0.00	0.00	0.00					
5.00	3.20	4.00	9.60					
10.00	5.90	7.80	19.20					
15.00	8.30	11.50	24.20					
20.00	10.60	14.40	28.30					
25.00	12.80	17.60	31.60					
30.00	14.90	20.20	34.70					
35.00	16.20	22.40	37.60					
40.00	17.20	24.30	40.30					
45.00	18.10	26.00	42.80					
50.00	18.90	27.50	45.20					
55.00	19.60	28.80	47.50					
60.00	20.30	30.10	49.70					
65.00	20.90	31.20	51.80					
70.00	21.40	32.30	53.90					
75.00	22.00	33.30	55.80					
80.00	22.40	34.20	57.70					
85.00	22.90	35.10	59.60					
90.00	23.30	35.90	61.40					
95.00	23.70	36.70	63.10					
100.00	24.10	37.40	64.80					


Figura 59. Ábaco y tabla para hallar el valor deducido, del daño grietas lineales (28M), identificado en la unidad de muestra 01 de la cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 11.02, a través de la densidad =12.00, de nivel de severidad = M.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 59.

INTERPOLACIÓN PARA HALLAR EL VALOR DEDUC	28 TIDO	Grietas Line Transvers	eales (Longit sales y Diago	
		Val	o	
DENSIDAD	Densidad	В	M	A
8.00	0.00	0.00	0.00	0.00
	5.00	3.20	4.00	9.60
10.00-5.00 = 5.00	10.00	5.90	7.80	19.20
10.00-8.00 = 2.00	15.00	8.30	11.50	24.20
2.00/5.00 = 0.40	20.00	10.60	14.40	28.30
5.90 - 3.20 = 2.70	25.00	12.80	17.60	31.60
2.70*0.40 = 1.08	30.00	14.90	20.20	34.70
5.90 - 1.08 = 4.82	35.00	16.20	22.40	37.60
	40.00	17.20	24.30	40.30
	45.00	18.10	26.00	42.80
VALOR DEDUCIDO	50.00	18.90	27.50	45.20
4.82	55.00	19.60	28.80	47.50
	60.00	20.30	30.10	49.70
	65.00	20.90	31.20	51.80
	70.00	21.40	32.30	53.90
	75.00	22.00	33.30	55.80
	80.00	22.40	34.20	57.70
	85.00	22.90	35.10	59.60
	90.00	23.30	35.90	61.40
	95.00	23.70	36.70	63.10
	100.00	24.10	37.40	64.80

Figura 60. Ábaco y tabla para hallar el valor deducido, del daño grietas lineales (28L), identificado en la unidad de muestra 01 de la cuadra 06 del Jirón San Martín.

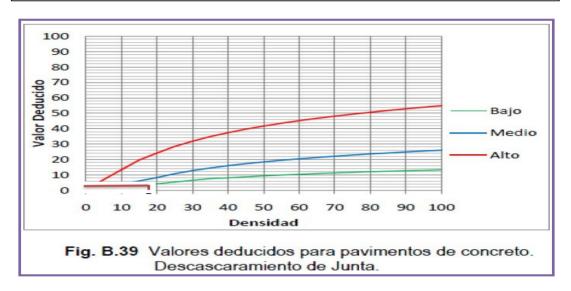
Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 4.82, a través de la densidad =8.00, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 60.

Fig. B.34 Valores deducidos para pavimentos de concreto. Punzonamiento.

OLACIÓN PARA L VALOR DEDU	34	Pur	zonamiento) .
	ъ	Val		
SIDAD	Densidad	В	M	A
	0.00	0.00	0.00	0.00
	5.00	7.30	11.60	15.60
00	10.00	14.50	22.90	31.80
00	15.00	21.60	32.30	41.90
0.20	20.00	27.36	39.00	49.10
11.60	25.00	31.90	44.20	54.60
2.32	30.00	35.60	48.40	59.20
9.34	35.00	38.80	52.00	63.00
	40.00	41.50	55.10	66.30
	45.00	43.90	57.80	69.30
CIDO	50.00	46.10	60.30	71.90
	55.00	48.10	62.50	74.30
	60.00	49.80	64.50	76.40
	65.00	51.50	66.40	78.40
	70.00	52.70	68.00	80.30
	75.00	53.30	68.90	82.00
	80.00	53.60	69.40	83.40
	85.00	53.90	69.90	84.30
	90.00	54.20	70.30	85.10
	95.00	54.50	70.80	86.00
	100.00	54.80	71.20	86.80


Figura 61. Ábaco y tabla para hallar el valor deducido, del daño ponzunamiento (34M), identificado en la unidad de muestra 01 de la cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 9.34, a través de la densidad =4.00, de nivel de severidad = M.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 61.

39 DESCASCARAMIENTO DE JUNTA (L).

INTERPOLACIÓN DEL PARA HALLAR EL VALOR DEDUCIDO

DENSIDAD					
19.00					
20.00 - 15.00 = 5.00					
15.00-19.00 =1.00					
1.00/5.00 = 0.20					
4.20 - 3.20 = 1.00					
1.00*0.20 = 0.20					
4.20- 0.20 = 4.00					

VALOR DEDUCIDO
4.00

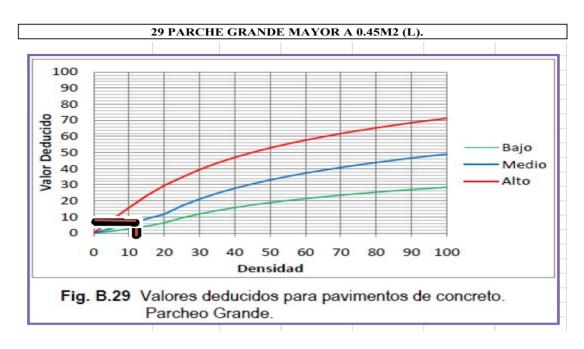

39. Descascaramiento de Junta.									
Densidad	V	Valor Deducido							
	В	M	A						
0.00	0.00	0.00	0.00						
5.00	1.40	2.00	7.00						
10.00	2.40	4.00	13.40						
15.00	3.20	6.10	19.70						
20.00	4.20	8.30	24.20						
25.00	5.40	10.80	28.50						
30.00	6.50	12.80	31.90						
35.00	7.63	14.50	34.90						
40.00	8.10	16.00	37.40						
45.00	8.80	17.30	39.70						
50.00	9.40	18.40	41.70						
55.00	9.90	19.50	43.50						
60.00	10.40	20.40	45.20						
65.00	10.90	21.30	46.70						
70.00	11.30	22.10	48.10						
75.00	11.70	22.90	49.40						
80.00	12.10	23.60	50.60						
85.00	12.40	24.20	51.80						
90.00	12.70	24.90	52.90						
95.00	13.00	25.50	53.90						
100.00	13.30	26.00	54.90						

Figura 62. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de junta (39L), identificado en la unidad de muestra 01 de la cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 2.72, a través de la densidad = 19.00, de nivel severidad = M.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 62.

INTERPOLACIÓN PAI IALLAR EL VALOR DEC	29		rande (> 0.4) de Servicios	, · ·	
	ъ	Va	lor Deducido	do	
DENSIDAD	Densidad	В	M	A	
12.00	0.00	0.00	0.00	0.0	
	5.00	1.10	2.90	8.0	
5.00 - 10.00 = 5.00	10.00	2.70	5.80	15.7	
5.00 -12.00 3.00	15.00	4.30	8.80	23.2	
0.00/5.00 = 0.60	20.00	6.30	11.70	29.5	
.80 - 5.80 = 3.00	25.00	9.40	16.90	34.6	
.00*0.60 = 1.80	30.00	11.90	21.10	39.4	
.80 - 1.80 = 7.00	35.00	14.00	24.70	43.5	
	40.00	15.80	27.80	47.0	
	45.00	17.50	30.50	50.1	
ALOR DEDUCIDO	50.00	18.90	33.00	52.9	
7.00	55.00	20.20	35.20	55.4	
	60.00	21.40	37.20	57.7	
	65.00	22.50	39.00	59.8	
	70.00	23.50	40.70	61.8	
	75.00	24.50	42.30	63.6	
	80.00	25.40	43.80	65.3	
	85.00	26.20	45.20	66.9	

Figura 63. Ábaco y tabla para hallar el valor deducido, del daño parche grande mayor a 0.45m2 (29M), identificado en la unidad de muestra 01 de la cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 7.00, a través de la densidad =12.00, de nivel de severidad = M.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 63.

28 Daño sello de Junta (M).

VALOR DEDUCIDO

Figura 64. Cuadro para hallar el valor deducido del daño sello de junta (36M), identificado en la unidad de muestra 01de la cuadra 06 del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

$$m = 1 + (9/98)*(100 - HDV)$$

Donde:

m = Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo **HDV** = El Mayor Valor Deducido Individual para la Unidad de Muestreo

Dato: HDV = 11.02

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM		VALOR DEDUCIDO							TOTAL	q	VDC		
1	11.02	9.3	7.2	7.0	4.8	4.0	4.0	2.5	1.6		51.5	8	0.00
2	11.02	9.3	7.2	7.0	4.8	4.0	4.0	2.0	1.6		51.0	7	0.00
3	11.02	9.3	7.2	7.0	4.8	4.0	2.0	2.0	1.6		47.4	6	22.44
4	11.02	9.3	7.2	7.0	4.8	2.0	2.0	2.0	1.6		45.4	5	23.60
5	11.02	9.3	7.2	7.0	2.0	2.0	2.0	2.0	1.6		42.6	4	24.19
6	11.02	9.3	7.2	2.0	2.0	2.0	2.0	2.0	1.6		37.6	3	23.62
7	11.02	9.3	2.0	2.0	2.0	2.0	2.0	2.0	1.6		32.3	2	26.34
8	11.02	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.6		25.02	1	25.02

Figura 65. Cuadro para el cálculo del máximo valor deducido corregido VDC. De la unidad de muestra 01 del Jirón San Martín de la cuadra 06.

Figura 66. Abaco para hallar el máximo valor deducido corregido de la unidad de muestra 01, del Jirón San Martín de la cuadra 06.

Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 26.34, a través del valor deducido total = 32.30, donde q = 2, como se puede apreciar en la figura 66.

INTERPOLACIÓN PARA HALLAR EL	Total de	Valores Deducidos Corregidos							
	Valores		2	2	4	_		-	
VALOR DEDUCIDO CORREGIDO	Deducidos	q1	q2	q3	q4	q5	q6	q7	q8
	0	0.00							
VDC 22.44	10	10.00							
q = 6 47.40	11	11.00	8.00						
50.00.40.00	16	16.00	12.40	8.00					
50.00-40.00 = 10.00	20	20.00	16.00	11.00					
50.00 - 47.40 = 2.6 2.60/10.00 = 0.26	27	27.00	21.90	15.90	14.00				
	30	30.00	24.50	18.00	16.00				
$ \begin{array}{rcl} 24.00 - 18.00 &= 6.00 \\ 6.00 &= 0.26 &= 1.56 \end{array} $	35	35.00	28.50	21.70	19.20	17.10	15.00		
24.00 - 1.56 = 22.44	40	40.00	32.00	25.40	22.50	20.20	18.00		
24.00 - 1.36 = 22.44	50	50.00	39.50	32.00	29.00	26.50	24.00		
VDC	57	57.00	44.00	36.90	33.40	30.80	28.20	26.80	25.40
$ \begin{array}{c} \text{VDC} \\ \text{q} = 5 \end{array} $	60	60.00	46.00	38.50	35.20	32.60	30.00	28.30	26.60
q = 3 45.40	70	70.00	52.50	45.00	41.00	38.50	36.00	34.00	32.00
50.00 - 40.00 = 10.00	80	80.00	58.50	51.40	47.00	44.20	41.50	39.30	37.10
50.00 - 45.40 = 4.60	90	90.00	64.50	57.40	52.50	49.70	47.00	44.50	42.00
4.60/10.00 = 0.46	100	100.00	70.00	63.00	58.00	55.00	52.00	49.30	46.60
26.50 - 20.20 = 6.30	110		75.50	68.50	63.00	60.00	57.00	54.30	51.60
6.30*0.46 = 2.90	120		81.00	74.00	67.80	64.90	62.00	59.20	56.40
26,50-2,90 = 23,60	130		86.00	78.90	72.50	69.50	66.50	63.70	60.90
20.00 2.90	140		90.50	84.00	77.00	74.00	71.00	68.20	65.40
VDC	150		95.00	88.40	81.50	78.20	75.00	72.30	69.60
q = 4	160		99.50	93.00	85.50	82.20	79.00	76.30	73.60
42.60	161		100.00	93.40	86.00	82.70	79.40	76.70	74.00
50.00-40.00 = 10.00	170			97.00	89.60	86.30	83.00	80.30	77.60
50.00 - 42.60 7.4	177			100.00	92.60	88.80	85.10	82.70	80.30
=	180				94.00	90.00	86.00	83.70	81.40
7.40/10.00 = 0.74	190				98.00	94.00	90.00	87.50	85.00
29.00 - 22.50 = 6.50	195				99.50	95.50	91.50	89.10 90.70	86.70
6.50*0.74 = 4.81	200				100.00	96.50	93.00	90.70	88.40
29.00- 4.81 = 24.19									
VDC 23.62	VDC	26.34		VDC	25.02				
$q = 3 \qquad 37.60$	q = 2	32.30	'	q = 2	25.02				
40.00 - 35.00 = 5.00	35.00 - 30.00 = 5	.00		27.00-20.00 =	7.00				
40.00 - 37.60 = 2.4	35.00 - 32.30 = 2	.7		27.00-25.02 =	2.0				
2.40/5.00 = 0.48	2.70/5.00 =	0.54		2.00/7.00 = 0.2	28				
25.40 - 21.70= 3.70	28.50- 24.50 = 4.	4.00 27.00-20.00 = 7.0			7.00				
3.70*0.48 = 1.78	4.00*0.50 = 2.16	6 7.00*0.28 = 1.98							
25.40 - 1.78 = 23.62	28.50 - 2.16 = 26	.34		27.00- 1.98 =	25.02				
E: (7.1.)	1 11 1	- 1		• 1	• 1				

Figura 67. Interpolación para hallar el valores deducido corregidos en la unida de muestra 01.

	CALIFICACIÓN PCI	MÁXIMO VDC =	26.34
Rango	Clasificación	PCI = 100 - MÁXIMO	O VDC
100 - 85	Excelente		
85 - 70	Muy Bueno	PCI = 100 - 26.34	
70 - 55	Bueno		
55 - 40	Regular		
40 - 25	Malo		73.66
25 -10	Muy Malo	CLASIFICACIÓN: MU	Y BUENO
10 - 0	Fallado		

Figura 68 Rango de calificación del índice de condición del pavimento (PCI) unidad de muestra 01, del Jirón San Martín, cuadra 06.

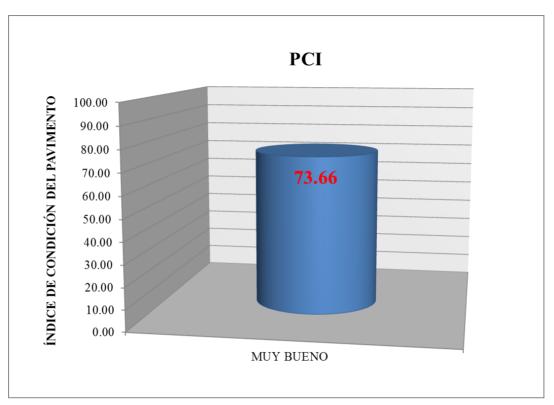


Figura 69. Grafico cálculo del índice de condición del pavimento PCI, en la unidad de muestra 01, del Jirón San Martín cuadra 06.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 69 se obtuvo como resultado un PCI de 73.66 según el rango de calificación, que corresponde a un pavimento de estado **bueno.**

Tabla 10 cuadro de patologías con mayor incidencia en la unidad de muestra 01, cuadra 06 del Jirón san Martín.

CUADRO DE INCIDENCIAS EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE							
SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 01							
	UNIDAD DE MUESTRA 26 LOSAS						
TIPO	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA				
FALLA	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA				
28	Grietas Lineales (M)	11.02	21.40%				
34	Punzonamiento(M)	9.34	18.14%				
32	Popouts	7.22	14.02%				
29	Parche Grande (mayor 0.45m2) (M)	7.00	13.59%				
28	Grietas Lineales (L)	4.82	9.36%				
26	Daño sello de Junta (M)	4.00	7.77%				
39	Descascaramiento de Junta (L)	4.00	7.77%				
38	Descascaramiento de esquina (M)	2.50	4.85%				
38	Descascaramiento de Esquina (L)	1.60	3.11%				
	TOTAL	51.50	100.00%				

Fuente: elaboración propia (2017).

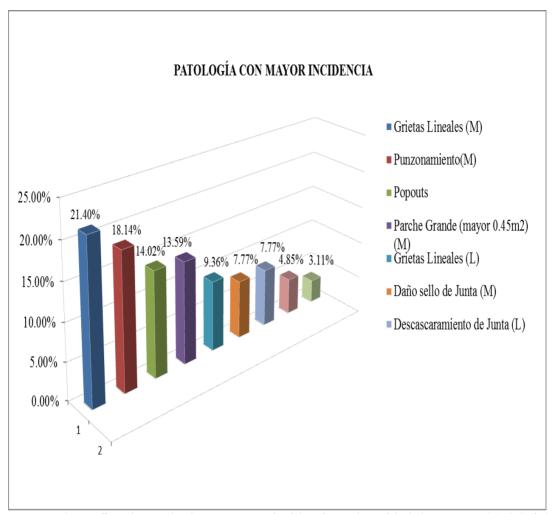


Figura 70. Grafico de patología con mayor incidencia en la unidad de muestra 01 del Jirón San Martín, cuadra 06.

Descripción e interpretación: Las patologías con mayor incidencia en el deterioro de esta unidad de muestra de la cuadra 06 son: Grietas lineales de severidad media con 21.40%, punzonamiento con nivel de severidad media con 18.14%, popoust con 14.02%, parche gran mayor a 0.45m2) de nivel de severidad media con 13.53%, grietas lineales de nivel de severidad baja con 9.36%, daño sello de junta con nivel de severidad medio 7.77%, descascascaramiento de junta de nivel de severidad bajo con 7.77%, descascaramiento de esquina de nivel medio con 4.85%, descascaramiento de esquina de severidad baja 3.11% de la superficie analizada, como se aprecia en la figura 70.

Unidad de muestra 02, cuadra 06, del Jirón San Martín

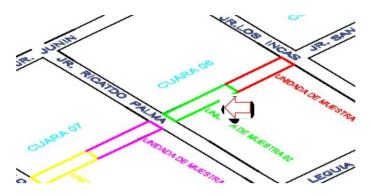
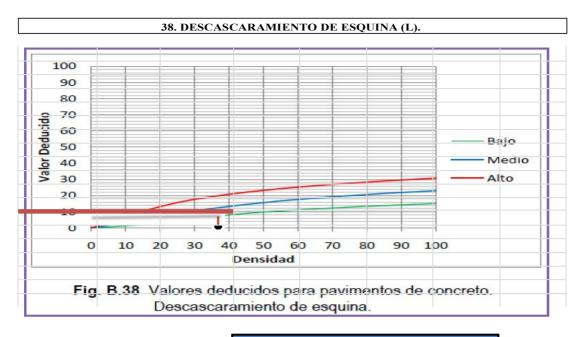



Tabla 11 Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 02

UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE											
(ILAF							L				
CAT	FACULTAD					DE INGENIERÍA CIVIL					
HOJA DE INSPECCIÓN DE CONDICIONES PARA UNIDAD DE MUESTRA						<u>\</u>					
	MÉTODO PCI										
Ramal:	Jiró	n San Ma	rtín			Unidad d	le Muestr	a: 02 ub:	icado en la	cuadra 06	
			10 Long	itud 496.0)4m	Fecha:		Ene	ro - 2017		
Distrito:	Sati	•				Numero de losas: 24					
Provincia						Área Total: 323.52m2					
Región:	Jun								00m x 3.371	m	
Evaluado	r: Rol	ert Reyne	r Hopper	n Miguel		Área de l	la losa:	13	3.48m2		
					DAÑ(
21 Blow							ento de A	Agregado			
22 Grita	de Equir	na				32 Popoi	ıts				
23 Losa	Dividida					33 Bomb	eo				
24 Grieta	a de Dura	abilidad "	D"			34 Punzo	onamiento)			
25 Escala	a					35 Cruce	de Vía F	érrea			
26 Diseñ	o del Se	llo de Jun	ta			36 Desco	onchamie	nto, Mapa	de Grietas		
27 Desni						Craquelado					
28 Grieta	as Lineal	es (Griet	as Longi	tudinales,		37 Grietas de Retracción					
Transver	sales y [Diagonale	s)			38 Descascaramiento de Esquina					
		e (mayor				39 Desca	iscaramie	nto de Jur	nta		
30 Parch	e Pequeî	io menor	o Igual 0	.45m2)							
	1	2	3	4	5	6	7	8	9	10	
A	32	39L,38L	32,39L	39L,32	29M,38M	38L,39L	32,38L	32,22M	38L,32	38M,32	
В		38L	39L		38L	38M	39L,38L	32		38L	
C	38L	39L,32									
D	32	39L									
	Da	ıño	Seve	ridad	Numero	de losa	Densi	idad%	Valor de	Reducción	
	38				37.50%		7.45				
	38		M		3			3.90			
	39		L		8	33.33%		7.43			
	22		ľ	M	1	4.17%		6.00			
	2	26	N	M				4.00			
	3	2			10)	41.67%		7.13		
	2	.9	N	M	1		4.17%		2.	2.42	
Fuente	Fuente: elaboración propia (2017)										

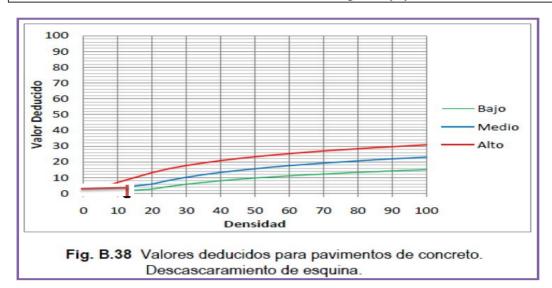
Fuente: elaboración propia (2017).

INTERPOLACIÓN DEL				
VALOR DEDUCIDO				
DENSIDAD				
37.50				
40.00 - 35.00 = 5.00				
40.00 -37.50 = 2.50				
2.50/5.00 = 0.50				
8.00 - 6.30 = 1.10				
1.10*0.50 = 0.55				
7.45 - 0.55 = 7.45				
VALOR DEDUCIDO				

7.45

	D	Valor Deducido			
)	Densidad	В	M	A	
	0.00	0.00	0.00	0.00	
	5.00	0.50	1.60	3.30	
0	10.00	1.30	3.10	7.00	
)	15.00	2.00	4.70	10.10	
)	20.00	2.70	5.90	13.20	
)	25.00	4.40	8.30	15.70	
5	30.00	5.80	10.20	17.70	
5	35.00	6.90	11.90	19.30	
	40.00	8.00	13.30	20.80	
	45.00	8.90	14.50	22.1	
OO	50.00	9.70	15.60	23.20	
	55.00	10.40	16.70	24.3	
	60.00	11.10	17.60	25.2	
	65.00	11.70	18.40	26.1	
	70.00	12.20	19.20	26.9	
	75.00	12.80	19.90	27.6	
	80.00	13.30	20.60	28.3	
	85.00	13.70	21.30	29.0	
	90.00	14.20	21.90	29.6	
	95.00	14.60	22.40	30.20	
	100.00	15.00	23.00	30.80	

38. Descascaramiento de Esquina.


Figura 71. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38L), identificado en la unidad de muestra 02 de la cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 7.45, a través de la densidad =37.50, de nivel de severidad = L

Se realiza el proceso de interpolación, como se puede apreciar en la figura 71.

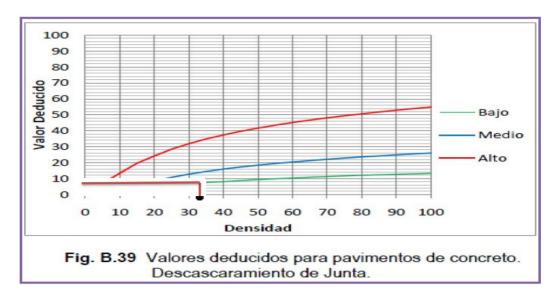
38. DESCASCARAMIENTO DE ESQUINA (M).

INTERPOLACIÓN DEL
VALOR DEDUCIDO

DENSIDAD
12.50
15.00-10.00 = 5.00
15.00 - 12.00 = 2.50
2.50/5.00 = 0.50
4.70-3.10 = 1.60
1.60*0.50 = 0.80
4.70 - 0.80 = 3.90

VALOR DEDUCIDO
3.90

38. Descascaramiento de Esquina.					
ъ	Val	or Deducido			
Densidad	В	M	A		
0.00	0.00	0.00	0.0		
5.00	0.50	1.60	3.30		
10.00	1.30	3.10	7.00		
15.00	2.00	4.70	10.10		
20.00	2.70	5.90	13.20		
25.00	4.40	8.30	15.70		
30.00	5.80	10.20	17.70		
35.00	6.90	11.90	19.30		
40.00	8.00	13.30	20.80		
45.00	8.90	14.50	22.10		
50.00	9.70	15.60	23.20		
55.00	10.40	16.70	24.30		
60.00	11.10	17.60	25.20		
65.00	11.70	18.40	26.10		
70.00	12.20	19.20	26.9		
75.00	12.80	19.90	27.6		
80.00	13.30	20.60	28.3		
85.00	13.70	21.30	29.0		
90.00	14.20	21.90	29.6		
95.00	14.60	22.40	30.2		
100.00	15.00	23.00	30.8		


Figura 72. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38M), identificado en la unidad de muestra 02, cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 3.90, a través de la densidad =12.50, de nivel de severidad = M.

Se realiza el proceso de interpolación como se puede apreciar en la figura 72.

39 DESCASCARAMIENTO DE JUNTA (L).

INTERPOLACIÓN DEL
VALOR DEDUCIDO

DENSIDAD				
33.33				
35.00-30.00 = 5.00				
35.00-33.33 = 1.67				
1.67/5.00 = 0.33				
7.63- 6.50 = 0.60				
0.60*0.33 = 0.20				
7.63 - 0.20 = 7.43				

VALOR DEDUCIDO
7.43

39. Descascaramiento de Junta.					
Densidad	Valor Deducido				
	В	M	A		
0.00	0.00	0.00	0.00		
5.00	1.40	2.00	7.00		
10.00	2.40	4.00	13.40		
15.00	3.20	6.10	19.70		
20.00	4.20	8.30	24.20		
25.00	5.40	10.80	28.50		
30.00	6.50	12.80	31.90		
35.00	7.63	14.50	34.90		
40.00	8.10	16.00	37.40		
45.00	8.80	17.30	39.70		
50.00	9.40	18.40	41.70		
55.00	9.90	19.50	43.50		
60.00	10.40	20.40	45.20		
65.00	10.90	21.30	46.70		
70.00	11.30	22.10	48.10		
75.00	11.70	22.90	49.40		
80.00	12.10	23.60	50.60		
85.00	12.40	24.20	51.80		
90.00	12.70	24.90	52.90		
95.00	13.00	25.50	53.90		
100.00	13.30	26.00	54.90		

Figura 73. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de junta (38L), identificado en la unidad de muestra 02, cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 7.43, a través de la densidad =33.33, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 73.

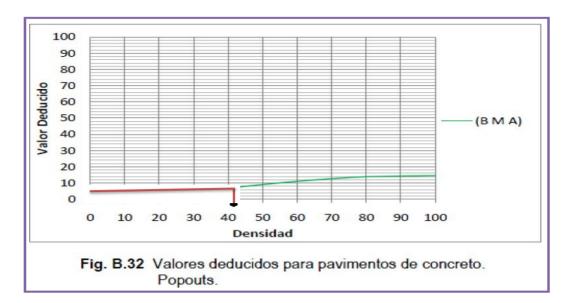
22 GRIETA DE ESQUINA (M).

INTERPOLACIÓN DEL
VALOR DEDUCIDO

DENSIDAD					
4.1	7				
5.00-0.00 =	5.00				
5.00-4.17 =	0.83				
0.83/5.00 =	0.17				
7.20 - 0.00 =	7.20				
7.20*0.17 =	1.20				
7.20 - 1.20 =	6.00				

VALOR DEDUCIDO	
6.00	

22 Grieta de Esquina							
Densidad	Valor Deducido						
Densidad	В	M	A				
0.00	0.00	0.00	0.00				
5.00	3.50	7.20	12.10				
10.00	8.70	14.50	23.40				
15.00	12.60	21.70	34.00				
20.00	16.40	28.70	41.50				
25.00	20.20	34.40	47.30				
30.00	23.80	39.20	52.10				
35.00	27.40	43.10	56.10				
40.00	31.00	46.60	60.00				
45.00	34.50	49.60	64.00				
50.00	37.50	52.30	67.30				
55.00	39.70	53.80	69.30				
60.00	41.20	55.30	70.90				
65.00	42.60	56.60	72.40				
70.00	43.90	57.80	73.80				
75.00	45.10	58.90	75.00				
80.00	46.20	60.00	76.20				
85.00	47.30	61.00	77.30				


Figura 74. Ábaco y tabla para hallar el valor deducido, del daño grieta de esquina (22M), identificado en la unidad de muestra 02 de la cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 6.00, a través de la densidad =4.17, de nivel de severidad = M

Se realiza el proceso de interpolación, como se puede apreciar en la figura 74.

32 POPOUTS.

INTERPOLACIÓN DEL
VALOR DEDUCIDO

DENSIDAD					
41.67					
45.00-40.00 = 5.00					
45.00-41.67 = 3.33					
3.33/5.00 = 0.67					
8.00 - 6.70 = 1.30					
1.30*0.67 = 0.87					
8.00 - 0.87 = 7.13					

VALOR DEDUCIDO							
7.13							

32. Popouts					
(Desprendimientos).					
	Valor				
Densidad	Deducido				
	B M A				
0.00	0.00				
5.00	0.70				
10.00	1.50				
15.00	2.30				
20.00	3.20				
25.00	4.00				
30.00	4.80				
35.00	5.70				
40.00	6.70				
45.00	8.00				
50.00	9.10				
55.00	10.10				
60.00	11.10				
65.00	11.90				
70.00	12.70				
75.00	13.40				
80.00	13.90				
85.00	14.10				
90.00	14.30				
95.00	14.40				
100.00	14.60				

Figura 75. Ábaco y tabla para hallar el valor deducido, del daño popoust, identificado en la unidad de muestra 02, cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 7.13, a través de la densidad =41.67.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 75.

29 PARCHE GRANDE MAYOR A 0.45M2 (M).

		I	N	T	ΕI	RPC	DL.	A	C	IÓI	N PARA
н	٨	т	т	۸	D	FI	V	۸	т	ΩP	DEDLICIDO

VALOR DEDUCIDO	
2.42	

29	Parche Grande (> 0.45m2) y							
Acometidas de Servicios Públicos								
Densidad	Valor Deducido							
Densidad	В	M	A					
0.00	0.00	0.00	0.00					
5.00	1.10	2.90	8.00					
10.00	2.70	5.80	15.70					
15.00	4.30	8.80	23.20					
20.00	6.30	11.70	29.50					
25.00	9.40	16.90	34.60					
30.00	11.90	21.10	39.40					
35.00	14.00	24.70	43.50					
40.00	15.80	27.80	47.00					
45.00	17.50	30.50	50.10					
50.00	18.90	33.00	52.90					
55.00	20.20	35.20	55.40					
60.00	21.40	37.20	57.70					
65.00	22.50	39.00	59.80					
70.00	23.50	40.70	61.80					
75.00	24.50	42.30	63.60					
80.00	25.40	43.80	65.30					
85.00	26.20	45.20	66.90					

Figura 76. Ábaco y tabla para hallar el valor deducido, del daño parche grande mayor a 0.45m2, identificado en la unidad de muestra 02 cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 2.42, a través de la densidad =4.17,

de nivel de severidad = M

Se realiza el proceso de interpolación, como se puede apreciar en la figura 76.

28 Daño sello de Junta (M).

VALOR DEDUCIDO

4

26	Daño sello de Junata							
Valor Deducido								
В	M	Α						
2	4	8						

Figura 77. Cuadro para hallar el valor deducido del daño sello de junta (26M), identificado en la unidad de muestra 01del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

m = 1 + (9/98) * (100 - HDV)

Donde:

m = Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo HDV = El Mayor Valor Deducido Individual para la Unidad de Muestreo

> Dato: HDV = 7.45 m = 9.499489796

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM		VALOR DEDUCIDO							TOTAL	q	VDC		
1	7.45	7.43	7.13	6.00	4.00	3.90	2.42				38.33	7	0.00
2	7.45	7.43	7.13	6.00	4.00	3.90	2.00				37.91	6	16.78
3	7.45	7.43	7.13	6.00	4.00	2.00	2.00				36.01	5	17.73
4	7.45	7.43	7.13	6.00	2.00	2.00	2.00				34.01	4	18.57
5	7.45	7.43	7.13	2.00	2.00	2.00	2.00				30.01	3	18.01
6	7.45	7.43	2.00	2.00	2.00	2.00	2.00				24.88	2	20.11
7	7.45	2.00	2.00	2.00	2.00	2.00	2.00				19.45	1	19.45
8							,						

Figura 78. Cuadro para el cálculo del máximo valor deducido corregido VDC, de la unidad de muestra 02 del Jirón San Martín, cuadra 06.

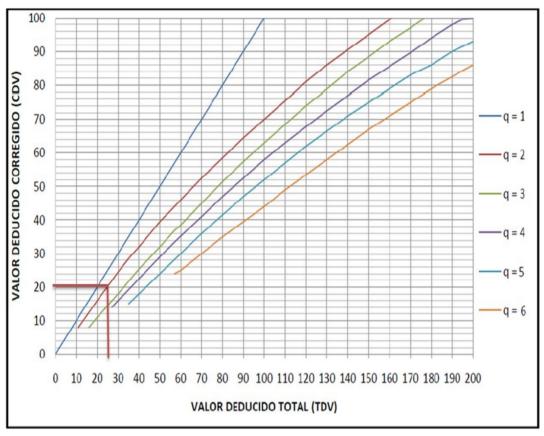


Figura 79. Abaco para hallar el máximo valor deducido corregido de la unidad de muestra 02, del Jirón San Martín, cuadra 06.

Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 20.11, a través del valor deducido total = 24.88, donde q = 2, como se puede apreciar en la figura 79.

TERPOLACIÓN PARA HALLAR EL	Total de	valores Deductions Corregions						los		
ALOR DEDUCIDOS CORREGIDOS	Valores Deducidos	q1	q2	q3	q4	q5	q6	q7		
ALOR DEDUCIDOS CORREGIDOS	0	0.00								
VDC 16.78	10	10.00								
q =6 37.97	11	11.00	8.00							
4 0	16	16.00	12.40	8.00						
40.00- 35.00 = 5.00	20	20.00	16.00	11.00						
40.00- 37.97 = 2.03	27	27.00	21.90	15.90	14.00					
2.03/5.00 = 0.41	30	30.00	24.50	18.00	16.00					
18.00 - 15.00 = 3.00	35	35.00	28.50	21.70	19.20	17.10	15.00			
3.00*0.41 = 1.22	40	40.00	32.00	25.40	22.50	20.20	18.00			
18.00 - 1.22 = 16.78	50	50.00	39.50	32.00	29.00	26.50	24.00			
2010	57	57.00	44.00	36.90	33.40	30.80	28.20	26.3		
VDC 17.73	60	60.00	46.00	38.50	35.20	32.60	30.00	28.3		
q = 5 36.01	70	70.00	52.50	45.00	41.00	38.50	36.00	34.0		
1 -	80	80.00	58.50	51.40	47.00	44.20	41.50	39.3		
40.00 - 35.00 = 5.00	90	90.00	64.50	57.40	52.50	49.70	47.00	44.5		
40.00 - 36.01 = 3.99	100	100.00	70.00	63.00	58.00	55.00	52.00	49.3		
3.99/5.00 = 0.80	110		75.50	68.50	63.00	60.00	57.00	54.3		
20.20 - 17.10 = 3.10	120		81.00	74.00	67.80	64.90	62.00	59.2		
3.10*0.80 = 2.47	130		86.00	78.90	72.50	69.50	66.50	63.7		
20.20 - 2.47 = 17.73	140		90.50	84.00	77.00	74.00	71.00	68.2		
	150		95.00	88.40	81.50	78.20	75.00	72.3		
VDC 18.57	160		99.50	93.00	85.50	82.20	79.00	76.3		
q = 4 34.01	161		100.00	93.40	86.00	82.70	79.40	76.7		
1	170			97.00	89.60	86.30	83.00	80.3		
35.00 - 30.00 = 5.00	177			100.00	92.60	88.80	85.10	82.7		
35.00 - 34.01 = 0.99	180				94.00	90.00	86.00	83.7		
0.99/5.00 = 0.20	190				98.00	94.00	90.00	87.5		
19.20 - 16.00 = 3.20	195				99.50	95.50	91.50	89.		
3.20*0.20 = 0.63	200				100.00	96.50	93.00	Ģ		
19.20 - 0.63 = 18.57										
VDC 18.01	VDC	21.10		VDC	21.10					
$q=3 \qquad \qquad 30.01$	q = 2	24.88		q = 2	19.45					
35.00 - 30.00 = 5.00	27.00 - 20.00 =	7.00		20.00 - 16.00 =	4.00					
35.00 - 30.01 = 4.99	27.00 - 24.88 =	2.12	1	20.00 - 19.45 =	0.55					
4.99/5.00 = 1.00	2.12/7.00 = 0.3	0	1	0.55/4.00 = 0.1	4					
21.70- 18.00 = 3.70	21.90 - 16.00 =	5.90	1	20.00 - 16.00 =	4.00					
3.70*1.00 = 3.69	7.00*0.84 = 1.7	19]	4.00*0.14 = 0.5	55					
21.70 - 3.69 = 18.01	21.90 - 1.79 =	20.11		20.00 - 0.55 =	19.45					

Figura 80. Interpolacion para hallar el valor deducidos corregidos en la unidada de muestra 02.

	CALIFICACIÓN PCI	MÁXIMO VDC = 20.11
Rango	Clasificación	PCI = 100 - MÁXIMO VDC
100 - 85	Excelente	
85 - 70	Muy Bueno	PCI = 100 - 20.11
70 - 55	Bueno	
55 - 40	Regular	PCI = 79.89
40 - 25	Malo	
25 -10	Muy Malo	CLASIFICACIÓN: MUY BUENO
10 - 0	Fallado	

Figura 81. Rango de calificación del índice de condición del pavimento (PCI) unidad de muestra 02, cuadra 06 del Jirón San Martín.

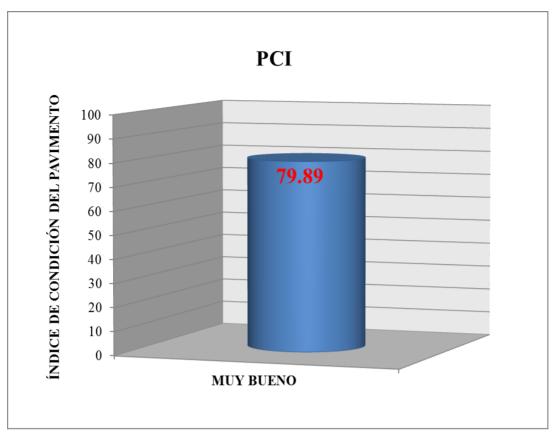


Figura 82. Cálculo del índice de condición del pavimento PCI, en la unidad de muestra 02 del Jirón san Martín en la cuadra 06.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 82. Se obtuvo como resultado un PCI de 7989 según el rango de calificación, corresponde a un pavimento de estado muy bueno.

Tabla 12 cuadro de patologías con mayor incidencia en la unidad de muestra 02, cuadra 06 del Jirón san Martín.

CUADI	CUADRO DE INCIDENCIAS EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE								
	SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 02								
	UNIDAD DE MUESTRA 26 LOSAS								
TIPO	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA						
FALLA	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA						
38	Descascaramiento de Esquina (L)	7.45	19.44%						
39	Descascaramiento de Junta (L)	7.43	19.38%						
32	Popoust	7.13	18.60%						
22	Grieta de Esquina (M)	6.00	15.65%						
26	Daño sello de Junta (M)	4.00	10.44%						
38	Descascaramiento de Esquina (M)	3.90	10.17%						
29	Parche Grande Mayor a 0.45m2 (M)	2.42	6.31%						
	TOTAL	38.33	100.00%						

Fuente: elaboración propia (2017).

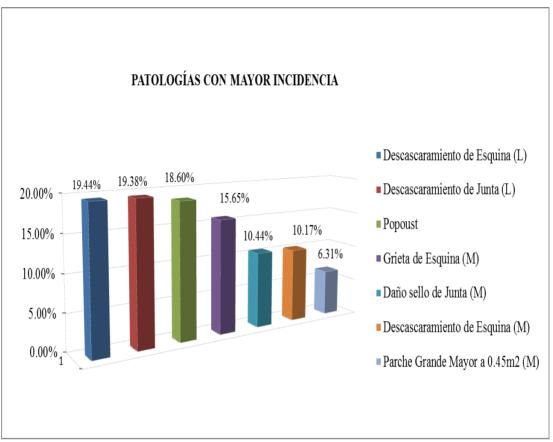


Figura 83. Grafico de patología con mayor incidencia en la unidad de muestra 02 del Jirón san Martín, cuadra 06.

Descripción e interpretación: conforme a los objetivos de investigación se a determinado las patologías con mayor incidencia en el deterioro de esta unidad de muestra de la cuadra 06, descascaramiento de esquina de nivel de severidad bajo con 19.44%, luego esta la falla descascaramiento de junta de nivel de severidad bajo que presenta un 15.65%, popoust con 18.60%, grieta de esquina de nivel de severidad medio con 15.65%, daño sello de junta de nivel de severidad medio con 10.44%, descascaramiento de esquina de nivel de severidad medio 10.17%, parche grande mayor 0.45m2 de nivel de severidad medio 6.31% de la superficie analizada, como se aprecia en la figura 83.

Unidad de muestra 03 cuadra 07 del Jirón San Martín

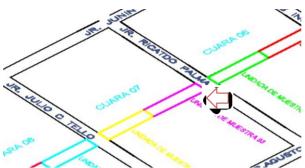
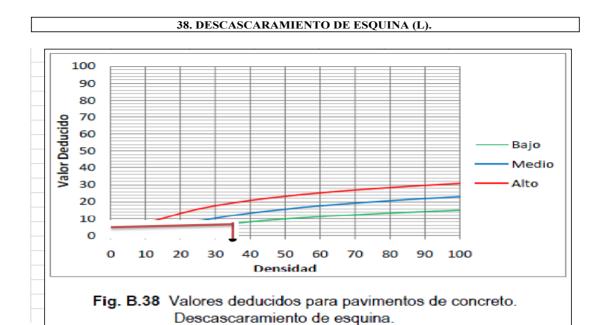



Tabla 13. Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 03

Illuestra										
ULAR	ECH		UNIVE	RSIDAD						ΓE
ULA	OLIG			FAC	CULTAD	DE ING	ENIERÍ	A CIVIL		
	HOJA	DE INS	PECCIÓ	N DE CC			RA UNI	DAD DE	MUESTR	RA
	MÉTODO PCI									
Ramal:	Jiró	n San Ma	rtín			Unidad d	e Muestra	ı: 03 ı	ubicado en	la cuadra 07
Sección:	Cuadra	6,7,8,9 y	10 Longi	tud 496.04	m	Fecha:		Ene	ero - 2017	
Distrito:	Sati	ipo				Numero	de losas:		26	
Provinci	a: Sati	ipo				Área Tot	tal:	350	0.48m2	
Región:	Jun	ín				Dimensi	ones de la	a Losa: 4.0	00m x 3.3'	7m
Evaluado	or: Rol	ert Reyne	r Hoppen	Miguel		Área de	la losa:	13	3.48m2	
					DAÑ	0				
21 Blow	up - Buc	kling						Agregado		
22 Grita	de Equi	ıa				32 Popoi	uts			
23 Losa	Dividida	ı				33 Bomb	eo			
24 Griet	a de Dur	abilidad "	D"			34 Punzo	onamiento	0		
25 Escal	a					35 Cruce	de Vía F	Férrea		
26 Diser	ĭo del Se	llo de Jun	ta			36 Desco	onchamie	nto, Mapa	de Grieta	s
		il/Berma				Craquelado				
		les (Griet		udinales,		37 Grietas de Retracción				
		Diagonale				38 Desca	ascaramie	ento de Esc	quina	
		e (mayor (39 Descascaramiento de Junta				
30 Parch	ne Pequei	ño menor	o Igual 0	.45m2)						
	1	2	3	4	5	6	7	8	9	10
A	32	32	32	32	32,36L	36L,32	32,38L	38L,36L	32,39L	32,36L
В	22M	29M,28L	22M		38L,39L		38L,32	39L,32	36L	38L,36L
C	32 381	38L,39L	361 381							
D		36L,37L								
	36L	-	38L		**				** *	-
		año	Severida		Numero		Densidad 34.62%			Deducido
38 L				9				5.82		
22 M 32		M		2		9% 15%		1.13 3.25		
					. <u>4</u> 1		15% 35%		2.23	
	29 M 39 L				4		38%		3.28	
	39 L L L				8		77%		5.69	
		28		L		<u> </u>		35%		2.48
							3.0	.5 / 0		_
-		26		M	1					1.00
Fuente:	<i>Tuente:</i> elaboración propia (2017).									

Fuente: elaboración propia (2017).

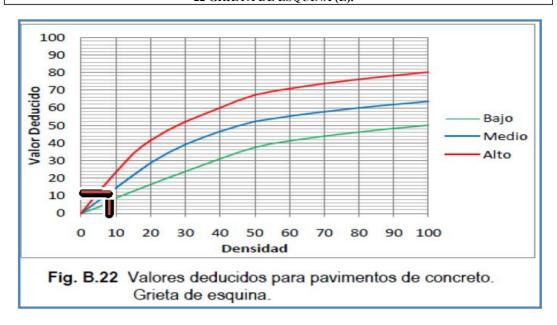

INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	38. Descascaramiento de Esquina.						
DE TIEGR DED COID C		Valor Deducido					
DENSIDAD	Densidad -	В	M	A			
34.62	0.00	0.00	0.00	0.00			
	5.00	0.50	1.60	3.30			
35.00-30.00 = 5.00	10.00	1.30	3.10	7.00			
35.00 - 34.62 = 0.38	15.00	2.00	4.70	10.10			
0.38/5.00 = 0.08	20.00	2.70	5.90	13.20			
6.90- 5.80 = 1.10	25.00	4.40	8.30	15.70			
1.10*0.80 = 0.08	30.00	5.80	10.20	17.70			
6.90 - 0.08 = 6.3	35.00	6.90	11.90	19.30			
	40.00	8.00	13.30	20.80			
	45.00	8.90	14.50	22.10			
VALOR DEDUCIDO	50.00	9.70	15.60	23.20			
6.82	55.00	10.40	16.70	24.30			
	60.00	11.10	17.60	25.20			
	65.00	11.70	18.40	26.10			
	70.00	12.20	19.20	26.90			
	75.00	12.80	19.90	27.60			
	80.00	13.30	20.60	28.30			
	85.00	13.70	21.30	29.00			
	90.00	14.20	21.90	29.60			
	95.00	14.60	22.40	30.20			
	100.00	15.00	23.00	30.80			

Figura 84. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38L), identificado en la unidad de muestra 03 de la cuadra 07 del Jirón San Martín

En el ábaco se obtiene un valor deducido de 6.82, a través de la densidad =34.62, de nivel de severidad = L.

Se realiza el proceso de interpolación como se puede apreciar en la figura 84.

22 GRIETA DE ESQUINA (L).

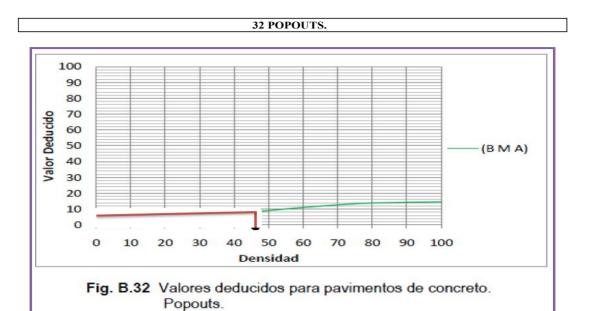

INTERPOLACIÓN PARA HALLAR	22 Grieta de Esquina							
ELVALOR DEDUCIDO	ъ	Valor Deducido						
	Densidad	В	M	A				
DENSIDAD	0.00	0.00	0.00	0.00				
7.69	5.00	3.50	7.20	12.10				
	10.00	8.70	14.50	23.40				
10.00-5.00 = 5.00	15.00	12.60	21.70	34.00				
10.00-7.69 = 2.31	20.00	16.40	28.70	41.50				
2.31/5.00 = 0.46	25.00	20.20	34.40	47.30				
14.50-7.21 = 7.30	30.00	23.80	39.20	52.10				
7.30*0.46 = 3.37	35.00	27.40	43.10	56.10				
14.50 - 3.37 =	40.00	31.00	46.60	60.00				
	45.00	34.50	49.60	64.00				
	50.00	37.50	52.30	67.30				
VALOR DEDUCIDO	55.00	39.70	53.80	69.30				
11.13	60.00	41.20	55.30	70.90				
	65.00	42.60	56.60	72.40				
	70.00	43.90	57.80	73.80				
	75.00	45.10	58.90	75.00				
	80.00	46.20	60.00	76.20				
	85.00	47.30	61.00	77.30				

Figura 85. Ábaco y tabla para hallar el valor deducido, del daño grieta de esquina (22M), identificado en la unidad de muestra 03, cuadra 06 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 11.13, a través de la densidad =7.69 de nivel de severidad = M.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 85.

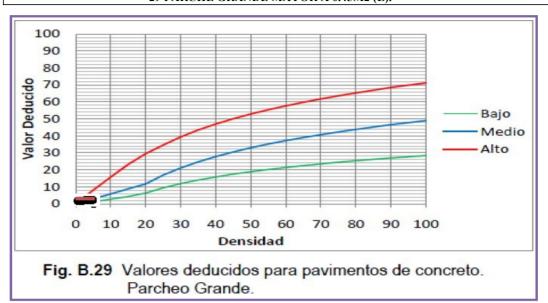

INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	32. Popouts (Desprendimientos).				
DENSIDAD 46.15	Densidad	Valor Deducido B M A			
	0.00	0.00			
50.00 -45.00 = 5.00	5.00	0.70			
50.00-46.15 = 3.85	10.00	1.50			
3.85/5.00 = 0.77	15.00	2.30			
9.10-8.00 = 1.10	20.00	3.20			
0.80*0.60 = 0.85	25.00	4.00			
9.10 - 0.85 = 8.2	30.00	4.80			
	35.00	5.70			
	40.00	6.70			
VALOR DEDUCIDO	45.00	8.00			
8.25	50.00	9.10			
	55.00	10.10			
	60.00	11.10			
	65.00	11.90			
	70.00	12.70			
	75.00	13.40			
	80.00	13.90			
	85.00	14.10			
	90.00	14.30			
	95.00	14.40			
,	100.00	14.60			

Figura 86. Ábaco y tabla para hallar el valor deducido, del daño popoust (32), identificado en la unidad de muestra 03, cuadra 07 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 8.25, a través de la densidad = 46.15.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 86.

29 PARCHE GRANDE MAYOR A 0.45M2 (L).


INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	29	Parche Gi Acometidas	rande (> 0.4 de Servicios	
			or Deducido	
DENSIDAD	Densidad	В	M	A
3.85	0.00	0.00	0.00	0.00
	5.00	1.10	2.90	8.00
5.00 -0.00 = 5.00	10.00	2.70	5.80	15.70
5.00 -4.00 = 1.15	15.00	4.30	8.80	23.20
1.00/5.00 = 0.23	20.00	6.30	11.70	29.50
2.90- 0.00 = 2.90	25.00	9.40	16.90	34.60
2.50*0.60 = 0.67	30.00	11.90	21.10	39.4
2.90 - 0.58 = 2.2	35.00	14.00	24.70	43.50
	40.00	15.80	27.80	47.0
	45.00	17.50	30.50	50.1
VALOR DEDUCIDO	50.00	18.90	33.00	52.90
2.23	55.00	20.20	35.20	55.40
	60.00	21.40	37.20	57.70
	65.00	22.50	39.00	59.80
	70.00	23.50	40.70	61.80
	75.00	24.50	42.30	63.60
	80.00	25.40	43.80	65.30
	85.00	26.20	45.20	66.90

Figura 87. Ábaco y tabla para hallar el valor deducido, Del daño, parche grande mayor a 0.45m2 (29M), identificado en la unidad de muestra 03, cuadra 07 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 2.23, a través de la densidad =3.85, de nivel de severidad = M,

Se realiza el proceso de interpolación, como se puede apreciar en la figura 87.

INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	39. Descascaramiento de Junta.						
		Val	or Deducido				
DENSIDAD		В	M	A			
15.38	0.00	0.00	0.00	0.00			
	5.00	1.40	2.00	7.00			
20.00-15.00 = 5.00	10.00	2.40	4.00	13.40			
20.00-15.38 = 4.62	15.00	3.20	6.10	19.70			
4.62/5.00 = 0.92	20.00	4.20	8.30	24.20			
4.20- 3.20 = 1.00	25.00	5.40	10.80	28.50			
1.00*0.92 = 0.92	30.00	6.50	12.80	31.90			
4.20 - 0.92 =	35.00	7.63	14.50	34.90			
	40.00	8.10	16.00	37.40			
	45.00	8.80	17.30	39.70			
VALOR DEDUCIDO	50.00	9.40	18.40	41.70			
3.28	55.00	9.90	19.50	43.50			
	60.00	10.40	20.40	45.20			
	65.00	10.90	21.30	46.70			
	70.00	11.30	22.10	48.10			
	75.00	11.70	22.90	49.40			
	80.00	12.10	23.60	50.60			
	85.00	12.40	24.20	51.80			
	90.00	12.70	24.90	52.90			
	95.00	13.00	25.50	53.90			
	100.00	13.30	26.00	54.90			

Figura 88. Ábaco y tabla para hallar el valor deducido, del daño, descascaramiento de junta (39L), identificado en la unidad de muestra 03, cuadra 07 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 3.28, a través de la densidad =15.38, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 88.

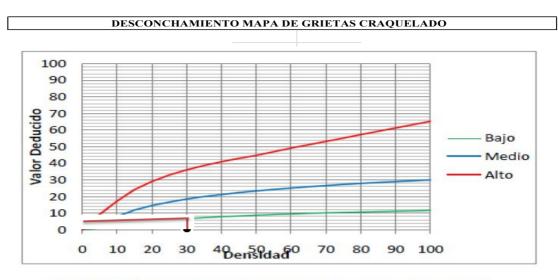


Fig. B.36 Valores deducidos para pavimentos de concreto.

Desconchamiento.

INTERPOLACIÓN DEL VALOR DEDUCIDO						
DENSIDAD						
).77					
35.00-30.00 = 35.00-30.77 =	5.00					
4.23/5.00 =	4.23 0.85					
7.30 - 6.70 =	0.60					
0.60*0.85 =	0.51					
7.30 - 0.51 =	6.79					

VALOR DEDUCIDO

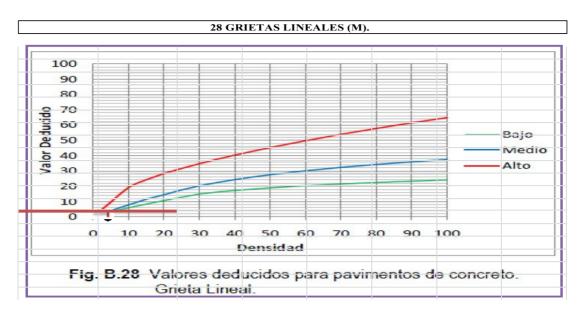

36. Descascaramiento por Agrietamiento.						
Densidad	Valor Deducido					
Densidad	В	M	A			
0.00	0.00	0.00	0.00			
5.00	1.20	4.20	9.30			
10.00	2.10	8.00	17.30			
15.00	3.80	11.90	24.20			
20.00	5.00	14.60	29.10			
25.00	5.90	16.70	33.00			
30.00	6.70	18.50	36.10			
35.00	7.30	20.00	38.70			
40.00	7.90	21.20	41.00			
45.00	8.30	22.40	43.00			
50.00	8.80	23.40	44.80			
55.00	9.20	24.30	47.00			
60.00	9.50	25.10	49.20			
65.00	9.90	25.90	51.20			
70.00	10.20	26.60	53.20			
75.00	10.50	27.30	55.20			
80.00	10.70	27.90	57.30			
85.00	11.00	28.50	59.30			
90.00	11.20	29.00	61.30			
95.00	11.40	29.50	63.30			
100.00	11.70	30.00	65.30			

Figura 89. Ábaco y tabla para hallar el valor deducido, del daño, desconchamiento mapa de grietas craquelado, (36L), identificado en la unidad de muestra 03, cuadra 07 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 6.79, a través de la densidad =30.77, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 89.

INTERPOLACIÓN PARA HALLAR	28	Grietas Lin	neales (Long	itudinales,	
ELVALOR DEDUCIDO	Transversales y Diagonales)				
	Densidad	V	alor Deduci	do	
DENSIDAD	Densidad	В	M	A	
3.87	0.00	0.00	0.00	0.00	
	5.00	3.20	4.00	9.60	
5.00 - 0.00 = 5.00	10.00	5.90	7.80	19.20	
5.00-3.87 = 1.13	15.00	8.30	11.50	24.20	
1.13/5.00 = 0.23	20.00	10.60	14.40	28.30	
3.20 - 0.00 = 3.20	25.00	12.80	17.60	31.60	
3.20*0.23 = 0.72	30.00	14.90	20.20	34.70	
3.20 - 0.72 = 2.48	35.00	16.20	22.40	37.60	
	40.00	17.20	24.30	40.30	
	45.00	18.10	26.00	42.80	
VALOR DEDUCIDO	50.00	18.90	27.50	45.20	
2.48	55.00	19.60	28.80	47.50	
	60.00	20.30	30.10	49.70	
	65.00	20.90	31.20	51.80	
	70.00	21.40	32.30	53.90	
	75.00	22.00	33.30	55.80	
	80.00	22.40	34.20	57.70	
	85.00	22.90	35.10	59.60	
	90.00	23.30	35.90	61.40	
	95.00	23.70	36.70	63.10	
	100.00	24.10	37.40	64.80	

Figura 90. Ábaco y tabla para hallar el valor deducido, del daño, grietas lineales (28L), identificado en la unidad de muestra 03, cuadra 07 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 2.48, a través de la densidad =3.87, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 90.

VALOR DEDUCIDO 4 DAÑO SELLO DE JUNTA Valor Deducido B M A 2 4 8

Figura 91. Cuadro para hallar el valor deducido del daño sello de junta (26M), identificado en la unidad de muestra 03, cuadra 07del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

m = 1 + (9/98)*(100 - HDV)

Donde:

m=Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo

HDV = El Mayor Valor Deducido Individual para la Unidad de Muestreo

Dato: HDV = 11.13 m = 9.161530612

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM		VALOR DEDUCIDO						TOTAL	q	VDC			
1	11.13	8.25	6.82	6.69	4.00	3.28	2.48	2.23			44.88	8	0.00
2	11.13	8.36	6.82	6.69	4.00	3.28	2.48	2.00			44.76	7	0.00
3	11.13	8.36	6.82	6.69	4.00	3.28	2.00	2.00			44.28	6	20.57
4	11.13	8.36	6.82	6.69	4.00	2.00	2.00	2.00			43.00	5	22.09
5	11.13	8.36	6.82	6.69	2.00	2.00	2.00	2.00			41.00	4	23.15
6	11.13	8.36	6.82	2.00	2.00	2.00	2.00	2.00			36.31	3	22.67
7	11.13	8.36	2.00	2.00	2.00	2.00	2.00	2.00			31.49	2	25.69
8	11.13	2.00	2.00	2.00	2.00	2.00	2.00	2.00			25.13	1	25.13

Figura 92. Cuadro cálculo del máximo valor deducido corregido VDC, de la unidad de muestra 03, del Jirón San Martín, cuadra 07.

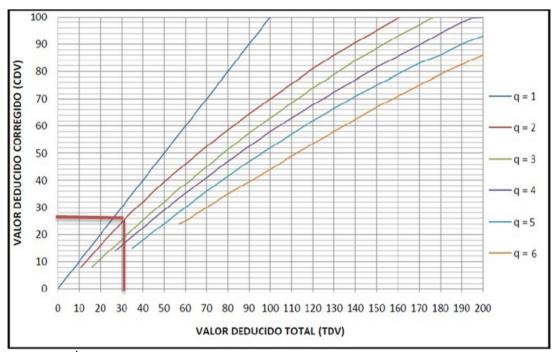


Figura 93. Ábaco para hallar el máximo valor deducido corregido de la unidad de muestra 03, del Jirón San Martín, cuadra 07.

Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 25.69, a través del valor deducido total = 31.49, donde q = 2, como se puede apreciar en la figura 93.

NTERPOLACIÓN PARA HALLAR EL	Total de	Valores Deducidos Corregidos								
NIERPOLACION PARA HALLAR EL	Valores	~1	q2	l	q4	q5	q6	q 7	~ 0	
VALOR DEDUCIDO CORREGIDO	Deducidos	q1	q2	q3	q4	qэ	qo	q/	q8	
	0	0.00								
VDC 20.57	10	10.00								
q = 6 44.28	11	11.00	8.00							
	16	16.00	12.40	8.00						
50.00-40.00 = 10.00	20	20.00	16.00	11.00						
50.00-44.28 = 5.7	27	27.00	21.90	15.90	14.00					
5.7/10.00 = 0.57	30	30.00	24.50	18.00	16.00					
24.00-18.00 = 6.00	35	35.00	28.50	21.70	19.20	17.10	15.00			
6.00*0.57 = 3.43	40	40.00	32.00	25.40	22.50	20.20	18.00			
24.00 - 3.43 = 20.57	50	50.00	39.50	32.00	29.00	26.50	24.00			
<u> </u>	57	57.00	44.00	36.90	33.40	30.80	28.20	26.80	25.40	
VDC 22.09	60	60.00	46.00	38.50	35.20	32.60	30.00	28.30	26.60	
q = 5 43.00	70	70.00	52.50	45.00	41.00	38.50	36.00	34.00	32.00	
	80	80.00	58.50	51.40	47.00	44.20	41.50	39.30	37.10	
50.00 - 40.00 = 10.00	90	90.00	64.50	57.40	52.50	49.70	47.00	44.50	42.00	
50.00 - 43.00= 7.00	100	100.00	70.00	63.00	58.00	55.00	52.00	49.30	46.60	
7.00/10.00 = 0.70	110		75.50	68.50	63.00	60.00	57.00	54.30	51.60	
26.50 - 20.20 = 6.30	120		81.00	74.00	67.80	64.90	62.00	59.20	56.40	
6.30*0.70 = 4.41	130		86.00	78.90	72.50	69.50	66.50	63.70	60.90	
26.50-4.41 = 22.09	140		90.50	84.00	77.00	74.00	71.00	68.20	65.40	
	150		95.00	88.40	81.50	78.20	75.00	72.30	69.60	
VDC 23.15	160		99.50	93.00	85.50	82.20	79.00	76.30	73.60	
q = 4 41.00	161		100.00	93.40	86.00	82.70	79.40	76.70	74.00	
	170			97.00	89.60	86.30	83.00	80.30	77.60	
50.00-40.00 = 10.00	177			100.00	92.60	88.80	85.10	82.70	80.30	
50.00 - 41.00= 9.00	180				94.00	90.00	86.00	83.70	81.40	
9.00/10.00 = 0.90	190				98.00	94.00	90.00	87.50	85.00	
29.00 - 22.50 = 6.50	195				99.50	95.50	91.50	89.10	86.70	
6.50*0.90 = 5.85	200				100.00	96.50	93.00	90.70	88.40	
29.00- 5.85 = 23.15										
AUD G										
VDC 22.67	VDC	25.69		VDC	25.13					
q = 3 36.31	q = 2	31.49		q = 2	25.13					
40.00 - 35.00 = 5.00	35.00 - 30.00 =]	27.00-20.00						
40.00 - 36.31 = 3.7	35.00 - 31.49 =		1	27.00-25.13						
3.70/5.00 = 0.74		0.70	1	1.90/7.00 = 0						
25.40-21.70= 3.70	28.50- 24.50 =]	27.00-20.00						
3.70*0.74 = 2.73	4.00*0.70 = 2	2.81		7.00*0.27 = 1	1.87					
25.40 - 2.73 = 22.67	28.50 - 2.81 =	25.69		27.00- 1.87 =		1				

Figura 94. Interpolación para hallar el valor deducido corregido en la unidad de muestra 03.

RANGOS DE O	CALIFICACIÓN PCI	MÁXIMO VDC = 25.69
Rango	Clasificación	PCI = 100 - MÁXIMO VDC
100 - 85	Excelente	
85 - 70	Muy Bueno	PCI = 100-25.69
70 - 55	Bueno	
55 - 40	Regular	PCI = 74.31
40 - 25	Malo	
25 -10	Muy Malo	CLASIFICACIÓN: MUY BUENO
10 - 0	Fallado	

Figura 95. Rango de calificación del índice de condición del pavimento (PCI) unidad de muestra 03, cuadra 07 del Jirón San Martín.

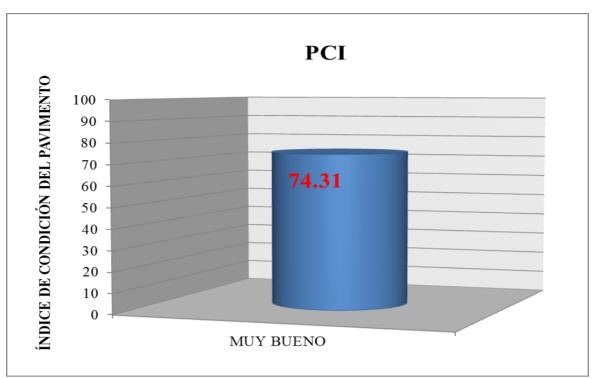


Figura 96. Cálculo del índice de condición del pavimento PCI en la unidad de muestra 03 del Jirón San Martín, cuadra 07.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 96 se obtuvo como resultado un PCI de 74.31 según el rango de calificación, que corresponde a un pavimento de estado **muy bueno.**

Tabla 14 cuadro de patologías con mayor incidencia en la unidad de muestra 03, cuadra 07, del Jirón san Martín.

CUAD	CUADRO DE INCIDENCIAS EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE							
	SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 03							
	UNIDAD DE MUESTRA 26 LOSAS							
TIPO	NOMBRE DE FALLAS	INCIDENCIA						
FALLA	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA					
22	Grieta de Esquina (M)	11.13	24.80%					
32	Popoust	8.25	18.38%					
38	Descascaramiento de Esquina (L)	6.82	15.20%					
36	Desconchamiento Mapa de Grietas Craquelado (L)	6.69	14.91%					
26	Daño Sello de Junta (M)	4.00	8.91%					
39	Descascaramiento de junta (L)	3.28	7.31%					
28	Grietas Lineales (L)	2.48	5.53%					
29	Parche Grande (mayor a 0.45m2) (M)	2.23	4.97%					
	TOTAL	44.88	100%					

Fuente: Elaboración propia (2017).



Figura 97. Grafico de patología con mayor incidencia en la unidad de muestra 03 del Jirón san Martín, cuadra 07.

En la unidad de muestra 03 comprende de 26 losas del Jirón San Martín, de la cuadra 07, las patologías con mayor incidencia en deterioro es grieta de esquina de severidad media con 24.80%, luego esta popoust con 18.38%, descascaramiento de esquina con 15.20%, desconchamiento mapa de grietas craquelado 14.91%, daño sello de junta con 8.91% descascaramiento de junta con 7.31%, grietas lineales con 5.53% parche grande mayor a 0.45m2 con 4.97%, de la superficie analizada, como se aprecia en la figura 97.

Unidad de muestra 04, cuadra 07, del Jirón San Martín

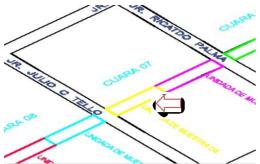



Tabla 15 Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 04

muestra							_			
ULAT	ECH		UNIVER	SIDAD C	ATÓLIC	CA LOS	ÁNGELI	ES DE CH	IMBOTE	Ľ
ULA	otic			FACU	LTAD I	DE INGE	NIERÍA	CIVIL		
	HOJA	DE INSP	ECCION				A UNIDA	D DE MU	JESTRA	
				MI	ÉTODO	PCI				
Ramal:	Ramal: Jirón San Martin Unidad de Muestra: 04 ubicado en la cuadra 07									
		5,7,8,9 y 10	Longitud	496.04m		Fecha:		Ene	ro - 2017	
Distrito:		•				Numero			26	
Provinci		•				Area Tot).48m2	
Región:	Jun		3.6					Losa: 4.00		m
Evaluad	or: Rober	t Reyner H	oppen Mış	guel	DAÑO	Área de l	a losa:	13	.48m2	
21 Plow	up - Bucl	zlina			DAÑO	31 Pulim	anto da A	aragada		
	de Equin					32 Popoi		rgregado		
23 Losa	Dividida					33 Bomb	eo			
24 Griet	a de Dura	bilidad "D'	1			34 Punzo	namiento)		
25 Escal	la					35 Cruce	de Vía F	érrea		
26 Diseñ	26 Diseño del Sello de Junta					36 Desco	nchamie	nto, Mapa	de Grietas	3
	ivel Carri					Craquela				
		es (Grietas	Longitudi	nales,		37 Grieta				
		iagonales)						nto de Esq		
		(mayor 0.4				39 Desca	scaramie	nto de Juni	ta	
30 Parch	ne Pequeñ	o menor o	Igual 0.45	m2)						
	1	2	3	4	5	6	7	8	9	10
A	32,39L	36L,32	29M	29M,39L	32,36L	36L32	36L	39L,36L	32	32,36L
В	22L		29M	29M	38L,39L	32	38L	32		32,22M
C	32L	36L,32	39L							
D	38L,39L	29M,28M	39L							
	D	año	Seve	ridad	Numero	de losa	Densi	dad %	Valor 1	Deducido
		38	L 3 11.54% 1.58							
		29	M 5 19.23% 11.25					_		
		22		L		2 7.69% 11.13				
		28		<u>M</u>		1 3.85% 3.10				
		26	N	M		4.00				
		32 39		L.		7		31% 92%		.30
		36		<u> </u>						
		50				7 26.92% 6.21				

Fuente: elaboración propia (2017).

38. DESCASCARAMIENTO DE ESQUINA (L).

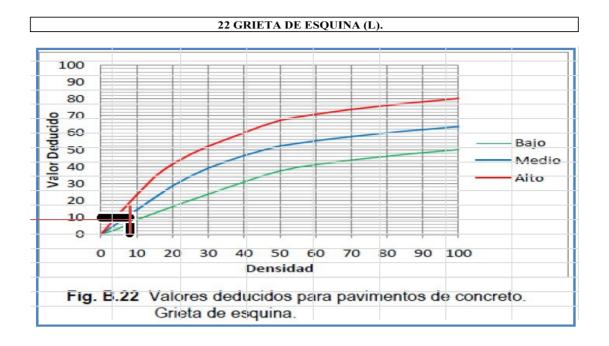

INTERPOLACIÓN PARA HAL ELVALOR DEDUCIDO	LLAR 38. De	scascaramie	nto de Esqu	ina.
EE THEOR BEBOONDO		Val	or Deducido	
DENSIDAD	Densidad	В	M	A
11.54	0.00	0.00	0.00	0.00
	5.00	0.50	1.60	3.30
15.00-10.00 = 5.00	10.00	1.30	3.10	7.00
15.00 - 11.54 = 3.46	15.00	2.00	4.70	10.10
3.46/5.00 = 0.69	20.00	2.70	5.90	13.20
2 - 1.30 = 0.70	25.00	4.40	8.30	15.70
0.41*6.50 = 0.48	30.00	5.80	10.20	17.70
2.00 - 0.42 = 1.52	35.00	6.90	11.90	19.30
	40.00	8.00	13.30	20.80
	45.00	8.90	14.50	22.10
VALOR DEDUCIDO	50.00	9.70	15.60	23.20
1.52	55.00	10.40	16.70	24.30
	60.00	11.10	17.60	25.20
	65.00	11.70	18.40	26.10
	70.00	12.20	19.20	26.90
	75.00	12.80	19.90	27.60
	80.00	13.30	20.60	28.30
	85.00	13.70	21.30	29.00
	90.00	14.20	21.90	29.60
	95.00	14.60	22.40	30.20
	100.00	15.00	23.00	30.80

Figura 98. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38L), identificado en la unidad de muestra 04, cuadra 07 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 1.52, a través de la densidad =11.54, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 98.

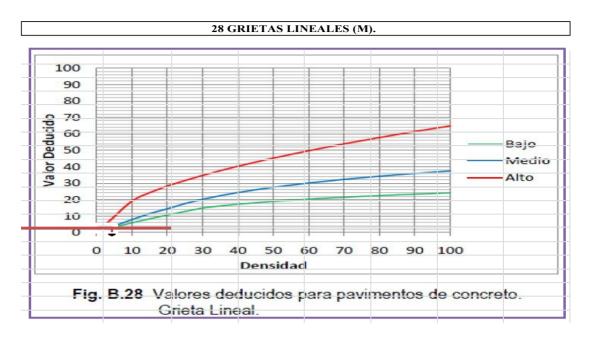


INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	29		Grande (> 0. s de Servicio	* **
	ъ	V	alor Deducio	lo
DENSIDAD	Densidad	В	M	A
19.23	0.00	0.00	0.00	0.00
	5.00	1.10	2.90	8.00
20.00 - 15.00 = 5.00	10.00	2.70	5.80	15.70
20.00 - 15.00 = 0.77	15.00	4.30	8.80	23.20
0.77/5.00 = 0.15	20.00	6.30	11.70	29.50
11.70 - 8.80 = 2.90	25.00	9.40	16.90	34.60
2.90*0.15 = 0.45	30.00	11.90	21.10	39.40
11.70- 0.45 = 11.25	35.00	14.00	24.70	43.50
	40.00	15.80	27.80	47.00
	45.00	17.50	30.50	50.10
VALOR DEDUCIDO	50.00	18.90	33.00	52.90
11.25	55.00	20.20	35.20	55.40
	60.00	21.40	37.20	57.70
	65.00	22.50	39.00	59.80
	70.00	23.50	40.70	61.80
	75.00	24.50	42.30	63.60
	80.00	25.40	43.80	65.30
	85.00	26.20	45.20	66.90

Figura 99. Ábaco y tabla para hallar el valor deducido, del daño parche grande mayor a 0.45m2 (29M), identificado en la unidad de muestra 04, cuadra 07 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 11.25, a través de la densidad =19.23, de nivel de severidad = M.

Se realiza el proceso de interpolación como se puede apreciar en la figura 99.

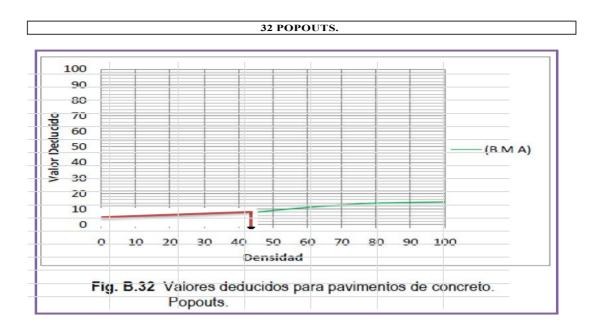


INTERPOLACIÓN PARA HALLAR		22 Grieta d	e Esquina			
ELVALOR DEDUCIDO	ъ	Valor Deducido				
	Densidad	В	M	A		
DENSIDAD	0.00	0.00	0.00	0.00		
7.69	5.00	3.50	7.20	12.10		
	10.00	8.70	14.50	23.40		
10.00-5.00 = 5.00	15.00	12.60	21.70	34.00		
10.00-8.00 = 2.31	20.00	16.40	28.70	41.50		
2.31/5.00 = 0.46	25.00	20.20	34.40	47.30		
14.50 - 7.20 = 7.30	30.00	23.80	39.20	52.10		
7.30*0.46 = 3.37	35.00	27.40	43.10	56.10		
14.50 - 3.37 = 11.13	40.00	31.00	46.60	60.00		
	45.00	34.50	49.60	64.00		
	50.00	37.50	52.30	67.30		
VALOR DEDUCIDO	55.00	39.70	53.80	69.30		
11.13	60.00	41.20	55.30	70.90		
	65.00	42.60	56.60	72.40		
	70.00	43.90	57.80	73.80		
	75.00	45.10	58.90	75.00		
	80.00	46.20	60.00	76.20		
,	85.00	47.30	61.00	77.30		

Figura 100. Ábaco y tabla para hallar el valor deducido, del daño grieta de esquina (22M), identificado en la unidad de muestra 04, cuadra 07 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 11.13, a través de la densidad =7.69, de nivel de severidad = M.

Se realiza el proceso de interpolación como se puede apreciar en la figura 100.

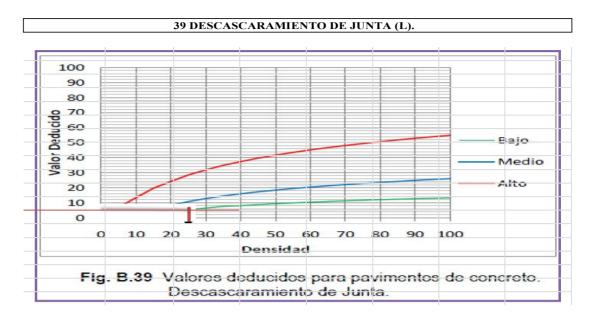


INTERPOLACIÓN PARA HALLAR	28		neales (Longi			
ELVALOR DEDUCIDO		Transversales y Diagonales)				
	Densidad		alor Deducio	cido		
DENSIDAD	Densidad	В	M	A		
3.87	0.00	0.00	0.00	0.00		
	5.00	3.20	4.00	9.60		
5.00 - 0.00 = 5.00	10.00	5.90	7.80	19.20		
5.00-3.87 = 1.13	15.00	8.30	11.50	24.20		
1.13/5.00 = 0.23	20.00	10.60	14.40	28.30		
4.00 - 0.00 = 4.00	25.00	12.80	17.60	31.60		
4.00*0.23 = 0.90	30.00	14.90	20.20	34.70		
4.00 - 0.90 = 3.10	35.00	16.20	22.40	37.60		
	40.00	17.20	24.30	40.30		
	45.00	18.10	26.00	42.80		
VALOR DEDUCIDO	50.00	18.90	27.50	45.20		
3.10	55.00	19.60	28.80	47.50		
	60.00	20.30	30.10	49.70		
	65.00	20.90	31.20	51.80		
	70.00	21.40	32.30	53.90		
	75.00	22.00	33.30	55.80		
	80.00	22.40	34.20	57.70		
	85.00	22.90	35.10	59.60		
	90.00	23.30	35.90	61.40		
	95.00	23.70	36.70	63.10		
	100.00	24.10	37.40	64.80		

Figura 101. Ábaco y tabla para hallar el valor deducido, del daño grieta lineal (28 M), identificado en la unidad de muestra 04, cuadra 07 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 3.10, a través de la densidad =3.87, de nivel de severidad = M.

Se realiza el proceso de interpolación como se puede apreciar en la figura 101.



INTERPOLACIÓN PARA HALLAR	22 D	
ELVALOR DEDUCIDO		opouts dimientos).
ELVALOR DEDUCIDO	(Despi en	Valor
DENSIDAD	Densidad	Deducido
42.31		B M A
	0.00	0.00
45.00-40.00 = 5.00	5.00	0.70
45.00-42.31 = 2.69	10.00	1.50
2.69/5.00 = 0.54	15.00	2.30
8.00 - 6.70 = 1.30	20.00	3.20
1.30*0.54 = 0.70	25.00	4.00
8.00 - 0.70 = 7.30	30.00	4.80
	35.00	5.70
	40.00	6.70
VALOR DEDUCIDO	45.00	8.00
7.30	50.00	9.10
	55.00	10.10
	60.00	11.10
	65.00	11.90
	70.00	12.70
	75.00	13.40
	80.00	13.90
	85.00	14.10
	90.00	14.30
	95.00	14.40
	100.00	14.60

Figura 102. Ábaco y tabla para hallar el valor deducido, del daño popoust, identificado en la unidad de muestra 04, cuadra 07 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 7.30, a través de la densidad =42.31.

Se realiza el proceso de interpolación como se puede apreciar en la figura 102.

INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	39. Descascaramiento de Junta.						
		Val	or Deducido				
DENSIDAD		В	M	A			
26.92	0.00	0.00	0.00	0.00			
	5.00	1.40	2.00	7.00			
30.0-25.00 = 5.00	10.00	2.40	4.00	13.40			
30.00-26.92 = 3.08	15.00	3.20	6.10	19.70			
3.08/5.00 = 0.62	20.00	4.20	8.30	24.20			
6.50- 5.40 = 1.10	25.00	5.40	10.80	28.50			
1.10*0.62 = 0.68	30.00	6.50	12.80	31.90			
6.50 - 0.68 = 5.82	35.00	7.63	14.50	34.90			
	40.00	8.10	16.00	37.40			
	45.00	8.80	17.30	39.70			
VALOR DEDUCIDO	50.00	9.40	18.40	41.70			
5.82	55.00	9.90	19.50	43.50			
	60.00	10.40	20.40	45.20			
	65.00	10.90	21.30	46.70			
	70.00	11.30	22.10	48.10			
	75.00	11.70	22.90	49.40			
Γ	80.00	12.10	23.60	50.60			
Γ	85.00	12.40	24.20	51.80			
	90.00	12.70	24.90	52.90			
Γ	95.00	13.00	25.50	53.90			
	100.00	13.30	26.00	54.90			

Figura 103. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (39L), identificado en la unidad de muestra 04, cuadra 07 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 5.82, a través de la densidad =26.92, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 103

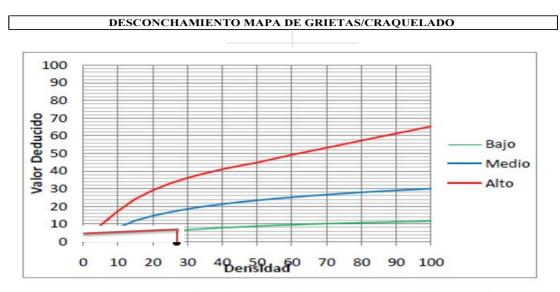


Fig. B.36 Valores deducidos para pavimentos de concreto.

Desconchamiento.

INTERPOLACIÓN DEL VALOR DEDUCIDO						
DENSIDA	.D					
26.92						
30.00-25.00 = 5.0	00					
30.00-26.92 = 3.0	08					
3.08/5.00 = 0.6	52					
6.70 - 5.90 = 0.8	30					
0.80*0.62 = 0.4	19					
6.70 - 0.49 = 6.2	21					
VALOR DEDUCIDO						
6.21						

36. Descascaramiento por Agrietamiento.								
Densidad	V	alor Deducid	lo					
Densidad	В	M	A					
0.00	0.00	0.00	0.00					
5.00	1.20	4.20	9.30					
10.00	2.10	8.00	17.30					
15.00	3.80	11.90	24.20					
20.00	5.00	14.60	29.10					
25.00	5.90	16.70	33.00					
30.00	6.70	18.50	36.10					
35.00	7.30	20.00	38.70					
40.00	7.90	21.20	41.00					
45.00	8.30	22.40	43.00					
50.00	8.80	23.40	44.80					
55.00	9.20	24.30	47.00					
60.00	9.50	25.10	49.20					
65.00	9.90	25.90	51.20					
70.00	10.20	26.60	53.20					
75.00	10.50	27.30	55.20					
80.00	10.70	27.90	57.30					
85.00	11.00	28.50	59.30					
90.00	11.20	29.00	61.30					
95.00	11.40	29.50	63.30					
100.00	11.70	30.00	65.30					

Figura 104. Ábaco y tabla para hallar el valor deducido, del daño desconchamiento mapa de grietas craquelado (36L), identificado en la unidad de muestra 04, cuadra 07 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 6.21, a través de la densidad =26.92, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 104.

DAÑO SELLO DE JUNTA

VALOR DEDUCIDO	
4	

26	Daño sello de Junata						
Valor Deducido							
В	M	Α					
2	4	8					

Figura 105. Cuadro para hallar el valor deducido del daño sello de junta (26M), identificado en la unidad de muestra 04, cuadra 07 del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

m = 1 + (9/98)*(100 - HDV)

Donde:

m=Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo HDV = El Mayor Valor Deducido Individual para la Unidad de Muestreo

> Dato: HDV = 11.25 m = 9.150510204

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM		VALOR DEDUCIDO							TOTA	q	VDC		
1	11.25	11.13	7.30	6.21	5.82	4.00	3.10	1.58			50.39	7	0.00
2	11.25	11.13	7.30	6.21	5.82	4.00	2.00	1.58			49.29	6	23.57
3	11.25	11.13	7.30	6.21	5.82	2.00	2.00	1.58			47.29	5	24.79
4	11.25	11.13	7.30	6.21	2.00	2.00	2.00	1.58			43.47	4	24.76
5	11.25	11.13	7.30	2.00	2.00	2.00	2.00	1.58			39.26	3	24.85
6	11.25	11.13	2.00	2.00	2.00	2.00	2.00	1.58			33.96	2	27.67
7	11.25	2.00	2.00	2.00	2.00	2.00	2.00	1.58			24.83	1	24.83

Figura 106. Cuadro, cálculo del máximo valor deducido corregido VDC. De la unidad de muestra 04, del Jirón San Martín, cuadra 07.

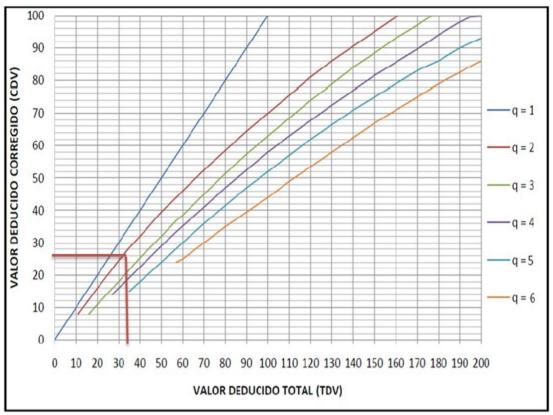


Figura 107. Abaco para hallar el máximo valor deducido corregido de la unidad de muestra 04, del Jirón san Martín, cuadra 07.

Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 27.67, a través del valor deducido total = 33.96, donde q = 2, como se puede apreciar en la figura 107.

INTERROLACIÓN BARA HALLAR EL	Total de			Valores Deduc	cidos Corre	gidos		
INTERPOLACIÓN PARA HALLAR EL	Valores Deducidos	q1	q2	q3	q4	q5	q6	q 7
VALOR DEDUCIDO CORREGIDO	0	0.00						
VDC 23.57	10	10.00						
25.57	11	11.00	8.00					
$\mathbf{q} = 6 $ 49.29	16	16.00	12.40	8.00				
50.00-40.00 = 10.00	20	20.00	16.00	11.00				
50.00 - 49.29 = 0.71	27	27.00	21.90	15.90	14.00			
0.71/10.00 = 0.07	30	30.00	24.50	18.00	16.00			
24.00 - 18.00 = 6.00	35	35.00	28.50	21.70	19.20	17.10	15.00	
6.00*0.07 = 0.43	40	40.00	32.00	25.40	22.50	20.20	18.00	
24.00 - 0.43 = 23.57	50	50.00	39.50	32.00	29.00	26.50	24.00	
	57	57.00	44.00	36.90	33.40	30.80	28.20	26.80
VDC 24.79	60	60.00	46.00	38.50	35.20	32.60	30.00	28.30
q = 5 47.29	70	70.00	52.50	45.00	41.00	38.50	36.00	34.00
47.29	80	80.00	58.50	51.40	47.00	44.20	41.50	39.30
50.00 - 40.00 = 10.00	90	90.00	64.50	57.40	52.50	49.70	47.00	44.50
50.00 - 47.29 = 2.71	100	100.00	70.00	63.00	58.00	55.00	52.00	49.30
2.71/10.00 = 0.27	110		75.50	68.50	63.00	60.00	57.00	54.30
26.50 - 20.20 = 6.30	120		81.00	74.00	67.80	64.90	62.00	59.20
6.30*0.27 = 1.71	130		86.00	78.90	72.50	69.50	66.50	63.70
26.50 - 0.27 = 24.79	140		90.50	84.00	77.00	74.00	71.00	68.20
	150		95.00	88.40	81.50	78.20	75.00	72.30
VDC 24.76	160		99.50	93.00	85.50	82.20	79.00	76.30
q = 4 45.4/	161		100.00	93.40	86.00	82.70	79.40	76.70
	170			97.00	89.60	86.30	83.00	80.30
50.00- 40.00 = 10.00	177			100.00	92.60	88.80	85.10	82.70
50.00 - 43.47 = 6.53	180				94.00	90.00	86.00	83.70
6.53/10.00 = 0.65	190				98.00	94.00	90.00	87.50
29.00 - 22.50 = 6.50	195				99.50	95.50	91.50	89.10
6.50*0.65 = 4.24	200				100.00	96.50	93.00	90.70
29.00 - 4.24 = 24.76								
VDC 24.85	VDC	27.67		VDC	21.10			
q = 3 39.26	q = 2	33.96		q = 2	24.83			
40.00 - 35.00 = 5.00	35.00 - 30.00 =	5.00		27.00-20.00 =	7.00	1		
40.00 - 39.26 = 0.74	35.00 - 33.96 =1.0			27.00-22.60 = 2.17				
0.74/5.00 = 0.15	1.0/5.00 = 0.21			4.40/7.00 = 0.				
25.40- 21.70 = 3.70	28.50- 24.50 =			27.00-20.00 =]		
3.70*0.15 = 0.55	4.00*0.21 = 0.8			3.00*0.87 = 2				
25.40 - 0.55 = 24.85	28.50 - 1.01 =			27.00 - 4.40 =		J		
Figura 100 Internalación pera h	0110m 01 vvo	1	:		1	: 4.4.	1	

Figura 108. Interpolación para hallar el valor deducido corregido en la unidad de muestra 04.

RANGOS DE DEL	CALIFICACIÓN PCI	MÁXIMO VDC = 27.67			
Rango	Clasificación	PCI = 100 - MÁXIMO VDC			
100 - 85	Excelente				
85 - 70	Muy Bueno	PCI = 100 - 27.67			
70 - 55	Bueno				
55 - 40		PCI = 72.33			
40 - 25	Malo				
25 -10	Muy Malo	CLASIFICACIÓN: MUY BUENO			
10 - 0	Fallado				

Figura 109. Rango de calificación del índice de condición del pavimento (PCI) unidad de muestra 04, cuadra 07 del Jirón San Martín.

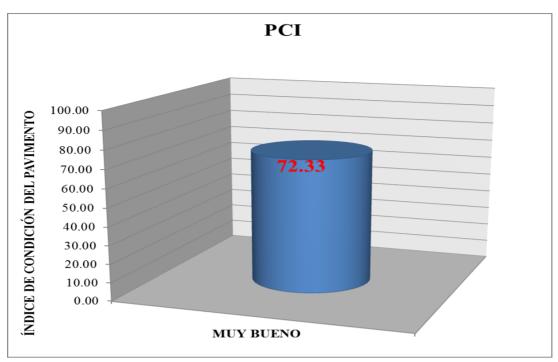


Figura 110. Cálculo del índice de condición del pavimento PCI en la unidad de muestra 04 del Jirón san Martín, cuadra 07.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 110, según el rango de calificación se obtuvo como resultado un PCI de 72.33 que corresponde a un pavimento de estado **muy bueno.**

Tabla 16 cuadro de patologías con mayor incidencia en la unidad de muestra 04, cuadra 07, del Jirón San Martín.

CUARO DE INCIDENCIA EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 04										
UNIDAD DE MUESTRA 26 LOSA										
TIPO	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA							
FALLA	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA							
29	Paeche Grande mayor a 0.45m2 (M)	11.25	22.3%							
22	Grieta de Esquina (M) 11.13		22.1%							
32	Popoust 7.30		14.5%							
36	Desconchamiento Mapa de Grietas Craquelado (L)	6.21	12.3%							
39	Descascaramiento de Junta (L)	5.82	11.5%							
26	Daño sello de junta (M)	4.00	7.9%							
38	Descascaramiento de Esquina (M)	3.1	6.2%							
38	Descascaramiento de Esquina (L)	1.58	3.1%							
	TOTAL	50.39	100.0%							

Fuente: elaboración propia (2017).

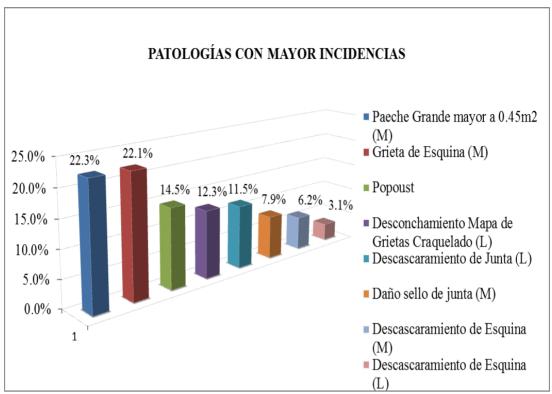


Figura 111. Grafico de patología con mayor incidencia de la unidad de muestra 04 en el Jirón San Martín de la cuadra 07.

Descripción e interpretación: Las patologías con mayor incidencia en la unidad de muestra 04 de la cuadra 07 son: parche grande mayor a 0.45m2 de nivel de severidad medio con 22.30%, luego esta grieta de esquina de nivel de severidad media con 22.10%, popoust con 14.50%, desconchamiento mapa de grietas craquelado nivel de severidad baja con 12.30%, descascaramiento de junta de nivel de severidad baja con 11.50%, daño sello de junta de nivel de severidad media con 7.90%, descascaramiento de esquina de nivel de severidad media con 6.20%, descascaramiento de esquina de nivel de severidad baja 3.10%, de la superficie analizada como, se aprecia en la figura 111.

Unidad de muestra 05, cuadra 08, del Jirón San Martín

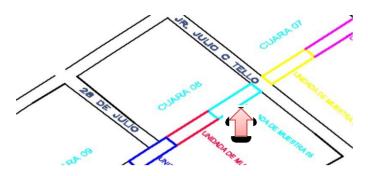
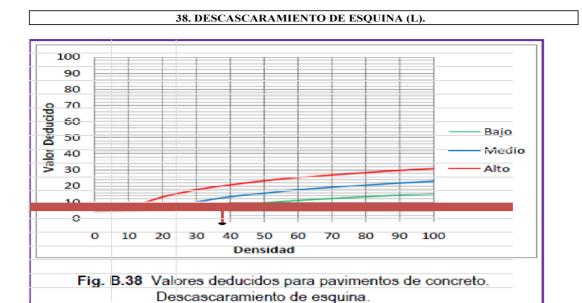



Tabla 17 Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 05

muestra				CIDAD	CATÓI		C ÁNCI	TIFEDE	СНІМВ)TE	
ULAT	ECH		UNIVER							JIE	
ULA		E INCDI	CCION			DE ING			L E MUEST	D A	
	HOJA D	E INSPI	ECCION		IÉTODO		KA UNI	DAD DI	MIUESI	KA	
Ramal:	Jirón	San Mar	in	14.	LIOD	ı	Iuesrra:	0.5 Ubio	ado en la c	uadra 08	
Sección:			y 10 Lon	oritud 49	6.04m	Fecha:			ero - 2017		
Distrito:			y To Lon	igitud 47	0.0-111	Numero o	le losas:	Lin	26		
Provinci						Aero Tota		35	0.48m2		
Región:	Juníi					Dimensio	nes de la	Losa: 4.0	0m x 3.37n	n	
Evaluado	or: Robe	rt Reynei	Hoppen	Miguel		Área de la	a losa:	1.	3.48m2		
					DAÑ(
	up - Buck							Agregado	1		
22 Grita	de Equin	a				32 Popou	ıts				
23 Losa	Dividida					33 Bomb	eo				
24 Griet	a de Dura	bilidad "	D"			34 Punzo					
25 Esca						35 Cruce de Vía Férrea					
	ño del Sel		ta			36 Desconchamiento, Mapa de Grietas					
	ivel Carri					Craquelado					
	as Lineale			tudinale	s,	37 Grietas de Retracción					
	rsales y D					38 Descascaramiento de Esquina					
	ne Grande					39 Descascaramiento de Junta					
30 Parcl	ne Pequeñ	o menor	o Igual 0	.45m2)				I			
	1	2	3	4	5	6	7	8	9	10	
A	39L	39L,32		39L	38L,36L		32	36L	39L,36L	39L,32	
В	39L	38L,29L	38L	22M	38L		38L	38L	38L	38L	
C	32,38L	32,39L	29L,32								
D	38L,39L		29L								
	Da	ño	Seven	ridad	Numer	o de losa	Densi	dad %	Valor I	educido	
	38		I		1	10		46%	7.	66	
	22		N	Л		1		85%	5.	54	
	39		I			8		77%	6.	67	
	2	9	I			3	11.54%		3.	19	
	3:	2				6		08%	3.	69	
	3	6	I	_		3	11.	54%	2.	62	
	2		N						4.	00	
Fuente	elaboraci	ión nron	ia (2017)							

Fuente: elaboración propia (2017).

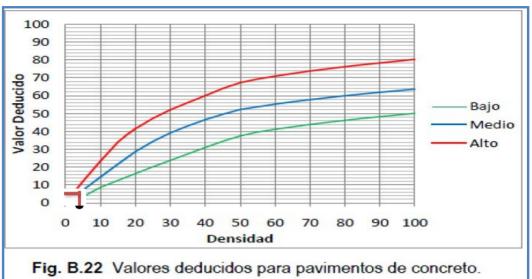

INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	38. Desc	38. Descascaramiento de Esquina.						
		Valor Deducido						
DENSIDAD	Densidad	В	M	A				
38.46	0.00	0.00	0.00	0.00				
	5.00	0.50	1.60	3.30				
45.00 - 40.00 = 5.00	10.00	1.30	3.10	7.00				
45.00 - 38.46 = 1.54	15.00	2.00	4.70	10.10				
1.54/5.00 = 0.31	20.00	2.70	5.90	13.20				
8.00 - 6.90 = 1.10	25.00	4.40	8.30	15.70				
1.10*0.31 = 0.34	30.00	5.80	10.20	17.70				
8.00 - 0.34 = 7.66	35.00	6.90	11.90	19.30				
	40.00	8.00	13.30	20.80				
	45.00	8.90	14.50	22.10				
VALOR DEDUCIDO	50.00	9.70	15.60	23.20				
7.66	55.00	10.40	16.70	24.30				
	60.00	11.10	17.60	25.20				
	65.00	11.70	18.40	26.10				
	70.00	12.20	19.20	26.90				
	75.00	12.80	19.90	27.60				
	80.00	13.30	20.60	28.30				
	85.00	13.70	21.30	29.00				
	90.00	14.20	21.90	29.60				
	95.00	14.60	22.40	30.20				
	100.00	15.00	23.00	30.80				

Figura 112. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38L), identificado en la unidad de muestra 05, cuadra 08 del Jirón san Martín.

En el ábaco se obtiene un valor deducido de 7.66, a través de la densidad =38.46, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 112.

22 GRIETA DE ESQUINA (L).

Grieta de esquina.

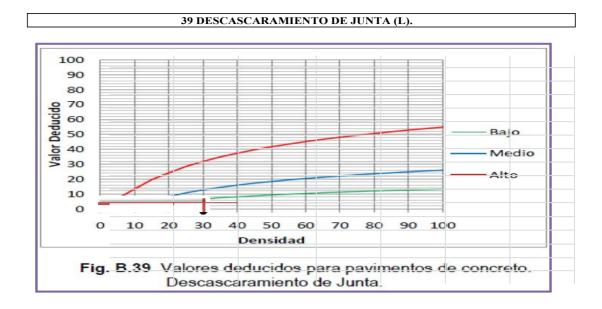

INTERPOLACIÓN PARA HALLAR	22 Grieta de Esquina						
ELVALOR DEDUCIDO	ъ	V	alor Deduci	do			
	Densidad	В	M	A			
DENSIDAD	0.00	0.00	0.00	0.00			
3.85	5.00	3.50	7.20	12.10			
	10.00	8.70	14.50	23.40			
5.00 - 0.00 = 5.00	15.00	12.60	21.70	34.00			
5.00 - 3.85 = 1.15	20.00	16.40	28.70	41.50			
1.15/5.00 = 0.23	25.00	20.20	34.40	47.30			
7.20 - 0.00 = 7.20	30.00	23.80	39.20	52.10			
7.20*0.23 = 1.66	35.00	27.40	43.10	56.10			
7.20 - 1.66 = 5.54	40.00	31.00	46.60	60.00			
	45.00	34.50	49.60	64.00			
	50.00	37.50	52.30	67.30			
VALOR DEDUCIDO	55.00	39.70	53.80	69.30			
5.54	60.00	41.20	55.30	70.90			
	65.00	42.60	56.60	72.40			
	70.00	43.90	57.80	73.80			
	75.00	45.10	58.90	75.00			
	80.00	46.20	60.00	76.20			
,	85.00	47.30	61.00	77.30			

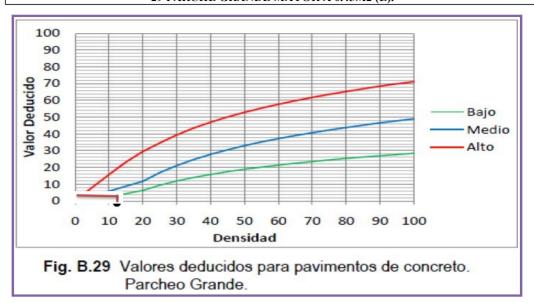
Figura 113. Ábaco y tabla para hallar el valor deducido, de grieta de esquina (22M), identificado en la unidad de muestra 05, cuadra 08 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 5.54, a través de la densidad = 3.85, de nivel de severidad = M.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 113.

INTERPOLACIÓN PARA F ELVALOR DEDUCI		39. De	escascaramie	nto de Junta.	
			Val	or Deducido	
DENSIDAD			В	M	A
30.77		0.00	0.00	0.00	0.00
		5.00	1.40	2.00	7.00
35.00-30.00 = 5.00		10.00	2.40	4.00	13.40
35.00-30.77 = 4.23		15.00	3.20	6.10	19.70
4.23/5.00 = 0.85		20.00	4.20	8.30	24.20
7.63-6.50 = 1.13	4.23	25.00	5.40	10.80	28.50
1.13*0.85 = 0.96		30.00	6.50	12.80	31.90
7.63- 0.96 =		35.00	7.63	14.50	34.90
		40.00	8.10	16.00	37.40
		45.00	8.80	17.30	39.70
VALOR DEDUCIDO		50.00	9.40	18.40	41.70
6.67		55.00	9.90	19.50	43.50
_		60.00	10.40	20.40	45.20
		65.00	10.90	21.30	46.70
		70.00	11.30	22.10	48.10
		75.00	11.70	22.90	49.40
		80.00	12.10	23.60	50.60
		85.00	12.40	24.20	51.80
		90.00	12.70	24.90	52.90
		95.00	13.00	25.50	53.90
		100.00	13.30	26.00	54.90


Figura 114. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de junta (39L), identificado en la unidad de muestra 05, cuadra 08 del Jirón san Martín.

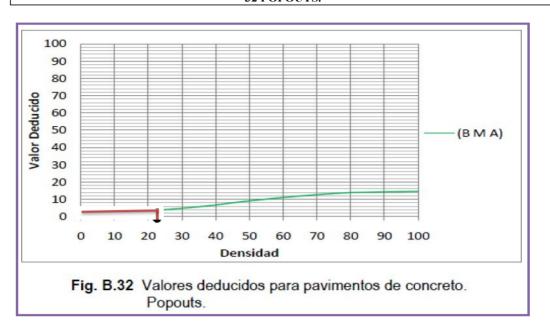
En el ábaco se obtiene un valor deducido de 6.67, a través de la densidad =30.77,

de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 114.

29 PARCHE GRANDE MAYOR A 0.45M2 (L).

INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	29		Grande (> 0. s de Servicio	, •			
		V	Valor Deducido				
DENSIDAD	Densidad	В	M	A			
11.54	0.00	0.00	0.00	0.00			
	5.00	1.10	2.90	8.00			
15.00 - 10.00 = 5.00	10.00	2.70	5.80	15.70			
15.00-11.54 = 3.46	15.00	4.30	8.80	23.20			
3.46/5.00 = 0.69	20.00	6.30	11.70	29.50			
4.30- 2.70 = 1.60	25.00	9.40	16.90	34.60			
1.60*0.69 = 1.11	30.00	11.90	21.10	39.40			
4.30 - 1.11 =	35.00	14.00	24.70	43.50			
	40.00	15.80	27.80	47.00			
	45.00	17.50	30.50	50.10			
VALOR DEDUCIDO	50.00	18.90	33.00	52.90			
3.19	55.00	20.20	35.20	55.40			
	60.00	21.40	37.20	57.70			
	65.00	22.50	39.00	59.80			
	70.00	23.50	40.70	61.80			
	75.00	24.50	42.30	63.60			
	80.00	25.40	43.80	65.30			
,	85.00	26.20	45.20	66.90			


Figura 115. Ábaco y tabla para hallar el valor deducido, del daño parche grande mayor a 0.45m2 (29L), identificado en la unidad de muestra 05, cuadra 08 del Jirón san Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 3.19, a través de la densidad =11.54, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 115.

32 POPOUTS.

INTERPOLACIÓN PARA HALI ELVALOR DEDUCIDO		32. Popouts (Desprendimientos).					
DENSIDAD 23.08	D	ensidad	Valor Deducido B M A				
20100		0.00	0.00				
25.00-20.00 = 5.00		5.00	0.70				
25.00-23.08= 1.92		10.00	1.50				
$\frac{1.92/5.00}{1.92/5.00} = 0.38$		15.00	2.30				
4.00-3.20 = 0.80		20.00	3.20				
0.8*0.38 = 0.31		25.00	4.00				
4.00- 0.80 = 3.69		30.00	4.80				
		35.00	5.70				
		40.00	6.70				
VALOR DEDUCIDO		45.00	8.00				
3.69		50.00	9.10				
		55.00	10.10				
		60.00	11.10				
		65.00	11.90				
		70.00	12.70				
		75.00	13.40				
		80.00	13.90				
		85.00	14.10				
		90.00	14.30				
		95.00	14.40				
		100.00	14.60				

Figura 116. Ábaco y tabla para hallar el valor deducido, del daño popoust (32), identificado en la unidad de muestra 05, cuadra 08 del Jirón san Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 3.65, a través de la densidad =23.08.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 116.

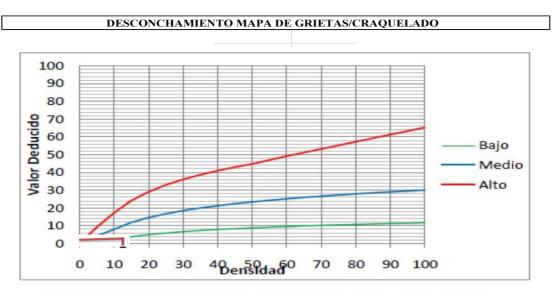


Fig. B.36 Valores deducidos para pavimentos de concreto.

Desconchamiento.

INTERPOLA VALOR DE	
DENSI	
15.00-10.00 =	5.00
15.00-11.54=	3.46
3.46/5.00 =	0.69
3.80 - 2.10 =	1.70
1.70*0.69 =	1.18
3.80 - 1.18 =	2.62
VALOR DEDU	ICIDO
2.6	:n

36. Descascaramiento por Agrietamiento.										
Densidad	Val	lor Deducido								
Delisidad	В	M	A							
0.00	0.00	0.00	0.00							
5.00	1.20	4.20	9.30							
10.00	2.10	8.00	17.30							
15.00	3.80	11.90	24.20							
20.00	5.00	14.60	29.10							
25.00	5.90	16.70	33.00							
30.00	6.70	18.50	36.10							
35.00	7.30	20.00	38.70							
40.00	7.90	21.20	41.00							
45.00	8.30	22.40	43.00							
50.00	8.80	23.40	44.80							
55.00	9.20	24.30	47.00							
60.00	9.50	25.10	49.20							
65.00	9.90	25.90	51.20							
70.00	10.20	26.60	53.20							
75.00	10.50	27.30	55.20							
80.00	10.70	27.90	57.30							
85.00	11.00	28.50	59.30							
90.00	11.20	29.00	61.30							
95.00	11.40	29.50	63.30							
100.00	11.70	30.00	65.30							

Figura 117. Ábaco y tabla para hallar el valor deducido, del daño desconchamiento mapa de grietas craquelado (36L), identificado en la unidad de muestra 05, cuadra 08 del Jirón san Martín.

En el ábaco se obtiene un valor deducido de 2.62, a través de la densidad = 11.54, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 117.

VALOR DEDUCIDO B M A 26 Daño sello de Junata Valor Deducido B M A 2 4 8

Figura 118. Cuadro para hallar el valor deducido del daño sello de junta (26M), identificado en la unidad de muestra 05del cuadrab08 del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

m = 1 + (9/98)*(100 - HDV)

Donde:

m= Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo HDV = El Mayor Valor Deducido Individual para la Unidad de Muestreo

> Dato: HDV = 7.66 m = 9.480204082

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM		VALOR DEDUCIDO								TOTAL	q	VDC		
1	7.66	6.67	5.54	4.00	3.69	3.19	2.62					33.37	7	0.00
2	7.66	6.67	5.54	4.00	3.69	3.19	2.00					32.75	6	0.00
3	7.66	6.67	5.54	4.00	3.69	2.00	2.00					31.56	5	0.00
4	7.66	6.67	5.54	5.40	2.00	2.00	2.00					31.27	4	16.51
5	7.66	6.67	5.54	2.00	2.00	2.00	2.00					27.87	3	16.51
6	7.66	6.67	2.00	2.00	2.00	2.00	2.00					24.33	2	19.65
6	7.66	2.00	2.00	2.00	2.00	2.00	2.00					19.66	1	19.66
7														

Figura 119 Cuadro, cálculo del máximo valor deducido corregido VDC, de la unidad de muestra 05, del Jirón San Martín de la cuadra 08.

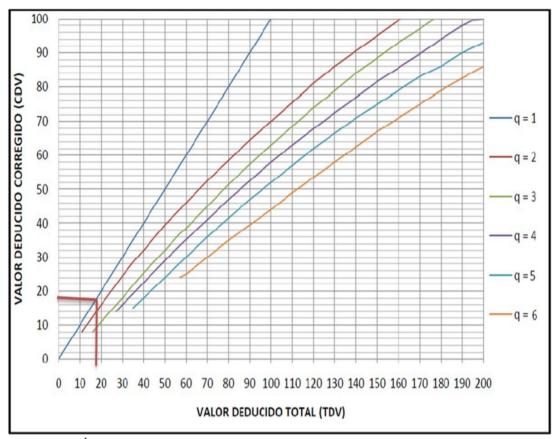


Figura 120. Ábaco para hallar el máximo valor deducido corregido de la unidad de muestra 05, del Jirón San Martín, cuadra 08.

Ábaco se obtiene el máximo valor deducido corregido de 19.66, a través del valor deducido total = 19.66, donde q = 1, como se puede apreciar en la figura 120.

Total valore Deducit	es al	8.00 12.40 16.00 21.90 24.50 32.00 39.50 44.00 46.00 52.50 58.50 64.50 70.00 75.50	8.00 11.00 15.90 18.00 21.70 25.40 32.00 36.90 38.50 45.00 51.40 57.40 63.00	14.00 16.00 19.20 22.50 29.00 33.40 35.20 41.00 47.00 52.50	17.10 20.20 26.50 30.80 32.60 34.50 44.00	15.00 18.00 24.00 28.20 30.00 41.50	26.80 28.30 34.00 39.30
VDC 16.81 10 35.00-30.00 = 5.00 20 35.00 -31.27 = 3.73 373/5.00 = 0.75 19.20 - 16.00 = 3.20 3.20*0.75 = 2.39 19.20 - 2.39 = 16.81 50 VDC 16.51 q = 3 27.87 30.00 - 27.00 = 3.00 30 30.00 - 27.87 = 2.13 21.3/3.00 = 0.71 18.00 - 15.00 = 2.10 120 2.10*0.71 = 1.49 140 150 150	0.00 10.00 11.00 20.00 27.00 30.00 35.00 40.00 57.00 60.00 70.00 80.00	12.40 16.00 21.90 24.50 28.50 32.00 39.50 44.00 46.00 52.50 58.50 64.50 70.00	11.00 15.90 18.00 21.70 25.40 32.00 36.90 38.50 45.00 51.40	16.00 19.20 22.50 29.00 33.40 35.20 41.00 47.00	20.20 26.50 30.80 32.60 38.50 44.20	18.00 24.00 28.20 30.00 36.00	28.30 34.00
VDC 16.81 10 q = 4 31.27 11 35.00-30.00 = 5.00 20 20 35.00 - 31.27 = 3.73 3.73/5.00 = 0.75 30 19.20 - 16.00 = 3.20 3.2 35 3.20*0.75 = 2.39 40 50 19.20 - 2.39 = 16.81 50 VDC 16.51 60 q = 3 27.87 70 80 90 30.00 - 27.00 = 3.00 30 90 30.00 - 27.87 = 2.13 100 21.3/3.00 = 0.71 110 18.00 - 15.00 = 2.10 120 21.0*0.71 = 1.49 140 150 150	10.00 11.00 16.00 20.00 27.00 30.00 35.00 40.00 57.00 60.00 70.00 80.00 90.00	12.40 16.00 21.90 24.50 28.50 32.00 39.50 44.00 46.00 52.50 58.50 64.50 70.00	11.00 15.90 18.00 21.70 25.40 32.00 36.90 38.50 45.00 51.40	16.00 19.20 22.50 29.00 33.40 35.20 41.00 47.00	20.20 26.50 30.80 32.60 38.50 44.20	18.00 24.00 28.20 30.00 36.00	28.30 34.00
16.81 11 16 16 16 16 16 16	11.00 16.00 20.00 27.00 30.00 35.00 40.00 50.00 57.00 60.00 70.00 80.00	12.40 16.00 21.90 24.50 28.50 32.00 39.50 44.00 46.00 52.50 58.50 64.50 70.00	11.00 15.90 18.00 21.70 25.40 32.00 36.90 38.50 45.00 51.40	16.00 19.20 22.50 29.00 33.40 35.20 41.00 47.00	20.20 26.50 30.80 32.60 38.50 44.20	18.00 24.00 28.20 30.00 36.00	28.30 34.00
16 35.00-30.00 5.00 20 35.00-31.27 3.73 30 19.20-16.00 3.20 3.20** 3.20*0.75 2.39 16.81 50 57	16.00 20.00 27.00 30.00 35.00 40.00 50.00 57.00 60.00 70.00 80.00 90.00	12.40 16.00 21.90 24.50 28.50 32.00 39.50 44.00 46.00 52.50 58.50 64.50 70.00	11.00 15.90 18.00 21.70 25.40 32.00 36.90 38.50 45.00 51.40	16.00 19.20 22.50 29.00 33.40 35.20 41.00 47.00	20.20 26.50 30.80 32.60 38.50 44.20	18.00 24.00 28.20 30.00 36.00	28.30 34.00
$\begin{array}{c} 35.00\text{-}30.00 = 5.00 \\ 35.00\text{-}31.27 = 3.73 \\ 3.73/5.00 = 0.75 \\ 19.20\text{-}16.00 = 3.20 \\ 3.20*0.75 = 2.39 \\ 19.20\text{-}2.39 = 16.81 \\ \hline \\ \textbf{VDC} \\ \textbf{q} = \textbf{3} \\ \hline \\ 30.00\text{-}27.00 = 3.00 \\ 30.00\text{-}27.87 = 2.13 \\ 2.13/3.00 = 0.71 \\ 18.00\text{-}15.00 = 2.10 \\ 21.0*0.71 = 1.49 \\ 18.00\text{-}1.49 = 16.51 \\ \hline \end{array}$	20.00 27.00 30.00 35.00 40.00 50.00 57.00 60.00 70.00 80.00	16.00 21.90 24.50 28.50 32.00 39.50 44.00 46.00 52.50 58.50 64.50	11.00 15.90 18.00 21.70 25.40 32.00 36.90 38.50 45.00 51.40	16.00 19.20 22.50 29.00 33.40 35.20 41.00 47.00	20.20 26.50 30.80 32.60 38.50 44.20	18.00 24.00 28.20 30.00 36.00	28.30 34.00
35.00 - 31.27 = 3.73 35.00 - 31.27 = 3.73 37.3/5.00 = 0.75 19.20 - 16.00 = 3.20 3.20*0.75 = 2.39 19.20 - 2.39 = 16.81 VDC	27.00 30.00 35.00 40.00 50.00 57.00 60.00 70.00 80.00	21.90 24.50 28.50 32.00 39.50 44.00 46.00 52.50 58.50 64.50 70.00	15.90 18.00 21.70 25.40 32.00 36.90 38.50 45.00 51.40 57.40	16.00 19.20 22.50 29.00 33.40 35.20 41.00 47.00	20.20 26.50 30.80 32.60 38.50 44.20	18.00 24.00 28.20 30.00 36.00	28.30 34.00
3.73/5.00 = 0.75 19.20 - 16.00 = 3.20 3.20*0.75 = 2.39 19.20 - 2.39 = 16.81 VDC	30.00 35.00 40.00 50.00 57.00 60.00 70.00 80.00 90.00	24.50 28.50 32.00 39.50 44.00 46.00 52.50 58.50 64.50 70.00	18.00 21.70 25.40 32.00 36.90 38.50 45.00 51.40 57.40	16.00 19.20 22.50 29.00 33.40 35.20 41.00 47.00	20.20 26.50 30.80 32.60 38.50 44.20	18.00 24.00 28.20 30.00 36.00	28.30 34.00
3.73.00 - 0.73 19.20 - 16.00 = 3.20 3.20*0.75 = 2.39 19.20 - 2.39 = 16.81 VDC	35.00 40.00 50.00 57.00 60.00 70.00 80.00 90.00	28.50 32.00 39.50 44.00 46.00 52.50 58.50 64.50 70.00	21.70 25.40 32.00 36.90 38.50 45.00 51.40 57.40	19.20 22.50 29.00 33.40 35.20 41.00 47.00	20.20 26.50 30.80 32.60 38.50 44.20	18.00 24.00 28.20 30.00 36.00	28.30 34.00
3.20*0.75 = 2.39	40.00 50.00 57.00 60.00 70.00 80.00 90.00	32.00 39.50 44.00 46.00 52.50 58.50 64.50 70.00	25.40 32.00 36.90 38.50 45.00 51.40 57.40	29.00 33.40 35.20 41.00 47.00	20.20 26.50 30.80 32.60 38.50 44.20	18.00 24.00 28.20 30.00 36.00	28.30 34.00
19.20 - 2.39 = 16.81 50 57 VDC	57.00 60.00 70.00 80.00 90.00	44.00 46.00 52.50 58.50 64.50 70.00	36.90 38.50 45.00 51.40 57.40	33.40 35.20 41.00 47.00	30.80 32.60 38.50 44.20	28.20 30.00 36.00	28.30 34.00
VDC 16.51 q = 3 27.87 30.00 - 27.00 = 3.00 80 30.00 - 27.87 = 2.13 100 2.13/3.00 = 0.71 110 18.00 - 15.00 = 2.10 120 2.10*0.71 = 1.49 130 18.00 - 1.49 = 16.51 150	60.00 70.00 80.00 90.00	46.00 52.50 58.50 64.50 70.00	36.90 38.50 45.00 51.40 57.40	35.20 41.00 47.00	30.80 32.60 38.50 44.20	30.00 36.00	28.30 34.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70.00 80.00 90.00	52.50 58.50 64.50 70.00	45.00 51.40 57.40	41.00 47.00	38.50 44.20	36.00	34.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80.00 90.00	58.50 64.50 70.00	51.40 57.40	47.00	44.20		
30.00 - 27.00 = 3.00 90 30.00 - 27.87 = 2.13 100 110 120 120 130 1	90.00	58.50 64.50 70.00	57.40			41.50	39.30
30.00 - 27.87 = 2.13 2.13/3.00 = 0.71 18.00 - 15.00 = 2.10 2.10*0.71 = 1.49 18.00 - 1.49 = 16.51		70.00		52.50	40.50		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.00		63.00		49.70	47.00	44.50
2.13/3.00 = 0.71 18.00 - 15.00 = 2.10 2.10*0.71 = 1.49 18.00 - 1.49 = 16.51		75.50		58.00	55.00	52.00	49.30
18.00 - 15.00 = 2.10 2.10*0.71 = 1.49 18.00 - 1.49 = 16.51 150 150			68.50	63.00	60.00	57.00	54.30
2.10*0.71 = 1.49 18.00 - 1.49 = 16.51 150		81.00	74.00	67.80	64.90	62.00	59.20
18.00 - 1.49 = 16.51 140 150		86.00	78.90	72.50	69.50	66.50	63.70
150		90.50	84.00	77.00	74.00	71.00	68.20
VDC 19.49 160		95.00	88.40	81.50	78.20	75.00	72.30
VDC 18.48		99.50	93.00	85.50	82.20	79.00	76.30
q = 2 24.33		100.00	93.40	86.00	82.70	79.40	76.70
170			97.00	89.60	86.30	83.00	80.30
27.00-20.00 = 7.00			100.00	92.60	88.80	85.10	82.70
27.00 - 24.33= 2.67				94.00	90.00	86.00	83.70
2.67/7.00 = 0.38				98.00	94.00	90.00	87.50
21.90 - 16.00 = 5.90				99.50	95.50	91.50	89.10
5.90*0.38 = 2.25				100.00	96.50	93.00	90.70
21.90 - 2.25 = 19.65							

Figura 121. Interpolación para hallar el valor deducido corregido en la unidad de muestra 05.

RANGOS DE O	CALIFICACIÓN PCI	MÁXIMO VDC = 19.66
Rango	Clasificación	PCI = 100 - MÁXIMO VDC
100 - 85	Excelente	
85 - 70	Muy Bueno	PCI = 100-19.66
70 - 55	Bueno	
55 - 40	Regular	PCI = 80.34
40 - 25	Malo	CLASIFICACIÓN: MUY BUENO
25 -10	Muy Malo	
10 - 0	Fallado	

Figura 122. Rango de calificación del índice de condición del pavimento (PCI), unidad de muestra 05.

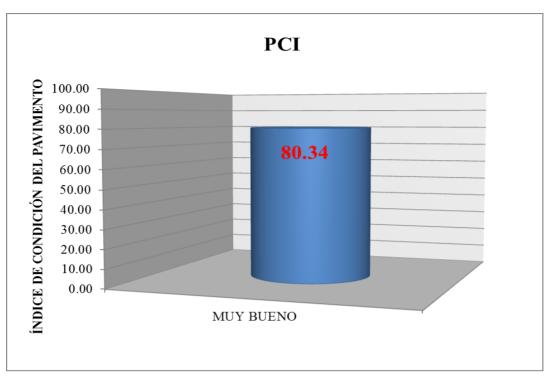


Figura 123. Cálculo del índice de condición del pavimento PCI, en la unidad de muestra 05 del Jirón San Martín, cuadra 08.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 123 se obtuvo como resultado un PCI de 80.34, Según el rango de calificación que corresponde a un pavimento de estado **muy bueno.**

Tabla 18 cuadro de patologías con mayor incidencia en la unidad de muestra 05, cuadra 08 del Jirón San Martín.

CUADR	CUADRO DE INCIDENCIA EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE											
	SEVERIDAD DE LAS PATOLOGÍAS DE I	LA UNIDAD DE MUESTR	A 05									
	UNIDAD DE MUESTRA		28 LOSAS									
TIPO	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA									
FALLA	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA									
38	Descacaramiento de Esquina (L)	7.66	22.95%									
39	descacaramiento de Junta(L)	6.67	19.99%									
22	Grieta de esquina (M)	5.54	16.60%									
26	Daño Sello de Junta	4.00	11.99%									
32	Popoust	3.69	11.06%									
29	Parche Grande mayor a 0.45m2(L)	3.19	9.56%									
36	Desconchamiento Mapa de Grietas Craquelado	2.62	7.85%									
	TOTAL	33.37	100.00%									

Fuente: elaboración propia (2017).

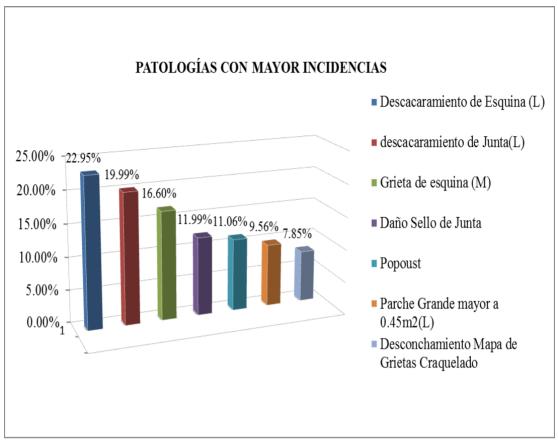


Figura 124. Grafico de patología con mayor incidencia en la unidad de muestra 05 del Jirón San Martín, cuadra 08.

Descripción e interpretación: En la unidad de muestra 05 comprende de 26 losas del Jirón San Martín, de la cuadra 08, las patologías con mayor incidencia son: descascaramiento de esquina de nivel de severidad baja con 22.95%, descascaamiento de junta de nivel de severidad baja con 19.99%, grieta de esquina de nivel de severidad media con 16.60%, daño sello de junta de nivel de severidad media con 11.99%, popoust con 11.06%, parche grande mayor a 0.45 m2 de nivel de severidad baja con 9.56%, desconchamiento mapa de grietas craquelado con 7.85% de la superficie analizada, como se puede apreciar en la figura 124.

Unidad de muestra 06, cuadra 08, del Jirón San Martín

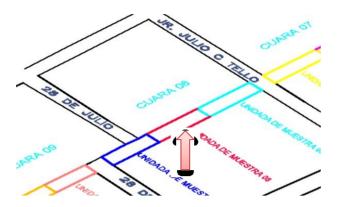
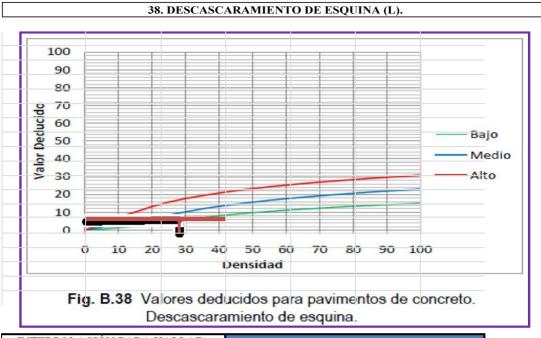
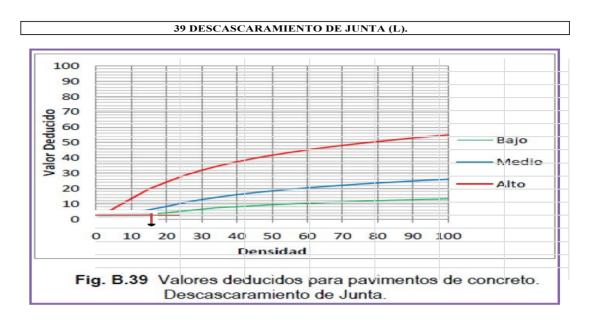



Tabla 19. Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 06

muestra											
/	DECH		UNIVE	RSIDAI	D CATÓL	ICA LOS	S ÁNGEL	ES DE C	СНІМВОТ	ΓE	
ULA	0110			FA	CULTAD	DE ING	ENIERÍ	CIVIL			
	HOJA	DE INSP	ECCIO	N DE CO	ONDICIO	NES PAI	RA UNID	AD DE N	1UESTR	\	
					MÉTODO	O PCI					
Ramal:	Jiróı	n San Ma	rtin			Unidad de Muestra: 06 Ubicado en la cuadra 08					
Sección	: Cua	dra 6,7,8,	9 y 10 L	ongitud 4	196.04m	Fecha:		Ene	ero - 2017		
Distrito:						Numero	de losas:		24		
Provinc	ia: Sati	ро				Aero Tot	al:	22	3.52m2	•	
Región:	Jun	ín				Dimensi	ones de la	Losa: 4.0	0m x 3.37	m	
Evaluado	or: Rob	ert Reyne	r Hoppen	Miguel		Área de l	la losa:	1.	3.48m2		
					DAÑ	0					
	/up - Bucl					31 Pulim	ento de A	gregado			
22 Grita de Equina						32 Popou	ıts				
23 Losa Dividida						33 Bomb	oeo				
24 Griet	a de Dura	bilidad "l	D"			34 Punzo	namiento				
25 Esca	la					35 Cruce de Vía Férrea					
26 Disei	26 Diseño del Sello de Junta						36 Desconchamiento, Mapa de Grietas				
27 Desn	ivel Carri	l/Berma				Craquela	do				
28 Grietas Lineales (Grietas Longitudinales,						37 Grieta	as de Retra	acción			
Transversales y Diagonales)						38 Desca	ıscaramie	nto de Esc	_l uina		
29 Parcl	ne Grande	(mayor ().45m2)			39 Descascaramiento de Junta					
30 Parcl	ne Pequeñ	o menor	o Igual 0.	.45m2)							
	1	2	3	4	5	6	7	8	9	10	
A	29L,38L	32	32	38L	32		39L,32	32	38L	39L	
В	29L	29L			38L,39L			38L		38L	
C	32,38L	32									
D		39L,32									
	Da	ño	Seve	ridad	Numero	de losa	Densic	lad %	Valor 1	Deducido	
	3	8	J		7			7%		.57	
		9	1			1		7%		.53	
	2	9	1		3	3		60%	3	.30	
	3	2	1		8	3	33.3			.40	
	2	6	N	Л					4	.00	
					•		•		•		

Fuente: elaboración propia (2017).



INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	38. De	escascaramie	ento de Esqu	ina.
BE THE OF BEEF COLD		Val	or Deducido)
DENSIDAD	Densidad	В	M	A
29.17	0.00	0.00	0.00	0.00
	5.00	0.50	1.60	3.30
30.00 - 25.00 = 5.00	10.00	1.30	3.10	7.00
35.00 - 29.17= 0.83	15.00	2.00	4.70	10.10
0.83/5.00 = 0.17	20.00	2.70	5.90	13.20
5.80 - 4.40 = 1.40	25.00	4.40	8.30	15.70
1.40*0.17 = 0.23	30.00	5.80	10.20	17.70
5.80 - 0.23 = 5.57	35.00	6.90	11.90	19.30
	40.00	8.00	13.30	20.80
	45.00	8.90	14.50	22.10
VALOR DEDUCIDO	50.00	9.70	15.60	23.20
5.57	55.00	10.40	16.70	24.30
	60.00	11.10	17.60	25.20
	65.00	11.70	18.40	26.10
	70.00	12.20	19.20	26.90
	75.00	12.80	19.90	27.60
	80.00	13.30	20.60	28.30
	85.00	13.70	21.30	29.00
	90.00	14.20	21.90	29.60
	95.00	14.60	22.40	30.20
	100.00	15.00	23.00	30.80

Figura 125. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38L), identificado en la unidad de muestra 06 de la cuadra 08 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 5.57, a través de la densidad = 29.17, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 125.

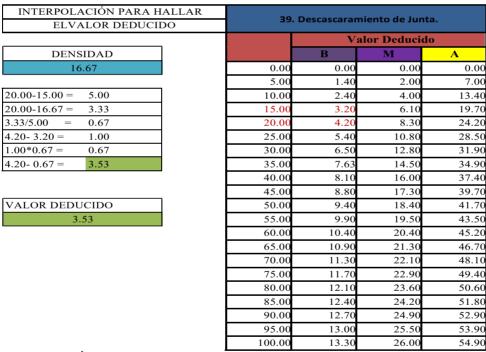
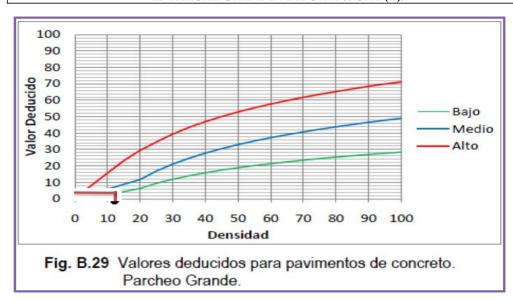


Figura 126. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de junta (39L), identificado en la unidad de muestra 06, cuadra 08 del Jirón San Martín.


Descripción e interpretación:

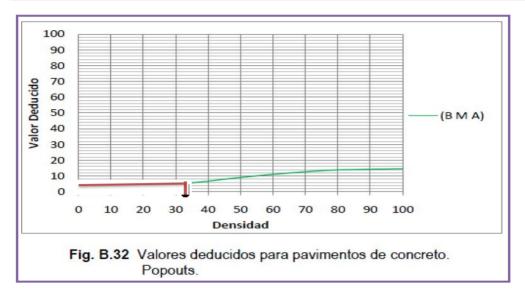
En el ábaco se obtiene un valor deducido de 3.53, a través de la densidad = 16.67,

de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 126.

29 PARCHE GRANDE MAYOR A 0.45M2 (L).

INTERPOLACIÓN PARA HALLAR	29	Parche G	rande (> 0.4	15m2) y			
ELVALOR DEDUCIDO		Acometidas	de Servicios	s Públicos			
	ъ н	Valor Deducido					
DENSIDAD	Densidad	В	M	A			
12.50	0.00	0.00	0.00	0.00			
	5.00	1.10	2.90	8.00			
15.00 - 10.00 = 5.00	10.00	2.70	5.80	15.70			
15.00-12.50 = 2.50	15.00	4.30	8.80	23.20			
2.50/5.00 = 0.50	20.00	6.30	11.70	29.50			
4.30- 2.70 = 2.00	25.00	9.40	16.90	34.60			
2.00*0.50 = 1.00	30.00	11.90	21.10	39.40			
4.30 - 1.00 = 3.30	35.00	14.00	24.70	43.50			
	40.00	15.80	27.80	47.00			
	45.00	17.50	30.50	50.10			
VALOR DEDUCIDO	50.00	18.90	33.00	52.90			
3.30	55.00	20.20	35.20	55.40			
	60.00	21.40	37.20	57.70			
	65.00	22.50	39.00	59.80			
	70.00	23.50	40.70	61.80			
	75.00	24.50	42.30	63.60			
	80.00	25.40	43.80	65.30			
	85.00	26.20	45.20	66.90			


Figura 127. Ábaco y tabla para hallar el valor deducido, del daño parche grande mayor a 0.45m2 (29L), identificado en la unidad de muestra 06, cuadra 08 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 3.30, a través de la densidad = 12.50, de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 127.

INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO		opouts limientos).
DENSIDAD 33.33	Densidad	Valor Deducido B M A
	0.00	0.00
35.00-30.00 = 5.00	5.00	0.70
35.00-33.33= 1.67	10.00	1.50
1.67/5.00 = 0.33	15.00	2.30
5.70-4.80 - = 0.90	20.00	3.20
0.8*0.78 = 0.30	25.00	4.00
5.70- 0.30 = 5.40	30.00	4.80
	35.00	5.70
	40.00	6.70
VALOR DEDUCIDO	45.00	8.00
5.40	50.00	9.10
	55.00	10.10
	60.00	11.10
	65.00	11.90
	70.00	12.70
	75.00	13.40
	80.00	13.90
	85.00	14.10
	90.00	14.30
	95.00	14.40
	100.00	14.60

Figura 128. Ábaco y tabla para hallar el valor deducido, del daño popoust (32), identificado en la unidad de muestra 06, cuadra 08 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 5.40, a través de la densidad = 33.33.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 128.

DAÑO SELLO DE JUNTA

26	Daño sello de Junata						
Va	Valor Deducido						
В	M	Α					
2	4	8					

Figura 129. Cuadro para hallar el valor deducido del daño sello de junta (26M), identificado en la unidad de muestra 06, cuadra 08 del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

$$m = 1 + (9/98)*(100 - HDV)$$

Donde:

m = Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo

HDV = El Mayor Valor Deducido Individual para la Unidad de Muestreo

Dato: HDV = 5.57 m = 9.672142857

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM		VALOR DEDUCIDO						TOTAL	q	VDC			
1	5.57	5.40	4.00	3.53	3.30						21.80	5	0.00
2	5.57	5.40	4.00	3.53	2.00						20.50	4	0.00
3	5.57	5.40	4.00	2.00	2.00						18.97	3	10.23
4	5.57	5.40	2.00	2.00	2.00						16.97	2	13.27
5	5.57	2.00	2.00	2.00	2.00						13.57	1	13.57
6	•											•	

Figura 130. Cuadro, cálculo del máximo valor deducido corregido VDC. De la unidad de muestra 06, del Jirón San Martín, cuadra 08.

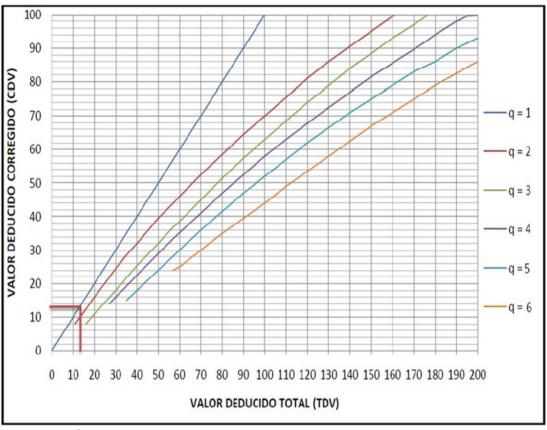
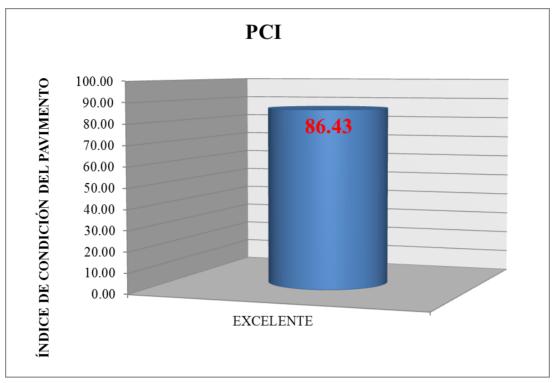


Figura 131. Ábaco para hallar el máximo valor deducido corregido de la unidad de muestra 06, del Jirón San Martín, cuadra 08.


Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 13.57, a través del valor deducido total = 13.57, donde q = 1, como se puede apreciar en la figura 131.

INTERPOLACIÓN PARA HALLAR EL	Total de	de Valores Deducidos Corregidos						
	Valores	q1	q2	q3	q4	q5	q6	q 7
VALOR DEDUCIDO CORREGIDO	Deducidos ()	0.00	•	•	•	•	•	*
	10	10.00						
VDC 10.23	11	11.00	8.00					
q = 3 18.97	16	16.00	12.40	8.00				
20.00.16.00.4.00	20	20.00	16.00	11.00				
20.00 - 16.00 = 4.00	27	27.00	21.90	15.90	14.00			
20.00 - 18.97 = 1.03	30	30.00	24.50	18.00	16.00			
1.03/4.00 = 0.26	35	35.00	28.50	21.70	19.20	17.10	15.00	
11.00 - 8.00 = 3.00	40	40.00	32.00	25.40	22.50	20.20	18.00	
3.00*0.26 = 0.77	50	50.00	39.50	32.00	29.00	26.50	24.00	
11.00 - 0.26 = 10.23	57	57.00	44.00	36.90	33.40	30.80	28.20	26.80
VID G 1425	60	60.00	46.00	38.50	35.20	32.60	30.00	28.30
$ \begin{array}{c cccc} & VDC & 14.35 \\ & q = 2 & 16.97 \\ \end{array} $	70	70.00	52.50	45.00	41.00	38.50	36.00	34.00
$\mathbf{q} = 2 \qquad \qquad 16.97$	80	80.00	58.50	51.40	47.00	44.20	41.50	39.30
20.00 - 16.00 = 4.00	90	90.00	64.50	57.40	52.50	49.70	47.00	44.50
20.00 - 16.00 = 4.00	100	100.00	70.00	63.00	58.00	55.00	52.00	49.30
3.03/4.00 = 0.76	110	100.00	75.50	68.50	63.00	60.00	57.00	54.30
16.00 - 12.24 = 3.60	120		81.00	74.00	67.80	64.90	62.00	59.20
3.60*0.76 = 2.73	130		86.00	78.90	72.50	69.50	66.50	63.70
16.00 - 2.73 = 13.27	140		90.50	84.00	77.00	74.00	71.00	68.20
10.00 - 2.75 - 15.27	150		95.00	88.40	81.50	78.20	75.00	72.30
VDC 18.48	160		99.50	93.00	85.50	82.20	79.00	76.30
q = 1 13.57	161		100.00	93.40	86.00	82.70	79.40	76.70
q - 1 15.57	170		100.00	97.00	89.60	86.30	83.00	80.30
16.00-11.00 = 5.00	177			100.00	92.60	88.80	85.10	82.70
16.00 - 13.57= 2.4	180			100.00	94.00	90.00	86.00	83.70
$ \begin{array}{rcl} 10.00 & 13.57 - 2.4 \\ 2.40/5.00 & = 0.49 \end{array} $	190				98.00	94.00	90.00	87.50
16.00 - 11.00 = 5.00	195				99.50	95.50	91.50	89.10
5.00*0.49 = 2.43	200				100.00	96.50	93.00	90.70
16.00 - 2.43 = 13.57	- * *					, ,	,	2 2.1 2

Figura 132. Interpolación para hallar el valor deducido corregidos en la unidad de muestra 06

	CALIFICACIÓN PCI	MÁXIMO VDC = 13.57
Rango	Clasificación	PCI = 100 - MÁXIMO VDC
100 - 85	Excelente	
85 - 70	Muy Bueno	PCI = 100-13.57
70 - 55	Bueno	
55 - 40	Regular	PCI = 86.43
40 - 25	Malo	CLASIFICACIÓN: EXCELENTE
25 -10	Muy Malo	
10 - 0	Fallado	

Figura 133. Rango de calificación del índice de condición del pavimento (PCI) unidad de muestra 06.

Grafico 134. Cálculo del índice de condición del pavimento PCI, en la unidad de muestra 06 del Jirón San Martín, cuadra 08.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 134 se obtuvo como resultado un PCI de 86.43, según el rango de calificación que corresponde a un pavimento de estado **excelente.**

Tabla 20 cuadro de patologías con mayor incidencia en la unidad de muestra 06, cuadra 08, del Jirón San Martín.

CUADE	CUADRO DE INCIDENCIAS EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE								
	SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 06.								
	UNIDAD DE MUESTRA 24 LOSA								
TIPO	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA						
FALLA	NOMIBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA						
38	Descascaramiento de Esquina (L)	5.57	25.55%						
32	Popoust	5.40	24.77%						
39	Daño Sello de Junta (M)	4.00	18.35%						
39	Desacascaramiento de junta (L)	3.53	16.19%						
29	Parche Grande Mayor a 0.45m2 (L)	3.30	15.14%						
	TOTAL	21.80	100.00%						

Fuente: elaboración propia (2017).

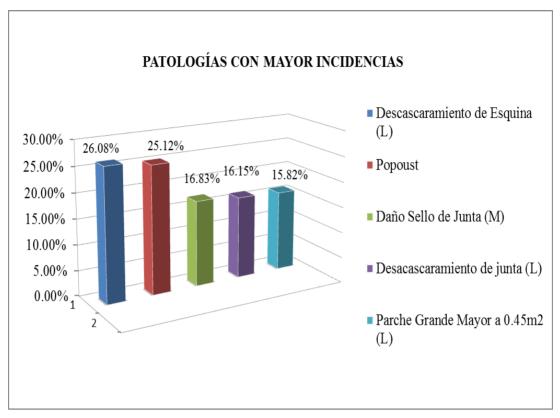
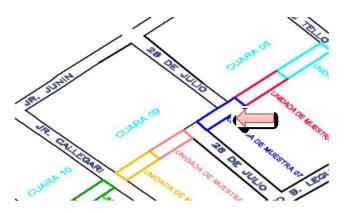



Figura 135. Grafico de patología con mayor incidencia en la unidad de muestra 06 del Jirón San Martín, cuadra 08.

Las patologías con mayor incidencia en esta unidad de muestra son: Descascaramiento de esquina de nivel de severidad bajo con 26.08%, popoust con 25.12% daño sello de junta de nivel de severidad media con 16.15%, parche grande mayor a 0.45m2 con 15.82% de la superficie analizada, como se aprecia en la figura 135.

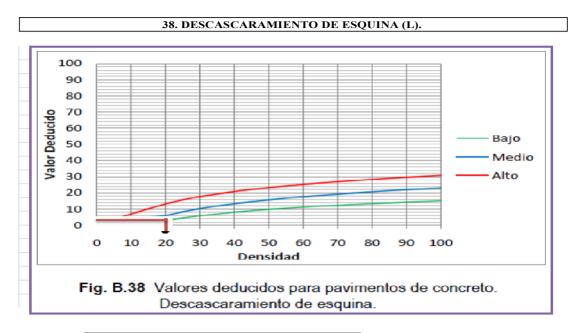

Unidad de muestra 07, cuadra 08, del Jirón San Martín

Tabla 21. Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 07.

muestra										
ULAD	ECH		UNIVE	RSIDAD	CATÓ	LICA LC	OS ÁNG	ELES DE	CHIMB	OTE
ULAD	OLIC			FAC	CULTA	D DE INC	GENIER	ÍA CIVII	L	
	HOJA I	DE INSF	PECCIO				ARA UN	IDAD DE	E MUEST	TRA
				N	ИÉТОD	O PCI				
Ramal:	Jirón	San Ma	rtin			Unidad d	e Muestra	a: 07 Ubi	icano en la	cuadra 08
Sección:	Cuac	dra 6,7,8,	9 y 10 Loi	ngitud 49	6.04m	Fecha:		Ene	ro - 2017	
Distrito:	Satip	00				Numero d	le losas:		20	
Provincia						Aero Tota			9.60m2	
Región:	Juní							Losa: 4.00		1
Evaluado	r: Rob	ert Reyne	er Hoppen	Miguel		Área de la	a losa:	13	.48m2	
21 DI	D 1	1.			DAÑ		. 1	. 1		
	up - Bucl					31 Pulim		Agregado		
	de Equin	ıa				32 Popou				
_	Dividida					33 Bomb				
	a de Dura	bilidad '	"D"			34 Punzo				
25 Escal						35 Cruce				
	o del Sel							nto, Mapa	de Grieta	ıs
	ivel Carri					Craquelado				
			tas Longi	tudinales	5,	37 Grietas de Retracción				
	sales y D					38 Descascaramiento de Esquina				
	e Grande	•		15 2)		39 Descascaramiento de Junta				
30 Parch	e Pequen		o Igual (
	1	2	3	4	5	6	7	8	9	10
A	38L,32	29L	29L	38L,32	32	32,38L	29M	39L	39L	39L
В	39L	29L	29L,39L	22H	39L32	38L		29M,32		
C										
D										
	DA	ÑO	Seve	ridad	Numer	o de losa	Dens	idad%	Valor	Deducido
	3	8	I			4	20.	00%		2.70
	39 L				6	30.	00%	(5.50	
	22 H				1	5.0	00%	1	2.10	
	32			6	30.00%			1.80		
	2	9	I			4	20.00%		6.3	
	2		N	1		2 10.00% 5.8				
	3	6	· (201)						4	1.00

Fuente: elaboración propia (2017).

38. Descascaramiento de Esquina.							
	\mathbf{V}	do					
Densidad	В	M	A				
0.00	0.00	0.00	0.00				
5.00	0.50	1.60	3.30				
10.00	1.30	3.10	7.00				
15.00	2.00	4.70	10.10				
20.00	2.70	5.90	13.20				
25.00	4.40	8.30	15.70				
30.00	5.80	10.20	17.70				
35.00	6.90	11.90	19.30				
40.00	8.00	13.30	20.80				
45.00	8.90	14.50	22.10				
50.00	9.70	15.60	23.20				
55.00	10.40	16.70	24.30				
60.00	11.10	17.60	25.20				
65.00	11.70	18.40	26.10				
70.00	12.20	19.20	26.90				
75.00	12.80	19.90	27.60				
80.00	13.30	20.60	28.30				
85.00	13.70	21.30	29.00				
90.00	14.20	21.90	29.60				
95.00	14.60	22.40	30.20				
100.00	15.00	23.00	30.80				

VALOR DEDUCIDO
2.70

DENSIDAD
20.00

Figura 136. Ábaco y tabla para hallar el valor deducido, de descascaramiento de esquina (38L), identificado en la unidad de muestra 07, cuadra 08 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 2.70, a través de la densidad = 20.00, de nivel de severidad = L, como se puede apreciar en la figura 136.

39 DESCASCARAMIENTO DE JUNTA (L).

39. Descascaramiento de Junta.								
Densidad	Valor Deducido							
	В	M	A					
0.00	0.00	0.00	0.00					
5.00	1.40	2.00	7.00					
10.00	2.40	4.00	13.40					
15.00	3.20	6.10	19.70					
20.00	4.20	8.30	24.20					
25.00	5.40	10.80	28.50					
30.00	6.50	12.80	31.90					
35.00	7.63	14.50	34.90					
40.00	8.10	16.00	37.40					
45.00	8.80	17.30	39.70					
50.00	9.40	18.40	41.70					
55.00	9.90	19.50	43.50					
60.00	10.40	20.40	45.20					
65.00	10.90	21.30	46.70					
70.00	11.30	22.10	48.10					
75.00	11.70	22.90	49.40					
80.00	12.10	23.60	50.60					
85.00	12.40	24.20	51.80					
90.00	12.70	24.90	52.90					
95.00	13.00	25.50	53.90					
100.00	13.30	26.00	54.90					

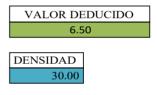
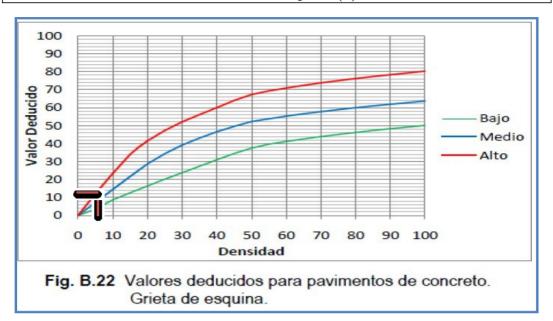



Figura 137. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de junta (28L), identificado en la unidad de muestra 07, cuadra 08 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 6.50, a través de la densidad = 30.00, de nivel de severidad = L, como se puede apreciar en la figura 137.

22 Grieta de Esquina Valor Deducido Densidad В A 0.00 0.00 0.00 0.00 3.50 7.20 10.00 8.70 14.50 23.40 15.00 12.60 21.70 34.00 41.50 20.00 16.40 28.70 25.00 20.20 34.40 47.30 30.00 39.20 52.10 23.80 35.00 27.40 43.10 56.10 40.00 31.00 46.60 60.00 45.00 34.50 49.60 64.00 50.00 37.50 52.30 67.30 55.00 39.70 53.80 69.30 60.00 41.20 55.30 70.90 65.00 42.60 56.60 72.40 70.00 43.90 57.80 73.80 75.00 45.10 58.90 75.00 60.00 76.20

47.30

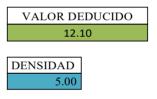
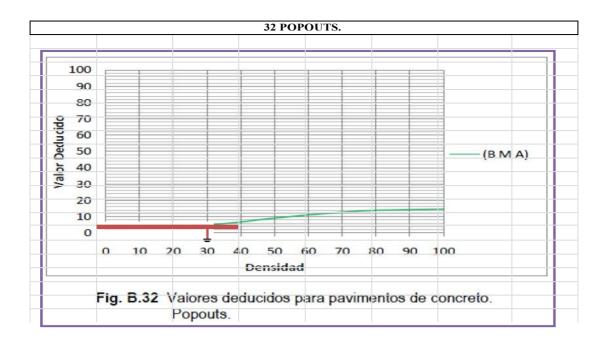


Figura 138. Ábaco y tabla para hallar el valor deducido, del daño grieta de esquina (22H), identificado en la unidad de muestra 07, cuadra 08 del Jirón San Martín.


61.00

77.30

Descripción e interpretación:

85.00

En el ábaco se obtiene un valor deducido de 12.10, a través de la densidad = 5.00, de nivel de severidad = L, como se puede apreciar en la figura 138.

	32. Popouts (Desprendimientos).						
Densidad	Valor Deducido B M A						
0.00							
5.00							
10.00							
15.00							
20.00							
25.00							
30.00	4.80						
35.00	5.70						
40.00	6.70						
45.00	8.00						
50.00	9.10						
55.00	10.10						
60.00	11.10						
65.00	11.90						
70.00							
75.00							
80.00							
85.00							
90.00							
95.00							
100.00	14.60						

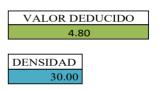
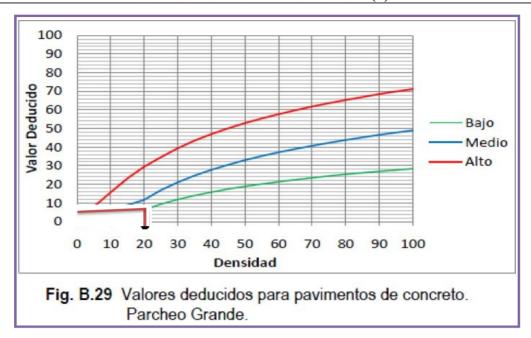



Figura 139. Ábaco y tabla para hallar el valor deducido, del daño popoust (32), identificado en la unidad de muestra 07, cuadra 08 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 4.80, a través de la densidad = 30.00, como se puede apreciar en la figura 139.

29 PARCHE GRANDE MAYOR A 0.45M2 (L).

29	Parche Grande (> 0.45m2) y Acometidas de Servicios Públicos							
D I	Valor Deducido							
Densidad	В	M	A					
0.00	0.00	0.00	0.00					
5.00	1.10	2.90	8.00					
10.00	2.70	5.80	15.70					
15.00	4.30	8.80	23.20					
20.00	6.30	11.70	29.50					
25.00	9.40	16.90	34.60					
30.00	11.90	21.10	39.40					
35.00	14.00	24.70	43.50					
40.00	15.80	27.80	47.00					
45.00	17.50	30.50	50.10					
50.00	18.90	33.00	52.90					
55.00	20.20	35.20	55.40					
60.00	21.40	37.20	57.70					
65.00	22.50	39.00	59.80					
70.00	23.50	40.70	61.80					
75.00	24.50	42.30	63.60					
80.00	25.40	43.80	65.30					
85.00	26.20	45.20	66.90					

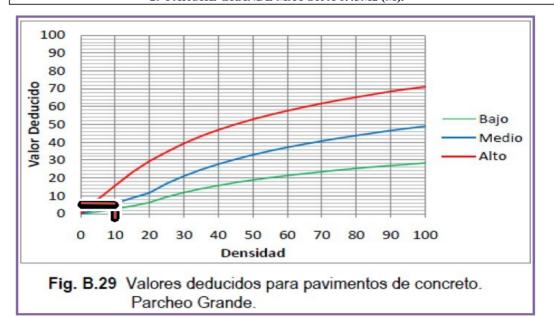


Figura 140. Ábaco y tabla para hallar el valor deducido, del daño parche grande mayor a 0.45m2 (29L), identificado en la unidad de muestra 07, cuadra 08 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 6.30, a través de la densidad = 20.00, de nivel de severidad = L, como se puede apreciar en la figura 140.

29 PARCHE GRANDE MAYOR A 0.45M2 (M).

29	Parche Grande (> 0.45m2) y Acometidas de Servicios Públicos							
Donaidad	Valor Deducido							
Densidad	В	M	A					
0.00	0.00	0.00	0.00					
5.00	1.10	2.90	8.00					
10.00	2.70	5.80	15.70					
15.00	4.30	8.80	23.20					
20.00	6.30	11.70	29.50					
25.00	9.40	16.90	34.60					
30.00	11.90	21.10	39.40					
35.00	14.00	24.70	43.50					
40.00	15.80	27.80	47.00					
45.00	17.50	30.50	50.10					
50.00	18.90	33.00	52.90					
55.00	20.20	35.20	55.40					
60.00	21.40	37.20	57.70					
65.00	22.50	39.00	59.80					
70.00	23.50	40.70	61.80					
75.00	24.50	42.30	63.60					
80.00	25.40	43.80	65.30					
85.00	26.20	45.20	66.90					

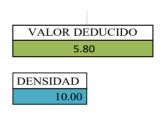


Figura 141. Ábaco y tabla para hallar el valor deducido, del daño parche grande mayor a 0.45m2 (29M), identificado en la unidad de muestra 07, cuadra 08 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 5.80, a través de la densidad = 10.00, de nivel de severidad = M, como se puede apreciar en la figura 141.

28 Daño sello de Junta (M).

VALOR DEDUCIDO

4

26	Daño sello de Junata					
Valor Deducido						
В	M	Α				
2	4	8				

Figura 142. Cuadro para hallar el valor deducido del daño sello de junta (26M), identificado en la unidad de muestra 07, cuadra 08 del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

m = 1 + (9/98)*(100 - HDV)

Donde:

 $m = Numero\ M\'{a}ximo\ de\ Valores\ Deducidos\ Incluido\ Fracciones\ para\ la\ Unidad\ de\ Muestreo$

HDV = El Mayor Valor Deducido Individual para la Unidad de Muestreo

Dato: HDV = 12.10 m = 9.07244898

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM		VALOR DEDUCIDO						TOTAL	q	VDC			
1	12.10	6.50	6.30	5.80	4.80	4.00	2.70				42.20	7	0.00
2	12.10	6.50	6.30	5.80	4.80	4.00	2.00				41.50	6	18.9
3	12.10	6.50	6.30	5.80	4.80	2.00	2.00				39.50	5	19.89
4	12.10	6.50	6.30	5.80	2.00	2.00	2.00				36.70	4	20.32
5	12.10	6.50	6.30	2.00	2.00	2.00	2.00				32.90	3	20.15
6	12.10	6.50	2.00	2.00	2.00	2.00	2.00				28.60	2	23.90
7	12.10	2.00	2.00	2.00	2.00	2.00	2.00				24.10	1	24.10

Figura 143. Cuadro, cálculo del máximo valor deducido corregido VDC, unidad de muestra 07, del Jirón San Martín, cuadra 08.

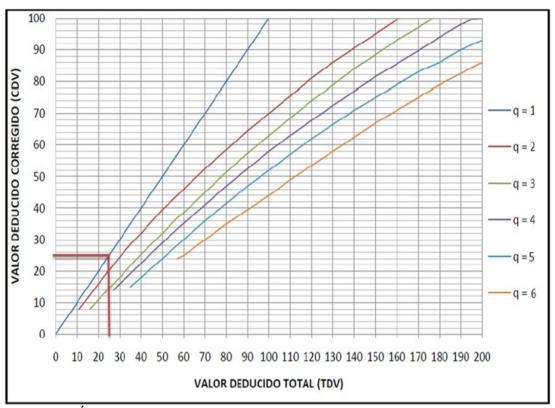
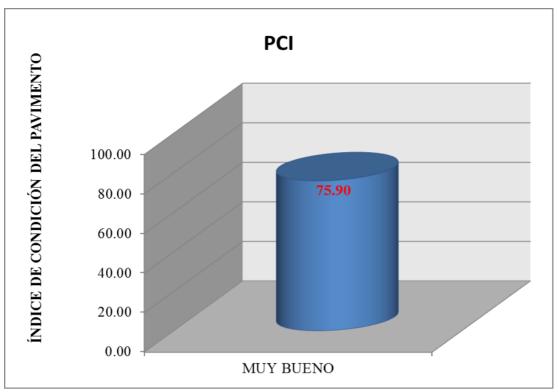


Figura 144. Ábaco para hallar el máximo valor deducido corregido, unidad de muestra 07, del Jirón San Martín, cuadra 08.


Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 24.10, a través del valor deducido total = 24.10, donde q = 1, como se puede apreciar en la figura 144.

DVEEDBOX I CVÁN BABA MANA AB EV	Total de	Valores Deducidos Corregidos						
INTERPOLACIÓN PARA HALLAR EL	Valores Deducidos	q1	q2	q3	q4	q 5	q6	q 7
VALOR DEDUCIDOS CORREGIDOS	O	0.00	-1-	1-	1.	Т.	1"	1.
	10	10.00						
VDC 18.90	11	11.00	8.00					
q = 6 41.50	16	16.00	12.40	8.00				
	20	20.00	16.00	11.00				
50.00-40.00 = 10.00	27	27.00	21.90	15.90	14.00			
50.00- 41.50 = 8.50	30	30.00	24.50	18.00	16.00			
8.50/10.00 = 0.85	35	35.00	28.50	21.70	19.20	17.10	15.00	
24.00 - 18.00 = 6.00	40	40.00	32.00	25.40	22.50	20.20	18.00	
0.66*3.3.30 = 5.10	50	50.00	39.50	32.00	29.00	26.50	24.00	
24.00 - 5.10 = 18.90	57	57.00	44.00	36.90	33.40	30.80	28.20	26.80
VW 6	60	60.00	46.00	38.50	35.20	32.60	30.00	28.30
VDC 19.89	70	70.00	52.50	45.00	41.00	38.50	36.00	34.00
q = 5 39.50	80	80.00	58.50	51.40	47.00	44.20	41.50	39.30
40.00 25.00 5.00	90	90.00	64.50	57.40	52.50	49.70	47.00	44.50
40.00 - 35.00 = 5.00	100	100.00	70.00	63.00	58.00	55.00	52.00	49.30
40.00 - 39.50 = 0.5	110		75.50	68.50	63.00	60.00	57.00	54.30
0.50/5.00 = 0.1	120		81.00	74.00	67.80	64.90	62.00	59.20
$\begin{array}{rcl} 20.20 - 17.10 = & 3.10 \\ \hline 3.10*0.10 = & 0.31 \end{array}$	130		86.00	78.90	72.50	69.50	66.50	63.70
20.20 - 0.31 = 19.89	140		90.50	84.00	77.00	74.00	71.00	68.20
20.20 - 0.31 - 19.89	150		95.00	88.40	81.50	78.20	75.00	72.30
VDC 20.32	160		99.50	93.00	85.50	82.20	79.00	76.30
q = 4 36.70	161		100.00	93.40	86.00	82.70	79.40	76.70
q - 4	170			97.00	89.60	86.30	83.00	80.30
40.00 - 35.00 = 5.00	177			100.00	92.60	88.80	85.10	82.70
40.00 - 36.70 = 3.3	180				94.00	90.00	86.00	83.70
3.30/5.00 = 0.66	190				98.00	94.00	90.00	87.50
22.50 - 19.20 = 3.30	195				99.50	95.50	91.50	89.10
3.30*0.66 = 2.18	200				100.00	96.50	93.00	90.70
18.00 - 0.52 = 20.32								
VDC 20.15	VDC	23.29		VDC	23.29			
q = 3 32.90	q = 2	28.60		q = 2	24.10			
35.00 - 30.00 = 5.00	30.00 - 27.00 =	3.00		27.00 - 20.00 =	7.00			
35.00 - 32.90 = 2.1	30.00 - 28.60 =	1.4		27.00- 24.10 =	_			
2.10/5.00 = 0.42		0.47			0.41			
21.70 - 18.00 = 3.70	24.50 - 21.90 =			27.00 - 20.00 =				
5.90*0.10 = 1.55	2.60*0.47 =	1.21		2.60*0.47 =	2.90			
21.70 - 1.55 = 20.15	27.00 - 5.90 =	23.29	l	27.00 - 2.90 =	24.10			

Figura 145. Interpolación para hallar el valor deducido corregido en la unidad de muestra 07.

	CALIFICACIÓN L PCI	MÁXIMO VDC = 24.10
Rango	Clasificación	PCI = 100 - MÁXIMO VDC
100 - 85	Excelente	
85 - 70	Muy Bueno	PCI = 100-24.10
70 - 55	Bueno	
55 - 40	Regular	PCI = 75.90
40 - 25	Malo	
25 -10	Muy Malo	CLASIFICACIÓN: MUY BUENO
10 - 0	Fallado	

Figura 146. Rango de calificación del índice de condición del pavimento (PCI), unidad de muestra 07.

Grafico 147. Cálculo del índice de condición del pavimento PCI, en la unidad de muestra 07 del Jirón San Martín, cuadra 08.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 147 se obtuvo como resultado un PCI de 75.90, según el rango de calificación que corresponde a un pavimento de estado **muy bueno.**

Tabla 22 cuadro de patologías con mayor incidencia en la unidad de muestra 07, cuadra 08, del Jirón San Martín.

CUA	CUARO DE INCIDENCIA EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 07						
	UNIDAD DE MUESTRA 20 LOSAS						
TIPO	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA				
FALLA	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA				
22	Grieta de Esquina (H)	12.10	28.67%				
39	Descascaramiento de Junta (L)	6.50	15.40%				
29	Parche Grande mayor a 0.45m2 (L)	6.30	14.93%				
29	Parche Grande mayor a 0.45m2 (M)	5.80	13.74%				
32	Popoust	4.80	11.37%				
26	Daño sello de Junta (M) 4.00 9.48%						
38	Descascaramiento de Esquina (L) 2.70 6.40%						
	TOTAL	42.20	100.00%				

Fuente: elaboración propia (2017).

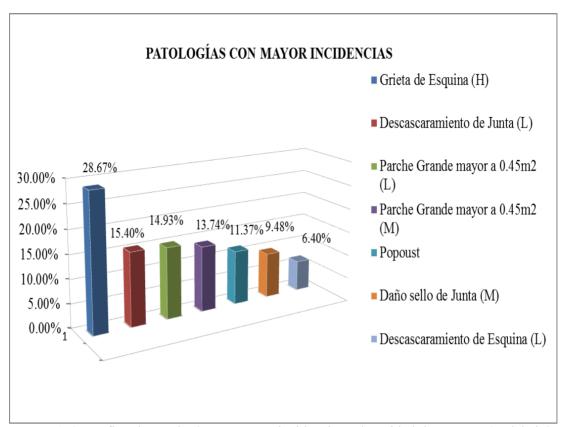


Figura 148. Grafico de patología con mayor incidencia en la unidad de muestra 07 del Jirón San Martín, cuadra 08.

Descripción e interpretación: En la unidad de muestra 07 comprende de 20 losas del Jirón san Martín, de la cuadra 08, las patologías con mayor incidencia son: Grieta de esquina de severidad alto con 28.67%, descascaramiento de junta de nivel de severidad baja 15.40%, parche grande mayor a 0.45m2 de nivel de severidad baja con 14.93%, parche grande mayor a 0.45m2 de nivel de severidad media con 13.74%, popoust con 11.37%, daño sello de junta de nivel de severidad medio con 9.48%, descascaramiento de esquina de nivel de severidad bajo con 6.40% de la superficie analizada, como se aprecia en la figura 148.

Unidad de muestra 08, cuadra 09, del Jirón San Martín

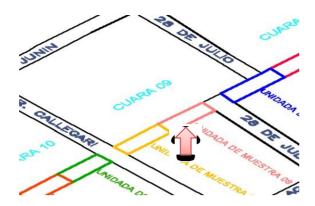
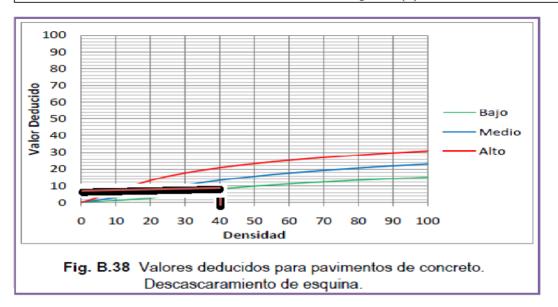



Tabla 23 Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 08.

muestra										
ULAR	ECIT		0112123					A CIVIL		<u> </u>
CAT		DE INSP	ECCIO					DAD DE		'RA
				M.	1ÉTODC					
Ramal:	Jiróı	n San Ma	ırtin			Unidad d	e Muestra	: 08 Ubica	ada en la c	cuadra 09
Sección:	ón: Cuadra 6,7,8,9 y 10 Longitud 496.04m					Fecha:		Ene	ro - 2017	'
Distrito:	rito: Satipo					Numero			20	
Provinci		-				Aero To			9.60m2	
Región:	Jun			3 5: 1		,		a Losa: 4.0		37m
Evaluado	or: Rob	ert Reyn	er Hoppe	n Mıguel	DAÑI	Area de	la losa:	13	3.48m2	
21 Blow	up - Buc	kling			DAÑO		ento de /	Agregado		
	de Equir					32 Popoi		Agregado		
	Dividida					33 Bomb				
			""							
24 Griet 25 Escal	a de Dura	abilidad	D			34 Punzonamiento				
_	io del Se	llo de Im	nta			35 Cruce de Vía Férrea 36 Desconchamiento, Mapa de Grietas				
	ivel Carr					Craquelado				
			tas Long	itudinale	s,	37 Grietas de Retracción				
	rsales y I					38 Descascaramiento de Esquina				
			0.45m2)			39 Descascaramiento de Junta				
30 Parch	ne Pequeí	ĭo menoi	o Igual (0.45m2)						
	1	2	3	4	5	6	7	8	9	10
A	38L,39L	39L	36L	38L,39L	38L	38L	38L,36L	36L		39L,36L
В	36L		39L,36L	39L	39L	32	39L	36L	36L	39L,32
C										
D										
Daño Severidad Numero					de losa	Densi	idad%	Valor I	Deducido	
	38 L			5		00%		40		
	39 L			9)	45.0	00%	8.	.80	
	32			2 10.00%			1.50			
		6			8	3	40.0	00%		90
	2	6	N	Л					4.	00
E (2017)										

Fuente: Elaboración propia (2017).

	Valor Deducido						
Densidad	В	M	A				
0.00	0.00	0.00	0.0				
5.00	0.50	1.60	3.3				
10.00	1.30	3.10	7.0				
15.00	2.00	4.70	10.1				
20.00	2.70	5.90	13.2				
25.00	4.40	8.30	15.7				
30.00	5.80	10.20	17.7				
35.00	6.90	11.90	19.3				
40.00	8.00	13.30	20.8				
45.00	8.90	14.50	22.1				
50.00	9.70	15.60	23.2				
55.00	10.40	16.70	24.3				
60.00	11.10	17.60	25.2				
65.00	11.70	18.40	26.1				
70.00	12.20	19.20	26.9				
75.00	12.80	19.90	27.6				
80.00	13.30	20.60	28.3				
85.00	13.70	21.30	29.0				
90.00	14.20	21.90	29.6				

14.60

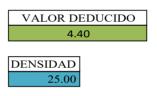


Figura 149. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38L), identificado en la unidad de muestra 08, cuadra 09 del Jirón San Martín.

22.40

30.20

Descripción e interpretación:

95.0

En el ábaco se obtiene un valor deducido de 4.40, a través de la densidad = 25.00, de nivel de severidad = L, como se puede apreciar en la figura 149.

39 DESCASCARAMIENTO DE JUNTA (L).

Densidad	Valor Deducido					
	В	M	A			
0.00	0.00	0.00	0.0			
5.00	1.40	2.00	7.0			
10.00	2.40	4.00	13.4			
15.00	3.20	6.10	19.7			
20.00	4.20	8.30	24.2			
25.00	5.40	10.80	28.5			
30.00	6.50	12.80	31.9			
35.00	7.63	14.50	34.9			
40.00	8.10	16.00	37.4			
45.00	8.80	17.30	39.7			
50.00	9.40	18.40	41.7			
55.00	9.90	19.50	43.5			
60.00	10.40	20.40	45.2			
65.00	10.90	21.30	46.7			
70.00	11.30	22.10	48.1			
75.00	11.70	22.90	49.4			
80.00	12.10	23.60	50.6			
85.00	12.40	24.20	51.80			
90.00	12.70	24.90	52.9			

13.00

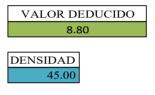
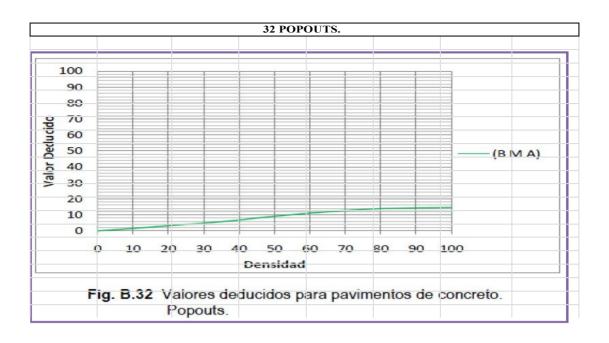



Figura 150. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (39L), identificado en la unidad de muestra 08, cuadra 09 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 8.80, a través de la densidad = 45.00, de nivel de severidad = L, como se puede apreciar en la figura 150.

32. Popouts (Desprendimientos).					
Densidad	Valor Deducido				
	B M A				
0.00	0.00				
5.00	0.70				
10.00	1.50				
15.00	2.30				
20.00					
25.00	4.00				
30.00	4.80				
35.00	5.70				
40.00	6.70				
45.00	8.00				
50.00	9.10				
55.00					
60.00	11.10				
65.00					
70.00	12.70				
75.00	13.40				
80.00	13.90				
85.00					
90.00					
95.00					
100.00	14.60				

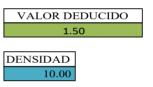


Figura 151. Ábaco y tabla para hallar el valor deducido del daño popoust (32), identificado en la unidad de muestra 08, cuadra 09 del Jirón San Martín.

En el ábaco se obtiene un valor deducido de 1.50, a través de la densidad = 10.00, como se puede apreciar en la figura 151

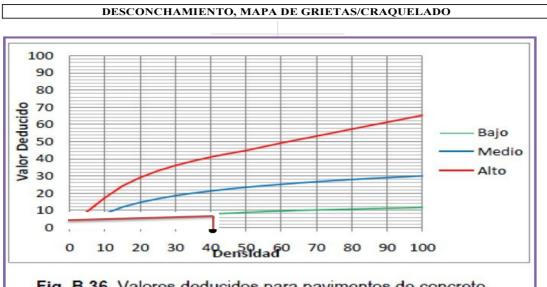


Fig. B.36 Valores deducidos para pavimentos de concreto.

Desconchamiento.

36. Descase	aramiento	por Agrieta	miento.			
	Valor Deducido					
Densidad	В	M	A			
0.00	0.00	0.00	0.00			
5.00	1.20	4.20	9.30			
10.00	2.10	8.00	17.30			
15.00	3.80	11.90	24.20			
20.00	5.00	14.60	29.10			
25.00	5.90	16.70	33.00			
30.00	6.70	18.50	36.10			
35.00	7.30	20.00	38.70			
40.00	7.90	21.20	41.00			
45.00	8.30	22.40	43.00			
50.00	8.80	23.40	44.80			
55.00	9.20	24.30	47.00			
60.00	9.50	25.10	49.20			
65.00	9.90	25.90	51.20			
70.00	10.20	26.60	53.20			
75.00	10.50	27.30	55.20			
80.00	10.70	27.90	57.30			
85.00	11.00	28.50	59.30			
90.00	11.20	29.00	61.30			
95.00	11.40	29.50	63.30			
100.00	11.70	30.00	65.30			

VALOR DEDUCIDO
7.90

DENSIDAD
40.00

. *Figura 152*. Ábaco y tabla para hallar el valor deducido del daño desconchamiento, mapa de grietas craquelado (36L), identificado en la unidad de muestra 08, cuadra 09 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 7.90, a través de la densidad = 40.00, de nivel de severidad = L como se puede apreciar en la figura 152.

28 Daño sello de Junta (M).

VALOR DEDUCIDO

4

26	Daño sello de Junata					
Valor Deducido						
В	M A					
2	4	8				

Figura 153. Cuadro para hallar el valor deducido del daño sello de junta (26M), identificado en la unidad de muestra 08, cuadra 09 del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

m = 1 + (9/98)*(100 - HDV)

Donde:

m=Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo

HDV = El Mayor Valor Deducido Individual para la Unidad de Muestreo

Dato: HDV = 8.80 m = 9.375510204

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

TE	I	VALOR DEDUCIDO					TOTAL	q	VDC			
1	8.80	7.90	4.40	4.00	1.50					26.60	4	0
2	8.80	7.90	4.40	2.00	1.50					24.60	3	14.22
3	8.80	7.90	2.00	2.00	1.50					22.20	2	17.85
4	8.80	2.00	2.00	2.00	1.50					16.30	1	16.30
5												

Figura 154. Cuadro para el cálculo del máximo valor deducido corregido VDC, de la unidad de muestra 08, del Jirón San Martín, cuadra 09.

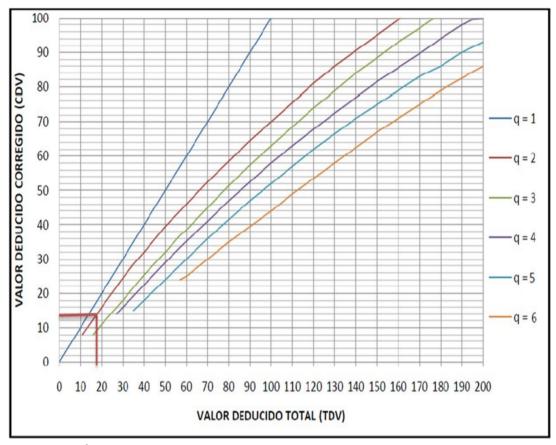
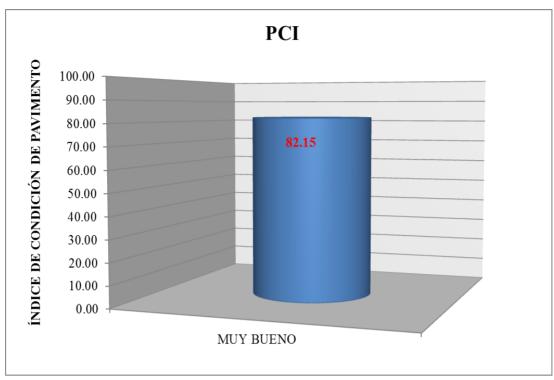


Figura 155. Ábaco para hallar el máximo valor deducido corregido, unidad de muestra 08, del Jirón San Martín, cuadra 09.


Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 17.85, a través del valor deducido total = 22.20, donde q = 2, como se puede apreciar en la figura 155.

INTERPOLACIÓN PARA HALLAR EL	Total de	Valores Deducidos Corregidos						
VALOR DEDUCIDO CORREGIDO	Valores Deducidos	q1	q2	q3	q4	q5	q6	q 7
VALOR BEBUCIDO CORREGIDO	0	0.00						
VDC 14.22	10	10.00						
q = 3 24.60	11	11.00	8.00					
	16	16.00	12.40	8.00				
27.00-20.00 = 7.00	20	20.00	16.00	11.00				
27.00 -24.60= 2.4	27	27.00	21.90	15.90	14.00			
2.40/7.00 = 0.34	30	30.00	24.50	18.00	16.00			
15.90-11.00 = 4.90	35	35.00	28.50	21.70	19.20	17.10	15.00	
4.90*0.34 = 1.68	40	40.00	32.00	25.40	22.50	20.20	18.00	
15.90 - 1.68 = 14.22	50	50.00	39.50	32.00	29.00	26.50	24.00	
	57	57.00	44.00	36.90	33.40	30.80	28.20	26.80
VDC 17.85	60	60.00	46.00	38.50	35.20	32.60	30.00	28.30
$q = 2 \qquad 22.20$	70	70.00	52.50	45.00	41.00	38.50	36.00	34.00
	80	80.00	58.50	51.40	47.00	44.20	41.50	39.30
27.00 - 20.00 = 7.00	90	90.00	64.50	57.40	52.50	49.70	47.00	44.50
27.00 - 22.20 = 4.8	100	100.00	70.00	63.00	58.00	55.00	52.00	49.30
4.80/7.00 = 0.69	110		75.50	68.50	63.00	60.00	57.00	54.30
21.90 - 16.00 = 5.90	120		81.00	74.00	67.80	64.90	62.00	59.20
5.90*0.68 = 4.05	130		86.00	78.90	72.50	69.50	66.50	63.70
21.90 - 4.05 = 17.85	140		90.50	84.00	77.00	74.00	71.00	68.20
	150		95.00	88.40	81.50	78.20	75.00	72.30
VDC 16.30	160		99.50	93.00	85.50	82.20	79.00	76.30
q = 1 16.30	161		100.00	93.40	86.00	82.70	79.40	76.70
	170			97.00	89.60	86.30	83.00	80.30
20.00 - 16.00 = 4.00	177			100.00	92.60	88.80	85.10	82.70
20.00 - 16.30 = 3.7	180				94.00	90.00	86.00	83.70
3.70/4.00 = 0.93	190				98.00	94.00	90.00	87.50
20.00-16.00 = 4.00	195				99.50	95.50	91.50	89.10
5.00*0.40 = 3.70	200				100.00	96.50	93.00	90.70
20.00- 3.30 = 16.30								

Figura 156. Interpolación para hallar el valor deducido corregido, en la unidad de muestra 08.

RANGOS DE CA PO	LIFICACIÓN DEL CI	MÁXIMO VDC = 17.85
Rango	Clasificación	PCI = 100 - MÁXIMO VDC
100 - 85	Excelente	
85 - 70	Muy Bueno	PCI = 100-17.85
70 - 55	Bueno	
55 - 40	Regular	PCI = 82.15
40 - 25	Malo	CLASIFICACIÓN: MUY BUENO
25 -10	Muy Malo	
10 - 0	Fallado	

Figura 157. Rango de calificación del índice de condición del pavimento (PCI) unidad de muestra 08.

Grafico 158. Cálculo del índice de condición del pavimento PCI, unidad de muestra 08 del Jirón San Martín de la cuadra 08.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 158 se obtuvo como resultado un PCI de 82.15, según el rango de calificación que corresponde a un pavimento de estado **muy bueno.**

Tabla 24 cuadro de patologías con mayor incidencia en la unidad de muestra 08, cuadra 09 del Jirón San Martín.

CUA	CUADRO DE INCIDENCIAS EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE							
	SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 08.							
	UNIDAD DE MUESTRA 20 LOSAS							
TIPO	NOMBRE DE FALLAS	INCIDENCIA						
FALLA	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA					
39	Descascaramiento de Junta (L)	8.80	35.06%					
36	Desconchamiento Mapa de Grietas Craquelado (L)	7.90	31.47%					
38	Descascaramiento de Esquina (L)	4.40	17.53%					
26	Daño sello de Junta (M)	4.00	15.94%					
32	Popoust	1.50	5.98%					
		25.10	100%					

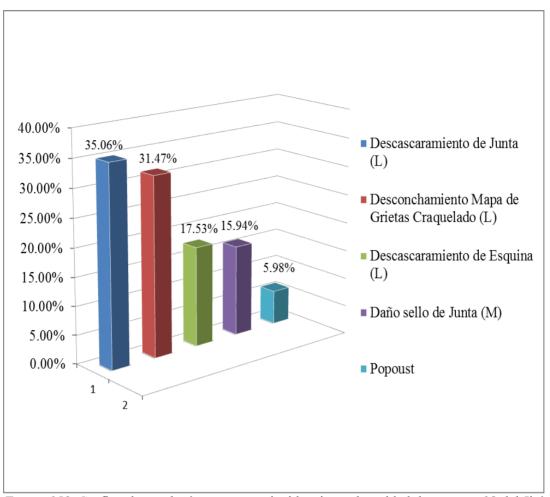


Figura 159. Grafico de patología con mayor incidencia, en la unidad de muestra 08 del Jirón San Martín, cuadra 09.

Descripción e interpretación: Las patologías con mayor incidencia de deterioro de esta unidad de muestra de la cuadra 09 son: Descascaramiento de junta de nivel de severidad baja 35.06%, desconchamiento, mapa de grietas craquelado de nivel de severidad baja con 31.47%, descascaramiento de esquina de nivel de severidad baja con 17.53%, daño sello de junta de nivel de severidad media con 15.49%, popoust con 5.98% de la superficie analizada, como se aprecia en la figura 159.

Unidad de muestra 09, cuadra 09, del Jirón San Martín.

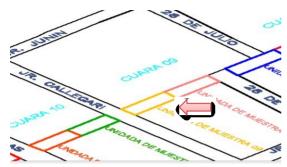



Tabla 25 Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 09.

	CH)		UNIVE	RSIDAD	CATÓI	ICA LO	S ÁNGE	LES DE	CHIMBO)TE
ULAD	UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE FACULTAD DE INGENIERÍA CIVIL									
	НОЈА Г	DE INSP	ECCIO				RA UNI	DAD DE	MUEST	RA
	MÉTODO PCI									
Ramal:	Jiróı	n San Ma	ırtin			Unidad d	e Muestra	ı: 09 Ubi	cado en la	cuadra 09
Sección:	Cuadr	a 6,7,8,9	Y10 Lon	gitud 496	.04m	Fecha:		Ene	ero- 2017	
Distrito:	Sati	ро				Numero	de losas:		20	
Provinci	a: Sati	po				Aero To			9.60m2	
Región:	Jun								00m x 3.3	7m
Evaluado	r: Rob	ert Reyn	er Hoppe	n Miguel		Área de	la losa:	13	3.48m2	
21 22					DAÑ					
21 Blow								Agregado		
22 Grita	de Equir	1a				32 Popor				
23 Losa	Dividida	Į.				33 Bomb	oeo			
24 Grieta	a de Dura	abilidad '	"D"			34 Punzo	onamient	o		
25 Escal	a						e de Vía I			
26 Diseñ								nto, Mapa	a de Grieta	as
27 Desni						Craquelado				
				itudinales	5,	37 Grietas de Retracción				
Transver						38 Descascaramiento de Esquina				
			0.45m2)	0.452)		39 Descascaramiento de Junta				
30 Parch	e Pequei	no menoi	o Igual (J.45m2)						
	1	2	3	4	5	6	7	8	9	10
A		32,38L	38L		39L	38L	39L,38L	36L,38L	36L	39L
В		36L	32,39L	36L	32,39L	39L	39L	39L	29L,39L	
C										
D										
	Da	ıño	Seve	ridad	Numer	o de losa	Dens	idad%	Valor I	Deducido
		8		L		5		00%		40
	39			L		9	45.0	00%	8.	80
	32				3	15.0	00%	2.	30	
	36 L			4 20.00%			5.	00		
	29 L			1	5.0	00%	1.	10		
	2	6	1	M					4.	00
	-1-1	: /	onia (2)	017)						

38. Descascaramiento de Esquina.						
	V	Valor Deducio				
Densidad	В	M	A			
0.00	0.00	0.00	0.00			
5.00	0.50	1.60	3.30			
10.00	1.30	3.10	7.00			
15.00	2.00	4.70	10.10			
20.00	2.70	5.90	13.20			
25.00	4.40	8.30	15.70			
30.00	5.80	10.20	17.70			
35.00	6.90	11.90	19.30			
40.00	8.00	13.30	20.80			
45.00	8.90	14.50	22.10			
50.00	9.70	15.60	23.20			
55.00	10.40	16.70	24.30			
60.00	11.10	17.60	25.20			
65.00	11.70	18.40	26.10			
70.00	12.20	19.20	26.90			
75.00	12.80	19.90	27.60			
80.00	13.30	20.60	28.30			
85.00	13.70	21.30	29.00			
90.00	14.20	21.90	29.60			
95.00	14.60	22.40	30.20			
100.00	15.00	23.00	30.80			

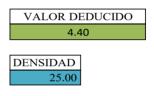
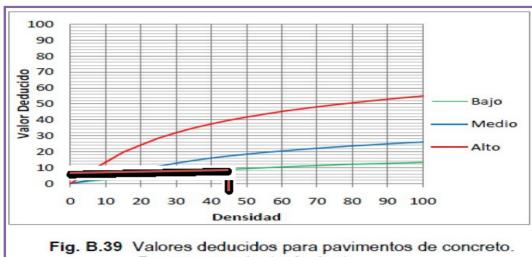



Figura 160. Ábaco y tabla para hallar el valor deducido, del daño deescascaramiento de esquina (38L), identificado en la unidad de muestra 09 de la cuadra 09 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 4.40, a través de la densidad = 25.00, de nivel de severidad = L como se puede apreciar en la figura 160.

39 DESCASCARAMIENTO DE JUNTA (L).

Descascaramiento de Junta.

39. Descascaramiento de Junta.							
Densidad	Valor Deducido						
	В	M	A				
0.00	0.00	0.00	0.00				
5.00	1.40	2.00	7.00				
10.00	2.40	4.00	13.40				
15.00	3.20	6.10	19.70				
20.00	4.20	8.30	24.20				
25.00	5.40	10.80	28.50				
30.00	6.50	12.80	31.90				
35.00	7.63	14.50	34.90				
40.00	8.10	16.00	37.40				
45.00	8.80	17.30	39.70				
50.00	9.40	18.40	41.70				
55.00	9.90	19.50	43.50				
60.00	10.40	20.40	45.20				
65.00	10.90	21.30	46.70				
70.00	11.30	22.10	48.10				
75.00	11.70	22.90	49.40				
80.00	12.10	23.60	50.60				
85.00	12.40	24.20	51.80				
90.00	12.70	24.90	52.90				
95.00	13.00	25.50	53.90				
100.00	13.30	26.00	54.90				

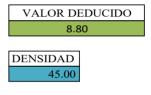
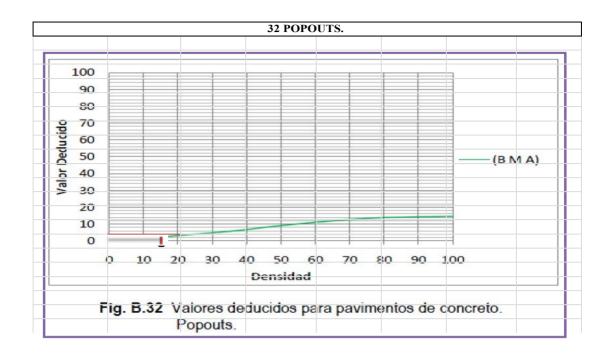
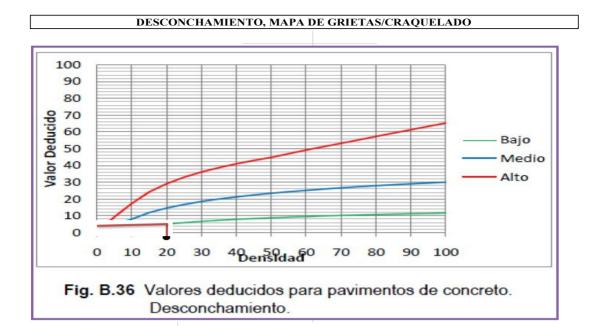



Figura 161. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de junta (39L), identificado en la unidad de muestra 09, cuadra 09 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 8.80, a través de la densidad = 45.00, de nivel de severidad = L como se puede apreciar en la figura 161.


32. Popouts (Desprendimientos).					
Densidad	Valor Deducido				
	B M A				
0.00					
5.00					
10.00	1.50				
15.00					
20.00	3.20				
25.00					
30.00					
35.00					
40.00					
45.00					
50.00					
55.00					
60.00					
65.00					
70.00					
75.00					
80.00					
85.00					
90.00					
95.00					
100.00	14.60				

VALOR DEDUCIDO					
2.30					
DENSIDAD					
15.00					

Figura 162. Ábaco y tabla para hallar el valor deducido, del daño popoust (32), identificado en la unidad de muestra 09, cuadra 09 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 2.30, a través de la densidad = 15.00, como se puede apreciar en la figura 162.

36. Descascaramiento por Agrietamiento.							
Densidad	Valor Deducido						
Densidad	В	M	A				
0.00	0.00	0.00	0.00				
5.00	1.20	4.20	9.30				
10.00	2.10	8.00	17.30				
15.00	3.80	11.90	24.20				
20.00	5.00	14.60	29.10				
25.00	5.90	16.70	33.00				
30.00	6.70	18.50	36.10				
35.00	7.30	20.00	38.70				
40.00	7.90	21.20	41.00				
45.00	8.30	22.40	43.00				
50.00	8.80	23.40	44.80				
55.00	9.20	24.30	47.00				
60.00	9.50	25.10	49.20				
65.00	9.90	25.90	51.20				
70.00	10.20	26.60	53.20				
75.00	10.50	27.30	55.20				
80.00	10.70	27.90	57.30				
85.00	11.00	28.50	59.30				
90.00	11.20	29.00	61.30				
95.00	11.40	29.50	63.30				
100.00	11.70	30.00	65.30				

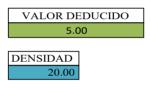



Figura 163. Ábaco y tabla para hallar el valor deducido, del daño desconchamiento mapa de grietas craquelado (36L), identificado en la unidad de muestra 09, cuadra 09 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 5.00, a través de la densidad = 20.00,

de nivel de severidad = L como se puede apreciar en la figura 163.

29 PARCHE GRANDE MAYOR A 0.45M2 (L).

Parcheo Grande.

29	Parche Grande (> 0.45m2) y Acometidas de Servicios Públicos							
Donaldad	Valor Deducido							
Densidad	В	M	A					
0.00	0.00	0.00	0.00					
5.00	1.10	2.90	8.00					
10.00	2.70	5.80	15.70					
15.00	4.30	8.80	23.20					
20.00	6.30	11.70	29.50					
25.00	9.40	16.90	34.60					
30.00	11.90	21.10	39.40					
35.00	14.00	24.70	43.50					
40.00	15.80	27.80	47.00					
45.00	17.50	30.50	50.10					
50.00	18.90	33.00	52.90					
55.00	20.20	35.20	55.40					
60.00	21.40	37.20	57.70					
65.00	22.50	39.00	59.80					
70.00	23.50	40.70	61.80					
75.00	24.50	42.30	63.60					
80.00	25.40	43.80	65.30					
85.00	26.20	45.20	66.90					

Figura 164. Ábaco y tabla para hallar el valor deducido, del daño parche grande mayor a 0.45m2 (29L), identificado en la unidad de muestra 09, cuadra 09 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 1.10, a través de la densidad = 5.00, de nivel de severidad = L como se puede apreciar en la figura 164.

28 Daño sello de Junta (M).

VALOR DEDUCIDO

4

26	Daño sello de Junata				
Val	or Deducido				
В	M	Α			
2	4	8			

Figura 165. Cuadro para hallar el valor deducido del daño sello de junta (26M), identificado en la unidad de muestra 09 del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

m = 1 + (9/98)*(100 - HDV)

Donde:

m = Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo HDV = El Mayor Valor Deducido Individual para la Unidad de Muestreo

> Dato: HDV = 8.80 m = 9.375510204

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM		VALOR DEDUCIDO						TOTAL	q	VDC			
1	8.8	5	4.4	4	2.3	1.1					25.6	5	0
2	8.8	5	4.4	4	2	1.1					25.3	4	0
3	8.8	5	4.4	2	2	1.1					23.3	3	13.31
4	8.8	5	2	2	2	1.1					20.9	2	16.76
5	8.8	2	2	2	2	1.1					17.9	1	17.90

Figura 166. Cuadro, cálculo del máximo valor deducido corregido VDC, unidad de muestra 09, del Jirón San Martín, cuadra 09.

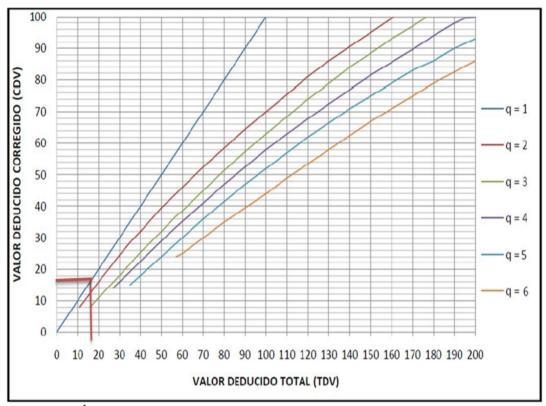
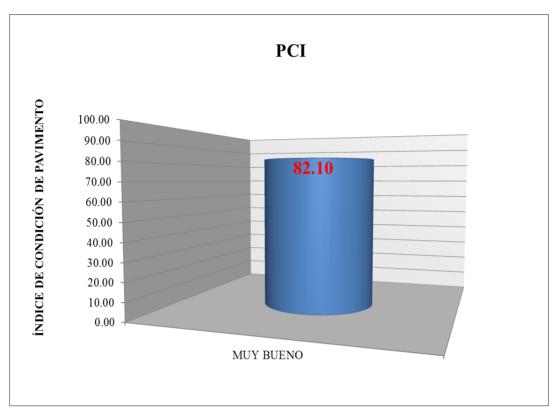


Figura 167. Ábaco para hallar el máximo valor deducido corregido en la unidad de muestra 09, del Jirón San Martín, cuadra 09.


Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 17.90, a través del valor deducido total = 17.90, donde q = 1, como se puede apreciar en la figura 167.

INTERPOLACIÓN PARA HALLAR EL	Total de	Valores Deducidos Corregidos						
	Valores	q1	q2	q3	q4	q5	q6	q 7
VALOR DEDUCIDO CORREGIDO	Deducidos 0	0.00	4-	q.	4.	qe	q.	4'
	10	10.00						
VDC 14.58			0.00					
q = 5 23.30	11	11.00	8.00	0.00				
	16	16.00	12.40	8.00				
27.00-20.00 = 7.00	20	20.00	16.00	11.00				
27.00- 23.30 = 3.7	27	27.00	21.90	15.90	14.00			
3.70/7.00 = 0.53	30	30.00	24.50	18.00	16.00			
15.90 - 11.00 = 4.90	35	35.00	28.50	21.70	19.20	17.10	15.00	
4.90*0.53 = 2.59	40	40.00	32.00	25.40	22.50	20.20	18.00	
15.90 - 2.59 = 13.31	50	50.00	39.50	32.00	29.00	26.50	24.00	
	57	57.00	44.00	36.90	33.40	30.80	28.20	26.80
VDC 16.76	60	60.00	46.00	38.50	35.20	32.60	30.00	28.30
q = 4 20.90	70	70.00	52.50	45.00	41.00	38.50	36.00	34.00
	80	80.00	58.50	51.40	47.00	44.20	41.50	39.30
27.00- 20.00 = 7.00	90	90.00	64.50	57.40	52.50	49.70	47.00	44.50
27.00 - 20.90 = 6.10	100	100.00	70.00	63.00	58.00	55.00	52.00	49.30
6.10/7.00 = 0.87	110		75.50	68.50	63.00	60.00	57.00	54.30
21.90- 16.00 = 5.90	120		81.00	74.00	67.80	64.90	62.00	59.20
5.90*0.87 = 5.14	130		86.00	78.90	72.50	69.50	66.50	63.70
21.90- 5.14 = 16.76	140		90.50	84.00	77.00	74.00	71.00	68.20
	150		95.00	88.40	81.50	78.20	75.00	72.30
VDC 14.32	160		99.50	93.00	85.50	82.20	79.00	76.30
q = 3 17.90	161		100.00	93.40	86.00	82.70	79.40	76.70
q o local	170			97.00	89.60	86.30	83.00	80.30
20.00 - 16.00 = 4.00	177			100.00	92.60	88.80	85.10	82.70
20.00 - 17.90 = 2.1	180				94.00	90.00	86.00	83.70
2.10/4.00 = 0.53	190				98.00	94.00	90.00	87.50
20.00-16.00 = 4.00	195				99.50	95.50	91.50	89.10
4.00*0.53 = 2.10	200				100.00	96.50	93.00	90.70
16.00 - 2.10= 17.90							20.00	2 017 0

Figura 168. Interpolación para hallar el valor deducido corregido en la unidad de muestra 09.

	CALIFICACIÓN PCI	MÁXIMO VDC = 17.90
Rango	Clasificación	PCI = 100 - MÁXIMO VDC
100 - 85	Excelente	
85 - 70	Muy Bueno	PCI = 100-17.90
70 - 55	Bueno	
55 - 40	Regular	PCI = 82.10
40 - 25	Malo	
25 -10	Muy Malo	CLASIFICACIÓN: MUY BUENO
10 - 0	Fallado	

Figura 169. Rango de calificación del índice de condición del pavimento (PCI), en la unidad de muestra 09.

Grafico 170. Cálculo del índice de condición del pavimento PCI, en la unidad de muestra 09 del Jirón San Martín, cuadra 09.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 170 se obtuvo como resultado un PCI de 82.10, según el rango de calificación que corresponde a un pavimento de estado **muy bueno.**

Tabla 26 cuadro de patologías con mayor incidencia en la unidad de muestra 09, cuadra 09, del Jirón San Martín.

CUA	CUADRO DE INCIDENCIA EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 09							
	UNIDAD DE MUESTRA 20 LOSAS							
TIPO	NOMBRE DE FALLAS	INCIDENCIA						
FALLA	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA					
39	Descascaamiento de Junta (L)	8.80	36.02%					
36	Desconchamiento, Mapa de Grietas Craquelado (L) 5.00 20.47%							
38	Descascaramiento de esquina (L)	4.40	18.01%					
26	Daño Sello de Junta (M)	4.00	16.37%					
32	Popoust	2.23	9.13%					
29	parche grande mayor a 0.45m2 (L)	1.10	4.50%					
	TOTAL	24.43	100%					

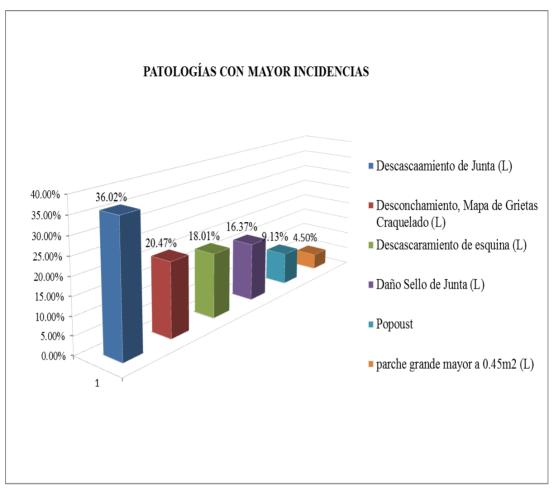


Figura 171. Grafico de patología con mayor incidencia en la unidad de muestra 09 del Jirón San Martín, cuadra 09.

Descripción e interpretación: Las patologías con mayor incidencia en el deterioro de esta unidad de muestra de la cuadra 09 son: Descascaramiento de junta de nivel de severidad baja con 36.02%, desconchamiento mapa de grietas craquelado de nivel de severidad bajo con 20.47%, descascaramiento de esquina de nivel de severidad baja con 18.01%, daño sello de junta de nivel de severidad medio con 16.37%, popoust con 9.13%, parche grande mayor a 0.45m2 de nivel de severidad bajo con 4.50% de la superficie analizada, como se aprecia en la en la figura 171.

Unidad de muestra 10, cuadra 10, del Jirón San Martín

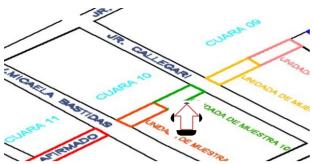
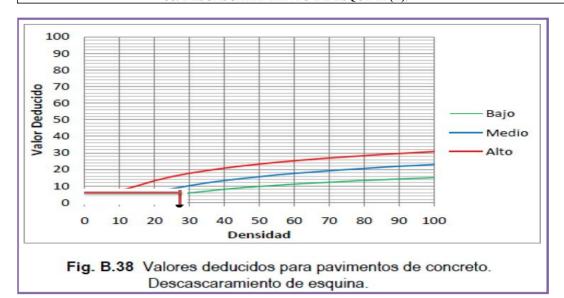



Tabla 27. Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 10.

muestra			UNIVER	RSIDAD	CATÓI	LICA LO	S ÁNGE	LES DE	СНІМВО)TE
ULAT	ECTO					DE ING				
CAI		E INSPI	ECCION	DE CO	NDICIO	ONES PA				RA
				M	IÉTOD	O PCI				
Ramal:	Jiró	n San Ma	ırtin			Unidad de	e muestra	: 10 Ubio	cado en la	cuadra 10
Sección:	Cuadra	a 6,7,8,9	y 10 Lon	gitud496.	.04m	Fecha: Enero - 2017				
Distrito:						Numero	de losas:		18	
Provinci	a: Sati	po				Aero Tot			2.64m2	
Región:	Jun								00m x 3.3	7m
Evaluado	or: Rob	ert Reyn	er Hoppei	n Miguel		Área de l	a losa:	13	3.48m2	
					DAÑ					
	up - Buc					31 Pulim		Agregado		
22 Grita	de Equir	na				32 Popou	ıts			
23 Losa	Dividida					33 Bomb	eo			
	a de Dura	abilidad '	'D"			34 Punzo				
25 Escal						35 Cruce				
	io del Se							nto, Mapa	a de Grieta	ıs
	ivel Carr					Craquelado				
			tas Longi	tudinale	s,	37 Grietas de Retracción				
	rsales y I					38 Descascaramiento de Esquina				
	ne Grande					39 Descascaramiento de Junta				
30 Parch	ie Pequeî	io menor	o Igual ().45m2)	I					
	1	2	3	4	5	6	7	8	9	10
A	39L,36L	39L,36L	38L,32	39L	36L	39L,36L	38L		39L	
В	39L,36L	36L	38L,39L	39L,32	39L	38L	38L		39L	
C										
D										
	Daño Severidad Numero de losa Densidad% Valor Deducido							Deducido		
	38 L					5		78%		18
	39 L				10	55.56%		9.	40	
	32					2	11.	11%	1.	29
36 L					6	33	33%	7.	10	
	26 M							4.	00	
	1 1	.,	. (2015							

38. DESCASCARAMIENTO DE ESQUINA (L).

INTERPOLACIÓN DEL
VALOR DEDUCIDO

DENSIDAD				
27.78				
30.00-25.00 = 5.00				
30.00 - 27.78 = 2.22				
2.22/5.00 = 0.44				
5.80 - 4.40 = 1.40				
1.40*0.44 = 0.62				
5.80 - 0.60 = 5.18				

VALOR DEDUCIDO	
5.18	

38. Descascaramiento de Esquina.						
	Val	or Deducido				
Densidad	В	M	A			
0.00	0.00	0.00	0.00			
5.00	0.50	1.60	3.30			
10.00	1.30	3.10	7.00			
15.00	2.00	4.70	10.10			
20.00	2.70	5.90	13.20			
25.00	4.40	8.30	15.70			
30.00	5.80	10.20	17.70			
35.00	6.90	11.90	19.30			
40.00	8.00	13.30	20.80			
45.00	8.90	14.50	22.10			
50.00	9.70	15.60	23.20			
55.00	10.40	16.70	24.30			
60.00	11.10	17.60	25.20			
65.00	11.70	18.40	26.10			
70.00	12.20	19.20	26.90			
75.00	12.80	19.90	27.60			
80.00	13.30	20.60	28.30			
85.00	13.70	21.30	29.00			
90.00	14.20	21.90	29.60			
95.00	14.60	22.40	30.20			
100.00	15.00	23.00	30.80			

Figura 172. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38L), identificado en la unidad de muestra 10, cuadra 10 del Jirón San Martín.


Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 5.18, a través de la densidad = 27.78,

de nivel de severidad = L

Se realiza el proceso de interpolación, como se puede apreciar en la figura 172.

39 DESCASCARAMIENTO DE JUNTA (L).

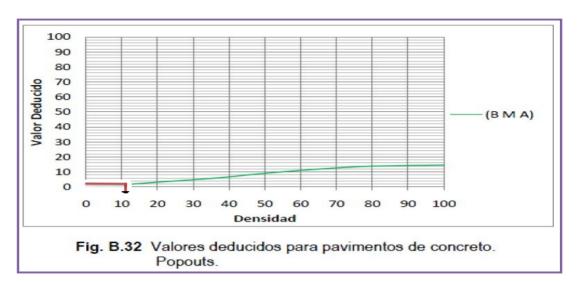
Descascaramiento de Junta.

VALOR DEDUCIDO			
DENSIDAD			
55.56			
55.00 - 50.00 = 5.00			
55.00 - 50 = -0.56			
5.00/5.00 = -0.11			
9.90 - 9.40 = 0.50			
0.50*0.50 = -0.06			
9.90 - 0.50 = 9.96			

INTERPOLACIÓN DEL

39. Descascaramiento de Junta.							
Densidad	Val	or Deducido	ducido				
	В	M	A				
0.00	0.00	0.00	0.00				
5.00	1.40	2.00	7.00				
10.00	2.40	4.00	13.40				
15.00	3.20	6.10	19.70				
20.00	4.20	8.30	24.20				
25.00	5.40	10.80	28.50				
30.00	6.50	12.80	31.90				
35.00	7.63	14.50	34.90				
40.00	8.10	16.00	37.40				
45.00	8.80	17.30	39.70				
50.00	9.40	18.40	41.70				
55.00	9.90	19.50	43.50				
60.00	10.40	20.40	45.20				
65.00	10.90	21.30	46.70				
70.00	11.30	22.10	48.10				
75.00	11.70	22.90	49.40				
80.00	12.10	23.60	50.60				
85.00	12.40	24.20	51.80				
90.00	12.70	24.90	52.90				
95.00	13.00	25.50	53.90				
100.00	13.30	26.00	54.90				

Figura 173. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de junta (39L), identificado en la unidad de muestra 10, cuadra 10 del Jirón San Martín.


Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 9.96, a través de la densidad = 55.56,

de nivel de severidad = L

Se realiza el proceso de interpolación, como se puede apreciar en la figura 173.

INTERPOLACION DEL							
VALOR DEDUCIDO							
DENSIDAD							
11.11							
15.00-10.00 = 5.00							
15.00-11.11 = 3.89							
3.89/5.00 = 0.78							
2.30 - 1.50 = 1.30							
1.30*0.78 = 1.01							
2.30 - 1.01 = 1.29							

VALOR DEDUCIDO	
1.29	

32. Popouts (Desprendimientos).						
Densidad	Valor Deducido					
	B M A					
0.00	0.00					
5.00	0.70					
10.00	1.50					
15.00	2.30					
20.00	3.20					
25.00	4.00					
30.00	4.80					
35.00	5.70					
40.00	6.70					
45.00	8.00					
50.00	9.10					
55.00	10.10					
60.00	11.10					
65.00	11.90					
70.00	12.70					
75.00	13.40					
80.00	13.90					
85.00	14.10					
90.00	14.30					
95.00	14.40					
100.00	14.60					

Figura 174. Ábaco y tabla para hallar el valor deducido, del daño popoust (32), identificado en la unidad de muestra 10, cuadra 10 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 1.29, a través de la densidad = 11.11,

de nivel de severidad = L

Se realiza el proceso de interpolación, como se puede apreciar en la figura 174.

Fig. B.36 Valores deducidos para pavimentos de concreto.

Desconchamiento.

INTERPOLACIÓN DEL 36. Descascaramiento por Agrietamiento. VALOR DEDUCIDO Valor Deducido Densidad DENSIDAD VALOR DEDUCIDO 7.10 0.00 0.00 0.00 0.00 5.00 1.20 4.20 9.30 35.00-30.00 = 5.00 10.00 2.10 8.00 17.30 1.67 24.20 35.00-33.33 = 15.00 3.80 11.90 1.67/5.00 0.33 20.00 5.00 14.60 29.10 7.30 - 6.70 =0.60 25.00 5.90 16.70 33.00 0.20*0.33 = 0.20 30.00 6.70 18.50 36.10 7.30 - 0.20 =35.00 7.30 20.00 38.70 7 90 21.20 41.00 40.00 45.00 8.30 22.40 43.00 50.00 23.40 44.80 8.80 55.00 9.20 24.30 47.00 60.00 9.50 25.10 49.20 9.90 25.90 51.20 65.00 70.00 10.20 26.60 53.20 10.50 27.30 55.20 75.00 27.90 57.30 80.00 10.70 85.00 11.00 28.50 59.30 90.00 11.20 29.00 61.30 95.00 11.40 29.50 63.30 100.00 11.70 30.00 65.30

Figura 175. Ábaco y tabla para hallar el valor deducido, del daño desconchamiento mapa de grietas craquelado (36L), identificado en la unidad de muestra 10 de la cuadra 10 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 7.10, a través de la densidad = 33.33,

de nivel de severidad = L

Se realiza el proceso de interpolación, como se puede apreciar en la figura 175.

28 Daño sello de Junta (M).

VALOR DEDUCIDO

4

26	Daño sello de Junata						
Valor Deducido							
B M A							
2	4	8					

Figura 176. Cuadro para hallar el valor deducido del daño sello de junta con nivel de severidad (M), identificado en la unidad de muestra 10 del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

m = 1 + (9/98)*(100 - HDV)

Donde:

m= Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo HDV = El Mayor Valor Deducido Individual para la Unidad de Muestreo

> Dato: HDV = 9.96 m = 9.268979592

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM	VALOR DEDUCIDO						TOTAL	q	VDC			
1	9.96	7.1	5.18	4	1.29					27.53	4	14.35
2	9.96	7.1	5.18	2	1.29					25.53	3	14.870
3	9.96	7.1	2	2	1.29					22.35	2	17.98
4	9.96	2	2	2	1.29					17.25	1	17.28
5												

Figura 177. Cuadro, cálculo del máximo valor deducido corregido VDC, de la unidad de muestra 10, del Jirón San Martín, cuadra 10.

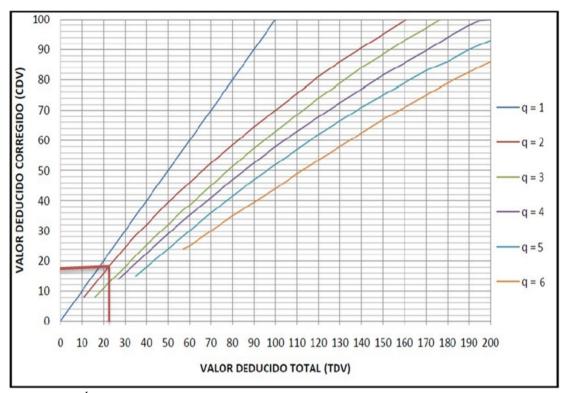


Figura 178. Ábaco para hallar el máximo valor deducido corregido en la unidad de muestra 10, del Jirón San Martín, cuadra 10.

Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 17.98, a través del valor deducido total = 22.35, donde q = 2, como se puede apreciar en la figura 178.

DWEEDEN A CYÓN DA DA WALLAND EL	Total de Valores Deducidos Corregidos							
INTERPOLACIÓN PARA HALLAR EL	Valores	q1	q2	q3	q4	q5	q6	q 7
VALOR DEDUCIDOS CORREGIDOS	Deducidos	0.00	•	•	•	•	•	•
VDC	10	10.00						
$\begin{array}{c} \text{VDC} & 14.35 \\ \text{a} = 4 & 2/.55 \end{array}$	11	11.00	8.00					
$q = 4 \qquad 27.33$	16	16.00	12.40	8.00				
20.00.27.00 - 2.00	20	20.00	16.00	11.00				
30.00-27.00 = 3.00 $30.00 - 27.53 = 2.47$	27	27.00	21.90	15.90	14.00			
30.00 - 27.35 - 2.47 2.47/3.00 = 0.82	30	30.00	24.50	18.00	16.00			
16.00 - 14.00 = 2.00	35	35.00	28.50	21.70	19.20	17.10	15.00	
2.00*0.82 = 1.65	40	40.00	32.00	25.40	22.50	20.20	18.00	
16.00 - 1.65= 14.35	50	50.00	39.50	32.00	29.00	26.50	24.00	
10.00 - 1.05	57	57.00	44.00	36.90	33.40	30.80	28.20	26.80
VDC 14.87	60	60.00	46.00	38.50	35.20	32.60	30.00	28.30
q = 3 25.53	70	70.00	52.50	45.00	41.00	38.50	36.00	34.00
4 5	80	80.00	58.50	51.40	47.00	44.20	41.50	39.30
27.00- 20.00 = 7.00	90	90.00	64.50	57.40	52.50	49.70	47.00	44.50
27.00 - 25.53= 1.47	100	100.00	70.00	63.00	58.00	55.00	52.00	49.30
1.47/7.00 = 0.21	110		75.50	68.50	63.00	60.00	57.00	54.30
15.90- 11.00 = 4.90	120		81.00	74.00	67.80	64.90	62.00	59.20
4.90*0.21 = 1.03	130		86.00	78.90	72.50	69.50	66.50	63.70
15.90- 1.03 = 14.87	140		90.50	84.00	77.00	74.00	71.00	68.20
	150		95.00	88.40	81.50	78.20	75.00	72.30
VDC 17.98	160		99.50	93.00	85.50	82.20	79.00	76.30
$\mathbf{q} = 2 \qquad 22.35$	161		100.00	93.40	86.00	82.70	79.40	76.70
	170			97.00	89.60	86.30	83.00	80.30
27.00 - 20.00 = 7.00	177			100.00	92.60	88.80	85.10	82.70
27.00- 22.35 = 4.65	180				94.00	90.00	86.00	83.70
4.65/7.00 = 0.66	190				98.00	94.00	90.00	87.50
21.90 - 16.00 = 5.90	195				99.50	95.50	91.50	89.10
5.90*0.66 = 3.92	200				100.00	96.50	93.00	90.70
21.90 - 3.92 = 17.98								
VDC 17.25								
q = 1 17.25								
20.00 - 16.00 = 4.00								
20.00 - 16.00 = 4.00 20.00 - 17.25 = 2.75								
20.00 - 17.25 = 2.75 $2.75/4.00 = 0.69$								
20.00 - 16.00 = 4.00								
4.00*0.69 = 2.75								
21.90 - 3.92 = 17.25								

Figura 179. Interpolación para hallar el valor deducido corregido en la unidad de muestra 10.

	CALIFICACIÓN L PCI	MÁXIMO VDC = 17.98
Rango	Clasificación	PCI = 100 - MAXIMO VDC
100 - 85	Excelente	
85 - 70	Muy Bueno	PCI = 100 - 17.98
70 - 55	Bueno	
55 - 40	Regular	PCI = 82.02
40 - 25	Malo	
25 -10	Muy Malo	CLASIFICACIÓN: MUY BUENO
10 - 0	Fallado	

Figura 180. Rango de calificación del índice de condición del pavimento (PCI), en la unidad de muestra 10.

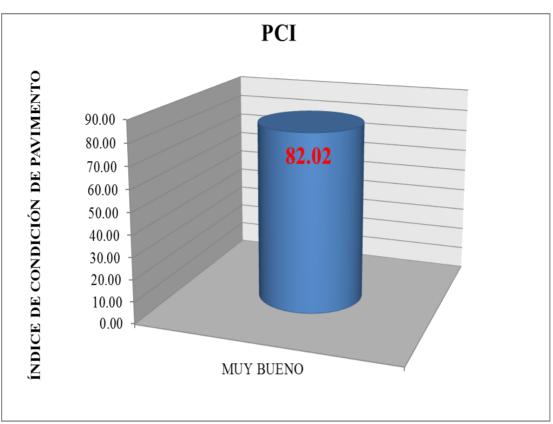


Grafico 181. Cálculo del índice de condición del pavimento PCI en la unidad de muestra 10 del Jirón San Martín, cuadra 10.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 181 se obtuvo como resultado un PCI de 82.02, según el rango de calificación que corresponde a un pavimento de estado **muy bueno.**

Tabla 28 cuadro de patologías con mayor incidencia en la unidad de muestra 10, cuadra 10, del Jirón San Martín.

CUA	CUADRO DE INCIDENCIA EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE								
SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 10									
	UNIDAD DE MUESTRA 18 LOSAS								
TIPO	NOMBRE DE FALLAS	INCIDENCIA							
FALLAS	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA						
39	Descascaramiento de Junta (L)	9.96	36.18%						
36	Mapa de Grietas Craquelado (L)	7.10	25.79%						
38	Descascaramiento de Esquina (L)	5.18	18.82%						
26	Daño Sello de Junta (M)	4.00	14.53%						
32	Popoust 1.29 4.69%								
	TOTAL 27.53 100.00%								

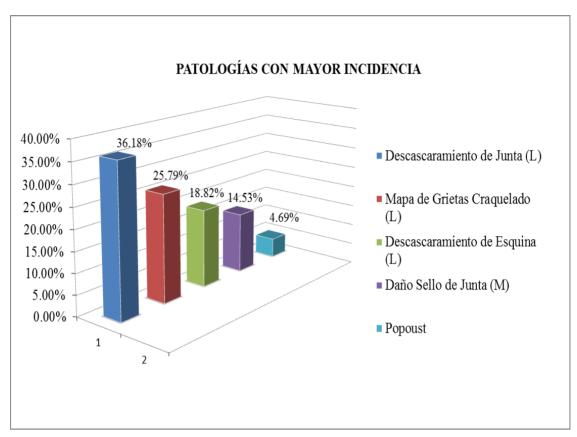
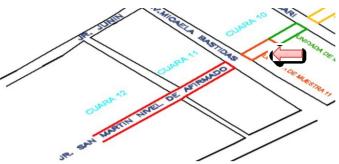
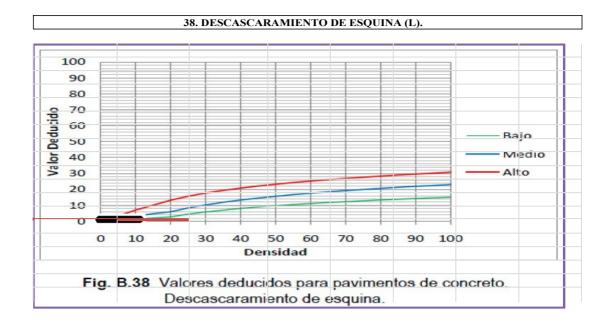



Figura 182. Grafico de patologías con mayor incidencia en la unidad de muestra 10 del Jirón San Martín, cuadra 10.

Descripción e interpretación:


Las patologías con mayor incidencia en el deterioro de esta unidad de muestra de la cuadra 10 son: Descascaramiento de junta de nivel de severidad baja con 36.18%, desconchamiento mapa de grietas craquelado de nivel de severidad baja con 25.79% descascaramiento de esquina de nivel de severidad baja con 18.82%, daño sello de junta de nivel de severidad media 14.53%, popoust con 4.69% de la superficie analizada, como se aprecia en la figura 182.

Unidad de muestra 11, cuadra 10, del Jirón San Martín

Tabla 29. Hoja de inspección de condición para la unidad de muestra método PCI, unidad de muestra 11.

ULAR	ECH		UNIVE	RSIDAD (CATÓLIC	CA LOS	ÁNGELE	S DE CH	ПМВОТЕ	c
ULAD	31316			FAC	CULTAD I	DE ING	ENIERÍA	CIVIL		
	HOJA	DE INS	SPECCI	ON DE CO			RA UNID	AD DE N	MUESTR	A
				N.	IÉTODO	PCI				
Ramal:	Jiró	n San Ma	ırtin			Unidad d	e Muestra:	11 Ubi	cado en la	cuadra 10
Sección:	Cuadra	a 6,7,8,9	y 10 Lon	gitud496.04	ŀm	Fecha:		Ene	ro - 2017	
Distrito:	Sati	•				de losas:		16		
Provinci	a: Sati	po			Aero To			5.68m2		
Región: Junín							ones de la	Losa: 4.0	00m x 3.37	7m
Evaluado	r: Rob	ert Reyn	er Hoppe	n Miguel		Área de	la losa:	13	.84m2	
					DAÑO					
	up - Buc						nento de A	.gregado		
22 Grita	de Equir	na				32 Popo	uts			
23 Losa	Dividida	·				33 Boml	oeo			
24 Griet	a de Dura	abilidad '	"D"			34 Punze	onamiento	ı		
25 Escal	a					35 Cruce	e de Vía F	érrea		
26 Disei	io del Se	llo de Jui	nta			36 Desc	onchamier	nto, Mapa	de Grieta	.s
27 Desn	ivel Carr	il/Berma				Craquelado				
28 Griet	as Lineal	es (Grie	tas Long	itudinales,		37 Grietas de Retracción				
Transve	sales y I	Diagonale	es)			38 Descascaramiento de Esquina				
29 Parch	e Grande	e (mayor	0.45m2)			39 Descascaramiento de Junta				
30 Parch	e Pequeí	ño menoi	o Igual	0.45m2)						
	1	2	3	4	5	6	7	8	9	10
A	39L.	39L	39L	39L,38L		39L	22M,39L	39L		
В	39L.		39L		38L,36L	39L	29L	39L		
C										
D										
	Da	ño	Sev	eridad	Numero	de losa Densidad%		Valor I	Deducido	
	38 L			2		13			44	
	3	9		L	1:	2	75	%	11	.06
	2	2		M	1		69	%		7.30
	2	9		L	1		6%		1.	42
	2	6		M					4	4
Fuente:	elahora	ción pro	nia (20)	17)						

INTERPOLACIÓN DEL							
VALOR DEDUCIDO							
DENS	SIDAD						
11.00							
15.00-10.00 =	5.00						
15.00 -11.00 =	4.00						
4.00/5.00 =	0.80						
2.00 - 1.30 =	0.70						
1.40*0.60 =	0.56						
2.00 - 0.56 =	1.44						

VALOR DEDUCIDO

38. Descascaramiento de Esquina.								
D 11.1	Va	lor Deducido						
Densidad	В	M	A					
0.00	0.00	0.00	0.00					
5.00	0.50	1.60	3.30					
10.00	1.30	3.10	7.00					
15.00	2.00	4.70	10.10					
20.00	2.70	5.90	13.20					
25.00	4.40	8.30	15.70					
30.00	5.80	10.20	17.70					
35.00	6.90	11.90	19.30					
40.00	8.00	13.30	20.80					
45.00	8.90	14.50	22.10					
50.00	9.70	15.60	23.20					
55.00	10.40	16.70	24.30					
60.00	11.10	17.60	25.20					
65.00	11.70	18.40	26.10					
70.00	12.20	19.20	26.90					
75.00	12.80	19.90	27.60					
80.00	13.30	20.60	28.30					
85.00	13.70	21.30	29.00					
90.00	14.20	21.90	29.60					
95.00	14.60	22.40	30.20					
100.00	15.00	23.00	30.80					

Figura 183. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de esquina (38L), identificado en la unidad de muestra 11, cuadra 10 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 1.44, a través de la densidad = 11.00,

de nivel de severidad = L

Se realiza el proceso de interpolación, como se puede apreciar en la figura 183.

39 DESCASCARAMIENTO DE JUNTA (L).

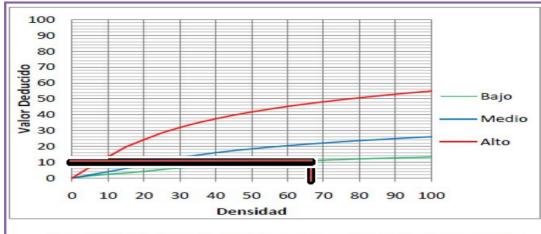


Fig. B.39 Valores deducidos para pavimentos de concreto.

Descascaramiento de Junta.

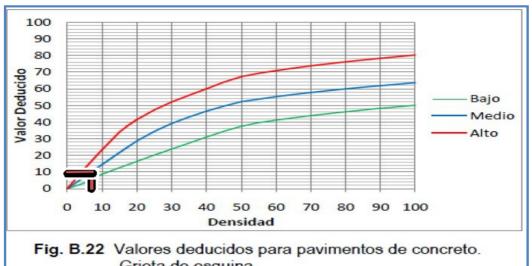
INTERPOLACIÓN DEL	
VALOR DEDUCIDO	

DENSIDAD							
67.00							
70.00-67.00 =	5.00						
70.00 -67.00 =	3.00						
3.00/5.00 =	0.60						
11.30- 10.90 =	0.40						
0.40*0.60 =	0.24						
11.30 - 0.24 =	11.06						

VALOR DEDUCIDO
11.06

39. Descascaramiento de Junta.								
Densidad	V	alor Deduci	do					
	В	M	A					
0.00	0.00	0.00	0.00					
5.00	1.40	2.00	7.00					
10.00	2.40	4.00	13.40					
15.00	3.20	6.10	19.70					
20.00	4.20	8.30	24.20					
25.00	5.40	10.80	28.50					
30.00	6.50	12.80	31.90					
35.00	7.63	14.50	34.90					
40.00	8.10	16.00	37.40					
45.00	8.80	17.30	39.70					
50.00	9.40	18.40	41.70					
55.00	9.90	19.50	43.50					
60.00	10.40	20.40	45.20					
65.00	10.90	21.30	46.70					
70.00	11.30	22.10	48.10					
75.00	11.70	22.90	49.40					
80.00	12.10	23.60	50.60					
85.00	12.40	24.20	51.80					
90.00	12.70	24.90	52.90					
95.00	13.00	25.50	53.90					
100.00	13.30	26.00	54.90					

Figura 184. Ábaco y tabla para hallar el valor deducido, del daño descascaramiento de junta (39L), identificado en la unidad de muestra 11, cuadra 10 del Jirón San Martín.


Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 1.44, a través de la densidad = 11.00,

de nivel de severidad = L.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 184.

22 GRIETA DE ESQUINA (M).

Grieta de esquina.

INTERPOLACIÓN DEL							
VALOR DEDUCIDO							
DENSIDAD							
6.00							
10.00-5.00 = 5.00							
10.00-6.00 = 4.00							
4.00/5.00 = 0.80							
14.50 - 7.20 = 7.30							
7.30*0.80 = 5.84							
14.50 - 7.30 = 7.30							
VALOR DEDUCIDO							
7.3							

22 Grieta de Esquina									
Donaldad	V	Valor Deducido							
Densidad	В	M	A						
0.00	0.00	0.00	0.00						
5.00	3.50	7.20	12.10						
10.00	8.70	14.50	23.40						
15.00	12.60	21.70	34.00						
20.00	16.40	28.70	41.50						
25.00	20.20	34.40	47.30						
30.00	23.80	39.20	52.10						
35.00	27.40	43.10	56.10						
40.00	31.00	46.60	60.00						
45.00	34.50	49.60	64.00						
50.00	37.50	52.30	67.30						
55.00	39.70	53.80	69.30						
60.00	41.20	55.30	70.90						
65.00	42.60	56.60	72.40						
70.00	43.90	57.80	73.80						
75.00	45.10	58.90	75.00						
80.00	46.20	60.00	76.20						
85.00	47.30	61.00	77.30						


Figura 185. Ábaco y tabla para hallar el valor deducido, del daño grieta de esquina (22M), identificado en la unidad de muestra 11, cuadra 10 del Jirón San Martín.

Descripción e interpretación:

En el ábaco se obtiene un valor deducido de 7.30, a través de la densidad = 6.00, de nivel de severidad = M.

Se realiza el proceso de interpolación, como se puede apreciar en la figura 185.

INTERPOLACIÓN PARA HALLAR ELVALOR DEDUCIDO	29		Grande (> 0.			
ELVALOR DEDUCIDO		Acometidas de Servicios Púl Valor Deducido				
DENSIDAD	Densidad	B M A				
6.00	0.00	0.00	0.00	0.00		
0.00	5.00	1.10	2.90	8.00		
10.00 -5.00= 5.00	10.00	2.70	5.80	15.70		
	15.00	4.30	8.80	23.20		
$ \begin{array}{ccc} 10.00 & -6.00 & 4.00 \\ 4.00/5.00 & 0.80 \end{array} $	20.00	6.30	11.70	29.50		
2.90- 1.10= 1.60	25.00	9.40	16.90	34.60		
1.60*0.80 = 1.28	30.00	11.90	21.10	39.40		
2.90 - 0.58 = 1.42	35.00	14.00	24.70	43.50		
2.90 - 0.36 - 1.42	40.00	15.80	27.80	47.00		
	45.00	17.50	30.50	50.10		
VALOR DEDUCIDO	50.00	18.90	33.00	52.90		
1.42	55.00	20.20	35.20	55.40		
	60.00	21.40	37.20	57.70		
	65.00	22.50	39.00	59.80		
	70.00	23.50	40.70	61.80		
	75.00	24.50	42.30	63.60		
	80.00	25.40	43.80	65.30		
	85.00	26.20	45.20	66.90		

Figura 186. Ábaco y tabla para hallar el valor deducido, del daño parche grande mayor a 0.45m2 (29L), identificado en la unidad de muestra 11, cuadra 10 del Jirón San Martín.

Descripción e interpretación: ábaco se obtiene un valor deducido de 1.42, a través de la densidad =6.00, la curva del nivel de severidad = L, como se puede apreciar en la figura 186.

28 Daño sello de Junta (M).

VALOR DEDUCIDO

4

26	Daño sello de Junata							
Valor Deducido								
B M A								
2	4	8						

Figura 187. Cuadro para hallar el valor deducido del daño sello de junta (26M), identificado en la unidad de muestra 11, cuadra 10 del Jirón San Martín.

CÁLCULO PCI

1. CÁLCULO DEL NUMERO MÁXIMO ADMISIBLES DE LOS VALORES DEDUCIDOS (m)

m = 1 + (9/98)*(100 - HDV)

Donde:

m=Numero Máximo de Valores Deducidos Incluido Fracciones para la Unidad de Muestreo HDV= El Mayor Valor Deducido Individual para la Unidad de Muestreo

> Dato: HDV = 11.06 m = 9.167959184

2. CÁLCULO DEL MÁXIMO VALOR DEDUCIDO CORREGIDO, VDC

ITEM		VALOR DEDUCIDO									TOTAL	q	VDC	
1	11.06	7.3	4	1.44	1.42	0	0	0	0			25.22	3	14.65
2	11.06	7.3	2	1.44	1.42	0	0	0	0			23.22	2	18.71
2	11.06	2	2	1.44	1.42	0	0	0	0			17.92	1	17.92

Figura 188. Cuadro, cálculo del máximo valor deducido corregido VDC, de la unidad de muestra 11, del Jirón San Martín, cuadra 10.

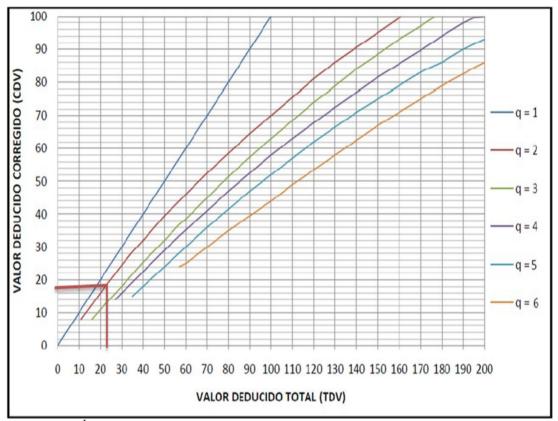


Figura 189. Ábaco para hallar el máximo valor deducido corregido de la unidad de muestra 11, del Jirón San Martín, cuadra 10.

Descripción e interpretación: ábaco se obtiene el máximo valor deducido corregido de 18.71, a través del valor deducido total = 23.22, donde q = 2, como se puede apreciar en la figura 189.

INTERPOLACIÓN PARA HALLAR EL	Total de			Valores I	Deducidos Co	rregidos		
VALOR DEDUCIDOS CORREGIDOS	Valores Deducidos	q1	q2	q3	q4	q5	q6	q 7
VALOR DEDUCIDOS CORREGIDOS	0	0.00						
VDC 14.65	10	10.00						
q = 3 25.22	11	11.00	8.00					
•	16	16.00	12.40	8.00				
27.00-20.00 = 7.00	20	20.00	16.00	11.00				
27.00- 25.22 = 1.78	27	27.00	21.90	15.90	14.00			
1.78/7.00 = 0.25	30	30.00	24.50	18.00	16.00			
15.90 - 11.00 = 4.90	35	35.00	28.50	21.70	19.20	17.10	15.00	
4.90*0.25 = 1.25	40	40.00	32.00	25.40	22.50	20.20	18.00	
15.90 - 1.25= 14.65	50	50.00	39.50	32.00	29.00	26.50	24.00	
	57	57.00	44.00	36.90	33.40	30.80	28.20	26.80
VDC 18.71	60	60.00	46.00	38.50	35.20	32.60	30.00	28.30
q = 2 23.22	70	70.00	52.50	45.00	41.00	38.50	36.00	34.00
•	80	80.00	58.50	51.40	47.00	44.20	41.50	39.30
27.00- 20.00 = 7.00	90	90.00	64.50	57.40	52.50	49.70	47.00	44.50
27.00 - 23.22 = 3.78	100	100.00	70.00	63.00	58.00	55.00	52.00	49.30
3.78/7.00 = 0.54	110		75.50	68.50	63.00	60.00	57.00	54.30
21.90- 16.00 = 5.90	120		81.00	74.00	67.80	64.90	62.00	59.20
5.90*0.54 = 3.19	130		86.00	78.90	72.50	69.50	66.50	63.70
21.90 - 2.19 = 18.71	140		90.50	84.00	77.00	74.00	71.00	68.20
	150		95.00	88.40	81.50	78.20	75.00	72.30
VDC 17.48	160		99.50	93.00	85.50	82.20	79.00	76.30
q = 1 17.92	161		100.00	93.40	86.00	82.70	79.40	76.70
-	170			97.00	89.60	86.30	83.00	80.30
20.00 - 16.00 = 4.00	177			100.00	92.60	88.80	85.10	82.70
20.00- 17.92= 2.08	180				94.00	90.00	86.00	83.70
2.08/4.00 = 0.52	190				98.00	94.00	90.00	87.50
20.00 - 16.00 = 4.00	195				99.50	95.50	91.50	89.10
4.00*0.52 = 2.08	200				100.00	96.50	93.00	90.70
20.00 - 2.08 = 17.92								

Figura 190. Interpolación para hallar el valor deducido corregido en la unidad de muestra

11.

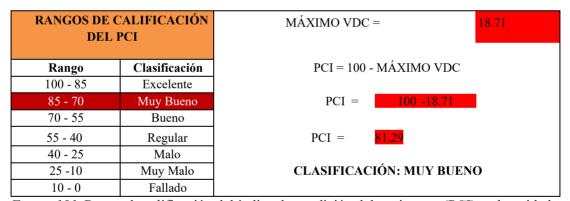
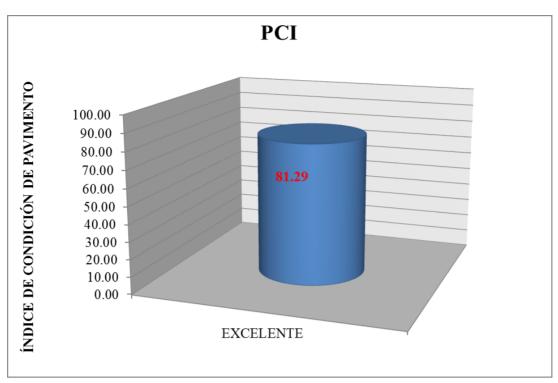



Figura 191. Rango de calificación del índice de condición del pavimento (PCI) en la unidad de muestra 11.

Grafico 192. Cálculo del índice de condición del pavimento PCI, en la unidad de muestra 11 del Jirón San Martín, cuadra 10.

Descripción e interpretación: conforme a los objetivos de investigación se ha determinado como se observa en el grafico 191 se obtuvo como resultado un PCI de 81.29, según el rango de calificación que corresponde a un pavimento de estado **excelente.**

Tabla 30 cuadro de patologías con mayor incidencia en la unidad de muestra 11, cuadra 10 del Jirón San Martín.

CUA	CUADRO DE INCIDENCIA EN FUNCIÓN AL VALOR DEDUCIDO, SEGÚN EL NIVEL DE										
SEVERIDAD DE LAS PATOLOGÍAS DE LA UNIDAD DE MUESTRA 11											
	16 LOSAS										
TIPO	TIPO NOMBRE DE EALLAS VALOR DEDUCIDO										
FALLA	NOMBRE DE FALLAS	VALOR DEDUCIDO	INCIDENCIA								
39	Descascaramiento de Junta (L)	11.06	43.85%								
22	Grieta de Esquina (M)	7.30	28.95%								
26	Daño Sello de Junta (M)	4.00	15.86%								
38	Descasaramiento de Esquina (L)	1.44	5.71%								
29	Parche Grande mayor a 0.45m2 (L)	1.42	5.63%								
	TOTAL	25.22	100%								

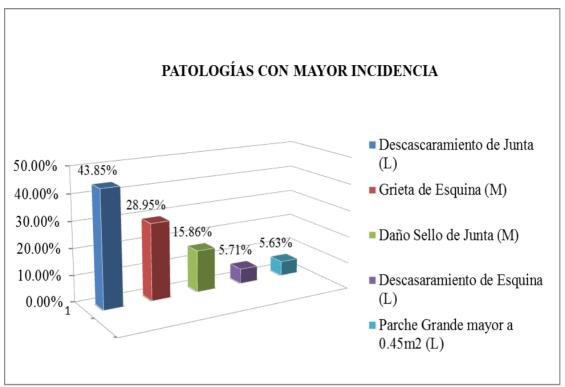


Figura 193. Grafico de patología con mayor incidencia en la unidad de muestra 11del Jirón San Martín, cuadra 10.

Descripción e interpretación:

Las patologías con mayor incidencia en el deterioro de esta unidad de muestra de la cuadra 10 son: Descascaramiento de junta de nivel de severidad baja con 43.85%, grieta de esquina de nivel de severidad media con 28.95%, daño sello de junta de nivel de severidad media con15.56% descascaramiento de esquina de nivel de severidad baja con 5.71%, parche grande mayor a 0.45m2 de nivel de severidad baja con 5.63% en la superficie analizada, como se aprecia en la figura 192.

4.2. Resumen de resultado

Tabla 31 cuadro general de resumen de incidencias y nivel de severidad de las patologías en la cuadras 6, 7, 8, 9, 10 del Jirón San Martín, Distrito y Provincia de Satipo.

Ia Cue	adias 0, 7, 0, 7, 10 del 311011													
	CUADRO GENERAL DE RESUMEN DI													LA
		SAN	AN MARTÍN, DISTRITO Y PROVINCIA DE SATIPO, REGIÓN JUNÍN.											
TOTAL	DE LOSAS EVALUADOS 246	UNIDAD DE MUESTRA												
TIPO D	NOMBRE DE FALLA	U1	U2	U3	U4	U5	U6	U7	U8	IJ9	U10	U11	TOTAL	INCIDENCIAS
FALLA	NOMBRE DE FALLA	UI	UZ	US	04	US	Ub	07	Uð	09	010	UII	IOIAL	GENERAL
39	Descascaramiento de Junta (L)	7.77	19.38	7.31	11.50	19.19	16.19	15.4	35.06	36.02	36.18	43.85	247.85	22.29%
38	Descacaramiento de Esquina (L)	3.11	19.44	15.20	3.10	22.95	25.55	6.4	17.53	18.01	18.82	5.71	155.82	14.01%
26	Daño sello de junta (M)	7.77	10.44	8.91	7.90	11.90	18.35	9.48	13.90	16.37	14.53	15.86	135.41	12.18%
32	Popust	14.02	18.6	18.38	14.50	11.06	24.77	11.37	5.98	9.13	4.69		132.50	11.92%
36	Desconchamiento mapa de grietas craquelado (L)			14.91	12.30	7.85			31.47	20.47	25.79		112.79	10.14%
22	Grieta de Esquina (M)		15.65	24.80	22.10	16.60						28.95	108.10	9.72%
29	Parche grande Mayor a 0.45m2 (L)	13.59				9.56	15.14	14.93		4.5		5.63	63.35	5.70%
29	Parche grande Mayor a 0.45m2 (M)		6.31	9.97	22.30			13.74					52.32	4.71%
22	Grieta de Esquina (H)							28.67					28.67	2.58%
38	Descacaramiento de Esquina ((M)	4.85	10.17		6.20								21.22	1.91%
28	Grietas Lineales (M)	20.75											20.75	1.87%
28	Punzonamiento (M)	18.14											18.14	1.63%
34	Grietas Lineales (L)	9.36		5.53									14.89	1.34%
	TOTAL												1111.81	100.00%

Fuente: elaboración propia (2017).

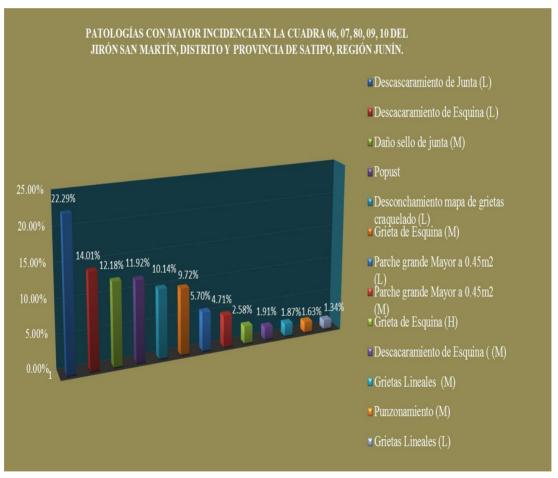


Figura 194. Grafico resumen general de incidencias y nivel de severidad de las patologías en las cuadras 6, 7, 8, 9, 10 del Jirón san Martín Distrito y Provincia de Satipo, Región Junín.

Tabla 32 Cuadro, de resultado individual y general de PCI de las unidades de inspección de la cuadra 6, 7, 8, 9, 10 del Jirón San Martín, Distrito y Provincia de Satipo, Región Junín

RESUL	TADO INDIVIDUAL Y GENERAL	DE PCI DE LAS UNID	ADES DE MUESTRA DE LA	S CUADRA 6,7,8,9,10 I	DEL JIRÓN SAN MARTÍN
UNIDAD DE	JIRÓN SAN MARTÍN	ÍNDICE	CI A CHEICA CIÓN	ÍNDICE	CLASIFICACIÓN
MUESTRA	CUADRA 6,7,8,9,10	ÍNDICE	CLASIFICACIÓN	GENERAL	GENERAL
U-1	CUADRA - 06	73.66	MUY BUENO		
U-2	CUADRA - 06	79.89	MUY BUENO		
U-3	CUADRA - 07	74.31	MUY BUENO		
U-4	CUADRA - 07	72.33	MUY BUENO		
U-5	CUADRA - 08	80.34	MUY BUENO		
U-6	CUADRA - 08	86.43	EXCELENTE	79.13	MUY BUENO
U-7	CUADRA - 08	75.90	MUY BUENO		
U-8	CUADRA - 09	82.15	MUY BUENO		
U-9	CUADRA - 09	82.10	MUY BUENO		
U-10	CUADRA - 10	82.02	MUY BUENO		
U-11	CUADRA - 10	81.29	MUY BUENO		

Fuente: elaboración propia (2017).

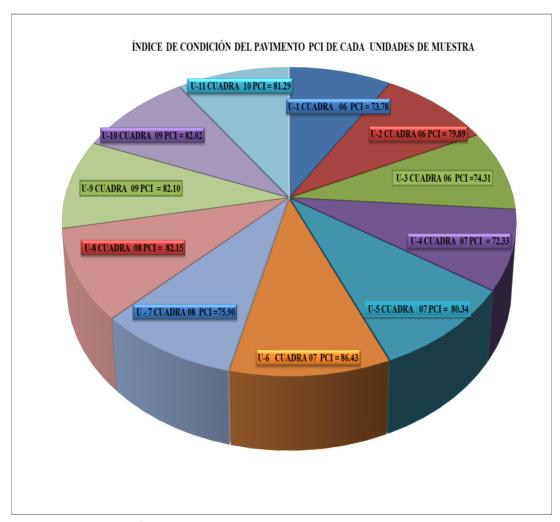


Figura 195. Grafico, Índice de Condición del Pavimento dé cada unidad de muestra de las cuadras 6, 7, 8, 9, 10 del Jirón San Martín.

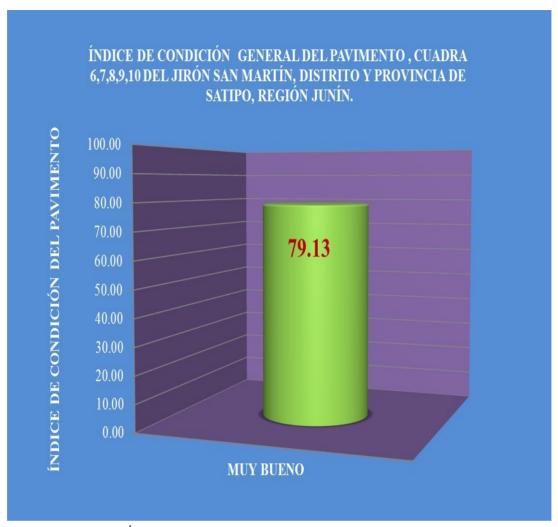


Figura 196. Grafico Índice de Condición del Pavimento PCI, general de las cuadra 6, 7, 8, 9, 10, del Jirón San Martín Distrito y Provincia de Satipo Región Junín.

4.3. Análisis de resultado

- Se ha llegado a determinar los resultados del pavimento rígido del Jirón San Martin de la cuadra 6, 7, 8, 9, 10, Distrito de Satipo, consta la sección 496.04m lineales se divide en 11 unidades de muestra.
- se analizaron y se determinaron los resultados incidencias patológicas de acuerdo a la metodología del Índice de Condición del Pavimento (PCI) de la norma ASTM D6433.

• En el cuadro 32 se puede apreciar las incidencias y el tipo y nivel de severidad de las patologías por cada unidad de muestra y general.

✓ Incidencias general son:

- Descascaramiento de junta de nivel de severidad bajo con 22.29%.
- Descascaramiento de esquina de severidad baja con 14.01%.
- Daño sello de junta de nivel de severidad media con 12.18%.
- Popoust con 11.92%.
- Desconchamiento mapa de grietas craquelado de nivel de severidad baja con 10.14%.
- Grieta de esquina de nivel de severidad medio con 9.27%.
- Parche grande mayor a 0.45m2 con nivel de severidad baja con 5.70%.
- Parche grande mayor a 0.45m2 de nivel de severidad media con 4.71%.
- Grieta de esquina de nivel de severidad alta con 2.58%.
- Descascaramiento de esquina de nivel de severidad media con 1.91%.
- Grietas lineales de nivel de severidad media con 1.87%.
- Punzonamiento de severidad media con 1.63%.
- Grietas lineales de nivel de severidad baja con 1.34%.
- En la tabla 33 se puede apreciar los resultados, por cada unidad de muestra y general del Índice de Condición del Pavimento (PCI)

según la norma ASTM D6433.

- ✓ Resultado por unidad de muestra, PCI.
 - la unidad de muestra 01 en la cuadra 06 con un índice de
 73.66 su clasificación muy bueno.
 - la unidad de muestra 02 en la cuadra 06 con un índice de
 79.89 su clasificación muy bueno.
 - la unidad de muestra 03 en la cuadra 07 con un índice de
 74.31 su clasificación muy bueno.
 - la unidad de muestra 04 en la cuadra 07 con un índice de
 72.33 su clasificación muy bueno.
 - la unidad de muestra 05 en la cuadra 08 con un índice de 80.34 su clasificación muy bueno.
 - la unidad de muestra 06 en la cuadra 08 con un índice de 86.43 su clasificación excelente.
 - la unidad de muestra 07 en la cuadra 08 con un índice de
 75.90 su clasificación muy bueno.
 - la unidad de muestra 08 en la cuadra 09 con un índice de
 82.15 su clasificación muy bueno.
 - la unidad de muestra 09 en la cuadra 09 con un índice de
 82.10 su clasificación muy bueno.
 - la unidad de muestra 10 en la cuadra 10 con un índice de
 82.02 su clasificación muy bueno.
 - la unidad de muestra 11 en la cuadra 10 con un índice de
 81.29 su clasificación muy bueno.

- ✓ Resultado general PCI.
- Índice general 79.16 su clasificación, muy bueno.

V. Conclusiones y Recomendaciones

5.1. Conclusiones

Conforme al objetivo se ha determinado Para obtener el índice de condición en el pavimento de concreto del Jirón San Martín, distrito y provincia de Satipo Región en las cuadra 6, 7, 8, 9, 10 se inspeccionaron un total de 11 unidades de muestra, entre las cuales se obtuvieron los siguientes, en función a la calificación obtenida.

En la unidad de muestra 01

- ✓ según la tabla 10 Las patologías, con mayor incidencia en la unidad de muestra 01 son:
 - Grietas Lineales de severidad media con 21.40%.
 - Punzonamiento de severidad media con 18.14%.
 - Popoust con 14.02%.
 - Parche Grande mayor a 0.45m2 con 13.59%.
 - Grietas lineales de nivel de severidad baja con 9.36%.
 - Daño sello de Junta de nivel de severidad medio con 7.77%.
 - Descascaramiento de Junta de nivel de severidad bajo con 7.77%
 - Descascaramiento de Esquina de severidad media 4.85%.
 - Descascaramiento de Esquina de severidad bajo 3.11%
- ✓ en la figura 69 se ha determino su índice de condición del pavimento
 PCI = 73.66 lo cual nos permite observar que tiene un estado muy
 bueno.

En la unidad de muestra 02

✓ Según la tabla 12 las patologías con mayor incidencia en la unidad de

muestra 02 son:

- Descascaramiento de Esquina de nivel de severidad baja con 19.44%.
- Descascaramiento de Junta de nivel de severidad media con 19.38%.
- Popoust con 18.60%
- Grieta de esquina de nivel de severidad media con 15.65%.
- Daño sello de junta de nivel de severidad media con 10.44%.
- descascaramiento de esquina de nivel de severidad medio con 10.17%.
- Parche Grande mayor a 0.45m2 de nivel de severidad baja con 6.31%.
- ✓ De acuerdo a la figura 82 se ha determino su índice de condición del pavimento PCI = 79.89, lo cual nos permite observar que tiene un estado muy bueno.

- ✓ Según la tabla 14 Las patologías encontradas con mayor presencia o incidencia en la unidad de muestra 03 son:
 - Grieta de Esquina de severidad media con 24.80%.
 - popoust con 18.38%.
 - Descascaramiento de Esquina de nivel de severidad baja con 15.20%.
 - Desconchamiento mapa de grietas craquelado de nivel de severidad bajo con 14.91%.
 - Daño sello de junta de nivel de severidad media con8.9%.
 - Descascaramiento de junta de nivel de severidad media con 7.31%.
 - Grietas lineales de nivel de severidad baja con5.53%.
 - Parche grande mayor a 0.45m2 de severidad media don 4.97%.

✓ De acuerdo a la figura 96 se ha determino su índice de condición del pavimento PCI = 74.31 lo cual nos permite observar que tiene un estado muy bueno.

En la unidad de muestra 04

- ✓ Según la tabla 16 Las patologías con mayor incidencia en la unidad de muestra 04 son:
 - Parche grande mayor a 0.45m2 de severidad media con 22.30%.
 - Grieta de esquina de nivel de severidad media con 22.10%.
 - Popoust con 14.50%.
 - Desconchamiento mapa de grietas craquelado de severidad baja con 12.30%.
 - Descascaramiento de junta de nivel de severidad baja con 11.50%.
 - daño sello de junta de nivel de severidad medio con 7.9%.
 - Descascaramiento de esquina de nivel de severidad medio 6.20%.
- ✓ De acuerdo la figura 110 se ha determino su índice de condición del pavimento PCI = 77.60 lo cual nos permite observar que tiene un estado muy bueno.

- ✓ Según la tabla 18 Las patologías con mayor incidencia en la unidad de muestra 05 son:
 - Descascaramiento de esquina de nivel de severidad baja con 22.95%.
 - Descascaramiento de junta de nivel de severidad baja con 19.99%.
 - Grietas de esquina de nivel de severidad media con 16.60%.
 - Daño sello de junta de nivel de severidad 11.99%.

- Popoust con11.06%.
- Parche grande mayor a 0.45m2 de severidad baja con 9.56%.
- desconchamiento mapa de grietas craquelado de severidad baja con
 7.85%.
- ✓ De acuerdo a la figura 123 se ha determino su índice de condición del pavimento PCI = 80.34 lo cual nos permite observar que tiene un estado muy bueno.

En la unidad de muestra 06

- ✓ Según la tabla 20 Las patologías con mayor incidencia en la unidad de muestra 06 son:
 - Descascaramiento de esquina de nivel de severidad baja con 25.55%.
 - Popoust con 24.77%.
 - Daño sello se junta de nivel de severidad baja con 18.35%.
 - Descascaramiento de Junta de nivel de severidad bajo 16.19%.
 - Parche grande mayor a 0.45m2 de severidad bajo con 15.14%.
- ✓ Según la figura 134 se ha determino su índice de condición del pavimento PCI = 86.43 lo cual nos permite observar que tiene un estado **excelente.**

- ✓ Según la tabla 22 las patologías con mayor incidencia en la unidad de muestra 07 son:
 - Grieta de Esquina de nivel de severidad alta con 28.37%.
 - Descascaramiento de junta de nivel de severidad baja con 15.40%.
 - Parche grande mayor a 0.45m2 de severidad baja con 14.93%.
 - parche grande mayor a 0.45m2 de severidad media con 13.74%.

- Popoust con 11.37%.
- Daño sello de junta de severidad baja 9.48%.
- Descascaramiento de esquina de nivel de severidad baja con 6.40%.
- ✓ De acuerdo a la figura 147 se ha determino su índice de condición del pavimento PCI = 75.90 lo cual nos permite observar que tiene un estado muy bueno.

En la unidad de muestra 08

- ✓ según la tabla 24 Las patologías con mayor incidencia en la unidad de muestra 08 son:
 - Descascaramiento de junta de nivel de severidad baja con 35.06%.
 - Desconchamiento mapa de grietas craquelado de severidad baja con 31.47%.
 - Descascaramiento de esquina de nivel de severidad baja con 17.53%.
 - Daño sello de junta de nivel de severidad 15.95%.
 - Popoust con5.98%.
- ✓ Según la figura 158 se ha determino su índice de condición del pavimento PCI = 82.15 lo cual nos permite observar que tiene un estado **muy bueno.**

- ✓ según la tabla 26 Las patologías con mayor incidencia en la unidad de muestra 09 son:
 - Descascaramiento de Junta de nivel de severidad bajo con 36.02%.
 - Desconchamiento mapa de grietas craquelado de severidad bajo con 20.47%.
 - Descascaramiento de esquina de nivel de severidad bajo con 18.01%.

- Daño sello de junta de nivel de severidad bajo con 16.37%.
- Popoust con 9.13%.
- Parche grande mayor a 0.45m2 de nivel de severidad baja con 4.50%.
- ✓ De acuerdo a la figura 170 se ha determino su índice de condición del pavimento PCI = 82.10 lo cual nos permite observar que tiene un estado muy bueno.

En la unidad de muestra 10

- ✓ según la tabla 28 Las patologías con mayor incidencia en la unidad de muestra 10 son:
 - Descascaramiento de junta con nivel de severidad baja con 36.18%.
 - Desconchamiento mapa de grietas craquelado de severidad bajo con 25.79%.
 - Descascaramiento de esquina de nivel de severidad baja con 18.82%.
 - Daño sello de junta de nivel de severidad medio con 14.53%.
 - Popoust con 4.69%.
- ✓ De acuerdo a la figura 180 se ha determino su índice de condición del pavimento PCI = 82.02 lo cual nos permite observar que tiene un estado muy bueno.

- ✓ Según la tabla 30 Las patologías, con mayor incidencia en la unidad de muestra 11 son:
 - Descascaramiento de junta de nivel de severidad bajo con 43.83%.
 - Grietas de esquina de nivel de severidad media con 28.95%.
 - Daño sello de junta de nivel de severidad media con 15.86%.

- Descascaramiento de esquina de nivel de severidad bajo con 5.71%.
- Parche grande mayor a 0.45m2 de nivel de severidad baja con 5.63%.
- ✓ De acuerdo la figura 191 se ha determino su índice de condición del pavimento PCI = 81.29 lo cual nos permite observar que tiene un estado muy bueno.
- ➤ El índice de promedio de condición del pavimento de la cuadra 6, 7, 8, 9, 10 del Jirón san Martín, Distrito y Provincia de Satipo Región Junín con PCI = 79.13 de condición = muy bueno.

5.2. Recomendaciones

- Al obtener como resultado un Índice de Condición de Pavimento muy
 bueno, se recomienda realizar una mantenimiento y reparación de las cuadras 6, 7, 8, 9, 10 del Jirón San Martín en estudio, para prolongar la vida útil del pavimento, y dar seguridad, comodidad al usuario.
- Se debe realizar una inspección periódica por parte de los gobiernos locales a los pavimentos rígidos a fin de intervenir en su mantenimiento para que las patologías no empeoren con el tiempo.
- Se recomienda una adecuada reparación al momento de realizar las conexiones domiciliarias, ya que esto aceleran el proceso de falla en el pavimento.
- Es necesario utilizar equipo de seguridad en el trabajo de campo como son chalecos reflectantes, cascos, cintas de seguridad, ya que la inspección visual es un trabajo con riesgo por el transito.

Referencias Bibliográficas.

- (1) Higuera V. "el estado de las vías de pavimento rígido y su incidencia en la circulación del tráfico pesado de la planta holcim latacunga del cantón latacunga provincia de cotopaxi." [seriado en línea] 2015 [citado 2016 diciembre 18], disponible en:

 https://www.google.com.pe/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&c
 ad=rja&uact=8&ved=0ahUKEwjAmJCgi5HSAhWKOCYKHZN4DrcQFggY
 MAA&url=http%3A%2F%2Frepo.uta.edu.ec%2Fbitstream%2F123456789%2F
 10005%2F1%2FTesis%2520848%2520%2520Higuera%2520Bonilla%2520Viviana%2520Elizabeth.pdf&usg=AFQjC
 NHMFJPUi1Ye_ee6K_cgWS60_yas3g
- (2) Rodríguez T. evaluación del estado físico de la carretera de concreto hidráulico empalme puerto sandino puente gloria, del municipio de nagarote, departamento de león. [seriado en línea] 2013 [citado 2016 diciembre 14], disponible en: http://165.98.12.83/512/1/UCANI3595.PDF.
- (3) Toala J. "Análisis superficial y mantenimiento del hormigón hidráulico de la carretera Chone-Canuto-Calceta-Junín-Pueblo Nuevo Pimpiguasí, tramo "Pueblo Nuevo -Pimpiguasí". [Tesis para obtener el titulo de ingeniero civil]. Portoviejo Manabí: Ecuador: Universidad técnica de Manabí Centro de Estudio Pos Grado; 2011.
- (4) Menacho T. "Determinación y evaluación de las patologías del concreto en el pavimento rígido de las calles del Distrito de pariacoto, provincia de Huaraz, Región Ancash, junio 2014". Repositorio [seriado en línea] 2014 [citado 2016 diciembre 25], disponible en:

 http://erp.uladech.edu.pe/bibliotecavirtual/?ejemplar=00000036043
- (5) Aranda J. "Determinación y evaluación de las patologías del concreto en el pavimento rígido de las calles del Distrito de San Luis Provincia de Carlos Fermín Fitzcarrald- Región Ancash, junio-2014". Repositorio [seriado en línea] 2014 [citado 2017 enero 12], disponible en:

 http://erp.uladech.edu.pe/bibliotecavirtual/?ejemplar=00000036025
- (6) Saens B. "Determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional en las principales pistas de la urbanización casuarinas primera etapa distrito de nuevo Chimbote, provincia de santa, departamento de Ancash, julio 2014". Repositorio [seriado en línea] 2014 [citado 2017 enero 5], disponible en: http://erp.uladech.edu.pe/bibliotecavirtual/?ejemplar=00000036791
- (7) Pacheco C. "determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición

- operacional de la superficie del boulevard de surco, distrito de san Borja, provincia de lima, región de lima, enero 2014". Repositorio [seriado en línea] 2014 [citado 2017 enero 03], disponible en: http://erp.uladech.edu.pe/bibliotecavirtual/?ejemplar=00000034217
- (8) Servicio Nacional de Capacitaciones para la Industria la Construcción SENCICO. Norma CE. 010 Pavimentos Urbanos Reglamento Nacional de edificaciones RNE. Lima: SENCICO; 2012 [citado 2017 enero 5] disponible en: www.sencico.gob.pe/descargar.php?idFile=182
- (9) Montejo A. Pavimentos, construcción y conceptos generales I: En: Ingeniería de pavimentos para carreteras. 2002. [seriado en línea] [citado 2016 diciembre 6], disponible en:

 https://samustuto.files.wordpress.com/.../ingenieric3ada-de-pavimentos-para.
- (10) Bardales C., Cheng G. "Elaboración de las curvas del siclo de vida de las carreteras CA-1, CA-2 Y CA-3." [en internet] San salvador: Universidad de el Salvador; 2013 [citado 2016 diciembre 18], disponible en:

 http://ri.ues.edu.sv/4929/1/Elaboraci%C3%B3n%20de%20las%20curvas%20de%20ciclo%20de%20vida%20de%20las%20carreteras%20CA1,%20CA2%20y%20CA3.pdf
- (11) Pinilla J. auscultación, calificación del estado superficial y evaluación económica de la carretera sector puente dela libertad malteria desde el k0+000 hasta el k6+000(código 5006)". [en internet] Colombia: Universidad Nacional de Colombia sede Manizales; 2007 [citado 2016 dicienbre 24], disponible en;_
 www.bdigital.unal.edu.co/1982/1/julianandrespinillavalencia.2007.pdf′
- (12) Universidad Costa Rica. (LanammeUCR). Manual de Auscultación visual. MAV [en internet]. 2012 [citado 10 enero 2017]; pagina 5. Disponible en: http://www.lanamme.ucr.ac.cr/banco-de-informacion-digital-on-line/2013/MAV%202012.pdf
- (13) Monsalve L, Giraldo L, Maya J. Diseño de pavimento flexible rígido. [en internet] Armenia: Universidad de Quito; 2012 [citado 2017 enero14], disponible en:

 http://es.slideshare.net/rosabeatrizvillaloboshuaman/diseo-de-pavimento-flexible-y-rgido
- (14) Altamirano L. "DETERIORO DE PAVIMENTOS RÍGIDOS" Monografías. [en internet]. 2007 [citado 17 enero 2016]. Disponible en: http://www.monografias.com/trabajos-pdf/deterioro-pavimentos-
- (15) AASHTO-93, diseño de pavimentos AASHTO-93. [Internet] 2006. [citado 2017 enero 18]. Pág. 5, 6, 7, disponible en: www.biblioteca.udep.edu.pe/BibVirUDEP/tesis/pdf/1 102 181 62 936.pdf

- (16) Armijos C. Evaluación superficial de algunas calles de la ciudad de Loja". Repositorio [seriado en línea] 2009 [citado 2017 enero 5], disponible en: http://dspace.utpl.edu.ec/bitstream/123456789/1484/3/Tesis.pdf
- (17) Vásquez L. Introducción a la Gestión de Pavimentos. [en internet]. 2015 [citado 20 de diciembre 2016]; (2): pag. 2-4. Disponible en: https://docs.google.com/viewer?a=v&pid=sites&srcid...
- (18) Rivva I. Durabilidad y patología del concreto. [en internet]. 2006 [citado 17 enero 2017]; Pagina 2. Disponible en:_
 http://es.slideshare.net/mariobariffo/durabilidadypatologiadelconcretoenriquerivval
- (19) Rincón J. Patología del concreto. [Internet] 2012. [Citado 18 enero 2017]; pag.
 2. Disponible en: https://prezi.com/5zu3zh4rt6lu/patologia-del-concreto{
- (20) Godoy G, Ramírez R, Patología de pavimentos rígidos de la Ciudad de Asunción Uruguay, Repositorio [en internet]. 2006 [citado 18 diciembre 2016]; pag 1. Disponible en: http://ing.una.py/pdf/1er-congreso-nacional-ingcivil/01pa-vi01.pdf
- (21) Vásquez L. Manual de daño. Pavement Condition Index (PCI) para pavimentos asfalticos y concreto en carreteras. Camineros [seriado en línea] 2002 [citado 2016 diciembre 2], disponible en: http://www.camineros.com/docs/cam036.pdf

6. Anexos

Anexo 01.

Formato para recolección de datos.

Tabla 33 Hoja de inspección .de condiciones para unidad de muestra

UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE

(UL	ADECTO	FACULTAD DE INGENIERÍA CIVIL											
	НО	JA DE II	NSPECCI	ÓN DE	CONDIC	ICIONES PARA UNIDAD DE MUESTRA							
					MÉTOD	O PCI							
Ramal	:												
Secció	n:					Fecha:							
Distrit						Numero	de losas:						
Provin	icia:					Área To							
Regiói						Dimensi	ones de la	Losa:					
Evalua	ador:					Área de	la losa:						
Aseson	r:					Tiempo	de Constru	icción:					
				Tl	PO DE	FALLA							
	wup - Bu						nento de A	gregado					
22 Gri	ta de Equ	iina				32 Popouts							
23 Los	sa Dividio	da				33 Bombeo							
24 Gri	eta de Du	ırabilidad	ł "D"			34 Punzonamiento							
25 Esc	ala					35 Cruce de Vía Férrea							
	eño del S					36 Desconchamiento, Mapa de Grietas							
_,	snivel Ca					Craquelado							
		,	ietas Long	itudinale	s,	37 Grietas de Retracción 38 Descascaramiento de Esquina							
	ersales y								•				
29 Par	che Gran	de (mayo	or 0.45m2))		39 Desc	ascaramier	ito de Jun	ıta				
30 Parc			Igual 0.45m2										
	1	2	3	4	5	6	7	8	9	10			
A													
В													
C													
D													
	Tipo de	Falla	Severida	d	Numero	de losa	Densidad	l	Valor de R	leducción			

Fuente: elaboración propia (2017).

Anexo 02:

Solicitud presentada a la municipalidad provincial de satipo para autorización de trabajo de investigación.

Figura 197. Solicitud presentada a la municipalidad, provincia de Satipo, para realizar trabajo de investigación.

2.01. Carta de aceptación por la municipalidad provincial de satipo, para realizar trabajo de investigación en el pavimento rígido del Jirón San Martín.

Figura 198. Carta de aceptación por la municipalidad provincial de Satipo, para realizar trabajo de investigación.

Anexo 03: Matriz de consistencia

Tabla 34 anexado matriz de consistencia

Determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional de la superficie del Jirón San Martín, Distrito y Provincia de Satipo, Región Junín, Enero – 2017.

Problema	Ohietivo General	Marco teórico concentual	Metodología	Referencias Bibliografía
11001011111			- Interodologia	- Telefelicius Bioliogi ana
Problema Caracterización Del problema El Jirón San Martín se encuentra ubicado en el Distrito de Satipo, Provincia de Satipo, Región Junín, en la margen izquierda del río Satipo, se localiza a 11° 15′23" latitud sur, 74° 42′35" de longitud este y a una altura promedia de 640 m.s.n.m. El pavimento rígido del	Determinar el índice de condición del pavimento de concreto del Jirón San Martín, Distrito y Provincia de Satipo, Región Junín, Enero – 2017 a partir de su determinación y evaluación de las patologías del mismo.	Marco teórico conceptual Antecedentes Se consulto en diferentes y estudios específicos realizados de manera internacionales e nacionales referente a patología en pavimentos, fruto a ello se hallaron: Antecedente internacionales Antecedente nacionales Bases teóricas. Concepto de Pavimento	Metodología Tipo de la investigación el estudio a realizarse es del tipo observacional, descriptivo, transversal. Nivel de la investigación Cuantitativo. Diseño de la investigación. MOAE M: muestra O: observación A: análisis E: Evaluación Población o muestra Para la presente investigación la población comprende el	Referencias Bibliografía (1) Rodríguez T. evaluación del estado físico de la carretera de concreto hidráulico empalme puerto sandino – puente gloria, del municipio de nagarote, departamento de león. [seriado en line] 2013 [citado 2016 diciembre 14], disponible en: http://165.98.12.83/512/1/UCANI3595.PD E (2) Tóala J. "Análisis superficial y mantenimiento del hormigón hidráulico de la carretera Chone-Canuto-Calceta-Junín-Pueblo Nuevo – Pimpiguasí,
Jirón San Martin, se encuentran afectada por diferentes tipos de patologías como: Descascaramiento de juntas descascaramiento de esquina, desconchamiento, mapa de grietas craquelado, popoust, daño sello de junta, grietas de esquina, grietas	objetivos específico d) Identificar los tipo de patologías en el pavimento rígido que existen en el Jirón San Martín, Distrito y	(Norma CE010 Pavimentos Urbanos SENCICO) Estructura compuesta por capas que apoya en toda su superficie sobre el terreno preparado para soportarla durante un lapso denominado Período de Diseño y dentro de un rango de Serviciabilidad. Esta	Jirón San Martín del distrito de Satipo, Provincia de Satipo, Región Junín. c) Muestra. Se evaluó el Jirón San Martín que comprende una longitud total de 1139.85m de los cuales a nivel pavimento rígido tiene una longitud de 986.65m y a nivel de	tramo "Pueblo Nuevo -Pimpiguasí". [Tesis para obtener el titulo de ingeniero civil]. Portoviejo – Manabí: Ecuador: Universidad técnica de Manabí Centro de Estudio Pos Grado; 2011. (3) Menacho T. "Determinación y evaluación de las patologías del concreto en el pavimento rígido de las calles del Distrito de pariacoto, provincia de Huaraz, Región Ancash, junio – 2014".

lineales. parche grande mayor 0.45m2. punzonamiento, a causa del tiempo de servicio, factores climáticos. falta de mantenimiento preventivo v correctivo por parte de la Municipalidad Provincial de Satipo, por todo lo descrito anteriormente fue necesario llevar acabo un trabajo de investigación. Enunciado del problema

¿En aué medida. Determinación V evaluación de las patologías del concreto para obtener el indice de integridad estructural del pavimento v condición operacional de la superficie del Jirón San Martín, Distrito v Provincia de Satipo, Región Junín, Enero – 2017, nos permitirá obtener un índice de integridad estructural del

condición

SU

de

pavimento y

operacional

superficie?.

Provincia de Satipo, Región Junín, Enero – 2017.

índice de

Obtener el

condición pavimento Rígido, en el Jirón San Martín, Distrito y Provincia de Satipo. Región Junin. Enero -2017. f) Evaluar la integridad estructural del pavimento y la condición operacional de la superficie del pavimento concreto en el Jirón San Martín, Distrito Provincia de Satipo, Región Junin, Enero -2017.

definición incluye pistas, estacionamientos, aceras o veredas, pasajes peatonales y ciclovías.

Clasificación de pavimentos Pavimentos flexibles

Este tipo de pavimentos están formados por una carpeta bituminosa apoyada generalmente sobre dos capas no rígidas, la base y la subbase. No obstante puede prescindirse de cualquiera de estas dependencias de las necesidades particulares de cada obra.

Pavimento rígido
Pavimento articulado
Patología del concreto
Patología del concreto se
define como el estudio
sistemático de los procesos y

sistemático de los procesos y características de las "enfermedades" o los "defectos y daños" que pueden sufrir el concreto,

Tipos de Patologías que se presentan en la estructura de afirmado tiene una longitud de 135.20m.

d) Muestreo.

Se evaluó el pavimento rígido del Jirón san Martín para lo cual se incluye lo siguiente:

Definición y operacionalización de las variables

Variables independientes

Se tiene como variable independiente a las diferentes patologías del pavimento.

Variable dependiente

Se tiene como variable dependiente al estado del pavimento rígido del Jirón San Martín Distrito y Provincia de Satipo Región Junín.

Técnicas e instrumento. Plan de análisis.

La técnica empleada será la evaluación visual, la cual será determinante para iniciar la toma de datos. Repositorio [seriado en línea] 2014 [citado 2016 diciembre 25], disponible en:

http://erp.uladech.edu.pe/bibliotecavirtua

(4) Aranda J. "Determinación y evaluación de las patologías del concreto en el pavimento rígido de las calles del Distrito de San Luis - Provincia de Carlos Fermín Fitzcarrald- Región Ancash, junio-2014". Repositorio [seriado en línea] 2014 [citado 2017 enero 12], disponible en:_

http://erp.uladech.edu.pe/bibliotecavir tual/?ejemplar=00000036025

(5) Saens O. "Determinación y evaluación de las patologías del concreto para obtener el índice de integridad estructural del pavimento y condición operacional en las principales pistas de la urbanización casuarinas primera etapa - distrito de nuevo Chimbote, provincia de santa, departamento de Ancash, julio 2014". Repositorio [seriado en línea] 2014 [citado 2017 enero 5], disponible en:

Entre otros.

pavimento de concreto.

Fuente: Elaboración propia (2017).

Anexo 04:

Formato de recolección de datos de campo

	ADECH		UNIVI			LICA LOS				TE			
Car	ADEC			F	ACULTA	D DE ING	ENIERÍA	CIVII	_				
	HOJA	DE IN	SPECCIÓN	DE C			A UNIDA	DDEN	MUESTR	4			
					MÉTOD								
Ramal:	Jirón S	San Mart	ín			Unidad d	e Muestra	: 01 ul	bicado en 1	a cuadra 06			
Sección:	Cuadras 6,	7,8,9 y 1	0 Longitud	496.04r	n	Fecha:		Er	rero - 201	7			
Distrito:	Satipo)				Numero o	de losas:		26				
Provincia	a: Satipo)				Área Tota			54.48m2				
Región:	Junin					1			4.00 m x 3.	37m			
Evaluado	or: Rober	t Reyner	Hoppen Mi	iguel		Área de 1	a losa:		13.48m2				
					TO 4 15								
1 D1	D. 11'				DAÑ		t- J- A-						
	up - Bucklir de Equina	ng F				32 Popou	ento de Ag	gregado					
			,										
3 Losa	Dividida					33 Bomb	(7) (7)						
24 Grieta	de Durabil	idad "D"				34 Punzo	namiento						
25 Escala							de Vía Fé						
6 Diseñ	o del Sello	de Junta				36 Desco	nchamient	o, Mapa	a de Grieta	S			
	vel Carril/B					Craquela							
			Longitudina	les,			s de Retra						
	sales y Diag						scaramient		^				
	e Grande (n					39 Descascaramiento de Junta							
0 Parch	e Pequeño r	nenor o I	gual 0.45m2	2)									
	1	2	3	4	5	6	7	8	9	10			
A	32	32,391	32,28L	32	32	34432	32	32	38M	32,391			
В	29M		32			385	34M	28L	38L	391			
C	32	2814	29H, 28M	,									
D	391	38M	294,2811										
					L		B 11	10/		D 1 1/			
	Dai	10	Severi	dad	Numer	o de losa	Densid	180%	valor d	e Reducción			
	38		M		2								
	32)1								
	28		M		3								
	00)		2								
	26		H		-								
	34		И		1								
	29		М		3								
	39)		5								
					T	1							
					1	ul							
					114	Flores Elisban IG. CIVIL IP 82918							

Figura 199. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 01

CULAD	ech)		UNI						HIMBOTE			
Carmina					ACULTA							
	H	OJA DE IN	SPECCIO	ON DE C			A UNIDA	AD DE MI	JESTRA			
					MÉTOD							
Ramal:		n San Martír					Muestra:		o en la cuad	ra 06		
	-	6,7,8,9 y 10	Longitud	496.04m		Fecha:		Enrer	o - 2017			
Distrito:	Sati	<u> </u>				Numero d			24			
Provinci	0.00	1				Area Tota			52m2			
Región:	Jun					Dimension			m x 3.37m			
Evaluado	or: Rob	pert Reyner l	Hoppen M	iguel		Area de la	ı losa:	13.4	8m2			
					DAÑ	0						
21 Blow	up - Buck	ling				31 Pulime	nto de Ag	regado				
22 Grita	de Equina	a	4			32 Popout	S					
23 Losa	Dividida					33 Bombe	0					
24 Grieta	a de Dural	bilidad "D"				34 Punzor	namiento					
25 Escal	a					35 Cruce	de Vía Fér	rea				
26 Diseñ	o del Sell	o de Junta						o, Mapa de	Grietas			
27 Desni	vel Carril	/Berma				Craquelado						
		s (Grietas L	ongitudina	ales,		37 Grietas						
	sales y Di					38 Descas	caramient	o de Esquii	na			
		(mayor 0.45				39 Descas	caramient	o de Junta				
30 Parch	e Pequeño	menor o Ig	ual 0.45m	2)								
	1	2	3	4	5	6	7	8	9	10		
A	32	394,382	32,391	39432	29M,38H	38439L	32,392	32,2217	38432	38M,32		
В		38L	39L		382	38 H	394,38L	32		382		
C	38L	391,32										
D	32	39L										
	70	1-1-	<u> </u>									
)año	Sever	ridad	Numero	de losa	Dens	idad%	Valor de	Reducción		
	39	5	1		9							
	3	8	M		3					~~~		
	30	7	L		8							
	2	2	M		1							
	20		2									
		2			10							
	2		M		1							
		•				,						

Figura 200. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 02

CH		UNI	VERSID	AD CATO	LICA LO	S ÁNGEI	LES DE C	СНІМВОТЕ	C			
3]	FACULTA	AD DE INC	GENIERÍ	A CIVIL					
НО	JA DE I	NSPECCI	ÓN DE C			RA UNID	AD DE M	IUESTRA				
				MÉTOI								
						e Muestra			dra 07			
		0 Longitud	496.04m				Enre					
The same of the sa							THE RESERVE OF THE PERSON NAMED IN		1			
r: Robe	rt Reyner	Hoppen M	iguel		Area de la	a losa:	13	.48m2				
					-							
72 111	5			DAI								
	ng						regado					
		1										
	1:1 1 1 1 7 11											
	lidad "D"											
	1 T											
		r '/- 1'	-1									
		Longitudin	ales,									
		50)										
			2)		39 Descascaramiento de Junta							
				5 6 7 8 9 1								
									32			
32		32	32		32	38L	381	32	362			
22 M	29M	22M		39L		392	39L 32	36L	382			
32	381	364										
		386										
			ridad		o de losa	Densi	dad%	Valor de	Reducción			
				1								
		M										
-	-	-		12								
		-14		1								
		1										
_		L		8								
		L				"						
26		M										
				-	Daniel	1						
					oncalla Flores	Elisban						
	Jirón Cuadras 6 Satip Satip Junír Robe p - Buckli de Equina Dividida de Durabi de Carril/Is s Lineales ales y Diag g Grande (n Pequeño 1 32 22 M 32 382 362 Da 38	Jirón San Martí Cuadras 6,7,8,9 y 1 Satipo Satipo Junín Robert Reyner p - Buckling de Equina Dividida de Durabilidad "D" del Sello de Junta vel Carril/Berma s Lineales (Grietas ales y Diagonales) Grande (mayor 0.4 Pequeño menor o I 2 32 32 24 38 38 32 38 38 39 36 29 39 36 29 39 36 28	Jirón San Martín Cuadras 6,7,8,9 y 10 Longitud Satipo Satipo Junín Robert Reyner Hoppen M p - Buckling le Equina Dividida de Durabilidad "D" del Sello de Junta vel Carril/Berma s Lineales (Grietas Longitudin ales y Diagonales) Grande (mayor 0.45m2) Pequeño menor o Igual 0.45m 1 2 3 32 32 32 22 M 28M 22M 332 38L 36L 38L 39L 39L 36L 38L Daño Sever 38 L 22 M 39 L 21 M 39 L 22 M 39 L	Jirón San Martín Cuadras 6,7,8,9 y 10 Longitud 496.04m Satipo Satipo Junín r: Robert Reyner Hoppen Miguel p - Buckling de Equina Dividida de Durabilidad "D" del Sello de Junta vel Carril/Berma s Lineales (Grietas Longitudinales, ales y Diagonales) re Pequeño menor o Igual 0.45m2) 1 2 3 4 32 32 32 32 32 22 M 28M 22M 32 38L 39L 39L 36L 38L Daño Severidad 38 L 22 M 39 L	HOJA DE INSPECCION DE CONDICION MÉTOI Jirón San Martín Cuadras 6,7,8,9 y 10 Longitud 496.04m Satipo Satipo Junín Robert Reyner Hoppen Miguel DAT p - Buckling de Equina Dividida de Durabilidad "D" del Sello de Junta vel Carril/Berma s Lineales (Grietas Longitudinales, ales y Diagonales) Grande (mayor 0.45m2) Pequeño menor o Igual 0.45m2) 1 2 3 4 5 32 32 32 32 32 24 M 28L 22M 38L 38L 39L 39L 36L 38L 39L 39L 36L 38	MÉTODO PCI	MÉTODO PCI	HOJA DE INSPECCION DE CONDICIONES PARA UNIDAD DE M MÉTODO PCI Jirón San Martín Cuadras 6,7,8,9 y 10 Longitud 496.04m Satipo Numero de losas: Satipo Area Total: Robert Reyner Hoppen Miguel DAÑO D-Buckling de Equina Dividida de Durabilidad "D" 31 Pulimento de Agregado 32 Popouts 33 Bombeo 34 Punzonamiento 35 Cruce de Via Férrea 36 del Sello de Junta del Carril/Berma Scineales (Grietas Longitudinales, ales y Diagonales) Grande (mayor 0.45m2) Dequeño menor o Igual 0.45m2) 1 2 3 4 5 6 7 8 32 32 32 32 32 36 36 32 36 38 2 2 M 29 M 22 M 33 L 34 39 L 39 L 39 L 39 L 39 L 39 L 3	Daño Severidad Severidad			

Figura 201. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 03.

ULADE	CH		UN			D CATÓLICA LOS ÁNGELES DE CHIMBOTE CULTAD DE INGENIERÍA CIVIL							
	Н	OJA DE II	NSPECC		ONDICIO				ESTRA				
					MÉTODO								
Ramal:	Jirón S	San Martin				Unidad de	Muestra:	04 ubicad	o en la cua	dra 07			
Sección:	Cuadras 6,	7,8,9 y 10 I	ongitud 4	196.04m		Fecha:	Enrero - 20)17					
Distrito:	Satipo					Numero de	e losas:		26				
Provinci	a: Satipo)				Área Tota	l:	350.4	18m2				
Región:	Junín					Dimension	nes de la L	osa: 4.00	m x 3.37m				
Evaluado	or: Rober	t Reyner H	loppen Mi	guel		Área de la	losa:	13.4	8m2				
		۶			DAÑO)							
21 Blow	up - Bucklir	ng				31 Pulime	nto de Agr	egado					
22 Grita	de Equina					32 Popout	S						
23 Losa	Dividida					33 Bombe	0						
24 Grieta	a de Durabil	idad "D"				34 Punzon	amiento		Andrew Street				
25 Escal	a					35 Cruce o	le Vía Férr	ea					
26 Diseñ	io del Sello	de Junta				36 Descon	chamiento	, Mapa de	Grietas				
27 Desni	ivel Carril/B	erma				Craquelad	0						
28 Grieta	as Lineales (Grietas Lo	ongitudina	iles,		37 Grietas	de Retraco	ción					
Transver	sales y Diag	onales)				38 Descascaramiento de Esquina							
29 Parch	e Grande (n	nayor 0.45r	n2)			39 Descase	caramiento	de Junta					
30 Parch	e Pequeño r	nenor o Igu	ial 0.45m2	2)			5						
	1	2	3	4	5	6	7	8	9	10			
A	32 39L	36L 32	29M	2914	362	364,32	36L	394	32	32/360			
В	222		29M	29M	384,391	32	381	32		32, 22M			
C	32	364/32	392										
D	384,391	29M 28M	39L										
	Da	ño	Seve	eridad	Numer	o de losa	Densi	dad%	Valor d	e Reducción			
	38		2		3								
	29		M		5				1 2				
	22		L		2								
	28		M		1								
	26		M										
	32			8	11								
	39		4		7								
	36		L		1								

Figura 202. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 04.

ULAD!	ECH	-	UN		AD CATÓ FACULTA				HIMBOTE			
		HOJA DE	INSPECC			ONES PARA UNIDAD DE MUESTRA						
					MÉTOD							
Ramal:	Jirón	San Martin	1			Unidad de	Muestra:	05 ubica	do en la cuad	ra 08		
Sección:		6,7,8,9 y 10		496.04m		Fecha:		Enrer	o - 2017			
Distrito:	Sati					Numero d	e losas:		26			
Provincia						Área Tota	1:	354.4	18m2			
Región:	Juni					Dimension	nes de la I	osa: 4.00	m x 3.37m			
Evaluado		ert Reyner I	Hoppen M	iguel		Área de la			8m2			
			FF	0								
		P			DAÑ	0		-				
21 Blowu	p - Buckl	ing	2			31 Pulime	nto de Ag	regado				
22 Grita o	-	The second secon				32 Popout		-0				
23 Losa I	A				L	33 Bombe			West, and			
		ilidad "D"				34 Punzor						
25 Escala		muu D				35 Cruce		теа				
		de Junta						o, Mapa de	Grietas			
27 Desniv						Craquelad		o, mapa de	Cilotas			
		Grietas L	ongituding	alec		37 Grietas de Retracción 38 Descascaramiento de Esquina						
Transvers			ongitudiliz	1105,								
		mayor 0.45	m2)			39 Descascaramiento de Junta						
				2)		37 Descascaramiento de Junta						
30 Parcile		Pequeño menor o Igual 0.45m2) 1 2 3 4 5 6 7 8 9 1										
	1	T	1	1	1	T 0		T	T			
A	39L	39432		39L	38436L	32 36L 39L136L 391						
В	39L	384,294	38L	2214	38L		381	386	386	386		
C	38L	32 39L	29L 32									
D	38L 39L		29L									
	D	año	Seve	eridad	Numer	o de losa	Dens	idad%	Valor de	Reducció		
	38	2	2		10							
	21	2	M		1							
	3	1	2		8							
	20	7	1		3				1			
	3				6							
	36		2		3							
	26		M		1							
	4	2	11									
					+				1			
,					me will	Juli	Elisban					

Figura 203. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 05

386	CULA	M. M. S. S. S.			F	ACULTA	D DE ING	ENIERÍA	CIVIL						
Ramal:		Н	OJA DE I	NSPECC	IÓN DE			RA UNID	AD DE	MUESTRA					
Sección: Cuadras 6,7,8,9 y 10 Longitud 457.52m						MÉTO	DO PCI								
Numero de losas: 24	Ramal:	Jir	ón San Ma	artín			Unidad d	e Muestra	: 06 ubi	cado en la cu	adra 08				
Provincia: Satipo	Sección	i: Cuadra	as 6,7,8,9 y	y 10 Longi	tud 457.5	2m			En	rero - 2017					
Dimensiones de la Losa: 4.00m x 3.37m	Distrito	: Sa	tipo				Numero o	le losas:		24					
DAÑO 21 Blowup - Buckling 31 Pulimento de Agregado 32 Popouts 33 Bombeo 24 Grieta de Equina 34 Punzonamiento 25 Escala 35 Cruce de Vía Férrea 26 Diseño del Sello de Junta 36 Desconchamiento, Mapa de Grietas 27 Desnivel Carril/Berma Craquelado 28 Grietas Lineales (Grietas Longitudinales, Transversales y Diagonales) 38 Descascaramiento de Esquina 39 Descascaramiento de Junta 30 Descascaramiento 30 Descascaramiento de Junta 30 Descascaramiento de Junta 3	Provinc	ia: Sa	atipo				Área Tota	al:	22	23.52m2					
DAÑO 31 Pulimento de Agregado 32 Popouts 32 Popouts 33 Bombeo 24 Grieta de Durabilidad "D" 34 Punzonamiento 25 Escala 35 Cruce de Vía Férrea 26 Diseño del Sello de Junta 36 Desconchamiento, Mapa de Grietas 27 Desnivel Carril/Berma 28 Grietas Lineales (Grietas Longitudinales, Transversales y Diagonales) 38 Descascaramiento de Esquina 39 Descascaramiento de Esquina 39 Descascaramiento de Junta 30 Descascaramiento	Región:	: Ju	ınín				Dimensio	nes de la	Losa: 4	.00m x 3.37	m				
31 Pulimento de Agregado 32 Popouts 32 Popouts 33 Bombeo 34 Punzonamiento 34 Punzonamiento 35 Cruce de Vía Férrea 36 Desconchamiento, Mapa de Grietas 36 Desconchamiento, Mapa de Grietas 37 Grietas Longitudinales, 37 Grietas de Retracción 38 Descascaramiento de Esquina 39 Descascaramiento de Esquina 39 Descascaramiento de Junta 30 Descascaramiento de Junta 39 Descascara	Evaluad	dor: Re	obert Reyr	er Hopper	n Miguel		Área de la	a losa:	1	3.48m2					
31 Pulimento de Agregado 32 Popouts 32 Popouts 33 Bombeo 34 Punzonamiento 34 Punzonamiento 35 Cruce de Vía Férrea 36 Desconchamiento, Mapa de Grietas 36 Desconchamiento, Mapa de Grietas 37 Grietas Longitudinales, 37 Grietas de Retracción 38 Descascaramiento de Esquina 39 Descascaramiento de Esquina 39 Descascaramiento de Junta 30 Descascaramiento de Junta 39 Descascara						75.4	ñ.o								
32 Popouts 33 Bombeo 34 Punzonamiento 25 Escala 35 Cruce de Vía Férrea 36 Desconchamiento, Mapa de Grietas 27 Desnivel Carril/Berma Craquelado 28 Grietas Lineales (Grietas Longitudinales, Gransversales y Diagonales) 38 Descascaramiento de Esquina 39 Descascaramiento de Esquina 39 Descascaramiento de Junta 38 Descascaramiento de Junta 39 Descascaramiento de Junta 38 Desc	31 D1	D				DA		. 1 4	1						
33 Bombeo 34 Punzonamiento 34 Punzonamiento 34 Punzonamiento 35 Cruce de Vía Férrea 35 Cruce de Vía Férrea 36 Desconchamiento, Mapa de Grietas 27 Desnivel Carril/Berma Craquelado 37 Grietas Lineales (Grietas Longitudinales, Gransversales y Diagonales) 38 Descascaramiento de Esquina 39 Descascaramiento de Junta 30 Descascaramiento 39 Descascaramiento de Junta 30 Descasca									gregado						
24 Grieta de Durabilidad "D" 34 Punzonamiento 35 Cruce de Vía Férrea 36 Desconchamiento, Mapa de Grietas 27 Desnivel Carril/Berma Craquelado 28 Grietas Lineales (Grietas Longitudinales, Transversales y Diagonales) 38 Descascaramiento de Esquina 39 Descascaramiento de Junta 30 Parche Pequeño menor o Igual 0.45m2) 39 Descascaramiento de Junta 30 Descascaramiento de Junta 30 Descascaramiento de Junta 30 Descascaramiento de Junta 30 Descascaramiento 39 Descascaramiento de Junta 30 Descascaramiento 30 Descascaramiento															
35 Cruce de Vía Férrea 36 Desconchamiento, Mapa de Grietas 27 Desnivel Carril/Berma Craquelado 28 Grietas Lineales (Grietas Longitudinales, Transversales y Diagonales) 38 Descascaramiento de Esquina 39 Descascaramiento de Junta 30 Parche Pequeño menor o Igual 0.45m2) 39 Descascaramiento de Junta 30 Parche Pequeño menor o Igual 0.45m2) 38 L				- "				and the same of th							
26 Diseño del Sello de Junta 36 Desconchamiento, Mapa de Grietas			abilidad "	D"											
Craquelado 28 Grietas Lineales (Grietas Longitudinales, 37 Grietas de Retracción 38 Descascaramiento de Esquina 29 Parche Grande (mayor 0.45m2) 39 Descascaramiento de Junta 30 Parche Pequeño menor o Igual 0.45m2) 1															
28 Grietas Lineales (Grietas Longitudinales, 37 Grietas de Retracción 38 Descascaramiento de Esquina 39 Parche Grande (mayor 0.45m2) 39 Descascaramiento de Junta 30 Parche Pequeño menor o Igual 0.45m2)				ta					to, Mapa	de Grietas					
Transversales y Diagonales 38 Descascaramiento de Esquina 39 Descascaramiento de Junta 39 Descascaramiento de Junta 30 Parche Pequeño menor o Igual 0.45m2) 39 Descascaramiento de Junta 30 Parche Pequeño menor o Igual 0.45m2)															
29 Parche Grande (mayor 0.45m2) 39 Descascaramiento de Junta 30 Parche Pequeño menor o Igual 0.45m2) 39 Descascaramiento de Junta 30 Parche Pequeño menor o Igual 0.45m2) 31					dinales,										
Daño Severidad Numero de losa Densidad% Valor de Reducci 32 32 4 4 24 32 32 4 4 24 32 32															
Tan Tan							39 Descas	caramien	to de Jun	ta					
A 38L 32 32 38L 32 39L 39L 39L 39L 39L B 29L 29L 39L 38L 39L 38L 38L C 38L 32 D 39L 39L Daño Severidad Numero de losa Densidad% Valor de Reducci 38 2 4 39	30 Parch	he Peque													
Daño Severidad Numero de losa Densidad% Valor de Reducci 38			2	3	4	5	6		8	9					
Daño Severidad Numero de losa Densidad% Valor de Reducci 38 2 4 29 2 4 29 2 32 32 32 4 32 2 32 2 8 32 2 32 2 33 32 2 33 33 34 2 34 35 35 35 35 35 36 36 36	A		32	32	38L		*	39L 32	32	381	391				
Daño Severidad Numero de losa Densidad% Valor de Reducci 38 2 + 39 L 4 29 L 3 32 L 8	В		294			38L			387		38L				
Daño Severidad Numero de losa Densidad% Valor de Reducci 38 2 + 39 L 4 29 L 3 32 L 8	C	32 38L													
38 2 7 39 L 4 29 L 3 32 L 8	D		39L 32												
38		D	año	Seve	ridad	Numer	o de losa	Densi	dad%	Valor de	Reducción				
39 L 4 29 L 3 32 L 8		3:	8	2		1									
29 L 3 32 L 8				1		1	i								
32 2 8		-	No.	2	-	1	1								
										<u> </u>					
~ 11				Н											
				V 1		1									
		-							-	-					
						1									
		-				-									
						1	. 1								

UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE

Figura 204. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 06.

GLADY	CH	-	UNI			DLICA LOS			CHIMBOTI	£		
		LADET	SEDECCI						MUESTRA			
	по	JADEII	ISFECCI	ON DE C	MÉTOI		CA UNIL	ADDE	WIUESTRA			
Ramal:	Liró	n San Ma	rtín		WIETOI		Muestro	· 07 ubic	ado en la ou	den 08		
			10 Longit	nd 496 041	n	Unidad de Muestra: 07 ubicado en la cuadra 08 Fecha: Enrero - 2017						
Distrito:	Sati		10 Dongie	40.04	.11	Numero d	le losas:	LIII	20			
Provincia		NAME AND ADDRESS OF TAXABLE PARTY.			-	Área Tota		26	9.60m2			
Región:	Jun	-				Dimensio	The second secon		.00m x 3.37r	n		
Evaluado			er Hoppen	Miguel		Área de la		-	3.48m2	11		
Draidad	7. 100	ocit iccylli	пторрен	Migdel		Trica de la	i iosa.	1	3.401112			
		¢			DA	ÑΟ						
21 Blow	up - Buck					31 Pulime	ento de As	regado				
	de Equina					32 Popout		5. 48440				
23 Losa				~	-	33 Bombe						
		bilidad "D)"		400	34 Punzon		- symbol	300	90 min		
25 Escala						35 Cruce		rrea				
		o de Junta	1					100000000000000000000000000000000000000	de Grietas			
	vel Carril					36 Desconchamiento, Mapa de Grietas Craquelado						
			s Longitud	inales		37 Grietas de Retracción						
	The second second second second	agonales)	3 Dongitud	marco,		38 Descascaramiento de Esquina						
		(mayor 0.	45m2)			39 Descas						
			Igual 0.45	im2)		J D C D C D C D C D C D C D C D C D C D	caramien	·				
	1	2	3	4	5	6	7	8	9	10		
A	38L	291	291	38L	32	32,38L	29 M	391	39L	39L		
В	391	291	29L 39L	224	39L 32	381		29M 32				
C												
D												
	Da	ıño	Seve	ridad	Numer	o de losa	Densi	dad%	Valor de	Reducción		
	38	3	2		4							
	39		2		6							
	22		Н		1			and an extended				
	32				6							
	29		2		4			***************************************				
	29	*	M		2							
	36		M									
	20		1)									
·						Roscalia Fior ING. C	es Elisban					

Figura 205. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 07.

ULAN	ECH.		UN			OLICA LO			НІМВОТІ	C
	НО	JA DE I	NSPECC			ONES PAI			UESTRA	
						DO PCI				
Ramal:	Jirón	San Mart	ín			Unidad de	Muestra:	08 ubicac	lo en la cua	dra 09
Sección:	Cuadras 6	,7,8,9 y 1	0 Longitu	d 496.04n	1	Fecha:		Enrero	- 2017	
Distrito:	Satip	o				Numero d	e losas:		20	
Provincia						Área Tota		269.6	0m2	
Región:	Junir						nes de la L	osa: 4.00	m x 3.37m	
Evaluado	r: Robe	ert Reyner	Hoppen N	Miguel		Area de la	losa:	13.4	8m2	
		-			DA	ÑO				
21 Blown	ıp - Buckli	no	2		DA	7	nto de Agi	regado		
	de Equina	ng				32 Popout		egado		
23 Losa I	1				-	33 Bombe				
	de Durabi	lidad "D"				34 Punzor			(4)	
25 Escala							de Vía Fén	rea	***************************************	
26 Diseño	o del Sello	de Junta						o, Mapa de	Grietas	
27 Desni	vel Carril/E	Berma				Craquelad				
28 Grieta	s Lineales	(Grietas	Longitudii	nales,		37 Grietas	de Retrac	ción		
Fransvers	sales y Dia	gonales)				38 Descas	caramiento	de Esquir	ıa	
	Grande (1					39 Descas	caramiento	o de Junta		
30 Parche	Pequeño:	menor o l	gual 0.45r	n2)					the material state of	
	1	2	3	4	5	6	7	8	9	10
A	38L 39L	39L	36L	386	386	384	38L	36L		394361
В	362		39L 36L	392	39L	32	39L	36L	361	394,32
C										
D										
										0.
	Da	ño	Seve	ridad		o de losa	Densi	dad%	Valor de	Reducción
	38		1,		5					
	39		1		9					
	32				9					
	36		L		8					
	26		·M							
1					9	Deep				×
						Roncalla Flor ING. C	es Elisban IVIL 1918			

Figura 206. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 08.

	UNIVERSIDAD CATÓLICA LOS ÁNGELES DE CHIMBOTE FACULTAD DE INGENIERÍA CIVIL											
(ULAD)	N. S. S. S.		FACULTAD DE INGENIERÍA CIVIL									
	H	OJA DE II	NSPECCI	ÓN DE C		ONES PAR	A UNIDA	D DE M	UESTRA			
					MÉTOD	O PCI						
Ramal:	5.00	San Martín				Unidad de Muestra: 09 ubicado en la cuadra 09						
Sección: C	uadras 6	,7,8,9 y 10	Longitud -	496.04m	Fecha: Enrero - 2017							
Distrito:	Satip	0			Numero de losas: 20							
Provincia:	Satip	0			Área Total: 269.60m2							
Región:	Junir	1			Dimensiones de la Losa: 4.00m x 3.37m							
Evaluador:	raluador: Robert Reyner Hoppen Miguel						losa:	13.	48m2			
					DAÑ	íO						
21 Blowup	- Buckli	ng			DAI	-	nto de Ao	regado				
22 Grita de		5			31 Pulimento de Agregado 32 Popouts							
23 Losa Div		A		33 Bombeo								
24 Grieta de	lidad "D"			34 Punzonamiento								
25 Escala				35 Cruce de Vía Férrea								
26 Diseño d	de Junta			36 Desconchamiento, Mapa de Grietas								
7 Desnivel	Berma			Craquelado								
28 Grietas I	ineales	(Grietas L	ongitudina	les,		37 Grietas de Retracción						
Transversale						38 Descascaramiento de Esquina						
29 Parche G		n2)		39 Descascaramiento de Junta								
0 Parche P	equeño	menor o Igi	ual 0.45m2	?)				-				
	1	2	3	4	5	6	7 .	8	9	10		
A		32 38L	38L		391	381	39L	36L	362	39L		
В		36L	32 39L	362	32 39L	39L	39L	39L	294391			
C												
D			1.									
Г	Daño 3 8		Severidad Nu			ro de losa	Densi	dad%	Valor de R	educción		
			2			5						
	39		L			9						
	32					3						

Daño	Severidad	Numero de losa	Densidad%	Valor de Reducción
38	2	5		
39	L	9		
32		3		
36	L	4		
29	L .	1		
26	M	-		

Figura 207. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 09

ULADE	CH		UNI		AD DE IN			СНІМВОТЕ			
	Н	JA DE IN	SPECC						MUESTRA		
					MÉTO	DO PCI					
Ramal:	Jirć	n San Mar	tín			Unidad de	Muestra:	10 ubica	do en la cuadra	.10	
Sección	Cuadras	s 6,7,8,9 y	10 Longit	ud 496.0	4m	Fecha:			ro - 2017		
Distrito:		ipo				Numero d	le losas:		18		
Provinci	a: Sat	tipo				Área Tota	d:	242	64m2		
Región:	Jui		711111111111111111111111111111111111111			Dimensio	nes de la L	osa: 4.0	00m x 3.37m		
Evaluad	or: Ro	bert Reyne	r Hoppen	Miguel		Área de la			48m2		
1 D1					D/	AÑO					
	up - Bucl						nto de Agr	egado			
	de Equin	a				32 Popout					
	Dividida		-			33 Bombe					
		bilidad "D	"			34 Punzor					
5 Escal						35 Cruce	de Vía Férr	ea			
		lo de Junta					chamiento	, Mapa de	e Grietas		
	ivel Carri			_		Craquelado					
8 Grieta	as Lineale	es (Grietas	Longitud	linales,		37 Grietas de Retracción					
		iagonales)				38 Descascaramiento de Esquina					
9 Parch	e Grande	(mayor 0.4	15m2)			39 Descascaramiento de Junta					
0 Parch	e Pequeñ	o menor o	Igual 0.45	5m2)							
	1	2	3	4	5	6	7	8	9	10	
A	39L 36L	39L 36L	38L 32	392	36L	39L 36L	382		39L		
В	39L 36L	361	38L 39L	39L 32	39L	38L	38L		392		
C											
D											
	П	año	Seve	ridad	Numer	o de losa	Densic	lad%	Valor de R	educción	
			1		5		Densidad 70		valui de Reduccio		
	38		1		10				-		
	32		L						-		
	37		4		2				-		
	36	Annual Control of the	2		6						
	26	>	M								
					6						
								4.			
						Roncalla Flor	es Elisban				

Figura 208. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 10.

(ma	DECH	**	UNI						E CHIMBO	TE			
CHESK					FACULTA		2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1						
	HOJ	A DE II	NSPEC	CION D			PARA U	NIDAD	DE MUEST	TRA			
					METO	DDO PCI							
							e Muestr	Marie Carrest Carract	icado en la c	uadra 10			
,,,,,							Fecha: Enrero - 2017						
1							Numero de losas: 26						
		Satipo				Area Total: 354.48m2							
Regiór		Junín	, T)		r: 1	Dimensiones de la Losa: 4.00m x 3.37m Área de la losa: 13.48m2							
Evalua	dor:	Robert F	Reyner H	loppen M	liguel	Area de la	a losa:		13.48m2				
					n	AÑO							
11 D1-	D	-1.1			D.		1. /	1					
	wup - B					31 Pulime		Agregado					
	ta de Equa a Dividi					32 Popou 33 Bombo							
	eta de D		1 "D"	-		34 Punzo							
25 Esc.		arabilida	id D						-				
	eño del S	Calla da	Iunto			35 Cruce de Vía Férrea							
	nivel Ca	SUPPLIED SUPPLIED				36 Desconchamiento, Mapa de Grietas Craquelado							
				ongitudin	alec	37 Grietas de Retracción							
	ersales y			ngituani	iaics,	38 Descascaramiento de Esquina							
			or 0.45	12)	4	39 Descascaramiento de Junta							
				ial 0.45m	12)	J) Descas	scaranne	ino de se	iiita	W			
o i uit	1	2	3	4	5	6	7	8	9	10			
	392		T	39L			T			10			
A	392	392	39L	382		39L	22M 39L	39L					
В	39L		391		38L 36L	391	29L						
C													
D					15								
	Da	ıño	Seve	ridad	Numero	de losa	Densi	dad%	Valor de	Reducción			
	38 L				7								
	30		L		12								
	22		M		1								
	29		L		1								
4	26		M		,		7.0	*					
			, ,							- N			

Figura 209. Tabla, cuadro de recolección de datos de campo de la unidad de muestra 11.

Anexo 05:

Fotografías de inspección de patologías registradas en el Jirón San Martín en las cuadras 6, 7, 8, 9, 10 del Distrito y Provincia de Satipo. Región Junín.

Figura 210. Fotografía con vista panorámica en la cuadra 06, del Jirón San Martín distrito y provincia de satipo.

Figura 211. Fotografía con vista panorámica en la cuadra 10, del Jirón San Martín distrito y provincia de satipo.

Fotografías de patologías registradas en la unidad de muestra U1 de la

Cuadra 06 Jirón San Martín distrito y provincia de satipo.

Figura 212. Fotografía con presencia, descascaramiento de esquina de nivel de severidad media (38M), en la unidad de muestra 01, del Jirón San Martín cuadra 06.

Figura 213. Fotografía con presencia, punzonamiento de nivel de severidad media (34M), identificado en la unidad de muestra 01 del Jirón San Martín, cuadra 06.

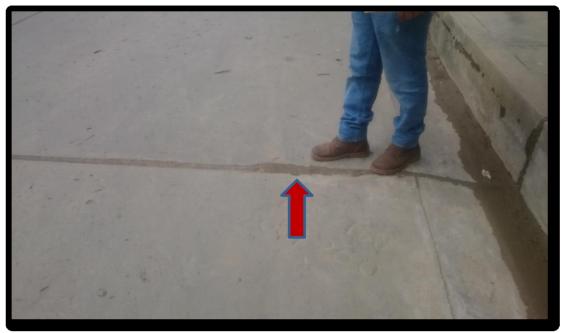


Figura 214. Fotografía con presencia, descascaramiento de junta con nivel de severidad baja (39L), identificado en la unidad de muestra 01, del Jirón San Martín, cuadra 06.

Figura 215. Fotografía con presencia, grietas lineales de nivel de severidad media (28M), identificado en la unidad de muestra 01, del Jirón San Martín, cuadra 06.

Figura 216. Fotografía con presencia, de popoust (32), identificado en la unidad de muestra 01, del Jirón San Martín, cuadra 06.

Figura 217. Fotografía, parche grande mayor a 0.45m2, con nivel de severidad media (29M), identificado en la unidad de muestra 01 del Jirón San Martín, cuadra 06.

Fotografías de patologías registradas en la unidad de muestra 02, Cuadra 06 del Jirón San Martín distrito y provincia de satipo.

Figura 218. Fotografía con presencia, descascaramiento de esquina de nivel de severidad bajo (38L), identificado en la unidad de muestra 02, del Jirón San Martín, cuadra 06.

Figura 219. Fotografía con presencia, descascaramiento de esquina, de nivel de severidad medio (38M), identificado en la unidad de muestra 02, del Jirón San Martín, cuadra 06.

Figura 220. Fotografía con presencia, descascaramiento de junta, de nivel de severidad bajo (39L), identificado en la unidad de muestra 02, del Jirón San Martín, cuadra 06.

Figura 221. Fotografía, grieta de esquina, presenta escala, con nivel de severidad medio (22M), identificado en la unidad de muestra 02, del Jirón San Martín, cuadra 06.

Figura 222. Fotografía con presencia de popoust (32), identificado en la unidad de muestra 02 del Jirón San Martín, cuadra 06.

Fotografías de patologías registradas en la unidad de muestra 03,

Cuadra 07, Jirón San Martín distrito y provincia de satipo.

Figura 223. Fotografía con presencia, descascaramiento de equina de nivel de severidad bajo (38L), identificado en la unidad de muestra 03, del Jirón San Martín, cuadra 07.

Figura 224. Fotografía con presencia, Grita de equina (22M) de nivel de severidad medio, identificado en la unidad de muestra 03, del Jirón San Martín, cuadra 07.

Figura 225. Fotografía con presencia, popoust (32), identificado en la unidad de muestra 03, del Jirón San Martín, cuadra 07.

Figura 226. Fotografía con presencia, parche grande mayor a 0.45m2 (29L) de nivel de severidad bajo, identificado en la unidad de muestra 03, del Jirón San Martín, cuadra 07.

Fotografías de patologías registradas en la unidad de muestra 04, Cuadra 07 Jirón San Martín distrito y provincia de satipo.

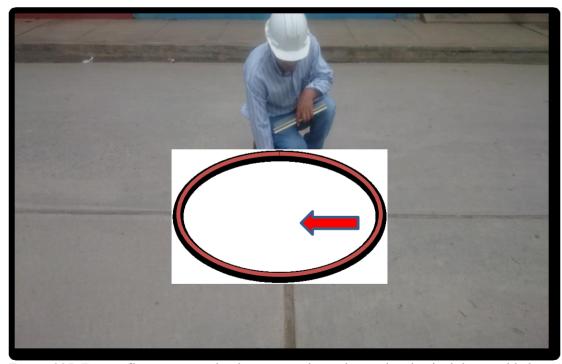


Figura 227. Fotografía con presencia, descascaramiento de esquina de nivel de severidad baja (38L), identificado en la unidad de muestra 04, del Jirón San Martín, cuadra 07.

Figura 228. Fotografía con presencia, grieta de esquina, presenta escala, de nivel de severidad media (22M), identificado en la unidad de muestra 04 del Jirón San Martín, cuadra 07.

Figura 229. Fotografía con presencia daño sello de junta de nivel de severidad medio (26M), identificado en la unidad de muestra 04 del Jirón San Martín, cuadra 07.

Figura 230. Fotografía con presencia, descascaramiento de junta de nivel de severidad baja (39L), identificado en la unidad de muestra 04, del Jirón San Martín, cuadra 07.



Figura 231. Fotografía con presencia, popoust (32), identificado en la unidad de muestra 04, del Jirón San Martín, cuadra 07.

Fotografías de patologías registradas en la unidad de muestra 05, Cuadra 08 del Jirón San Martín distrito y provincia de satipo.

Figura 232. Fotografía con presencia, descascaramiento de esquina de nivel de severidad baja (38L), identificado en la unidad de muestra 05, del Jirón San Martín, cuadra 08.

Figura 233. Fotografía con presencia, grieta de esquina, de nivel de severidad medio (22M), identificado en la unidad de muestra 05, del Jirón San Martín, cuadra 08.



Figura 234. Fotografía con presencia, descascaramiento de junta, de nivel de severidad baja (39L), identificado en la unidad de muestra 05, del Jirón San Martín, cuadra 08.

Figura 235. Fotografía con presencia, parche grade mayor a 0.45m2 de nivel de severidad baja (29L), identificado en la unidad de muestra 05, del Jirón San Martín, cuadra 08.

Figura 236. Fotografía con presencia, desconchamiento, mapa de grietas craquelado de nivel de severidad baja (36L), identificado en la unidad de muestra 05, del Jirón San Martín, cuadra 08.

Fotografías de patologías registradas en la unidad de muestra 06, Cuadra 08 del Jirón San Martín distrito y provincia de satipo.

Figura 237. Fotografía con presencia, descascaramiento de esquina de nivel de severidad baja (38L), identificado en la unidad de muestra 06, del Jirón San Martín, cuadra 08.

Figura 238. Fotografía con presencia, parche grande mayor a 0.45m2 de nivel de severidad baja (29L), identificado en la unidad de muestra 06, del Jirón San Martín, cuadra 08.

Figura 239. Fotografía con presencia, daño sello de junta de nivel de severidad baja (26M), identificado en la unidad de muestra 06 del Jirón San Martín, cuadra 08.

Fotografías de patologías registradas en la unidad de muestra 07, Cuadra 08 del Jirón San Martín Distrito y Provincia de Satipo.

Figura 240. Fotografía con presencia, descascaramiento de esquina de nivel de severidad baja (38L), identificado en la unidad de muestra 07, del Jirón San Martín, cuadra 08.

Figura 241. Fotografía con presencia, grieta de esquina, de nivel de severidad alta (22H), identificado en la unidad de muestra 07, del Jirón San Martín, cuadra 08.

Figura 242. Fotografía con presencia, popoust, (32), identificado en la unidad de muestra 07, del Jirón San Martín, cuadra 08.

Figura 243. Fotografía con presencia, daño sello de junta, de nivel de severidad media (26M), identificado en la unidad de muestra 07 del Jirón San Martín, cuadra 08.

Figura 244. Fotografía con presencia, parche grande mayor a 0.45m2 de nivel de severidad media (29M), identificado en la unidad de muestra 07, del Jirón San Martín, cuadra 08.

Fotografías de patologías registradas en la unidad de muestra 08, Cuadra 09 del Jirón San Martín Distrito y Provincia de Satipo.

Figura 245. Fotografía con presencia, descascaramiento de esquina de nivel de severidad baja (38L), identificado en la unidad de muestra 08, del Jirón San Martín, cuadra 09.

Figura 246. Fotografía con presencia, descascaramiento de junta de nivel de severidad baja (39L), identificado en la unidad de muestra 08, del Jirón San Martín, cuadra 09.

Figura 247. Fotografía con presencia, daño sello de junta de nivel de severidad (26M), identificado en la unidad de muestra 08 del Jirón San Martín, cuadra 09.

Fotografías de patologías registradas en la unidad de muestra 09, Cuadra 09 del Jirón San Martín Distrito y Provincia de Satipo.

Figura 248. Fotografía con presencia, descascaramiento de esquina de nivel de severidad baja (38L), identificado en la unidad de muestra 09, del Jirón San Martín, cuadra 09.

Figura 249. Fotografía con presencia, daño sello de junta de nivel de severidad medio (26M), identificado en la unidad de muestra 09, del Jirón San Martín, cuadra 09.

Figura 250. Fotografía con presencia, Descascaramiento de junta de nivel de severidad baja (39L), identificado en la unidad de muestra 09, del Jirón San Martín, cuadra 09.

Figura 251. Fotografía con presencia, parche grande mayor a 0.45m2 de nivel de severidad baja (29L), identificado en la unidad de muestra 09, del Jirón San Martín, cuadra 09.

Fotografías de patologías registradas en la unidad de muestra 10, Cuadra 10 del Jirón San Martín distrito y provincia de satipo.

Figura 252. Fotografía con presencia, Descascaramiento de esquina de nivel de severidad baja (38L), identificado en la unidad de muestra 10, del Jirón San Martín, cuadra 10.

Figura 253. Fotografía con presencia, Descascaramiento de junta de nivel de severidad baja (39L), identificado en la unidad de muestra 10, del Jirón San Martín, cuadra 10.

Figura 254. Fotografía con presencia, daño sello de junta, de nivel de severidad medio (26M), identificado en la unidad de muestra 10, del Jirón San Martín, cuadra 10.

Fotografías de patologías registradas en la unidad de muestra 11, Cuadra 10 del Jirón San Martín Distrito y Provincia de Satipo.

Figura 255. Fotografía con presencia Descascaramiento de esquina de nivel de severidad baja (38L), identificado en la unidad de muestra 11 del Jirón San Martín.

Figura 256. Fotografía con presencia, grieta de esquina, de nivel de severidad baja (38L), identificado en la unidad de muestra 11, del Jirón San Martín, cuada 10.

Figura 257. Fotografía con presencia, descascaramiento de junta, de nivel de severidad baja (39L), identificado en la unidad de muestra 11 del Jirón San Martín.

Figura 258. Fotografía con presencia, de Parche grande mayor a 0.45m2 nivel de severidad baja (29L), identificado en la unidad de muestra 11, del Jirón San Martín, cuadra 10.

Figura 259. Fotografía con presencia daño sello de junta, nivel de severidad baja (26M), identificado en la unidad de muestra 11, del Jirón San Martín, cuadra 10.

Anexo 06:

Instrumentos que se utilizo para la evaluación del pavimento rígido del Jirón San Martín cuadra 06, 07, 08, 09, 10.

Figura 232. Instrumentos utilizados en la evaluación GPS, cámara fotográfica, fluxómetro, Wincha, escalímetro, calculadora.

Descripción e interpretación:

wincha para medir las longitud y el área de los daños, cámara fotográfica el cual nos permite a detallar las diferentes patologías encontradas con el fin de mayor representación en el área de estudio, regla y cinta métrica para establecer las profundidades.

Anexo 07:

Planos del estudio de investigación.

- ✓ Plano de localización nacional.
- ✓ Plano de localización provincial.
- ✓ Plano de localización del estudio.
- ✓ Plano de muestreo.

✓ Plano de localización nacional.

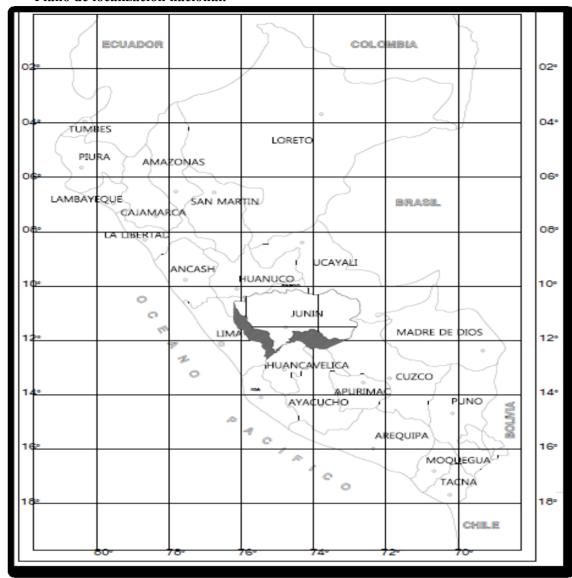


Figura 233. Plano de localización nacional.

✓ Plano de localización provincial.

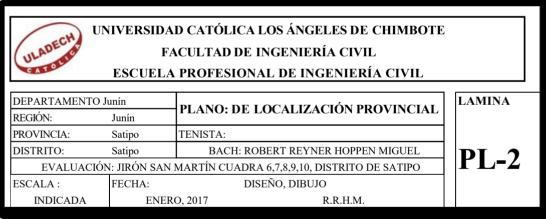


Figura 234. Plano de localización provincial.

Plano de ubicación del estudio

Figura 235. Plano de ubicación del estudio del Jirón San Martín

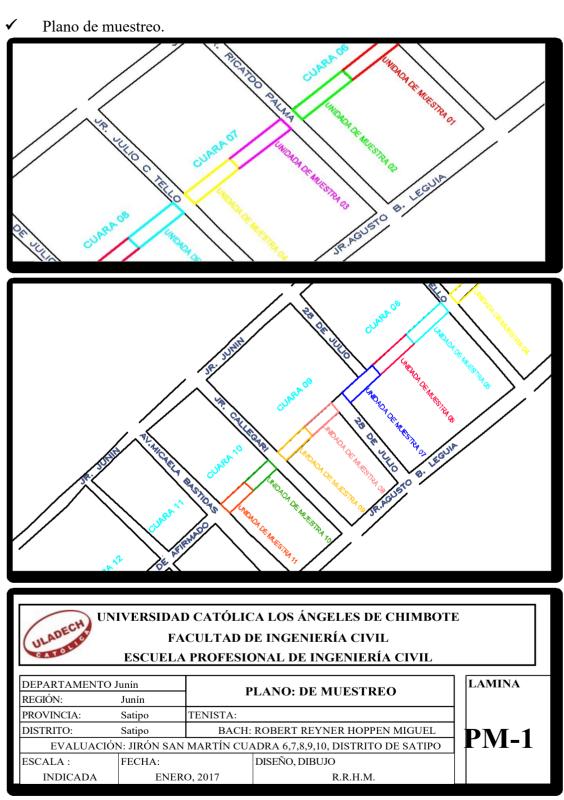


Figura 236.plano de muestreo de la cuadra 06, 07, 08, 09, 10, (unidad de muestra 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11).