

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DEL CASERÍO DE COCHAMARCA, DISTRITO DE MOLLEPATA, PROVINCIA DE SANTIAGO DE CHUCO, REGIÓN LA LIBERTAD- 2018.

TRABAJO DE INVESTIGACIÓN PARA OPTAR EL GRADO ACADÉMICO DE BACHILLER EN INGENIERÍA CIVIL

AUTOR:

PAREDES ZAVALETA, HELÍ WILSON ORCID: 0000-0001-6432-458X

ASESORA:

MGTR. ZARATE ALEGRE, GIOVANA MARLENE ORCID: 0000-0001-9495-0100

CHIMBOTE - PERÚ 2021

1. Título de la línea de investigación.

Diseño del sistema de abastecimiento de agua potable del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región La libertad – 2018.

2. Equipo de trabajo.

AUTOR:

Paredes Zavaleta, Helí Wilson

ORCID: 0000-0001-6432-458X

ASESORA:

Mgtr. Zarate Alegre Giovana Marlene

ORCID: 0000-0001-9495-0100

JURADO

Presidente

Mgtr. Huaney Carranza, Jesús Johan

Código ORCID: 0000-0002-2295-0037

Miembro

Mgtr. Meléndez Calvo, Luis Enrique

Código ORCID: 0000-0002-0224-168X

Miembro

Mgtr. Monsalve Ochoa, Milton Cesar

Código ORCID: 0000-0002-2005-6920

3. Hoja de firma de jurados y asesora.						
	JURADOS					
	Mgtr. HUANEY CARRANZA, JESÚS JOHAN					
	Presidente					
	Mgtr. MELÉNDEZ CALVO, LUIS ENRIQUE					
	Miembro					
-						
	Mgtr. Monsalve Ochoa, Milton Cesar					
	Miembro					

Mgtr. ZARATE ALEGRE GIOVANA MARLENE

ASESORA

4. Hoja de agradecimiento y dedicatoria.

Agradecimiento. Agradezco a **Dios** por brindarme salud, paz, sabiduría, e inteligencia y el pan de cada día. Así mismo agradezco a mis **padres** por haberme inculcado buenos valores que me permiten caminar por el camino del bien. Agradezco a mi **esposa** e **hijo** quienes están junto a mí en los momentos más difíciles para ser mi más grande fortaleza. Gracias al apoyo incondicional de todos ellos he podido realizar con gran éxito este proyecto de investigación.

Dedicatoria.

Este proyecto dedico con mucho amor y cariño a mis padres Hilda Zavaleta García y Manuel Paredes Castillo quien me acompaña y me guía desde el cielo.

Así mismo dedico a mi esposa Anita Analí Ascate García y a mi hijo Thiago Manuel Paredes Ascate quienes me apoyan y me impulsan día a día ser un mejor ser humano. 5. Resumen y Abstract.

Resumen

La investigación de esta tesis se basó en el diseño de la cámara de captación,

línea de conducción y reservorio de almacenamiento del sistema de agua

potable del caserío de Cochamarca. El enunciado del problema fue ¿Cómo

diseñar el sistema abastecimiento de agua potable del caserío de Cochamarca,

distrito de Mollepata, provincia de Santiago de Chuco, región de la Libertad –

2018? la **metodología** que se utilizó fue de tipo descriptiva, de nivel

cualitativo, diseño no experimental y de corte transversal. La **población** estuvo

conformada por el sistema de abastecimiento de agua potable. La muestra

estuvo compuesta por la cámara de captación, línea de conducción y reservorio

de almacenamiento de agua potable

Como resultado del diseño se obtuvo una captación de ladera concentrada, con

1m³ de volumen, estructura de concreto armado. Para el diseño de la línea de

conducción por gravedad se consideró utilizar una tubería de tipo PVC 7.5 con

un diámetro de 1 ½ plg. Y para el almacenamiento y tratamiento del agua

potable tenemos un reservorio apoyado con capacidad máxima de 19 m³.

Conclusión, según el estudio físico, químico y bacteriológico realizado al agua

nos garantiza que esta se encuentra en óptimas condiciones para el consumo

humano. La dotación será de 57lts/hab/dia. Por ello, si cumplirá con abastecer

a nuestra población futura de 478 habitantes de aquí a 20 años.

Palabras clave: Sistema de abastecimiento, condición sanitaria.

6

Abstract

The research of this thesis was based on the design of the catchment chamber,

conduction line and storage reservoir of the drinking water system of the village

of Cochamarca. The problem statement was How to design the drinking water

supply system of the village of Cochamarca, district of Mollepata, province of

Santiago de Chuco, region of La Libertad - 2018? The methodology used was

descriptive, qualitative, non-experimental and cross- sectional. The population

was made up of the drinking water supply system. The sample consisted of the

catchment chamber, conduction line and drinking water storage reservoir.

As a result of the design, a concentrated slope catchment was obtained, with a

volume of 1m3, a reinforced concrete structure. For the design of the gravity

line, it was considered to use a PVC 7.5 type pipe with a diameter of 1 ½ in.

And for the storage and treatment of drinking water we have a supported

reservoir with a maximum capacity of 19 m3.

Conclusion, according to the physical, chemical and bacteriological study

carried out on the water, it guarantees that it is in optimal conditions for human

consumption. The endowment will be 57 lts / room / day. Therefore, if it will

meet our future population of 478 inhabitants in 20 years from now.

Keywords: Supply system, sanitary condition.

vii

6. Contenido.

1.	Título de la línea de investigación.	i
2.	Equipo de trabajo	ii
3.	Hoja de firma de jurados y asesora	iii
4.	Hoja de agradecimiento y dedicatoria	iv
5.	Resumen y Abstract	vi
6.	Contenido.	viii
I.	Introducción	1
II.	Revisión de la literatura	3
2	2.1. Antecedentes	3
2	2.2. Bases teóricas	. 12
	2.2.3. población	12
	2.2.4. Agua	. 12
	2.2.4.1. Agua potable	. 13
	2.2.4.2. Calidad de agua	. 13
	2.2.4.3. Ciclo de agua	. 13
	2.2.4.4. Fuentes de agua	. 14
	2.2.5. Manantial.	. 16
	2.2.6. Sistema de abastecimiento de agua potable	17
	2.2.7. Parámetros de diseño del sistema de abastecimiento	17
	2.2.7.1. Parámetros de diseño	. 17
	2.2.7.2. Población futura	. 18

2.2.7.3. Dotación	19
2.2.7.4. Variación de consumo.	20
2.2.8. Componentes de un sistema de abastecimiento de agua potable	21
2.2.8.1. Captación	21
2.2.8.2. Líneas de conducción	29
2.2.8.3. Reservorio	33
2.2.8.4. Topografía	37
2.2.8.5. Estudio de mecánica de suelos	38
2.2.8.6. Condiciones sanitarias	38
III. Hipóstesis. (No aplica)	39
IV. Metodología	39
4.1. El tipo de investigación	39
4.2. Nivel de investigación	39
4.3. Diseño de la investigación	39
4.4. Población y muestra	40
4.5. Definición y operacionalización de variables e indicadores	44
4.6. Técnica e instrumentos de recopilación de datos	45
4.6.1. Técnicas de recolección de datos	45
4.6.2. Instrumentos de recolección de datos.	45
4.6.2.1. Fichas técnicas:	45
4.6.2.2. Protocolos	45
4.6.2.3. Plan de análisis	45

4.7. Matriz de consistencia.	47
4.8. Principios éticos.	50
V. Resultados	52
5.1. Resultado de cálculos	52
5.1.1. Diseño de la cámara de captación	52
5.1.3. Diseño de reservorio de almacenamiento de agua	54
5.2. Análisis de resultados	55
VI. Conclusiones y recomendaciones.	56
6.1. conclusiones	56
6.2. Recomendaciones	57
Referencias bibliográficas.	58
Anexos	65
Anexo 01: Definición y operación de la variable	66
Anexo 02: Matriz de consistencia.	69
Anexo 03: Reglamentos	73
Anexo 03.01: Reglamento nacional de edificaciones	74
(Norma 0S. 010)	74
Anexo 03.02: Reglamento de calidad de agua para consumo humano	84
Anexo 04: Ficha de encuestas	94
Anexo 05: Tabulación de encuesta	99
Anexo 06: cálculos hidráulicos de los componentes del sistema de abasteci	imiento.

	. 119
Anexo 06.1: cámara de captación	
Anexo 06.2: línea de conducción.	. 125
Anexo 06.3: Reservorio de almacenamiento.	128
Anexo 07: Panel fotográfico.	. 131
Anexo 8: fichas técnicas	134
Anexo 09: planos	. 138
Anexo 09.01. Plano de ubicación y localización.	139
Anexo 09.2. Plano de cámara de captación	140
Anexo 09.3. Plano de la línea de conducción.	141
Δnevo 09.3. Plano de reservorio de almacenamiento	1/12

Índice de ilustraciones

Ilustración 1: ciclo hidrológico del agua	14
Ilustración 2: fuentes de agua subterránea	15
Ilustración 3: fuente superficial	16
Ilustración 4: Sistema de abastecimiento de agua potable	.17
Ilustración 5: Cámara de captación	22
Ilustración 6: captación de manantial de ladera	23
Ilustración 7: Captación de manantial de fondo	24
Ilustración 9: dimensionamiento de ancho de pantalla	.26
Ilustración 10: Canastilla	28
Ilustración 11: Determinación de altura de la cámara húmeda	.29
Ilustración 12: Línea de conducción por bombeo	30
Ilustración 13: Línea de conducción por gravedad	31
Ilustración 14: formas de reservorios	35
Ilustración 15: topografía	38

Índice de tablas

Tabla 1: Periodo de diseño de estructuras	18
Tabla 2: tasa de crecimiento anual por departamento	19
Tabla 3: dotación según número de habitantes	19
Tabla 4: dotación según la región	20
Tabla 5: dotación para centros educativos	20
Tabla 6: tipos de tubería	31
Tabla 7: clase de tuberías	32
Tabla 8: Presiones máximas en tuberías PVC	33
Tabla 9: Definición y operacionalización de las variables e indicadores	44
Tabla 10: Matriz de consistencia	47
Tabla 11: Cálculos obtenidos de la cámara de captación	52
Tabla 12: Cálculos de la línea de conducción	53
Tabla 13: Cálculos del reservorio	54

I. Introducción.

A través del siguiente trabajo de investigación realizaremos el diseño del sistema de abastecimiento de agua potable del caserío de Cochamarca. Ya que en la actualidad el crecimiento de la población y el deterioro de los componentes del sistema de agua potable como: la captación, línea de conducción y reservorio de almacenamiento. Impiden que el sistema actual pueda ser capaz de abastecer con el gasto mínimo de agua a los habitantes de este caserío. Nuestra finalidad a partir de este estudio de investigación es lograr que toda la población pueda tener acceso libre, sin restricciones al agua potable, ya que es un servicio indispensable para la vida del ser humano y para realizar actividades cotidianas como: preparación de alimentos, higiene personal entre otras.

Este proyecto tiene como **objetivo general** realizar el diseño del sistema de abastecimiento de agua potable del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región La libertad – 2018. Entre los **objetivos específicos** tenemos Realizar el diseño de la cámara de captación del sistema de abastecimiento de agua potable del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región La libertad-2018. Realizar el diseño de la línea de conducción del sistema de abastecimiento de agua potable del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región La libertad-2018. Realizar el diseño del reservorio para almacenamiento del sistema de abastecimiento de agua potable del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región La libertad-2018. Esta investigación se **justifica** mediante la idea de proporcionar una mejor calidad de vida a los pobladores del caserío de Cochamarca a través

del proyecto de abastecimiento de agua potable. Como bases teóricas se presenta un marco teórico, con antecedentes, conceptos y gráficos de diseño del sistema de abastecimiento de agua potable. La metodología de tipo descriptivo, nivel cualitativo, diseño no experimental y de corte transversal. La población está conformada por el sistema de abastecimiento de agua potable. La muestra está compuesta por la cámara de captación, línea de conducción y reservorio de almacenamiento de agua potable. El espacio y tiempo que se requiere para el desarrollo del proyecto del caserío de Cochamarca inicia desde abril del 2018 hasta diciembre del 2021. las técnicas que se tomaran en cuenta para el desarrollo de este proyecto serán acudir a la zona y examinar cuáles son las dificultades que se puedan presentar durante el desarrollo del proyecto, los instrumentos que se realizarán cuestionarios y fichas técnicas. Como resultado del diseño se obtuvo una captación de ladera concentrada, con 1m³ de volumen, estructura de concreto armado. Para el diseño de la línea de conducción por gravedad se consideró utilizar una tubería de tipo PVC 7.5 con un diámetro de 1

½ plg. Y para el almacenamiento y tratamiento del agua potable tenemos un reservorio apoyado con capacidad máxima de 19 m³.

Conclusión, según el estudio físico, químico y bacteriológico realizado al agua nos garantiza que esta se encuentra en óptimas condiciones para el consumo humano. La dotación será de 57lts/hab/dia. Por ello, si cumplirá con abastecer a nuestra población futura de 478 habitantes de aquí a 20 años.

II. Revisión de la literatura.

2.1. Antecedentes.

2.1.1. Antecedentes internacionales.

Antecedente 01

Según Quispe¹, en su tesis de: "Incidencia De Los Proyectos De Inversión Pública Del Sector De Saneamiento Básico (Agua Potable) En El Área Rural Del Departamento De La Paz (Periodo 2006 - 2013)". |Presentado en la Universidad Andina Simón Bolívar (La Paz – Bolivia). objetivo general Mejorar de manera eficiente la distribución de recursos en proyectos de inversión pública (agua potable), para la priorización de financiamiento en áreas de intervención en el Departamento de La Paz. Objetivos específicos: Realizar un análisis de situación del sector de saneamiento básico, específicamente orientado al agua potable respecto a programas y proyectos en el área rural. Identificar la cantidad de población beneficiada respecto a los proyectos de inversión pública de agua potable en el aérea rural del Departamento de La Paz. Conclusiones La infraestructura instalada actualmente no es suficiente para atender las necesidades de la población en el área rural, toda vez que las inversiones deben acompañar la expansión del componente poblacional, a través de la implementación de nuevos sistemas de agua potable y/o la ampliación de los mismos, respondiendo de esta manera el mandato constitucional de acceso a este recurso como un derecho fundamental para la vida.

Antecedente 02

Según Meneses², en su tesis de:" Evaluación del sistema de abastecimiento de agua potable y proyecto de mejoramiento en la población de Nanegal, cantón Quito, provincia de Pichincha". Tuvo como objetivo general realizar la evaluación del sistema de abastecimiento de agua potable en la población de Nanegal, parroquia de Nanegal en el cantón Quito, provincia de Pichincha, mediante un análisis de aspectos físicos y demográficos que permita determinar las falencias de la red y con ello, proponer la mejora de la misma para el abastecimiento eficiente del líquido vital. Dando solución a ese objetivo se planteó los siguientes objetivos específicos, Determinar la situación actual de la población de Nanegal dentro de la provincia de Pichincha, exponiendo la necesidad de contar con un servicio básico confiable y de buena calidad, mismo que permitirá mejorar las condiciones de vida. Evaluar el sistema de abastecimiento de agua con que cuenta la población Nanegal, de acuerdo a sus sectores y asentamientos poblacionales. Presentar una propuesta de mejoramiento de la red de abastecimiento de agua potable para la población de Nanegal, cantón Quito, provincia de Pichincha, misma que permita el eficiente12 abastecimiento del líquido vital y su cobertura en toda la parroquia. Determinar el costo de implementación. Mediante esto se obtuvo las siguientes conclusiones, Se nota claramente que muchos de los accesorios componentes de la red de agua potable existente, no ha tenido mantenimiento alguno. La capacidad de almacenamiento en los

tanques de reserva para el año 2012 son insuficientes. Existen hidratantes que deben ser reubicados al nivel de la nueva rasante dentro de la acera de acuerdo a normas de la Empresa. Existen válvulas de corte de compuerta que no funcionan. Se hicieron algunas recomendaciones, Es necesario interconectar las dos redes existentes en atención al rediseño del sistema. Implementar programas de mantenimiento preventivo en accesorios del sistema y de ser el caso reemplazar los mismos.

2.1.2. Antecedentes nacionales.

Antecedente 01

Según Díaz & Vargas³, en su tesis de "Diseño Del Sistema De Agua Potable De Los Caseríos De Chagualito Y Llurayaco, Distrito De Cochorco, Provincia De Sanchéz Carrión Aplicando El Método De Seccionamiento". Presentado en la Universidad Privada Antenor Orrego. Para obtener el título de ingeniero civil. el **objetivo general** de Diseñar el sistema de agua potable de los caseríos de Chagualito y Llurayaco, distrito de Cochorco, Sánchez Carrión aplicando método de seccionamiento y **objetivos específicos.** Realizar los estudios básicos: reconocimiento de la zona y toma de datos de población, levantamiento topográfico, estudio de mecánica de suelos. Estimar la población futura para el dimensionamiento del proyecto. Realizar el diseño hidráulico de la captación y conducción. Simular la funcionalidad del diseño. Validar el diseño del sistema de agua potable. Llegando a la **conclusión:** Con la infraestructura de agua potable proyectada se logra elevar el nivel de

vida y las Condiciones de salud de cada uno de los pobladores. Las presiones, perdidas de carga, velocidades y demás parámetros de las redes de agua potable han sido verificados y simulados mediante el uso de hojas de Excel y EPANET.

Recomienda que La ejecución del presente Proyecto se debe realizar, respetando el diseño hidráulico establecido y las normas vigentes.

Antecedente 02

Según Hurtado & Martínez⁴, en su trabajo de suficiencia Profesional: "proceso constructivo del sistema de agua potable y alcantarillado del distrito de chuquibambilla - Grau - Apurímac". Presentado en la Universidad privada Antenor Orrego. Para obtener el título de ingeniero civil. En el trabajo se ha observado la necesidad de los pobladores y de pueblos alejados que carecen de un servicio ineficiente convirtiéndose en un foco de contaminación latente para la población. Plantea como objetivo general: realizar el proceso constructivo del sistema de agua potable y alcantarillado, como objetivos específicos reducir las epidemias y enfermedades infectocontagiosas. Y concluye que con la infraestructura de saneamiento proyectada se logra elevar el nivel de vida y las condiciones de salud de cada uno de los pobladores, así como el crecimiento de cada una de las actividades económicas; se ha contribuido en gran manera que el distrito de Chuquibambilla, para que este dé un paso importante en su proceso de desarrollo. **Recomendación** que se debe realizar programas permanentes de operación y mantenimiento para todas las obras que componen el

presente proyecto, también programas de capacitación y de educación para el buen uso de los servicios.

Antecedente 03

Según Olivari et.al⁵, En su tesis de "Diseño del sistema de abastecimiento de agua y alcantarillado del Centro Poblado Cruz de Médano – Lambayeque". Presentado en la Universidad Ricardo Palma de Lima. Para obtener su título de ingeniero civil. El área de estudio corresponde a la zona oeste del distrito de Mórrope, que no cuenta con el servicio de agua potable y alcantarillado. Esta situación compromete la salud de la población, en especial de bajos recursos y se vuelve vulnerable a las enfermedades producidas por las condiciones del ambiente. Por la cual opto por tomar como **objetivo general** elevar el nivel de vida de la población del área en proyecto "Centro Poblado Cruz de Médano"-Mórrope-Lambayeque con la implementación de un sistema de Abastecimiento de agua y Alcantarillado, sin que la población se perjudique, siendo un proyecto sostenible, tener un programa de contingencia frente a un imprevisto. **Objetivo específico**: Con este proyecto del Centro Poblado Cruz de Médano pretendemos la aplicación de los software de simulación, como es el Watercad, Epanet para el sistema de abastecimiento de agua y del sewercad para el sistema de alcantarillado, para nuestra viabilidad.

Conclusiones: El presente estudio brindara servicio de Agua Potable y Alcantarillado al Centro Poblado Cruz de Médano, satisfaciendo sus necesidades hasta el año 2027. Según el estudio de prospección que se

realizó en la zona, se determinó que la fuente más apropiada sea la del pozo tubulares ya que ofrece las condiciones de cantidad y calidad adecuadas. Se ha diseñado un tanque elevado de 600m3 que regulara las variaciones de consumo - Se ha considerado una zona de presión para el Centro Poblado Cruz de Médano.

Antecedente 04

Según Castillo⁶, en su tesis de: "Mejoramiento Del Sistema De Agua Potable En El Sector Limo, Distrito Pacaipampa, Provincia De Ayabaca-Piura, octubre -2019". presentado de la Universidad Católica los Ángeles de Chimbote (Piura). El objetivo general de la investigación es mejorar el sistema de agua potable del caserío de Limo distrito de Pacaipampa, provincia de Ayabaca -Piura. Los objetivos específicos: Realizar el levantamiento topográfico. Diseñar los elementos estructurales de la red de agua potable en el caserío de Limo distrito de Pacaipampa provincia de Ayabaca. Mejorar las redes de Conducción y distribución del caserío el Limo distrito de Pacaipampa provincia de Ayabaca. Realizar un estudio de calidad de agua potable de las captaciones que abastecerán al caserío Limo distrito de Pacaipampa provincia de Ayabaca. Conclusiones el reservorio tendrá un volumen de 10 m3 y una altura de 2.12 m, se diseñó con la finalidad de abastecer a toda población, ya que el reservorio que existe actualmente no es suficiente.

2.1.3. Antecedentes locales.

Antecedente 01

Según Flores⁷, en su tesis de "Propuesta De Diseño Del Sistema De Agua Potable Y Alcantarillado Del Asentamiento Humano Los Constructores Distrito Nuevo Chimbote-2017". Presentado en la Universidad Cesar Vallejo, Nuevo Chimbote. Para obtener el título profesional de ingeniero civil: el Objetivo general es elaborar la propuesta de diseño del sistema de agua potable y alcantarillado para el AA. HH los constructores distrito nuevo chimbote-2017. Los **objetivos** específicos son: Determinar el diámetro de la tubería en el diseño Sistema de agua potable para el Asentamiento Humano Los Constructores. Determinar la presión en el diseño sistema de agua potable para el Asentamiento Humano los Constructores. Hallar la velocidad en el diseño del sistema de agua potable para el Asentamiento Humano los Constructores con lo cual llega a las siguientes conclusiones; Los diámetros de la tubería en el diseño Sistema de Abastecimiento de agua potable para el Asentamiento Humano Los Constructores diámetros comerciales de son 90mm,110mm,160mm,200mm tomándose en cuenta el diámetro mínimo de 70mm como parámetro que establece la Norma OS.050. Las presiones en el diseño del sistema de abastecimiento de agua potable para el Asentamiento Humano los Constructores se ha optado por lo establecido del Reglamento Nacional de Edificaciones en la Norma OS-050 sobre las presiones tienen que estar entre el rango de 10 a 50 m.c.a

obteniendo como presión mínima 15.16mca y presión máxima 39.55 mca las cuales cumplen con la normativa.

Antecedente 02

Según Velásquez8, en su tesis de: "Diseño del Sistema de Abastecimiento de Agua Potable para el caserío de Mazac, provincia de Yungay, Ancash - 2017". Presentado en la Universidad Cesar Vallejo, Nuevo Chimbote. Para obtener el título profesional de ingeniero civil: el objetivo general es diseñar el sistema de abastecimiento de agua potable para el caserío de Mazac, provincia de Yungay, Ancash – 2017. Y los **objetivos específicos** son: determinar el tipo de captación, reservorio de almacenamiento y red de distribución del sistema de abastecimiento de agua potable. Diseñar la Captación, Línea de Conducción, Reservorio de Almacenamiento, Línea de Aducción y la Red de Distribución para el Caserío de Mazac, Provincia de Yungay, Ancash y determinar las velocidades, diámetros, tipo de tuberías, pendientes y presiones. Con lo que se llega a las siguientes Conclusiones. El tipo de Captación que se empleó en el Sistema de Abastecimiento Agua Potable para el Caserío de Mazac es de tipo Ladera y Concentrado según las condiciones de afloramiento observadas en el manantial (Afloramiento en un solo punto), por tener una ligera pendiente (Afloramiento de forma horizontal) y previo a una constatación de una buena calidad de agua de Tipo A1 donde se cumplen los límites máximos permisibles impuestas por el Reglamento

de la Calidad del Agua para Consumo Humano DS N° 031- 2010-SA aplicado para aguas subterráneas.

Antecedente 03

Según Cruz & Marcelo⁹, definen en su tesis de: "Mejoramiento y Ampliación Del Sistema de Agua Potable Del C.P. de Barrio Piura Y Puerto Casma, Distrito De Comandante Noel, Provincia de Casma – Ancash 2018". Presentado en la Universidad Nacional Del Santa (Nuevo Chimbote) para optar el título de ingeniero civil. Donde el **objetivo general** es Mejorar y ampliar el sistema de agua potable del C. P. Barrio Piura y Puerto Casma, Distrito de Comandante Noel, Provincia de Casma - Ancash". objetivos específicos: Realizar un diagnóstico situacional de la población y del servicio de abastecimiento de agua. Rediseñar el sistema de abastecimiento de agua potable que abastecerá a la población de diseño. Realizar la comparación técnica del nuevo trazo del sistema de abastecimiento de agua con el existente. Disminución de la incidencia de enfermedades infecciosas, parasitarias y dérmicas. Conclusiones: Después de haber realizado la inspección insitu y la evaluación hidráulica del sistema existente Barrio Piura y Puerto Casma, se concluyó que el sistema actual había cumplido su vida útil, tanto en tubería, válvulas, reservorio entre otros determinamos que los componentes del sistema han superado su vida útil para lo cual fue diseñado. Se realizó el modelamiento hidráulico antes y se diseñó las nuevas redes, así también como se calculó el nuevo volumen del reservorio, en base a los estudios básicos de ingeniería como es la

topografía, y el cálculo de la población. Por ello se concluyó que se requiere realizar el mejoramiento del sistema de agua potable, debido a que es deficiente por no brindar un servicio óptimo, continuo y seguro para la población.

2.2. Bases teóricas.

2.2.3. población.

Para Gutiérrez¹⁰, "La población es el conjunto de personas o animales de la misma especie que se encuentran en un momento y lugar determinado".

2.2.4. Agua.

Según López¹¹, El agua cubre el 72% de la superficie del planeta Tierra y representa entre el 50% y el 90% de la masa de los seres vivos. Es una sustancia relativamente abundante, aunque sólo supone el 0,22% de la masa de la Tierra. Esta sustancia se puede encontrar en cualquier lugar de la biosfera y en sus tres estados de agregación de la materia: sólido, líquido y gaseoso. Se halla en forma líquida en los mares, ríos, lagos y océanos; en forma sólida, nieve o hielo, en los casquetes polares, en las cumbres de las montañas y en los lugares de la Tierra donde la temperatura es inferior a cero grados Celsius; y en forma gaseosa podemos encontrarla como parte de la atmósfera terrestre como vapor de agua. El agua cubre tres cuartas partes de la superficie de la Tierra. El 3% de su volumen es dulce. De ese 3%, un 1% está en estado líquido, componiendo los ríos y lagos. El 2% restante se encuentra formando casquetes o banquisa en las latitudes próximas a los polos.

2.2.4.1. Agua potable.

Para Tecnoalimen¹², El agua potable es el resultado de realizar el tratamiento a las aguas crudas de los lagos, pozos o ríos. El mejoramiento del agua cruda se realiza mediante una serie de procesos altamente industrializados. El Agua Potable forma de las industrias porque se debe: Captar, producir y distribuir.

2.2.4.2. Calidad de agua.

Según la OS.010¹³, "las características físicas, químicas, y bacteriológicas del agua la hacen aptas para el consumo humano, sin implicancias para la salud, incluyendo apariencia, gusto y olor".

2.2.4.3. Ciclo de agua.

Según USGS¹⁴, El ciclo del agua no inicia en un lugar en particular, pero para esta explicación asumiremos que empieza en los océanos. El sol es quien dirige el ciclo del agua calentándola en los océanos, la cual se evapora hacia el aire. Corrientes ascendentes de aire llevan el vapor a las capas superiores de la atmósfera, donde la menor temperatura causa que el vapor de agua se condense y forme las nubes. Las corrientes de aire mueven las nubes sobre el globo, las partículas de nube colisionan, crecen y caen en forma de precipitación.

Donde la mayor parte de la precipitación cae en los océanos o sobre la tierra, donde, debido a la gravedad, corre sobre la superficie como escorrentía superficial. El agua de escorrentía y el agua subterránea que brota hacia la superficie, se acumula y almacena en los lagos de agua dulce. No toda el agua de lluvia fluye hacia los ríos, una gran parte es absorbida por el suelo como infiltración.

4 Precipitación

2 Evapo-transpiración

1 Evaporación

1 Evaporación

1 Evaporación

1 Agua subterránea

8 Depurodora

Ilustración 1: ciclo hidrológico del agua.

Fuente: capacitación Máscapaz.

2.2.4.4. Fuentes de agua.

Para Lossio¹⁵, El primer paso para diseñar un sistema de agua potable, es elegir una fuente de agua que tenga buena Calidad y que produzca agua en cantidad suficiente como para abastecer a la población que se desea servir. Las fuentes de abastecimiento de agua pueden ser subterráneas, superficiales y pluviales. Para la selección de la fuente de abastecimiento deben ser considerados los requerimientos de la población, la disponibilidad y la calidad de agua durante todo el año, así como todos los costos involucrados en el sistema, tanto de inversión como de operación y mantenimiento.

Tipos de fuente agua:

a. Fuentes subterráneas.

Según INDUANÁLISIS¹⁶, "el agua subterránea puede aparecer en la superficie en forma de manantiales, o puede ser extraída mediante pozos. En tiempos de sequía, incluso cuando no hay escasez, es preferible utilizar agua subterránea porque no tiende a estar contaminada por residuos o microorganismos".

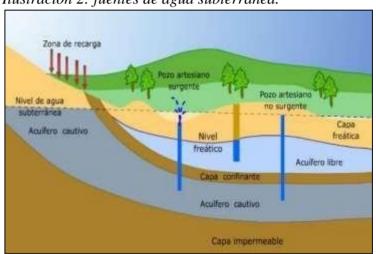



Ilustración 2: fuentes de agua subterránea.

Fuente: Enrique García Y García (11 septiembre, 2020).

b. Fuentes superficiales.

Según INDUANÁLISIS¹⁶, "Las aguas superficiales son aquellas que circulan por la superficie del suelo, producidas por la escorrentía generada a partir de las precipitaciones o por el afloramiento de aguas subterráneas; pudiéndose presentar en forma correntosa, como en el caso de ríos y arroyos, o quietas si se trata de lagos o embalses".

Ilustración 3: fuente superficial.

Fuente: Apus del agua- Blogger.

2.2.5. Manantial.

Lossio 15, Un manantial, es un flujo natural de agua que surge del interior de la tierra o entre las rocas. Puede ser permanente o temporal. Se origina en la filtración de agua, de lluvia o de nieve, que penetra en un área y emerge en otra, de menor altitud, donde el agua no está confinada en un conducto impermeable. Más precisamente, se trata de puntos o zonas de un terreno en los que una cantidad apreciable de agua fluye a la superficie de modo natural, procedente de un acuífero o depósito subterráneo. Estas surgencias o brotes naturales de aguas subterráneas se encuentran principalmente en terrenos montañosos o empinados y suelen ser abundantes en relieves kársticos. Los manantiales son las fuentes de agua natural de mejor calidad. Esto se debe al hecho de que el recurso, antes de surgir a la superficie terrestre, ha viajado por kilómetros de rocas, sedimentos y suelos que sirven como filtros naturales para remover de él todo tipo de contaminantes y,

en muchos casos, lo han enriquecido con preciosos minerales y sustancias que los seres humanos necesitan.

2.2.6. Sistema de abastecimiento de agua potable.

Según Saraemor¹⁷, el sistema de abastecimiento de agua es, "el conjunto de tuberías, instalaciones y accesorios destinados a conducir las aguas requeridas por una población y determinada con el fin de satisfacer sus necesidades, desde su lugar de existencia natural o fuente hasta el hogar de los usuarios".

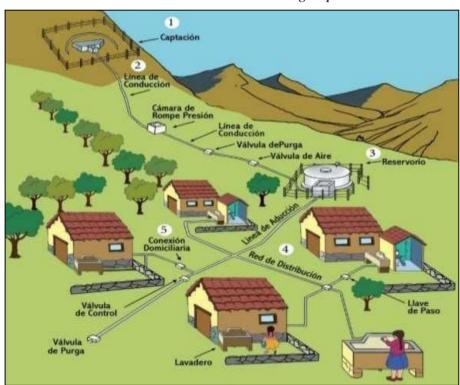


Ilustración 4: Sistema de abastecimiento de agua potable.

Fuente: Gonza, A & Paucar J. (abril 2013).

2.2.7. Parámetros de diseño del sistema de abastecimiento.

2.2.7.1. Parámetros de diseño.

Para Mateos & González¹⁸, "El periodo de diseño es la vida útil que tendrá el proyecto, durante el cual tendrá cubrir la demanda,

minimizando el valor actual de costos e inversión, operación y mantenimiento, desde el momento que se inicia el servicio hasta que deje de funcionar".

Tabla 1: Periodo de diseño de estructuras.

Elementos	Periodo de diseño
Obras de captación	20 años
Conducción	10 a 20 años
Reservorio	20 años
Red principal	20 años
Red secundaria	10 años

Fuente: Norma OS. 100

2.2.7.2. Población futura.

Para el cálculo de la población futura se debe tener presente que las poblaciones crecen y decrecen por migración o por algún por otro motivo en particular. A partir de estas consideraciones, el INEI actualiza los datos censales aproximadamente cada 10-12 años.

Para la estimación del cálculo poblacional, de un sistema de abastecimiento de agua potable, es importante conocer el periodo de diseño, ya que las obras de agua potable no se diseñan para satisfacer una necesidad del momento, sino para un periodo de tiempo prudencial que varía entre 10 y 20 años.

$$Pf = Pa(1 + \frac{r \times t}{1000})$$

P_f = población futura

P_a = población actual

r = tasa de crecimiento anual

t = tiempo de periodo de diseño

Tabla 2: tasa de crecimiento anual por departamento.

Departamento	r	Departamento	r
Húanuco	25	Lambayeque	35
Junin	10	La Libertad	20
Áncash	20	Pasco	25
Lima	25	Ica	32
Piura	30	Apurimac	15
Cajamarca	25	Arequipa	15
Cusco	15	Moquegua	10
Puno	15	Tacna	40
Madre de Dios	40	Loreto	10
San Martin	30	Amazonas	40

Fuente: ministerio de salud 2018.

2.2.7.3. Dotación.

Según Westreicher¹⁹, "Se denomina dotación a la cantidad de agua destinada para cada habitante donde se abarca el consumo de todos los servicios que realiza en un día medio anual, tomando en cuenta las pérdidas".

Tabla 3: dotación según número de habitantes.

Población (habitantes)		(100 000)	ación ab/día)
0	500	0	60
500	1000	60	80
1000	2000	80	100

Fuente: ministerio de salud 2018.

Tabla 4: dotación según la región.

Dotacion por región		
Región	Dotación (l/hab/dia)	
Selva	70	
Costa	60	
Sierra	50	

Fuente: ministerio de salud 2018.

Tabla 5: dotación para centros educativos.

Descripción	Dotación (lts/alum.Día
Educación primaria e inferior (sin residencia)	20
educación secundaria y superior (sin residencia)	25
educación en general (con residencia)	50

Fuente: ministerio de salud 2018.

En caso de piletas públicas se asume 20 lts/hab./día.

2.2.7.4. Variación de consumo.

a. Consumo promedio diario anual (Qp).

$$\mathrm{Qm} = \frac{\mathrm{Pf} \, \mathrm{x} \, \mathrm{dotación} \, (\mathrm{d})}{86400 \, \mathrm{s/día}}$$

Donde:

Qm = Consumo promedio diario (l/s)

Pf = Población futura

d = Dotación (l/hab/día)

b. Consumo máximo diario (Qmd).

El Consumo máximo diario (Qmd) es una serie de registros observados durante los 365 del año y se considerará un coeficiente de K1 =1,30

$$Qmd = Qp * K1$$

Donde:

Qmd = Consumo promedio diario anual

Qp = caudal promedio diario anual en lts. /seg.

K1 = 1.30

c. Consumo máximo horario (Qmh).

El consumo máximo horario (Qmh) se define como la hora máxima de consumo registrada durante todo el día y se considerará un coeficiente K2 =1,80 a 2,50

$$Qmh = Qp * K2$$

Donde:

Qmh = caudal máximo horario anual en lts/seg.

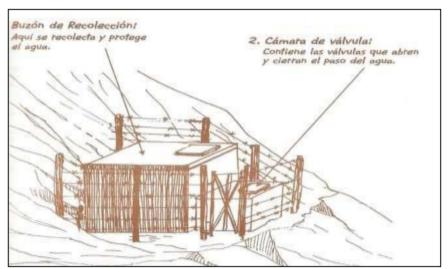
Qp = caudal promedio diario anual lts/seg.

K1 = coeficiente máximo de demanda horaria varia de 1.8 a 2.5.

Fuente: RNE (resolución ministerial 1993-2019)

2.2.8. Componentes de un sistema de abastecimiento de agua potable.

Según CivilGeeks.com²⁰, establece que un sistema de abastecimiento de agua consta de:


- ✓ Fuente y obras de captación.
- ✓ Conducción o aducción.
- ✓ Almacenamiento Tratamiento.

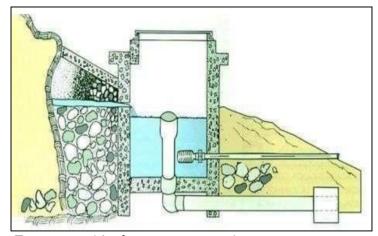
2.2.8.1. Captación.

Según Agüero²¹, Elegida la fuente de agua e identificada como el primer punto del sistema de agua potable, en el lugar del afloramiento se construye una estructura de captación que permita

recolectar el agua, para que luego pueda ser conducida mediante las tuberías de conducción hacia el reservorio de almacenamiento. El diseño hidráulico y dimensionamiento de la captación dependerá de la topografía de la zona, de la textura del suelo y de la clase de manantial; buscando no alterar la calidad y la temperatura del agua ni modificar la corriente y el caudal natural del manantial, ya que cualquier obstrucción puede tener consecuencias fatales; el agua puede crear otro cauce y el manantial desaparecer.

Ilustración 5: Cámara de captación.

Fuente: Ochoa et.al. Nuevo Chimbote 2019.

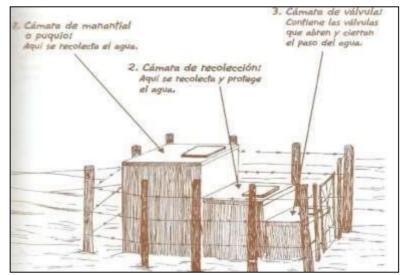

2.2.8.1.1. Tipos de captación.

a. Captación manantial de ladera.

Según Agüero²¹, Si la fuente de agua es un manantial de ladera y concentrado, el diseño de la cámara de captación dependerá de tres partes: primera, es la protección del afloramiento; la segunda, a una cámara húmeda con la que se pueda regular el

gasto a utilizarse; y la tercera, a una cámara para poder proteger la válvula de control.

Ilustración 6: captación de manantial de ladera.



Fuente: gestión de agua y saneamiento.

b. Captación manantial de fondo.

Según Agüero²¹, Si se considera como fuente de agua a un manantial de fondo y concentrado, la estructura de captación podrá reducirse a una cámara sin fondo que proteja el punto de afloramiento del agua. Lo cual estará conformada por dos partes: la primera, por una cámara húmeda con la que se pueda almacenar el agua y regular el gasto a utilizarse, y la segunda, una cámara seca para que a través de ella se pueda proteger las válvulas de control de salida y desagüe. Esta cámara húmeda estará equipada con una canastilla de salida, tuberías de rebose y limpieza.

Ilustración 7: Captación de manantial de fondo.

Fuente: Ochoa et.al. Nuevo Chimbote 2019.

2.2.8.1.2. Caudal.

Según González²³, "El caudal de agua es el volumen, por ejemplo la cantidad de litros, que pasa por una sección específica de la quebrada, río o arroyo en un tiempo específico ya sea en minutos o segundos".

Uno de los métodos más utilizados para la medición del caudal es el método volumétrico que consiste en colocar un recipiente por debajo del flujo de tal modo que reciba toda la corriente de agua; en ese mismo instante se activa el reloj y se detiene cuando se retira el recipiente de la corriente o cuando se llena el balde.

$$Q = \frac{V}{T}$$

Donde:

Q = caudal lts. /seg.

V = volúmen lts.

t = tiempo en segundos.

Ilustración 8: medición del caudal método volumétrico.

Fuente: Corantioquia.

2.2.8.1.3. Criterios de diseño hidráulico.

a. Distancia entre el punto de afloramiento y la cámara húmeda

$$H = 1.56 \frac{V^2}{2g}$$

$$Hf = H-h_0$$

Donde:

ho = perdida de carga en el orificio (m).

Hf = pérdida de carga afloramiento en la captación (m)

H = carga sobre el centro de orificio (m).

b. Cálculo de la velocidad teórico lts/seg.

$$V_2 t = Cd * \sqrt{2gH}$$

Donde:

Cd = coeficiente de descarga (valores entre 0.6 a 0.8).

g = aceleración de la gravedad (9.80 m/s²).

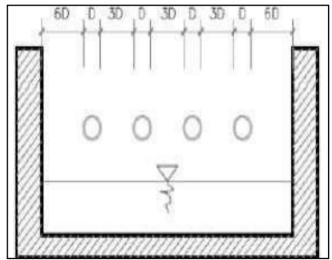
H = carga sobre el centro del orificio (0.40 a 0.50) m.

c. cálculo de la distancia de afloramiento a la captación.

$$L = \frac{Hf}{0.30}$$

Donde:

L = distancia (m).


Hf = perdida de carga (m)

2.2.8.1.4. Determinación del ancho de la pantalla.

Para este cálculo se debe temer el diámetro y número de orificios.

$$b = 2(6D) + NAD + 3D(NA-1)$$

Ilustración 9: dimensionamiento de ancho de pantalla.

Fuente: ministerio vivienda, construcción y saneamiento 2018.

a. cálculo de área de orificio.

$$A = \frac{Qm\acute{a}x}{V_2 * Cd}$$

b. Cálculo del diámetro de tubería.

$$D = \sqrt{\frac{4A}{\pi}}$$

D = diámetro (m).

A = área (m2).

$$\pi = 3.1416$$

c. Cálculo del número de orificios.

$$N_o = \frac{A_{dt}}{A_{da}} + 1$$

Donde:

 N_0 = número de orificios.

 A_{St} = área de diámetro teórico (m²)

Ada = área de diámetro asumido (m²)

2.2.8.1.5. Determinación de canastilla.

$$D_c = 2 * D_s$$

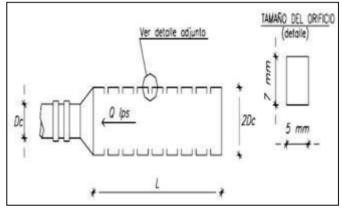
Donde:

DC = Diámetro de canastilla.

Ds = Diámetro de salida de agua a línea de conducción.

a. Longitud de canastilla.

$$3DC \le L \le 6DC$$


b. Área de ranuras.

$$At = 2 * AC$$

AC = área de tubería de línea de conducción.

c. Numero de ranuras.

Ilustración 10: Canastilla.

Fuente: Grupo Crixuz operación y mantenimiento.

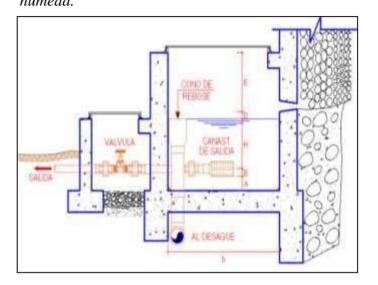
2.2.8.1.6. Determinación de altura de la cámara húmeda.

En caso de resultar la altura calculada menos de 1m se tomará como dato 1m.

$$Ht = A + B + H + D + E$$

Donde:

A = Se considera una altura mínima de 10cm que permite la sedimentación del área.


 ${\bf B}={\bf Se}$ considera la mitad del diámetro de la canastilla de salida.

H = Altura de agua

D = Desnivel mínimo entre el nivel de ingreso del agua de afloramiento y el nivel de agua de la cámara húmeda (mínimo 3cm)

E = Borde libre (de 10 a 30cm).

Ilustración 11: Determinación de altura de la cámara húmeda.

Fuente: Grupo Crixuz operación y mantenimiento.

2.2.8.1.7. Dimensionamiento de la tubería de reboce.

$$Dr = \frac{0.71 * Q^{0.38}}{hf^{0.21}}$$

Donde:

Dr = Diámetro de la tubería (plg).

Qmáx = Gasto máximo de la fuente (lts/seg).

hf = perdida de carga unitaria valor recomendado (0.015 m/m)

2.2.8.2. Líneas de conducción.

Para Ramos²⁴, La línea de conducción es un sistema de abastecimiento de agua potable por gravedad o bombeo. Donde

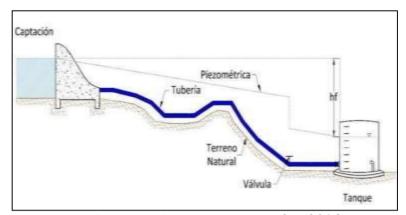
tuberías transportan agua desde donde se encuentra en estado natural hasta un punto que puede ser un tanque de almacenamiento, reservorio o una planta potabilizadora mediante conjunto de ductos y accesorios. Deben utilizarse al máximo la energía disponible para conducir el gasto deseado, lo que la mayoría de los casos nos llevara a la selección del diámetro mínimo que permita presiones iguales o menores a la resistencia física que el material de la tubería soporte.

A. Línea de conducción por bombeo.

Ramos²⁴, El equipo de bombeo produce un incremento brusco en el gradiente hidráulico para vencer todas las pérdidas de energía en la tubería de conducción.

Piezométrica Tanque

Tuberia Tuberia Terreno
Natural


Ilustración 12: Línea de conducción por bombeo.

Fuente: Martínez D. México, D. F. noviembre 2016.

B. Línea de conducción por gravedad.

Para Ramos²⁴, Se le da este nombre cuando para abastecer a una población, además de planta potabilizadora se construye un tanque elevado que por la propia caída del agua debido a la fuerza de gravedad provea a toda la red.

Ilustración 13: Línea de conducción por gravedad.

Fuente: Martínez D. México, D. F. noviembre 2016

2.2.8.2.1. Diseño de la línea de conducción.

a. Caudal de diseño.

El caudal de diseño será el (Qmd)

b. Tipos de tubería.

Coeficientes de fricción "c" en la fórmula de Hazen y Williams Fuente:

Tabla 6: tipos de tubería.

TIPO DE TUBERÍA	<< C >>	
Acero sin costura	120	
Acero soldado en espiral	100	
Cobre sin costura	150	
Concreto	110	
Fibra de Vidrio	150	
Hierro fundido	100	
Hierro fundido con revestimiento	140	
Hierro galvanizado	100	
Polietileno, Asbesto cemento	140	
poli(cloruro de vinilo)(PVC)	150	

Fuente: Reglamento Nacional De Edificaciones (2006).

c. Clase de tuberías.

Tabla 7: clase de tuberías.

CLASE	PRESIÓN MÁXIMA DE PRUEBA (M)	PRESIÓN MÁXIMA DE TRABAJO (M)	
5	50	35	
7.5	75	50	
10	105	70	
15	150	100	

Fuente: Reglamento Nacional De Edificaciones (2006).

d. Dimensionamiento.

✓ Línea gradiente hidráulico.

Se encuentra ubicada por encima del terreno.

✓ Perdida de carga unitarias.

$$Q = \propto 1 * C * D^{2.62} * hf^{0.54}$$

Hazen Williams (α1: constante).

✓ Perdida de carga por tramo.

$$hf = \frac{Hf}{L}$$

e. Presión.

Para Agüero²¹, "dentro de la línea de conducción, se denomina como presión a la fuerza ejercida sobre un área de la tubería que es producida por la energía gravitacional, producto de las grandes pendientes".

Tabla 8: Presiones máximas en tuberías PVC.

Tipo	P. máx. de	P. máx. de
400 mass (2010)	prueba	trabajo
15	150	100
10	105	70
7.5	75	50

Fuente: Minsa.

Se calcula a través de la ecuación de Bernolli.

$$Z1 + \frac{P1}{\gamma} + \frac{V_1^2}{2g} = Z2 + \frac{P2}{\gamma} + \frac{V_2^2}{2g} + Hf$$

$$\frac{P2}{\gamma} = Z1 - Z2 - Hf$$

Donde:

Z = Cota respecto a un nivel

P = Presión.

 γ = Peso específico del agua.

V = Velocidad (m/s)

Hf = Perdida de carga.

2.2.8.3. Reservorio.

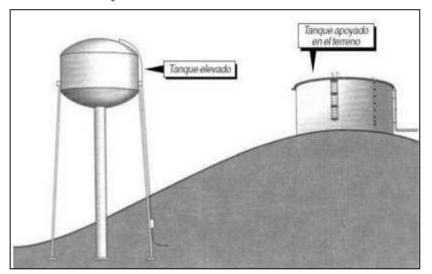
Según Espejo²⁵, "Los reservorios juegan un papel importante en los sistemas de distribución de agua, su importancia se manifiesta en el comportamiento hidráulico del sistema y en el mantenimiento de un servicio eficiente. Un reservorio de almacenamiento debe cumplir los siguientes propósitos

fundamentales":

- ✓ Compensar las variaciones de consumo que se producen durante el día. Mantener un volumen adicional para casos de emergencia tales como incendios e interrupciones por daños de tuberías de aducción.
- ✓ Regular las presiones en la red de distribución, ósea de entrega a los consumidores.
- Poder aumentar la presión en los lugares de nivel alto de la población.

2.2.8.3.1. Tipos de reservorio.

a. Reservorios de cabecera


Según Vasquez²⁶, los reservorios de cabecera Se alimentan directamente de la fuente o planta de tratamiento mediante gravedad o bombeo.

b. Reservorios flotantes

Según Vasquez²⁶, los reservorios flotantes se ubican en la parte más alejada de la red de distribución con relación a la captación o planta de tratamiento, se alimentan por gravedad o por bombeo. Almacena agua en las horas de menor consumo y auxilia el abastecimiento de la ciudad durante las horas de mayor consumo. La experiencia en nuestro país ha demostrado que estos reservorios tienen un funcionamiento hidráulico deficiente, ya que dada las condiciones de operación de la red

de distribución, durante el día no se llenan más que en la noche, incumpliendo su rol de regulador de presión. Por este motivo no es recomendable su empleo en el medio rural.

Ilustración 14: formas de reservorios.

Fuente: DOKUMEN.TIPS.

2.2.8.3.2. Formas de reservorio.

Según Vasquez²⁶, "la forma del reservorio no es un aspecto importante en el diseño del reservorio; sin embargo, por razones estéticas y en ocasiones económicas se realizan evaluaciones para definir formas que determinen el mejor aprovechamiento de los materiales y la máxima economía".

2.2.8.3.3. Diseño estructural.

Según la OS.030²⁷, El volumen de regulación será calculado con el diagrama masa correspondiente a las variaciones horarias de la demanda. Cuando se comprueba la no disponibilidad de esta información, se deberá adoptar como

mínimo el 25% del promedio anual de la demanda como capacidad de regulación, siempre que el suministro de la fuente de abastecimiento sea calculado para 24 horas de funcionamiento. En caso contrario deberá ser determinado en función al horario del suministro.

a. Volumen.

Dónde:

Qpa = caudal promedio anual lts/seg.

Pf = población futura.

d = demanda.

$$V = 200 * 0.25$$

b. Empuje de agua.

$$e = \frac{\gamma_{a^*} h^{2*b}}{2}$$

Donde:

e = empuje de agua.

 γ_a = Peso específico del agua.

h = Altura.

b = Ancho del muro.

c. Cálculo de momento.

$$M(kg) = k * \gamma_a * h^3$$

Donde:

M = momento absoluto.

K = coeficiente

 γ_a = Peso específico del agua.

h = Altura.

d. Espesor.

$$e\left(cm\right) = \left[\frac{6M}{ft * b}\right]^{1/2}$$

e = espesor

M = momento absoluto.

$$Ft = 0.85\sqrt{b} = 0.1 \text{ m}.$$

e. Espesor de losa maciza.

$$e = \frac{L}{36}$$

f. Espesor de losa de fondo.

$$e = \left[\frac{6M}{ft * b}\right]^{0.5}$$

2.2.8.4. Topografía.

Según Fermat topografía²⁸, "El levantamiento topográfico consiste en determinar la ubicación y cotas de elevación del sistema de agua potable existente, para una posterior evaluación y rediseño del sistema".

Ilustración 15: topografía.

Fuente: Previntec.

2.2.8.5. Estudio de mecánica de suelos.

Según Geoseismic²⁴, "El estudio de suelos permite conocer las propiedades físicas y mecánicas del suelo, y su composición estratigráfica, es decir las capas o estratos de diferentes características que lo componen en profundidad, y por cierta ubicación de napas de agua (freáticas), si las hubiere".

2.2.8.6. Condiciones sanitarias.

La Condición Sanitaria ayuda para que el recurso brindado se encuentre en condiciones de calidad, continuidad y cantidad con una cobertura que ha evolucionado según el incremento previsto de la población.

A. Cobertura de servicio de agua potable.

Durante el transcurso de los últimos años se ha incrementado los cortes del servicio de agua potable, siendo esto más frecuente en las estaciones de verano, cuando el caudal del manantial disminuye considerablemente a tal punto se tiene que restringir el agua por horas.

III. Hipóstesis. (No aplica).

IV. Metodología.

4.1. El tipo de investigación

La siguiente investigación corresponde al tipo descriptivo porque nos describe el problema a tratar pero no nos da una alternativa de solución.

4.2. Nivel de investigación

Este proyecto es cualitativo porque se tendrá que dar una serie de soluciones a la problemática que viene afectando al caserío de Cochamarca que es la escasez de agua potable en sus domicilios.

4.3. Diseño de la investigación

El proyecto que estamos realizando de es de tipo descriptivo, pero no experimental porque se podrá estudiará y analizará variables sin recurrir al laboratorio. Para la realización del proyecto se tomará en cuenta lo siguiente:

Leyenda de diseño:

Mi: Sistema de abastecimiento de agua potable del caserío de Orocullay, distrito de Mollepata, provincia Santiago de Chuco, región La Libertad.

Xi: Diseño de la cámara de captación, línea de conducción y reservorio de almacenamiento de agua potable.

Oi: Resultados.

4.4. Población y la muestra.

4.4.1. Población.

La población estará formada por los sistemas de abastecimiento de agua potable en las zonas rurales del distrito de Mollepata provincia Santiago de Chuco, región La Libertad.

4.4.2. Muestra.

La muestra en esta investigación estará constituida por el sistema de abastecimiento de agua potable del caserío de Cochamarca, distrito de Mollepata, provincia Santiago de Chuco, región La Libertad.

4.5. Definición y operacionalización de variables e indicadores.

Tabla 9: Definición y operacionalización de las variables e indicadores.

Definición y operacionalización de las variables					
Variable	Definición	Dimensión operacional	Dimensiones	Indicadores	Escala demedición
Diseño del sistema de	Todo sistema de agua	Se realizó el diseño del sistema	Cámara de	Tipo	Nominal
agua potable del caserío	potable, tiene como	de abastecimiento de agua potable del	captación	Caudal	Intervalo
de	finalidad primordial,	caserío de Cochamarca. desde la cámara de		Caudal	Intervalo
Cochamarca, distrito de	entregar a los habitantes	captación, línea de conducción y reservorio	Línea de	Velocidad	Intervalo
Mollepata, provincia de	de una localidad, agua en	de almacenamiento de agua potable.	conducción	Presión	Intervalo
Santiago de Chuco,	cantidad y calidad	Para obtener los resultados requeridos se		Diámetro	Nominal
región La	adecuada para satisfacer	contó con el apoyo de protocoles y fichas			
Libertad -2018.	sus necesidades.	técnicas.	Reservorio de	Presión	Intervalo
			almacenamiento	Volumen	Nominal

Fuente: elaboración propia, 2018.

4.6. Técnica e instrumentos de recopilación de datos.

4.6.1. Técnicas de recolección de datos:

Este proyecto tiene la técnica principal de la observacional que consiste en identificar la problemática de falta de agua en la población del caserío de Cochamarca.

4.6.2. Instrumentos de recolección de datos.

4.6.2.1. Fichas técnicas:

Se recolectará datos obtenidos en la ejecución del proyecto tales como la población, topografía, estudio de suelos, etc. para el diseño del sistema de abastecimiento de agua potable del caserío de cochamarca.

4.6.2.2. Protocolos:

Se realizará los análisis físicos, químicos y bacteriológicos para verificar que esta se encuentre libre de bacterias las cuales pueden ser perjudiciales para la salud de los seres humanos.

4.6.2.3. Plan de análisis.

- ✓ Ubicación del manantial.
- ✓ Estudio de agua.
- ✓ Levantamiento topográfico.
- ✓ Estudio del suelo.
- ✓ Diseño de los componentes del sistema de abastecimiento.

4.7. Matriz de consistencia.

Tabla 10: Matriz de consistencia.

Título: Diseño del sistema de abastecimiento de agua potable del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región La libertad – 2018.

Problema	Objetivos	Marco teórico	Metodología	Referencia bibliográfica
Características del	Objetivo general	Antecedentes. Se	El tipo de investigación. Será de tipo descriptiva	Saraemor
problema. El agua es un	Realizar el diseño del	recolecta información de	porque nos describe el problema a tratar pero no	Componentes
recurso natural de gran	sistema de abastecimiento	tesis de diseño de sistema	nos da una alternativa de solución.	de un Sistema
importancia para los seres	de agua potable para el	de agua potable y se tiene	Nivel de investigación. Este proyecto es	de
vivíos.	caserío de Cochamarca,	los siguientes	cualitativo porque se tendrá que dar una serie de	Abastecimien
Según la BBC Mundo ³¹ ,	distrito de Mollepata,	antecedentes.	soluciones a la problemática que viene afectando	to [internet]
casi dos millones de	provincia de Santiago de	Internacionales	al caserío de Cochamarca.	23 octubre
personas mueren al año		· Nacionales		2008. [citado

por falta de agua potable.	Chuco, región de la	locales	Diseño de la investigación. Será de tipo	el 28 de
Y es probable que en 15	Libertad-2018.	Bases teóricas	descriptivo, no experimental porque se podrá	octubre del
años la mitad de la	Objetivos específicos:	Población	estudiar y analizar variables sin recurrir al	2021]
población mundial viva	Realizar el diseño de la	Agua	laboratorio. Para la realización del proyecto se	Disponible
en áreas en las que no	cámara de captación del	Calidad de aguaCiclo del agua	tomará en cuenta lo siguiente:	en:
habrá suficiente agua para	sistema de abastecimiento	Calidad de agua	Mi: abastecimiento de agua potable.	Componentes
todos.	de agua potable del caserío	· Ciclo del agua		de un Sistema
Este tipo de situaciones	de Cochamarca, distrito de	Fuente de agua Manantial.	Xi: abastecimiento de agua potable	<u>de</u>
nos lleva a diseñar	Mollepata, provincia de	sistema de	Oi: Resultados.	Abastecimien
cámaras de captación,	Santiago de Chuco, región	abastecimiento de	Universo: El universo está dado por la	to
línea de captación y red	La libertad-2018. Realizar	agua.	determinación accomótica de los sistemas de	Acueductos,
de distribución para mejor	el diseño de la línea de	Parámetros.	determinación geográfica de los sistemas de	Cloacas y
el servicio de	conducción del sistema de	- Periodo de diseño	abastecimiento de agua potable de la Provincia de Santiago de Chuco.	<u>Drenaje</u>
abastecimiento de agua	abastecimiento de agua	- Población		
		futura		

potable en las	potable del caserío de	- Dotación	Población. estará formada por los sistemas de (wordpress.c
poblaciones. Enunciado	Cochamarca, distrito de	Varíale deconsumo.	abastecimiento de agua potable del distrito de om)
del problema	Mollepata, provincia de	Componentes de un sistemade	Mollepata.
¿Cómo diseñar el sistema	Santiago de Chuco, región	abastecimiento de	Muestra. estará constituida por el sistema de
abastecimiento de agua	La libertad-2018. Realizar el diseño del reservorio	agua potable. - Captación	abastecimiento de agua potable del caserío de
potable del caserío de Cochamarca, distrito de	para almacenamiento del	- Línea de conducción	Cochamarca.
Mollepata, provincia de	sistema de abastecimiento	- Reservorio	
Santiago de Chuco,	de agua potable del caserío	TopografíaEstudio de suelo	
región de la Libertad –	de Cochamarca, distrito de		
2018?	Mollepata, provincia de		
	Santiago de Chuco, región		
	La libertad-2018.		

Fuente: Elaboración propia 2021.

4.8. Principios éticos.

Según EticaPsicologica.org³¹, "Los llamados principios éticos pueden ser vistos como los criterios de decisión fundamentales que los miembros de una comunidad científica o profesional han de considerar en sus deliberaciones sobre lo que sí o no se debe hacer en cada una de las situaciones que enfrenta en su quehacer profesional".

Según la ULADECH³², "Todas las fases de la actividad científica deben conducirse en base a los principios de la ética que rigen la investigación en la ULADECH Católica":

4.8.1. Protección de la persona.

Según la ULADECH³², "El bienestar y seguridad de las personas es el fin supremo de toda investigación, y por ello, se debe proteger su dignidad, identidad, diversidad socio cultural, confidencialidad, privacidad, creencia y religión".

4.8.2. Libre participación y derecho a estar informado.

Según la ULADECH³², "Las personas que participan en las actividades de investigación tienen el derecho de estar bien informados sobre los propósitos y fines de la investigación que desarrollan o en la que participan; y tienen la libertad de elegir si participan en ella, por voluntad propia".

4.8.3. Beneficencia y no-maleficencia.

Según la ULADECH³², "Toda investigación debe tener un balance riesgo-beneficio positivo y justificado, para asegurar el

cuidado de la vida y el bienestar de las personas que participan en la investigación".

4.8.4. Cuidado del medio ambiente y respeto a la biodiversidad.

Según la ULADECH³², "Toda investigación debe respetar la dignidad de los animales, el cuidado del medio ambiente y las plantas, por encima de los fines científicos; y se deben tomar medidas para evitar daños y planificar acciones para disminuir los efectos adversos y tomar medidas para evitar daños".

4.8.5. Justicia.

Según la ULADECH³², "El investigador debe anteponer la justicia y el bien común antes que el interés personal. Así como, ejercer un juicio razonable y asegurarse que las limitaciones de su conocimiento o capacidades, o sesgos, no den lugar a prácticas injustas".

4.8.6. Integridad científica.

Según la ULADECH³², "El investigador (estudiantes, egresado, docentes, no docente) tiene que evitar el engaño en todos los aspectos de la investigación; evaluar y declarar los daños, riesgos y beneficios potenciales que puedan afectar a quienes participan en una investigación".

V. Resultados.

5.1. Resultado de cálculos.

5.1.1. Diseño de la cámara de captación.

Tabla 11: Cálculos obtenidos de la cámara de captación.

CUADRO 01: Resumen de los cálculos de la cámara de				
captación				
Descripción	cantidad	unidades		
Manantial de ladera concentrada	1	Und.		
Caudal máximo	0.45	lts/seg		
Distancia del punto de afloramiento a cámara húmeda	1.27	Mts.		
Ancho de la pantalla de la cámara húmeda	1	Mts.		
Diámetro de tubería de entrada	2	Plg.		
Numero de orificios	4	Und.		
Altura de cámara húmeda	68.08	Mts.		
Numero de ranuras de la canastilla	65	Und.		
Diámetro de rebose y limpieza	2	Plg.		

Fuente: Elaboración propia 2021.

Interpretación: a partir de los datos obtenidos a través de las formulas podemos decir que tendremos una captación de 1m3, 4 orificios de entrada de agua y una tubería de rebose de 2plg.

5.1.2. Diseño de la línea de conducción.

Tabla 12: Cálculos de la línea de conducción.

CUADRO 02: Resumen de los cálculos de la línea de			
conducción			
Descripción	cantidad	unidades	
Cota captación	3286.60	m.s.n.m.	
Cota reservorio	3254.30	m.s.n.m.	
Longitud de tubería	540	Mts.	
Diámetro de tubería	1 1/2	Plg.	
Pendiente	5.93	%	
Desnivel	32.00	Mts.	
Velocidad	0.65	L/s.	
Tubería PVC clase 7.5	108	Und.	

Fuente: Elaboración propia 2021.

Interpretación: Al interpretar el perfil longitudinal, se tiene la podemos decir que tenemos una línea de conducción de línea de conducción de 540 metros de tubos PVC clase 7.5, con diámetro de 1 ½ pulgadas, velocidad de 0.36 lts/seg, 5.93% de pendiente y 48.4 metros de desnivel.

5.1.3. Diseño de reservorio de almacenamiento de agua.

Tabla 13: Cálculos del reservorio.

CUADRO 03: Resumen de los cálculos de reservorio de almacenamiento				
Descripción	cantidad	unidades		
Volumen de regulación	6.00	m3		
Volumen total del reservorio	7.00	m3		
Volumen útil de reservorio	14.00	m3		
Tiempo de llenado	4.42	horas		
Espesor de muro	0.15	Mts.		
Largo de muro	3.00	Mts.		
Altura de agua	1.20	Mts.		
Espacio libre	0.30	Mts.		
Altura de muro	1.50	Mts.		
Espesor de losa de cubierta	0.10	Mts.		
espesor de losa de fondo	0.15	Mts.		

Fuente: Elaboración propia 2021.

Interpretación: de acuerdo a los datos obtenidos se optará por trabajar con un reservorio cuadrado el cual tendrá un volumen de regulación de 6.00m³, y un tiempo de llenado de 4.42 horas.

5.2. Análisis de resultados.

- ✓ Según Agüero²¹, "Escogido el manantial el cual será el primer punto del sistema de agua potable, en el lugar donde brota el agua se construye una estructura de captación la cual permitirá acumularla para posteriormente conducirla a través de tuberías al reservorio de almacenamiento".
- ✓ El gasto máximo diario obtenido es de 0.43 lts/s mayor a nuestro gasto de diseño de 0.44 lts/s por lo tanto podemos decir que es capaz de abastecer a nuestra población futura de 478 hab.
- ✓ Se realizó el diseño de la cámara de captación con dimensiones de 1m x 1m x 1m, con una cámara húmeda de 0.68m de altura, con espacio libre de 0.30 m, 1.27m de distancia entre el punto de afloramiento y la cámara húmeda, se obtuvo una tubería de entrada de 2 plg, con 4 orificios, 65 ranuras en la canastilla de salida y 2plg de diámetro de rebose y limpieza.
- ✓ Según Reto²⁴, "La línea de conducción son tuberías que transportan agua desde el sitio en el cual se encuentra en estado natural, hasta un punto que puede ser un tanque de almacenamiento, reservorio o una planta potabilizadora". En nuestro caso se realizó el diseño de la línea de conducción por gravedad llegando a obtener una longitud total de 540 m.

✓ Respecto al reservorio se obtuvo dimensiones de 3.00m*3.00m*1.50m con espacio libre de 0.30, llegando a tener 14m3 de volumen útil y un espesor de muro de 0.15m.

VI. Conclusiones y recomendaciones.

6.1. conclusiones.

- ✓ El sistema de abastecimiento de agua potable fue diseñado con datos obtenidos del manantial de ladera concentrada con un gasto máximo diario obtenido de 0.43 lts/s por lo tanto podemos decir que es capaz de abastecer a nuestra población futura de 478 habitantes.
- ✓ Se realizó el diseño de la cámara de captación con dimensiones de 1m x 1mx 1m.
- ✓ En cuanto a la línea de conducción por gravedad se obtuvo una longitud total de 540 m, desde la captación hasta el reservorio de almacenamiento, la clase de tubería a usar será de 7.5 poli (cloruro de vinilo) PVC de 1 ½ plg de diámetro, con un gasto de 0.45 lts/seg y un desnivel de 5.93%.
- ✓ Respecto al reservorio se obtuvo dimensiones de 3.00m*3.00m*1.50m con un tiempo de llenado de 4.42 horas.

6.2. Recomendaciones.

- ✓ Se recomienda realizar un estudio físico, químico y bacteriológico al agua para determinar que esta se encuentre en óptimas condiciones para el consumo humano.
- ✓ En la línea de conducción se recomienda trabajar siempre con los limites permisibles de velocidad del RNE. En caso de terrenos de cultivo la profundidad mínima será de 0.80m para evitar que las tuberías puedan quedar expuestas al sol, cuando los pobladores realizan movimiento de tierra para sus sembríos.
- ✓ Se recomienda realizar mantenimientos constantes a la cámara de captación para remover materiales orgánicos e inorgánicos que se puedan depositar en el fondo o pared de la captación.
- ✓ Para el reservorio de almacenamiento de agua potable se recomienda colocar un cerco perimétrico y realizar la limpieza del reservorio mínimo una vez por mes y asimismo realizar la cloración al agua manera continua para evitar que la población vaya a consumir agua sin tratamiento previo.

Referencias bibliográficas.

- Quispe I. Incidencia De Los Proyectos De Inversión Pública Del Sector De Saneamiento Básico (Agua Potable) En El Área Rural Del Departamento De La Paz (Periodo 2006 - 2013) [Tesis] La Paz – Bolivia enero 2015. Universidad Andina Simón Bolívar. [Consultado 28 octubre del 2021]. Disponible En: http://repositorio.uasb.edu.bo:8080/bitstream/54000/348/1/TE-106.pdf
- 2. Meneses D. Evaluación del sistema de abastecimiento de agua potable y proyecto de mejoramiento en la población de Nanegal, cantón Quito, provincia de Pichincha. Quito: Universidad internacional del Ecuador; 2013. [Consultado 28 de octubre del 2021]. Disponible en: https://repositorio.uide.edu.ec/bitstream/37000/2087/1/T-UIDE-1205.pdf
- 3. Hurtado Torres, W. & Martínez Durand, L. proceso constructivo del sistema de agua potable y alcantarillado del distrito de chuquibambilla - Grau – Apurímac. (Trujillo-Perú). Universidad privada Antenor Orrego. facultad de ingeniería escuela profesional de ingeniería civil 2012[citado el 28 de octubre del 2021] Disponible en:
 - <u>Tesis Agua Potable y Alcantarillado (BCHR Wilber y Liliana) | PDF |</u>
 <u>Saneamiento | Agua potable (scribd.com)</u>
- 4. Hurtado Torres, W. & Martínez Durand, L. proceso constructivo del sistema de agua potable y alcantarillado del distrito de chuquibambilla - Grau – Apurímac. (Trujillo-Perú). Universidad privada Antenor Orrego. facultad de ingeniería escuela profesional de ingeniería civil 2012[citado el 28 de octubre del 2021] Disponible en:

- https://1library.co/document/zxx3dkvz-tesis-agua-potable-y-alcantarilladobchr-wilber-y-liliana.html
- 5. Miranda Ríos Carlos. diseño del sistema de abastecimiento de agua potable y tratamiento de desagüe para el distrito de characato (Arequipa Perú). universidad católica de santa maría facultad de arquitectura, e ingeniería civil y del ambiente 2013. [citado el 28 de octubre del 2021] Disponible en: https://core.ac.uk/download/pdf/198124764.pdf
- 6. Castillo B. "Mejoramiento Del Sistema De Agua Potable En El Sector Limo, Distrito Pacaipampa, Provincia De Ayabaca-Piura, Octubre -2019" [Tesis] Piura 2019. Universidad Católica los Ángeles de Chimbote [Consultado 28 de octubre del 2021]. Disponible En:
 http://repositorio.uladech.edu.pe/bitstream/handle/123456789/15601/MEJORAR_ABASTECER_CASTILLO_PANGALIMA_BETTY.pdf?sequence=3&i
- 7. Flores V. "Propuesta De Diseño Del Sistema De Agua Potable Y Alcantarillado Del Asentamiento Humano Los Constructores Distrito Nuevo Chimbote-2017" [Tesis] Nuevo Chimbote, 2017.Universidad Cesar Vallejo [consultado 28 de octubre del 2021]. Disponible en: file:///C:/Users/HP/Downloads/flores_rv.pdf
- 8. Velásquez J. Diseño del Sistema de Abastecimiento de Agua Potable para el Caserío de Mazac, Provincia de Yungay, Ancash 2017. [Tesis] Nuevo Chimbote, 2017. Universidad Cesar Vallejo [consultado 28 de octubre del 2021]. Disponible en:

https://repositorio.ucv.edu.pe/handle/20.500.12692/12264

sAllowed=y

9. Cruz R. Y Marcelo I. Mejoramiento Y Ampliación Del Sistema De Agua Potable Del C.P. De Barrio Piura Y Puerto Casma, Distrito De Comandante Noel, Provincia De Casma – Ancash [Tesis] Nuevo Chimbote, 2018. Universidad Nacional Del Santa [Consultado 28 de octubre del 2021]. Disponible En:

File:///C:/Users/Hp/Downloads/47140.Pdf

10. Gutiérrez M. Abastecimiento De Agua Y Alcantarillado Capitulo [Tesis]. Perú:
 26 De marzo De 2014. Universidad Nacional Santiago Antúnez De Mayolo [Consultado 28 octubre del 2021]. Disponible en:
 https://bit.ly/3em6AwV

11. Raúl J. &. Diseño del sistema de abastecimiento de agua potable para las comunidades santa fe y capachal, píritu, estado anzoátegui [tesis]. Universidad de oriente. Puerto la cruz. Enero 2009. [Consultado 28 octubre del 2021].Disponible en: http://ri.bib.udo.edu.ve/bitstream/123456789/1084/1/Tesis.SISTEMA%20DE %20ABASTECIMIENTO%20DE%20AGUA%20POTABLE.pdf

- 12. Tecnoalimen. El Agua [Internet]. 06 de enero del 2021. [Consultado 28 octubre del 2021]. Disponible en:
 - https://www.tecnoalimen.com/glosario-agua.

olo_Saneamiento.pdf

13. OS.010. Reglamento Nacional De Edificaciones.2006 [Internet]. [consultado 28 de octubre del 2021]. Disponible en:
https://www3.vivienda.gob.pe/Direcciones/Documentos/RNE_Actualizado_S

- 14. USGS. El Ciclo del Agua. [Internet]. 06 de enero del 2021. [Consultado 28 octubre del 2021]. Disponible en:
 https://www.usgs.gov/special-topic/water-science-school/science/el-ciclo-del-agua-water-cycle-spanish?qt-science_center_objects=0#qt-science_center_objects
- 15. Moira L. Sistema De Abastecimiento De Agua Potable Para Cuatro Poblados Rurales Piura, Abril De 2012[Tesis]. Universidad De Piura [Consultado 28 octubre del 2021]. Disponible En:

 https://pirhua.udep.edu.pe/bitstream/handle/11042/2053/ici_192.pdf?sequ

 once=1
- 16. INDUANÁLISIS. Aguas superficiales; Aguas subterráneas. [Internet] 17de mayo de 2019. [Consultado 28 octubre del 2021]. Disponible En:
 https://www.induanalisis.com/publicacion/detalle/agua_subterraneas_y_superficial_29
- 17. Saraemor Componentes de un Sistema de Abastecimiento [internet] 23 octubre
 2008. [Consultado 28 octubre del 2021] Disponible en:
 Componentes de un Sistema de Abastecimiento | Acueductos, Cloacas y
 Drenaje (wordpress.com)
- 18. Mateos R. y González M. Los caminos del agua en las Islas Baleares: acuíferos y manantiales [Internet]. Madrid: Instituto Geológico y Minero de España, 2009 [Consultado 28 octubre del 2021]. Disponible en: https://elibro.net/es/ereader/uladech/52589?page=107

19. Westreicher G. Población [Internet] 21 de junio, 2020. [Consultado 28 octubre del 2021]. Disponible en:

https://bit.ly/2QfZd2j

- 20. CivilGeeks.com Componentes de un sistema de abastecimiento de agua potable 1999.revista [internet]. [Consultado 28 octubre del 2021].Disponible En: https://civilgeeks.com/2011/10/12/componentes-esenciales-de-unsistema-de-abastecimiento-de-agua/
- 21. Agüero, P. sistemas de abastecimiento por gravedad. Aguas subterráneas.

 [libro] [Consultado 28 octubre del 2021]. Disponible en:

 http://www.cepes.org.pe/pdf/OCR/Partidos/agua_potable/agua_potable_p

 ara poblaciones rurales sistemas de abastecim.pdf
- 22. Rodríguez, P. Captaciones de agua superficial [Tesis]. [Consultado 28 octubre del 2021]. Disponible En:
 https://es.slideshare.net/deibyrequenamarcelo/128283513abastecimientodeaguapedrorodriguezruiz
- 23. González A. ¿Qué es el caudal? Manual Piragüero [Internet] [Consultado 28 octubre del 2021]. Disponible En:

 https://www.piraguacorantioquia.com.co/wpcontent/uploads/2016/11/3.Manual_Medici%C3%B3n_de_Caudal.pdf
- 24. Ronnie Reto Ramos. Conducción por gravedad 12 de mayo de 2011 universidad cesar vallejo. [Tesis]. [Consultado 28 octubre del 2021]. Disponible En:

https://es.scribd.com/doc/55239266/Lineas-de-Conduccion-Informe

- 25. Humberto Espejo, Reservorios De Almacenamiento 16 De noviembre 2016
 Universidad Nacional De Ingeniería [Tesis]. [Consultado 28 octubre del
 2021].Disponible
 En:
 https://es.slideshare.net/humbertoespejo2/almacenamiento-de-agua-69033318
- 26. Vasquez, K. Guías Para El Diseño De Reservorios Elevados De Agua Potable Lima, 2005[Tesis]. [Consultado 28 octubre del 2021].Disponible En: https://es.slideshare.net/KevinArnoldVasquezBarreto/diseo-reservorioselevados-14991615
- 27. OS.010. Almacenamiento De Agua Para Consumo Humano. Reglamento Nacional De Edificaciones.2006 [Internet]. [consultado 28 de octubre del 2021]. Disponible en: https://www.saludarequipa.gob.pe/desa/archivos/Normas_Legales/saneamient o/OS.030.pdf
- 28. Fermat topografía. Levantamiento topográfico para red de agua potable [Internet] [Consultado 28 octubre del 2021]. Disponible En: https://bit.ly/32EJvA7
- 29. Geoseismic. La Importancia Del Estudio De Mecánica De Suelos [Internet] Sep 05, 2017 [Consultado 28 octubre del 2021]. Disponible En: http://www.geoseismic.cl/la-importancia-mecanica-suelos/
- 30. Jiménez T. Para El Diseño De Sistemas De Agua Potable Y Alcantarillado Sanitario. [Trabajo De Titulación En Internet]. [Mexico]. Universidad Veracruzana 2013. [Consultado 28 octubre del 2021].Disponible En: https://www.uv.mx/ingenieriacivil/files/2013/09/ManualdeDisenoparaPro https://www.uv.mx/ingenieriacivil/files/2013/09/ManualdeDisenoparaPro https://www.uv.mx/ingenieriacivil/files/2013/09/ManualdeDisenoparaPro https://www.uv.mx/ingenieriacivil/files/2013/09/ManualdeDisenoparaPro

31. EticaPsicologica.org. Principios éticos. [Internet] [Consultado 28 octubre del 2021]. Disponible En:

https://eticapsicologica.org/index.php/documentos/articulos/item/16-que-son-los-principios-eticos

32. Uladech Católica. Reglamento De Investigación[Internet] [Consultado 28 octubre del 2021]. Disponible En:

https://web2020.uladech.edu.pe/images/stories/universidad/documentos/2020/codigo-de-etica-para-la-investigacion-v004.pdf

ANEXOS

Anexo 01: Definición y operación de la variable.

	Definición y operacionalización de las variables				
Variable	Definición	Dimensión operacional	Dimensiones	Indicadores	Escala demedición
Diseño del sistema	Todo sistema de agua	Se realizó el diseño del	Cámara de	Tipo	Nominal
de agua potable del	potable, tiene como	sistema de abastecimiento de agua	captación	Caudal	Intervalo
caserío de	finalidad primordial,	potable del caserío de Cochamarca.		Caudal	Intervalo
Cochamarca,	entregar a los habitantes de	desde la cámara de captación, línea de	Línea de	Velocidad	Intervalo
distrito de	una localidad, agua en	conducción y reservorio de	conducción	Presión	Intervalo
Mollepata,	cantidad y calidad	almacenamiento de agua potable.		Diámetro	Nominal
provincia de	adecuada para satisfacer	Para obtener los resultados requeridos			
Santiago de Chuco,	sus necesidades.	se contó con el apoyo de protocoles y	Reservorio de almacenamiento	Presión Volumen	Intervalo Nominal
región La		fichas técnicas.			
Libertad -2018.					

Fuente: Elaboración propia, 2021.

Anexo 02: Matriz de consistencia.

Título: Diseño del sistema de abastecimiento de agua potable del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región La libertad – 2018.

				Referencia
Problema	Objetivos	Marco teórico	Metodología	bibliográfica
Características del	objetivo general	Antecedentes.	El tipo de investigación. Será de tipo descriptiva	Saraemor
problema. El agua es un	Realizar el diseño del	Se recolecta información de	porque nos describe el problema a tratar pero no	Componentes
recurso natural de gran		tesis de diseño de sistema de		1 6.
importancia para los seres	sistema de abastecimiento	agua potable y se tiene los	nos da una alternativa de solución.	de un Sistema
vivíos.	de agua potable para el	siguientes	Nivel de investigación. Este proyecto es	de
Según la BBC Mundo ³¹ ,	caserío de Cochamarca,	antecedentes.	Tivel de investigación. Este proyecto es	Abastecimien
casi dos millones de	,	Internacionales	cualitativo porque se tendrá que dar una serie de	
personas mueren al año	distrito de Mollepata,	Nacionales	soluciones a la problemática que viene afectando	to [internet]
por falta de agua potable.	provincia de Santiago de	locales	al caserío de Cochamarca.	23 octubre
Y es probable	Chuco, región de la	Bases teóricas	ai cascilo de Cochamarca.	2008. [citado
que en 15 años la mitad	1.1 1.0010	Población	Diseño de la investigación. Será de tipo	1 20 1
de la población mundial	Libertad-2018.	Agua	_	el 28 de
viva en áreas en las que no		- Calidad de agua	descriptivo, no experimental porque se podrá	octubre del
habrá suficiente agua para		- Ciclo del agua	estudiar y analizar variables sin recurrir al	

todos.	Objetivos específicos:	Calidad de agua	laboratorio. Para la realización del proyecto se	2021]
Este tipo de situaciones	Realizar el diseño de la	Ciclo del agua	tomará en cuenta lo siguiente:	Disponible
nos lleva a diseñar cámaras de captación,	cámara de captación del	Fuente de agua Manantial.	Mi: abastecimiento de agua potable.	en:
línea de captación y red	sistema de abastecimiento	sistema de	wii. abastecimiento de agua potable.	Componentes
de distribución para mejor	de agua potable del caserío	abastecimiento de	Xi: abastecimiento de agua potable	de un Sistema
el servicio de agua	de Cochamarca, distrito de	agua. Parámetros.	Oi: Resultados.	<u>de</u>
potable en las	Mollepata, provincia de	- Periodo de	Universo. El universo está dado por la	Abastecimien
poblaciones. Enunciado	Santiago de Chuco, región	diseño	emverso. El aniverso esta dado por la	to
del problema	L - 111-4-1 2010 D - 11-4-	- Población	determinación geográfica de los sistemas de	
¿Cómo diseñar el sistema	La libertad-2018. Realizar	futura	abastecimiento de agua potable de la Provincia de	Acueductos,
abastecimiento de agua	el diseño de la línea de	- Dotación		<u>Cloacas</u> <u>y</u>
potable del caserío de Cochamarca, distrito de	conducción del sistema de	Varíale deconsumo.Componentes de un	Santiago de Chuco.	<u>Drenaje</u>
Mollepata, provincia de	abastecimiento de agua	sistemade	Población. estará formada por los sistemas de	(wordpress.c
Santiago de Chuco,	potable del caserío de	abastecimiento de	abastecimiento de agua potable del distrito de	<u>om)</u>
región de la Libertad –	Cochamarca, distrito de	agua potable Captación	Mollepata.	
2018?		- Línea de		

Mollepata, provincia de		conducción	Muestra. estará constituida por el sistema de
Santiago de Chuco, región	- -	Reservorio Topografía	abastecimiento de agua potable del caserío de
La libertad-2018. Realizar	-	Estudio de suelo	Cochamarca.
el diseño del reservorio			
para almacenamiento del			
sistema de abastecimiento			
de agua potable del caserío			
de Cochamarca, distrito de			
Mollepata, provincia de			
Santiago de Chuco, región La libertad-2018.			

Fuente: Elaboración propia, 2021.

Anexo 03: Reglamentos

Anexo 03.01: Reglamento nacional de edificaciones

(Norma 0S. 010)

REGLAMENTO NACIONAL DE EDIFICACIONES

(DS N° 011-2006-VIVIENDA)

TITULO II HABILITACIONES URBANAS

II.3. OBRAS DE SANEAMIENTO

- OS.010 Captación y conducción de agua para consumo humano
- OS.020 Plantas de tratamiento de agua para consumo humano
- OS.030 Almacenamiento de agua para consumo humano
- OS.040 Estaciones de bombeo de agua para consumo humano
- OS.050 Redes de distribución de agua para consumo humano

- OS.050 Redes de distribución de agua para consumo OS.060 Drenaje pluvial urbano OS.070 Redes de aguas residuales OS.080 Estaciones de bombeo de aguas residuales
- OS.090 Plantas de tratamiento de aguas residuales
- OS.100 Consideraciones básicas de diseño de infraestructura Sanitaria

TITULO III **EDIFICACIONES**

III.3. INSTALACIONES SANITARIAS

IS.010 Instalaciones sanitarias para edificaciones IS.020 Tanques sépticos

Dirección Nacional de Saneamiento

II.3. OBRAS DE SANEAMIENTO

NORMA OS.010 CAPTACIÓN Y CONDUCCIÓN DE AGUA PARA CONSUMO HUMANO

1. OBJETIVO

Fijar las condiciones para la elaboración de los proyectos de captación y conducción de agua para consumo humano.

2. ALCANCES

Esta Norma fija los requisitos mínimos a los que deben sujetarse los diseños de captación y conducción de agua para consumo humano, en localidades mayores de 2000 habitantes.

3. FUENTE

A fin de definir la o las fuentes de abastecimiento de agua para consumo humano, se deberán realizar los estudios que aseguren la calidad y cantidad que requiere el sistema, entre los que incluyan: identificación de fuentes alternativas, ubicación geográfica, topografía, rendimientos mínimos, variaciones anuales, análisis físico químicos, vulnerabilidad y microbiológicos y otros estudios que sean necesarios.

La fuente de abastecimiento a utilizarse en forma directa o con obras de regulación, deberá asegurar el caudal máximo diario para el período de diseño. La calidad del agua de la fuente, deberá satisfacer los requisitos establecidos en la Legislación vigente en el País.

4. CAPTACIÓN

El diseño de las obras deberá garantizar como mínimo la captación del caudal máximo diario necesario protegiendo a la fuente de la contaminación. Se tendrán en cuenta las siguientes consideraciones generales:

4.1. AGUAS SUPERFICIALES

- a) Las obras de toma que se ejecuten en los cursos de aguas superficiales, en lo posible no deberán modificar el flujo normal de la fuente, deben ubicarse en zonas que no causen erosión o sedimentación y deberán estar por debajo de los niveles mínimos de agua en periodos de estiaje.
- b) Toda toma debe disponer de los elementos necesarios para impedir el paso de sólidos y facilitar su remoción, así como de un sistema de regulación y control. El exceso de captación deberá retornar al curso original.
- La toma deberá ubicarse de tal manera que las variaciones de nivel no alteren el funcionamiento normal de la captación.

4.2. AGUAS SUBTERRÁNEAS

El uso de las aguas subterráneas se determinará mediante un estudio a través del cual se evaluará la disponibilidad del recurso de agua en cantidad, calidad y oportunidad para el fin requerido.

4.2.1. Pozos Profundos

- a) Los pozos deberán ser perforados previa autorización de los organismos competentes del Ministerio de Agricultura, en concordancia con la Ley General de Aguas vigente. Así mismo, concluida la construcción y equipamiento del pozo se deberá solicitar licencia de uso de agua al mismo organismo.
- b) La ubicación de los pozos y su diseño preliminar serán determinados como resultado del correspondiente estudio hidrogeológico específico a nivel de diseño de obra. En la ubicación no sólo se considerará las mejores condiciones hidrogeológicas del acuífero sino también el suficiente distanciamiento que debe existir con relación a otros pozos vecinos existentes y/ o proyectados para evitar problemas de interferencias.
- c) El menor diámetro del forro de los pozos deberá ser por lo menos de 8 cm mayor que el diámetro exterior de los impulsores de la bomba por instalarse.
- d) Durante la perforación del pozo se determinará su diseño definitivo, sobre la base de los resultados del estudio de las muestras del terreno extraído durante la perforación y los correspondientes registros geofísicos. El ajuste del diseño se refiere sobre todo a la profundidad final de la perforación, localización y longitud de los filtros.
- e) Los filtros serán diseñados considerando el caudal de bombeo; la granulometría y espesor de los estratos; velocidad de entrada, así como la calidad de las aguas.
- f) La construcción de los pozos se hará en forma tal que se evite el arenamiento de ellos, y se obtenga un óptimo rendimiento a una alta eficiencia hidráulica, lo que se conseguirá con uno o varios métodos de desarrollo.
- g) Todo pozo, una vez terminada su construcción, deberá ser sometido a una prueba de rendimiento a caudal variable durante 72 horas continuas como mínimo, con la finalidad de determinar el caudal explotable y las condiciones para su equipamiento. Los resultados de la prueba deberán ser expresados en gráficos que relacionen la depresión con los caudales, indicándose el tiempo de bombeo.
- h) Durante la construcción del pozo y pruebas de rendimiento se deberá tomar muestras de agua a fin de determinar su calidad y conveniencia de utilización.

Dirección Nacional de Saneamiento

II.3. OBRAS DE SANEAMIENTO

NORMA OS.010 CAPTACIÓN Y CONDUCCIÓN DE AGUA PARA CONSUMO HUMANO

1. OBJETIVO

Fijar las condiciones para la elaboración de los proyectos de captación y conducción de agua para consumo humano.

2. ALCANCES

Esta Norma fija los requisitos mínimos a los que deben sujetarse los diseños de captación y conducción de agua para consumo humano, en localidades mayores de 2000 habitantes.

3. FUENTE

A fin de definir la o las fuentes de abastecimiento de agua para consumo humano, se deberán realizar los estudios que aseguren la calidad y cantidad que requiere el sistema, entre los que incluyan: identificación de fuentes alternativas, ubicación geográfica, topografía, rendimientos mínimos, variaciones anuales, análisis físico químicos, vulnerabilidad y microbiológicos y otros estudios que sean necesarios.

La fuente de abastecimiento a utilizarse en forma directa o con obras de regulación, deberá asegurar el caudal máximo diario para el período de diseño. La calidad del agua de la fuente, deberá satisfacer los requisitos establecidos en la Legislación vigente en el País.

4. CAPTACIÓN

El diseño de las obras deberá garantizar como mínimo la captación del caudal máximo diario necesario protegiendo a la fuente de la contaminación. Se tendrán en cuenta las siguientes consideraciones generales:

4.1. AGUAS SUPERFICIALES

- a) Las obras de toma que se ejecuten en los cursos de aguas superficiales, en lo posible no deberán modificar el flujo normal de la fuente, deben ubicarse en zonas que no causen erosión o sedimentación y deberán estar por debajo de los niveles mínimos de agua en periodos de estiaje.
- Toda toma debe disponer de los elementos necesarios para impedir el paso de sólidos y facilitar su remoción, así como de un sistema de regulación y control. El exceso de captación deberá retornar al curso original.
- La toma deberá ubicarse de tal manera que las variaciones de nivel no alteren el funcionamiento normal de la captación.

4.2. AGUAS SUBTERRÁNEAS

El uso de las aguas subterráneas se determinará mediante un estudio a través del cual se evaluará la disponibilidad del recurso de agua en cantidad, calidad y oportunidad para el fin requerido.

4.2.1. Pozos Profundos

- a) Los pozos deberán ser perforados previa autorización de los organismos competentes del Ministerio de Agricultura, en concordancia con la Ley General de Aguas vigente. Así mismo, concluida la construcción y equipamiento del pozo se deberá solicitar licencia de uso de agua al mismo organismo.
- b) La ubicación de los pozos y su diseño preliminar serán determinados como resultado del correspondiente estudio hidrogeológico específico a nivel de diseño de obra. En la ubicación no sólo se considerará las mejores condiciones hidrogeológicas del acuífero sino también el suficiente distanciamiento que debe existir con relación a otros pozos vecinos existentes y/ o proyectados para evitar problemas de interferencias.
- c) El menor diámetro del forro de los pozos deberá ser por lo menos de 8 cm mayor que el diámetro exterior de los impulsores de la bomba por instalarse.
- d) Durante la perforación del pozo se determinará su diseño definitivo, sobre la base de los resultados del estudio de las muestras del terreno extraído durante la perforación y los correspondientes registros geofísicos. El ajuste del diseño se refiere sobre todo a la profundidad final de la perforación, localización y longitud de los filtros.
- e) Los filtros serán diseñados considerando el caudal de bombeo; la granulometría y espesor de los estratos; velocidad de entrada, así como la calidad de las aguas.
- f) La construcción de los pozos se hará en forma tal que se evite el arenamiento de ellos, y se obtenga un óptimo rendimiento a una alta eficiencia hidráulica, lo que se conseguirá con uno o varios métodos de desarrollo.
- g) Todo pozo, una vez terminada su construcción, deberá ser sometido a una prueba de rendimiento a caudal variable durante 72 horas continuas como mínimo, con la finalidad de determinar el caudal explotable y las condiciones para su equipamiento. Los resultados de la prueba deberán ser expresados en gráficos que relacionen la depresión con los caudales, indicándose el tiempo de bombeo.
- h) Durante la construcción del pozo y pruebas de rendimiento se deberá tomar muestras de agua a fin de determinar su calidad y conveniencia de utilización.

Dirección Nacional de Saneamiento

4.2.2. Pozos Excavados

- a) Salvo el caso de pozos excavados para uso doméstico unifamiliar, todos los demás deben perforarse previa autorización del Ministerio de Agricultura. Así mismo, concluida la construcción y equipamiento del pozo se deberá solicitar licencia de uso de agua al mismo organismo.
- El diámetro de excavación será aquel que permita realizar las operaciones de excavación y revestimiento del pozo, señalándose a manera de referencia 1.50 m.
- La profundidad del pozo excavado se determinará en base a la profundidad del nivel estático de la napa y de la máxima profundidad que técnicamente se pueda excavar por debajo del nivel estático.
- d) El revestimiento del pozo excavado deberá ser con anillos ciego de concreto del tipo deslizante o fijo, hasta el nivel estático y con aberturas por debajo de él.
- e) En la construcción del pozo se deberá considerar una escalera de acceso hasta el fondo para permitir la limpieza y mantenimiento, así como para la posible profundización en el futuro.
- f) El motor de la bomba puede estar instalado en la superficie del terreno o en una plataforma en el interior del pozo, debiéndose considerar en este último caso las medidas de seguridad para evitar la contaminación del agua.
- g) Los pozos deberán contar con sellos sanitarios, cerrándose la boca con una tapa hermética para evitar la contaminación del acuífero, así como accidentes personales. La cubierta del pozo deberá sobresalir 0.50 m como mínimo, con relación al nivel de inundación.
- h) Todo pozo, una vez terminada su construcción, deberá ser sometido a una prueba de rendimiento, para determinar su caudal de explotación y las características técnicas de su equipamiento.
- Durante la construcción del pozo y pruebas de rendimiento se deberá tomar muestras de agua a fin de determinar su calidad y conveniencia de utilización.

4.2.3. Galerías Filtrantes

- a) Las galerías filtrantes serán diseñadas previo estudio, de acuerdo a la ubicación del nivel de la napa, rendimiento del acuífero y al corte geológico obtenido mediante excavaciones de prueba.
- b) La tubería a emplearse deberá colocarse con juntas no estancas y que asegure su alineamiento.
- c) El área filtrante circundante a la tubería se formará con grava seleccionada y lavada, de granulometría y espesor adecuado a las características del terreno y a las perforaciones de la tubería.
- d) Se proveerá cámaras de inspección espaciadas convenientemente en función del diámetro de la tubería, que permita una operación y mantenimiento adecuado.
- e) La velocidad máxima en los conductos será de 0.60 m/s.
- f) La zona de captación deberá estar adecuadamente protegida para evitar la contaminación de las aguas subterráneas.
- g) Durante la construcción de las galerías y pruebas de rendimiento se deberá tomar muestras de agua a fin de determinar su calidad y la conveniencia de utilización.

4.2.4. Manantiales

- a) La estructura de captación se construirá para obtener el máximo rendimiento del afloramiento.
- En el diseño de las estructuras de captación, deberán preverse válvulas, accesorios, tubería de limpieza, rebose y tapa de inspección con todas las protecciones sanitarias correspondientes.
- c) Al inicio de la tubería de conducción se instalará su correspondiente canastilla.
- d) La zona de captación deberá estar adecuadamente protegida para evitar la contaminación de las aquas.
- e) Deberá tener canales de drenaje en la parte superior y alrededor de la captación para evitar la contaminación por las aguas superficiales.

5. CONDUCCIÓN

Se denomina obras de conducción a las estructuras y elementos que sirven para transportar el agua desde la captación hasta al reservorio o planta de tratamiento. La estructura deberá tener capacidad para conducir como mínimo, el caudal máximo diario.

5.1. CONDUCCIÓN POR GRAVEDAD

5.1.1. Canales

- a) Las características y material con que se construyan los canales serán determinados en función al caudal y la calidad del agua.
- b) La velocidad del flujo no debe producir depósitos ni erosiones y en ningún caso será menor de 0.60 m/s
- c) Los canales deberán ser diseñados y construidos teniendo en cuenta las condiciones de seguridad que garanticen su funcionamiento permanente y preserven la cantidad y calidad del aqua.

Dirección Nacional de Saneamiento

5.1.2. Tuberias

- a) Para el diseño de la conducción con tuberías se tendrá en cuenta las condiciones topográficas, las características del suelo y la climatología de la zona a fin de determinar el tipo y calidad de la tubería.
- b) La vetocidad mínima no debe producir depósitos ni erosiones, en ningún caso será menor de 0.60 m/s
- c) La velocidad máxima admisible será:

En los tubos de concreto

= 3 m/s

En tubos de asbesto-cemento, acero y PVC

C = 5 m/s

Para otros materiales deberá justificarse la velocidad máxima admisible.

 d) Para el cálculo hidráulico de las tuberías que trabajen como canal, se recomienda la fórmula de Manning, con los siguientes coeficientes de rugosidad;

Asbesto-cemento y PVC

= 0.010

Hierro Fundido y concreto

= 0,015

Para otros materiales deberá justificarse los coeficientes de rugosidad.

e) Para el cálculo de las tuberías que trabajan con flujo a presión se utilizarán fórmulas racionales. En caso de aplicarse la fórmula de Hazen y Williams, se utilizarán los coeficientes de fricción que se establecen en la Tabla Nº 1. Para el caso de tuberías no consideradas, se deberá justificar técnicamente el valor utilizado.

TABLA N°1 COEFICIENTES DE FRICCIÓN «C» EN LA FÓRMULA DE HAZEN Y WILLIAMS

TIPO DE TUBERIA	«C»
Acero sin costura	120
Acero soldado en espiral	100
Cobre sin costura	150
Concreto	110
Fibra de vidrio	150
Hierro fundido	100
Hierro fundido con revestimiento	140
Hierro galvanizado	100
Polietileno, Asbesto Cemento	140
Poli(cloruro de vinito)(PVC)	150

5.1.3. Accesorios

a) Válvulas de aire

En las líneas de conducción por gravedad y/o bombeo, se colocarán válvulas extractoras de aire cuando haya cambio de dirección en los tramos con pendiente positiva. En los tramos de pendiente uniforme se colocarán cada 2.0 km como máximo.

Si hubiera algún peligro de colapso de la tubería a causa del material de la misma y de las condiciones de trabajo, se colocarán válvulas de doble acción (admisión y expulsión).

El dimensionamiento de las válvulas se determinará en función del caudal, presión y diámetro de la tubería.

b) Válvulas de purga

Se colocará válvulas de purga en los puntos bajos, teniendo en consideración la calidad del agua a conducirse y la modalidad de funcionamiento de la línea. Las válvulas de purga se dimensionarán de acuerdo a la velocidad de drenaje, siendo recomendable que el diámetro de la válvula sea menor que el diámetro de la tubería.

 c) Estas válvulas deberán ser instaladas en cámaras adecuadas, seguras y con elementos que permitan su fácil operación y mantenimiento.

5.2. CONDUCCIÓN POR BOMBEO

- a) Para el cálculo de las líneas de conducción por bombeo, se recomienda el uso de la fórmula de Hazen y Williams. El dimensionamiento se hará de acuerdo al estudio del diámetro económico.
- b) Se deberá considerar las mismas recomendaciones para el uso de válvulas de aire y de purga del numeral 5.1.3

5.3. CONSIDERACIONES ESPECIALES

- a) En el caso de suelos agresivos o condiciones severas de clima, deberá considerarse tuberías de material adecuado y debidamente protegido.
- b) Los cruces con carreteras, vías férreas y obras de arte, deberán diseñarse en coordinación con el organismo competente.
- Deberá diseñarse anclajes de concreto simple, concreto armado o de otro tipo en todo accesorio, o
 válvula, considerando el diámetro, la presión de prueba y condición de instalación de la tubería.
- d) En el diseño de toda línea de conducción se deberá tener en cuenta el golpe de ariete.

Dirección Nacional de Saneamiento

GLOSARIO

ACUIFERO.- Estrato subterráneo saturado de agua del cual ésta fluye fácilmente.

AGUA SUBTERRANEA.- Agua localizada en el subsuelo y que géneralmente requiere de excavación para su extracción

AFLORAMIENTO.- Son las fuentes o surgencias, que en principio deben ser consideradas como aliviaderos naturales de los aculferos.

CALIDAD DE AGUA. Características físicas, químicas, y bacteriológicas del agua que la hacen aptas para el consumo humano, sin implicancias para la salud, incluyendo apariencia, gusto y olor.

CAUDAL MAXIMO DIARIO.- Caudal más alto en un día, observado en el périodo de un año, sin tener en cuenta los consumos por incendios, pérdidas, etc.

DEPRESION.- Entendido como abatimiento, es el descenso que experimenta el nivel del agua cuando se está bombeando o cuando el pozo fluye naturalmente. Es la diferencia, medida en metros, entre el nivel estático y el nivel dinámico.

FILTROS,- Es la rejilla del pozo que sirve como sección de captación de un pozo que toma el agua de un aculfero de material no consolidado.

FORRO DE POZOS.- Es la tubería de revestimiento colocada unas veces durante la perforación, otras después de acabada ésta. La que se coloca durante la perforación puede ser provisional o definitiva. La finalidad más frecuente de la primera es la de sostener el terreno mientras se avanza con la perforación. La finalidad de la segunda es revestir definitivamente el pozo.

POZO EXCAVADO.- Es la penetración del terreno en forma manual. El diámetro mínimo es aquel que permite el trabajo de un operario en su fondo.

POZO PERFORADO.- Es la penetración del terreno utilizando maquinaría. En este caso la perforación puede

POZO PERFORADO.- Es la penetración del terreno utilizando maquinaría. En este caso la perforación puede ser iniciada con un antepozo hasta una profundidad conveniente y, luego, se continúa con el equipo de perforación.

SELLO SANITARIO. - Elementos utilizados para mantener las condiciones sanitarias óptimas en la estructura de ingreso a la captación.

TOMA DE AGUA - Dispositivo o conjunto de dispositivos destinados a desviar el agua desde una fuente hasta los demás órganos constitutivos de una captación.

Dirección Nacional de Saneamiento

NORMA OS.030 ALMACENAMIENTO DE AGUA PARA CONSUMO HUMANO

1. ALCANCE

Esta Norma señala los requisitos mínimos que debe cumplir el sistema de almacenamiento y conservación de la calidad del agua para consumo humano.

2. FINALIDAD

Los sistemas de almacenamiento tienen como función suministrar agua para consumo humano a las redes de distribución, con las presiones de servicio adecuadas y en cantidad necesaria que permita compensar las variaciones de la demanda. Asimismo deberán contar con un volumen adicional para suministro en casos de emergencia como incendio, suspensión temporal de la fuente de abastecimiento y/o paralización parcial de la planta de tratamiento.

3. ASPECTOS GENERALES

3.1. Determinación del volumen de almacenamiento

El volumen deberá determinarse con las curvas de variación de la demanda horaria de las zonas de abastecimiento ó de una población de características similares.

3.2. Ubicación

Los reservorios se deben ubicar en áreas libres. El proyecto deberá incluir un cerco que impida el libre acceso a las instalaciones.

3.3. Estudios Complementarios

Para el diseño de los reservorios de almacenamiento se deberá contar con información de la zona elegida, como fotografías aéreas, estudios de: topografía, mecánica de suelos, variaciones de niveles freáticos, características químicas del suelo y otros que se considere necesario.

3.4. Vulnerabilidad

Los reservorios no deberán estar ubicados en terrenos sujetos a inundación, deslizamientos ú otros riesgos que afecten su seguridad.

3.5. Caseta de Válvulas

Las válvulas, accesorios y los dispositivos de medición y control, deberán ir alojadas en casetas que permitan realizar las labores de operación y mantenimiento con facilidad.

3.6. Mantenimiento

Se debe prever que las labores de mantenimiento sean efectuadas sin causar interrupciones prolongadas del servicio. La instalación debe contar con un sistema de «by pass» entre la tubería de entrada y salida ó doble cámara de almacenamiento.

3.7. Seguridad Aérea

Los reservorios elevados en zonas cercanas a pistas de aterrizaje deberán cumplir las indicaciones sobre luces de señalización impartidas por la autoridad competente.

4. VOLUMEN DE ALMACENAMIENTO

El volumen total de almacenamiento estará conformado por el volumen de regulación, volumen contra incendio y volumen de reserva.

4.1. Volumen de Regulación

El volumen de regulación será calculado con el diagrama masa correspondiente a las variaciones horarias de la demanda.

Cuando se comprueba la no disponibilidad de esta información, se deberá adoptar como mínimo el 25% del promedio anual de la demanda como capacidad de regulación, siempre que el suministro de la fuente de abastecimiento sea calculado para 24 horas de funcionamiento. En caso contrario deberá ser determinado en función al horario del suministro.

4.2. Volumen Contra Incendio

En los casos que se considere demanda contra incendio, deberá asignarse un volumen mínimo adicional de acuerdo al siguiente criterio:

- 50 m³ para áreas destinadas netamente a vivienda.
- Para áreas destinadas a uso comercial o industrial deberá calcularse utilizando el gráfico para agua contra incendio de sólidos del anexo 1, considerando un volumen aparente de incendio de 3,000 metros cúbicos y el coeficiente de apilamiento respectivo.

Independientemente de este volumen los locales especiales (Comerciales, Industriales y otros) deberán tener su propio volumen de almacenamiento de agua contra incendio.

4.3. Volumen de Reserva

De ser el caso, deberá justificarse un volumen adicional de reserva.

Dirección Nacional de Saneamiento

5. RESERVORIOS: CARACTERÍSTICAS E INSTALACIONES

5.1. Funcionamiento

Deberán ser diseñados como reservorio de cabecera. Su tamaño y forma responderá a la topografía y calidad del terreno, al volumen de almacenamiento, presiones necesarias y materiales de construcción a emplearse. La forma de los reservorios no debe representar estructuras de elevado costo.

5.2. Instalaciones

Los reservorios de agua deberán estar dotados de tuberías de entrada, salida, rebose y desagüe.

En las tuberías de entrada, salida y desagüe se instalará una válvula de interrupción ubicada convenientemente para su fácil operación y mantenimiento. Cualquier otra válvula especial requerida se instalará para las mismas condiciones.

Las bocas de las tuberías de entrada y salida deberán estar ubicadas en posición opuesta, para permitir la renovación permanente del agua en el reservorio.

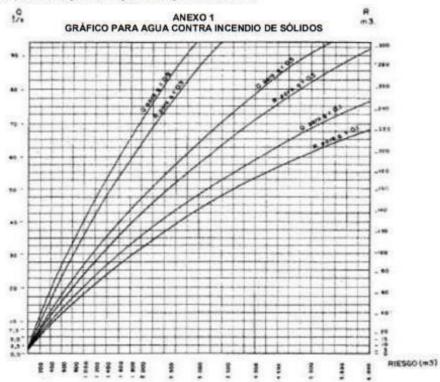
La tubería de salida deberá tener como mínimo el diámetro correspondiente al caudal máximo horario de diseño.

La tubería de rebose deberá tener capacidad mayor al caudal máximo de entrada, debidamente sustentada.

El diâmetro de la tubería de desagüe deberá permitir un tiempo de vaciado menor a 8 horas. Se deberá verificar que la red de alcantarillado receptora tenga la capacidad hidráulica para recibir este caudal.

El piso del reservorio deberá tener una pendiente hacia el punto de desagüe que permita evacuarlo completamente.

El sistema de ventilación deberá permitir la circulación del aire en el reservorio con una capacidad mayor que el caudal máximo de entrada ó salida de agua. Estará provisto de los dispositivos que eviten el ingreso de particulas, insectos y luz directa del sol.


Todo reservorio deberá contar con los dispositivos que permitan conocer los caudales de ingreso y de salida, y el nivel del agua en cualquier instante.

Los reservorios enterrados deberán contar con una cubierta impermeabilizante, con la pendiente necesaria que facilite el escurrimiento. Si se ha previsto jardines sobre la cubierta se deberá contar con drenaje que evite la acumulación de agua sobre la cubierta. Deben estar alejados de focos de contaminación, como pozas de percolación, letrinas, botaderos; o protegidos de los mismos. Las paredes y fondos estarán impermeabilizadas para evitar el ingreso de la napa y agua de riego de la ridines.

La superficie interna de los reservorios será, lisa y resistente a la corrosión.

5.3. Accesorios


Los reservorios deberán estar provistos de tapa sanitaria, escaleras de acero inoxidable y cualquier otro dispositivo que contribuya a un mejor control y funcionamiento.

REGLAMENTO NACIONAL DE EDIFICACIONES

- Q: Caudal de agua en l/s para extinguir el fuego
 R: Volumen de agua en m³ necesarios para reserva
 g: Factor de Apilamiento
 g = 0.9 Compacto
 g = 0.5 Medio
 g = 0.1 Poco Compacto
 R: Riesgo, volumen aparente del incendio en m³

Anexo 03.02: Reglamento de calidad de agua para consumo humano.

MINISTERIO DE SALUD

No. 031-2010-SA

Decreto Supremo

APRUEBAN REGLAMENTO DE LA CALIDAD DEL AGUA PARA CONSUMO HUMANO

EL PRESIDENTE DE LA REPÚBLICA

CONSIDERANDO:

Que, el numeral 22 del artículo 2º concordante con el artículo 7º de la Constitución Política del Perú, establece que toda persona tiene derecho a gozar de un ambiente equilibrado y adecuado al desarrollo de su vida, teniendo derecho a la protección de su salud, la del medio familiar y la de la comunidad, así como el deber de contribuir a su promoción y defensa;

Que, el artículo 107º de la Ley Nº 26842, Ley General de Salud, establece que el abastecimiento del agua para consumo humano queda sujeto a las disposiciones que dicte la Autoridad de Salud competente, la que vigilará su cumplimiento;

Que, la Décima Primera Disposición Complementaria, Transitoria y Final de la Ley N° 26338, Ley General de Servicios de Saneamiento, dispone que el Ministerio de Salud, continuará teniendo competencia en los aspectos de saneamiento ambiental, debiendo formular las políticas y dictar las normas de calidad sanitaria del agua y de protección del ambiente;

Que, mediante Resolución Suprema del 17 de diciembre de 1946, se aprobó el "Reglamento de los requisitos oficiales físicos, químicos y bacteriológicos que deben reunir las aguas de bebida para ser consideradas potables", el cual se encuentra desactualizado y obsoleto en el contexto actual:

Que, resulta necesario establecer un nuevo marco normativo para la gestión de la calidad del agua para consumo humano, sustentado en un enfoque de análisis de riesgo, que proporcione a la Autoridad de Salud instrumentos de gestión modernos y eficaces para conducir la política y la vigilancia de la calidad del agua para consumo humano;

De conformidad con lo dispuesto en el numeral 8 del artículo 118º de la Constitución Política del Perú, la Ley Nº 25842 – Ley General de Salud, y la Ley Nº 29158 – Ley Orgánica del Poder Ejecutivo;

DECRETA:

Artículo 1º- Aprobación

Apruébese el Reglamento de la Calidad del Agua para Consumo Humano, que consta de diez (10) títulos, ochenta y un (81) artículos, doce (12) disposiciones complementarias, transitorias y finales, y cinco (05) anexos, cuyos textos form an parte integrante del presente Decreto Supremo.

El presente Decreto Supremo con el texto del Reglamento y sus anexos deberán ser publicados en el Fortal Institucional del Ministerio de Salud (http://www.minsa.gob.pe) el mismo día de su publicación en el Diario Oficial El

Artículo 2"- Derogación

A la entrada en vigencia del presente dispositivo legal, quedará derogada la Resolución Suprema del 17 de diciembre de 1945 que aprobó el "Reglamento de los requisitos oficiales físicos, químicos y bacteriológicos que deben reunir las aguas de bebida para ser consideradas potables", así como toda aquella disposición que se le oponga.

Artículo 3º- Refrendo El presente Decreto Supremo será refrendado por el Ministro de Salud y de Vivienda, Construcción y Saneamiento.

Dado en la Casa de Gobierno, en Lima, a los veanticuatro días del mes de septiembre del año dos mil diez.

ALAN GARCIA PEREZ

87

TÍTULO II GESTIÓN DE LA CALIDAD DEL AGUA PARA CONSUMO HUMANO

Artículo 6°.- Lineamientos de gestión

El presente Reglamento se enmarca dentro de la política nacional de salud y los principios establecidos en la Ley N° 26842 - Ley General de Salud. La gestión de la calidad del agua para consumo humano garantiza su inocuidad y se rige específicamente por los siguientes lineamientos:

- Prevención de enfermedades transmitidas a través del consumo del agua de dudosa o mala calidad:
- Aseguramiento de la aplicación de los requisitos sanitarios para garantizar la inocuidad del agua para consumo humano;
- Desarrollo de acciones de promoción, educación y capacitación para asegurar que el abastecimiento, la vigilancia y el control de la calidad del agua para consumo, sean eficientes, eficaces y sostenibles;
- Calidad del servicio mediante la adopción de métodos y procesos adecuados de tratamiento, distribución y almacenamiento del agua para consumo humano, a fin de garantizar la inocuidad del producto;
- Responsabilidad solidaria por parte de los usuarios del recurso hídrico con respecto a la protección de la cuenca, fuente de abastecimiento del agua para consumo humano:
- Control de la calidad del agua para consumo humano por parte del proveedor basado en el análisis de peligros y de puntos críticos de control; y
- 7. Derecho a la información sobre la calidad del agua consumida.

Artículo 7º.- De la gestión de la calidad del agua de consumo humano

La gestión de la calidad del agua se desarrolla principalmente por las siguientes acciones:

- Vigilancia sanitaria del agua para consumo humano;
- Vigilancia epidemiológica de enfermedades transmitidas por el agua para consumo humano;
- Control y supervisión de calidad del agua para consumo humano;
- 4. Fiscalización sanitaria del abastecimiento del agua para consumo humano;
- Autorización, registros y aprobaciones sanitarias de los sistemas de abastecimiento del agua para consumo humano;
- 6. Promoción y educación en la calidad y el uso del agua para consumo humano; y
- Otras que establezca la Autoridad de Salud de nivel nacional.

Artículo 8°.- Entidades de la gestión de la calidad del agua de consumo humano

Las entidades que son responsables y/o participan en la gestión para asegurar la calidad del agua para consumo humano en lo que le corresponde de acuerdo a su competencia, en todo el país son las siguientes:

- Ministerio de Salud;
- 2. Ministerio de Vivienda, Construcción y Saneamiento;
- 3. Superintendencia Nacional de Servicios de Saneamiento;
- 4. Gobiernos Regionales;
- 5. Gobiernos Locales Provinciales y Distritales;
- 6. Proveedores del agua para consumo humano; y
- 7. Organizaciones comunales y civiles representantes de los consumidores.

Regiamento de la Calidad del Agua para Consumo Humano

ANEXO I

LÍMITES MÁXIMOS PERMISIBLES DE PARÁMETROS
MICROBIOLÓGICOS Y PARASITOLÓGICOS

Parámetros	Unidad de medida	Limite máximo permisible	
Bactérias Coliformes Totales.	UFC/100 mL a 35°C	0 (*)	
2. E. Coli	UFC/100 mL a 44,5°C	0 (*)	
 Bactérias Coliformes Termotolerantes o Fecales. 	UFC/100 mL a 44,5°C	0 (*)	
4. Bactérias Heterotróficas	UFC/mL a 35°C	500	
 Huevos y larvas de Helmintos, quistes y ooquistes de protozoarios patógenos, 	N° org/L	0	
6. Virus	UFC / mL	0	
 Organismos de vida libre, como algas, protozoarios, copépodos, rotiferos, nemátodos en todos sus estadios evolutivos 	N° org/L	0	

UFC = Unidad formadora de colonias

^(*) En caso de analizar por la técnica del NMP por tubos múltiples = < 1,8 / 100 mi

ANEXO II LÍMITES MÁXIMOS PERMISIBLES DE PARÁMETROS DE CALIDAD ORGANOLÉPTICA

	Parámetros	Unidad de medida	Límite máximo permisible
1.	Olor		Aceptable
2.	Sabor	20240	Aceptable
3.	Color	UCV escala Pt/Co	15
4.	Turbiedad	UNT	5
5.	рН	Valor de pH	6,5 a 8,5
6.	Conductividad (25°C)	μmho/cm	1 500
7.	Sólidos totales disueltos	mgL-1	1 000
8.	Cloruros	mg CI- L-I	250
9.	Sulfatos	mg SO ₄ = L-1	250
10.	Dureza total	mg CaCO ₃ L-1	500
11.	Amoniaco	mg N L-1	1,5
12.	Hierro	mg Fe L-1	0,3
13.	Manganeso	mg Mn L-1	0,4
14.	Aluminio	mg AIL-1	0,2
15.	Cobre	mg Cu L-1	2,0
16.	Zinc	mg Zn L-1	3,0
17.	Sodio	mg Na L-1	200

UCV = Unidad de color verdadero UNT = Unidad nefelométrica de turbiedad

ANEXO III

LÍMITES MÁXIMOS PERMISIBLES DE
PARÁMETROS QUÍMICOS INORGÁNICOS Y ORGÁNICOS

Parámetros Inorgánicos	Unidad de medida	Límite máximo permisible
1. Antimonio	mg Sb L-1	0.020
2. Arsénico (nota 1)	mg As L-1	0,010
3. Bario	mg Ba L-1	0,700
4. Boro	mg B L-1	1,500
5. Cadmio	mg Cd L-1	0.003
6. Cianuro	mg CN· L·I	0.070
7. Cloro (nota 2)	mg L-1	5
8. Clorito	mg L-I	0.7
9. Clorato	mg L-1	0,7
10. Cromo total	mg Cr L-1	0.050
11. Rúor	mg F L-I	1,000
12. Mercurio	mg Hg L-1	0.001
13. Niquel	mg Ni L ⁻¹	0.020
14. Nitratos	ma NO-1-1	50,00
	mg NO ₃ L-1	
15. Nitritos	mg NO ₂ L ⁻¹	3,00 Exposición corta
	-	0,20 Exposición larga
16. Plomo	mg Pb L-1	0.010
17. Selenio	mg Se L ⁻¹	0,010
18. Molibdeno	mg Mo L ⁻¹	0,07
19. Uranio	mg U L-1	0,015
Parámetros Orgánicos	Unidad de medida	Límite máximo permisible
Trihalametanos totales (nota 3) Hidrocarburo disuelto o emulsionado; aceite mineral Aceites y grasas	mgL-l mgL-l	1,00 0,01 0,5
	00.000 C	
4. Alacioro	mgL- ¹	0,020
5. Aldicarb	mgL·l	0,010
Aldrin y dieldrin	mgL-l	0,00003
7. Benceno	mgL-1	0,010
Clordano (total de isómeros)	mgL-1	0,0002
DDT (total de isómeros)	mgL-1	0.001
10. Endrin	mgL-I	0,0006
11. Gamma HCH (lindano)	mgL-I	0,002
12. Hexaclorobenceno	mgL-l	0,001
13. Heptacloro y		
heptacloroepóxido	mgl1	0.00003
14. Metoxicloro	mgL ⁻¹	0.020
15. Pentaclorofenol	mgL·I	0.009
16. 2.4-D	mgL-1	0.030
17. Acrilamida	mgL-1	0,0005
18. Epiclorhidrina	mgL-l	0,0004
19. Cloruro de vinilo	mgL 1	0,0003
20. Benzopireno	mgL ⁻¹	0,0003
20, Benzopireno 21, 1,2-dicloroetano	mal I	0,000
	mgL-l	
22, Tetracloroeteno	mgL-l	0,04

Parámetros Orgánicos	Unidad de medida	Límite máximo permisible
23. Monocloramina	mgL-1	3
24. Tricloroeteno	mgL-1	0,07
25. Tetracloruro de carbono	mgL-1	0,004
26. Ftalato de di (2-etilhexilo)	mgL-1	0,008
27. 1,2- Diclorobenceno	mgL-1	1
28. 1,4- Diclorobenceno	mgL-1	0,3
29. 1,1- Dicloroeteno	mgL-1	0,03
30. 1,2- Dicloroeteno	mgL-1	0,05
31. Diclorometano	mgL-1	0,02
32. Ácido edético (EDTA)	mgL-1	0,6
33. Etilbenceno	mgL-1	0,3
34. Hexaclorobutadieno	mgL-1	0,0006
35. Acido Nitrilotriacético	mgL-1	0,2
36. Estireno	mgL-1	0,02
37. Tolueno	mgL-1	0,7
38. Xileno	mgL-1	0,5
39. Atrazina	mgL-1	0,002
40. Carbofurano	mgL-1	0,007
41. Clorotoluron	mgL-1	0,03
42. Cianazina	mgL-1	0,0006
43, 2,4- DB	mgL-1	0,09
44. 1,2- Dibromo-3- Cloropropano	mgL-1	0,001
45. 1,2- Dibromoetano	mgL-1	0,0004
46. 1,2- Dicloropropano (1,2- DCP)	mgL-1	0,04
47. 1,3- Dicloropropeno	mgL-1	0,02
48, Dicloroprop	mgL-1	0,1
49. Dimetato	mgL-1	0,006
50. Fenoprop	mgL-1	0,009
51. Isoproturon	mgL-1	0,009
52. MCPA	mgL-1	0,002
53. Mecoprop	mgL-1	0,01
54. Metolacloro	mgL-1	0,01
55. Molinato	mgL-1	0,006
56. Pendimetalina	mgL-1	0,02
57. Simazina	mgL-1	0,002
58. 2,4,5- T	mgL-1	0,009
59. Terbutilazina	mgL-1	0,007
60. Trifluralina	mgL-1	0,02
61. Cloropirifos	mgL-1	0,03
62. Piriproxifeno	mgL-1	0,3
63. Microcistin-LR	mgL-1	0,001

Parámetros Orgánicos	Unidad de medida	Límite máximo permisible
64. Bromato	mgL-I	0,01
65. Bromodiclorometano	mgL ⁻¹	0,06
66. Bromoforma	mgL-I	0,1
67. Hidrato de cloral	200	
(tricloroacetaldehido)	mgL-1	0.01
68, Cloroformo	mgL-1	0.2
69. Cloruro de cianógeno (como	mgL-I	0.07
CNI	mgL ⁻¹	0.07
70. Dibromoacetonitrilo	mgL-1	0.1
71. Dibromoclorometano	mgL-I	0,05
72. Dicloroacetato	mgL-1	0,02
73. Dicloroacetonitrilo	mgL-I	0.9
74. Formaldehido	mgL-1	0.02
75. Monocloroacetato	mgL-I	0.2
76. Tricloroacetato 77. 2,4,6- Triclorofenal	mgL-1	0,2

Nota 1: En casa de los sistemas existentes se establecerá en los Planes de Adecuación Sanitaria el prazo para lograr el limite máximo permisible para el arsénico de 0,010 mgL⁻¹.

Nota 2: Para una desinfección eficaz en las redes de distribución la concentración residual libre de cloro no debe ser menor de 0,5 mgL-1,

Nota 3: La suma de los cocientes de la concentración de cada uno de los parámetros (Cloroformo, Dibromoclorometano, Bromodiclorometano y Bromoformo) con respecto a sus límites máximos permisibles no deberá exceder el valor de 1,00 de acuerdo con la siguiente fórmula:

Coloraformo+	Cobremoclorometane +	Caromodiciorometano +	Caremetorne	51
LMPdactome	LMPoibomocloremetana	LMPtromodictorometorio	LMPBromotomic	

donde, C; concentración en mg/L, y LMP; limite máximo permisible en mg/L

Reglamento de la Calidad del Agua para Consumo Humano

ANEXO IV

LÍMITES MÁXIMOS PERMISIBLES DE PARÁMETROS RADIACTIVOS

Parámetros	arámetros Unidad de medida	
Dosis de referencia total (nota 1)	mSv/año	0,1
 Actividad global a Actividad global β 	Bq/L Bq/L	0,5 1,0

Nota 1: Si la actividad global a de una muestra es mayor a 0,5 Bq/L o la actividad global β es mayor a 1 Bq/L, se deberán determinar las concentraciones de los distintos radionúclidos y calcular la dosis de referencia total; si ésta es mayor a 0,1 mSv/año se deberán examinar medidas correctivas; si es menor a 0,1 mSv/año el agua se puede seguir utilizando para el consumo,

Anexo 04: Ficha de encuestas

FORMATO Nº 02

ENCUESTA SOBRE COMPORTAMIENTO FAMILIAR (PARA FAMILIAS)

<u>Aspectos Generales</u>						
Provincia: Distrito:						
Caserio:						
Nombres y apellidos de la madre de familia:						
Nombres y apellidos del jefe de familia:						
Número de integrantes de la familia:						
Abastecimiento y manejo del agua						
60. ¿De dónde consigue normalmente el agua para consumo de la familia? (marcar sólo una opción)						
- De manantial o puquio Conexión o grifo domiciliario						
- De río						
- De pozo						
61. ¿Quién o quiénes traen el agua?						
- La madre Madre y padre Las niñas						
- El padre						
62. ¿Aproximadamente qué tiempo debe recorrer para traer agua para consumo familiar a su vivienda?						
- Menor a 30 minutos						
- Entre 30 y 60 minutos						
63. ¿Cuántos litros de agua consume la familia por día?						
- Menor o igual a 20 lts De 81 a 120 lts						
- De 21 a 40 lts						
- De 41 a 80 lts						
64. ¿Almacena o guarda agua en la casa? SI NO						
65. ¿En qué tipo de depósitos almacena el agua?						
- Tinajas o vasijas de barro Galoneras Pozo						
- Baldes Otro						

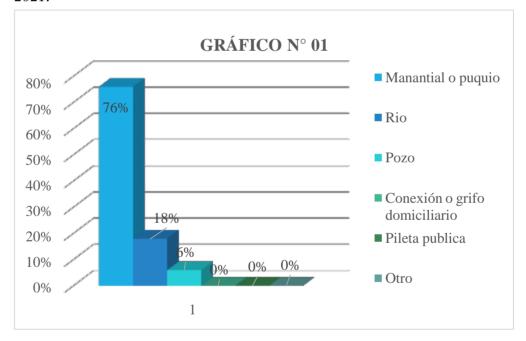
¿Puede mostrármelos? (observación)	
LIMPIOS SUCIOS SUCIOS	
66. ¿Los depósitos se encuentran protegidos con ta	pa? (observación)
SI NO	
67. ¿Cada qué tiempo lava los depósitos donde gua	rda el agua?
- Todos los días Una vez a	a semana Al mes
- Interdiario Cada quine	ee dias
68. ¿Cómo consume el agua para tomar?	
- Directo del depósito donde almacena	- Hervida
- Directo del grifo (agua sin clorar)	La cura o desinfecta antes de tomar
- Directo del grifo (agua clorada por la JASS)	Otro
69. Anotar el dato de lectura de cloro residual	
- Menor a 5 mg/lt NOT	A: Si no se dispone de reactivo y comparador de
- Entre 5 y 8 mg/lt	cloro en ese momento, anotar el dato de la evaluación del estado de la infraestructura, ya
- Mayor a 8 mg/lt	que también tomará el dato de cloro residual
Disposición de excretas, basuras y aguas gris	<u>25</u>
70. ¿Dónde hacen normalmente sus necesidades?	
- Campo abierto Ac	equia Baños con desagüe
- Hueco (letrina de gato) Le	trina Otros
71. Si tiene letrina preguntar: ¿Qué echa al hueco	de la letrina para evitar el mal olor?
- Cal Kerosene	- Otros
- Ceniza Estiércol de cab	allo o burro
72. ¿Me podría enseñar su letrina? (De lo observa	do anote)
72a) Tiene paredes, techo, puerta, losa, tapa, tubo (todos)	72c) Eliminan heces y papeles en el hoyo
SI NO	SI NO
72b)La letrina tiene mal olor	72d)Condición de la letrina: Letrina
SI NO	completa, sin mal olor y limpia
73. ¿Dónde eliminan la basura de la casa?	31
	I
- Chacra	- La quema
- Microrelleno sanitario	- Alrededor de la casa
- Accquia o río	- Otros

74. ¿Dónde eliminan el agua usada de la cocina, lavado de ropa, servicios, etc.?							
- Chacra							
- Alrededor de la casa Otro							
- Acequia o río							
Aspectos de salud							
75. ¿Tiene niños menores de cinco años?							
SI NO Cuántos?							
76. ¿En los últimos quince (15) días, alguno de estos niños ha tenido diarrea?							
SI NO Cuántos niños?							
Recuerde que el Programa Nacional de Enfermedad Diarreica y Cólera considera que una persona tiene diarrea cuando presenta deposiciones liquidas o semiliquidas en número de 3 o más en 24 horas. Puede tener varios días de duración.							
77. Se lava las manos con: jabón, ceniza o detergente?							
SI NO							
78. ¿En qué momentos usted se lava las manos?							
- Antes de comer En todas las anteriores							
- Antes de preparar los alimentos							
- Después de usar la letrina							
79. ¿En qué momentos sus niños se lavan las manos?							
Niño 1 Niño 2 Niño 3							
- Antes de comer							
- Después de usar la letrina							
- En todas las anteriores							
80. ¿Estado de higiene (observación)?							
Limpia Descuidada							
- De la madre							
- De los niños <5 años							
- De la vivienda							
(Agradecer gentilmente por su colaboración							
Fecha: / /							
Nombre del encuestador:							

FORMATO Nº 06

ENCUESTA PARA CASERÍOS QUE NO CUENTAN CON SISTEMA DE AGUA POTABLE

1. Comunidad Centro Pob	/ Caserio:lado	***************************************	2. Código del l	ugar (no l	lenar): [
3. Anexo/sec	tor:	v	4. Distrito:				
5. Provincia:		***************************************	6. Departament	o:			
7. Altura (m.s	.n.m.): Altitud:	msnm	X:	Y	<i>'</i> :		
8. Cuántas far	nilias tiene el caserio?:				_		
	ntegrantes / familia (dato						
	ómo se llega al caserío de						
6		esuc la capital (Medio de	Distar	naia	Tiomno	
Desd	e Hasta	Tipo de v	Transporte	(Kn		Tiempo (horas)	
			*	*			
> Energía 12. ¿Cuenta co 13. ¿Cuántas fi	nicial	NO Drimaria NO Dicadas el caserio	Secundar o?	SI 🗍	olunts	NO _	
Fuentes Non	Nombre del dueño	Caudal	Nombre del manant	USSEL TO SELECT	Voluntad para donar el manantial		
	Section Comments	(lt /seg.)		SI	NO	Por conversar	
Fuente 1							
Fuente 2							
Fuente 3		10 00		9 8			
Fuente 4							
- NO - SI en	n proyecto para agua pota		SI en Gestión SI en Ejecución	🗖	ĺ	MANAGE WAREN	
Fecha: /	/ Nomb	ore del encuesta	dor:				


Anexo 05: Tabulación de encuesta

1. ¿De dónde consigue normalmente el agua para consumo de la familia?

Tabla N° 01

Detalle	Frecuencia	Frecuencia %
Manantial o puquio	38	76%
Rio	9	18%
Pozo	3	6%
Conexión o grifo domiciliario	0	0%
Pileta publica	0	0%
Otro	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

Interpretación: En la tabla 01 y gráfico 01, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-202. El 86% de familias consumen agua de manantial o puquio y el 9% de familias restantes consumen agua de rio.

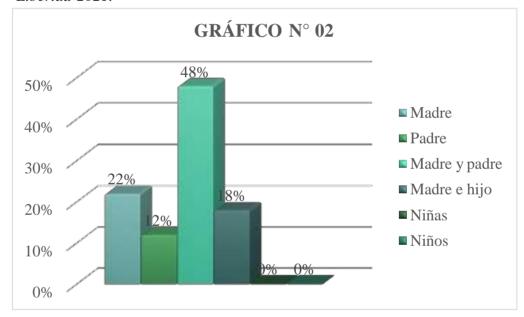
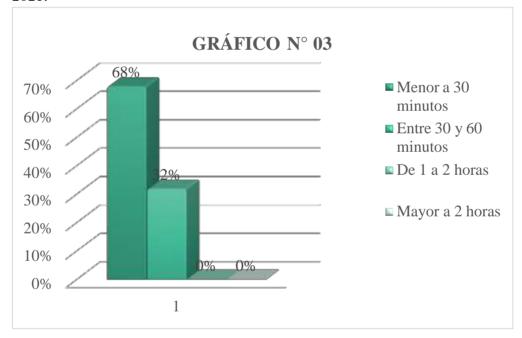

2. ¿Quién o quienes traen el agua?

Tabla N° 02

Detalle	Frecuencia	Frecuencia %
Madre	11	22%
Padre	6	12%
Madre y padre	24	48%
Madre e hijo	9	18%
Niñas	0	0%
Niños	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca,

distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

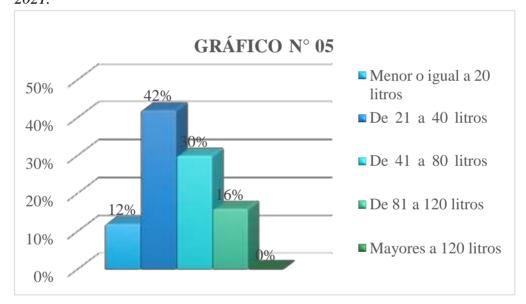

Interpretación: En la tabla 02 y gráfico 02, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. del 100% de familias encuestadas el 48% son madres y padre; el 22% son las madres; el 18% madre e hijo y el 12% es padre de familia los que traen el agua.

3. ¿Aproximadamente que tiempo debe recorrer para traer agua para consumo familiar?

Tabla N° 03

Detalle	Frecuencia	Frecuencia %
Menor a 30 minutos	34	68%
Entre 30 y 60 minutos	16	32%
De 1 a 2 horas	0	0%
Mayor a 2 horas	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

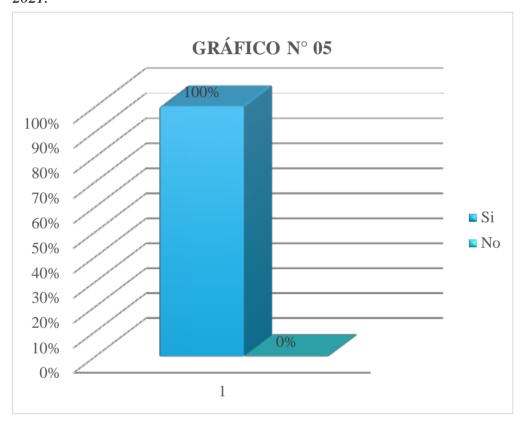

Interpretación: En la tabla 03 y gráfico 03, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 68% corresponde a un tiempo menor de 30 minutos y el 32% corresponde a un tiempo de entre 30 y 60 minutos que deben recorrer las familias para traer el agua.

4. ¿Cuántos litros de agua consume la familia por día?

Tabla N° 05

Detalle	Frecuencia	Frecuencia %
Menor o igual a 20 litros	6	12%
De 21 a 40 litros	21	42%
De 41 a 80 litros	15	30%
De 81 a 120 litros	8	16%
Mayores a 120 litros	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

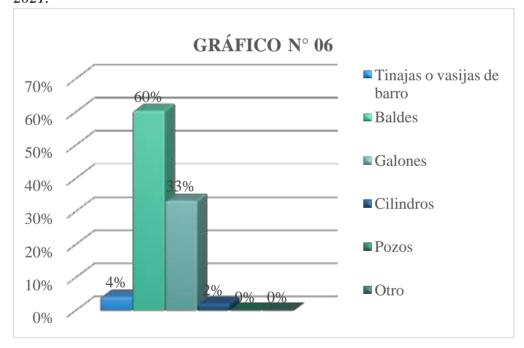

Interpretación: En la tabla 04 y gráfico 04, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 12% de los habitantes consume agua menor o igual a 20 litros por día; el 42% consume agua de 21 a 40 litros por día; el 30% consume agua de 41 a 80 litros por día y el 16% consume agua de 81 a 120 litros por día.

5. ¿Almacena o guarda agua en casa?

Tabla N° 05

Detalle	Frecuencia	Frecuencia %
Si	50	100%
No	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

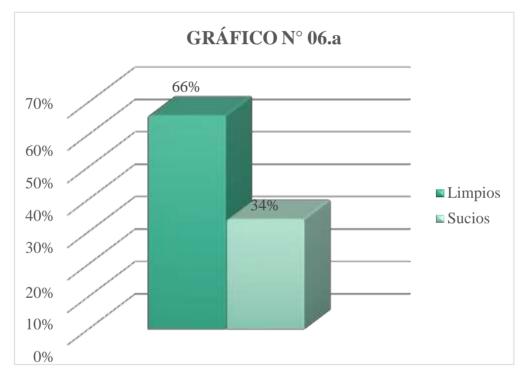

Interpretación: En la tabla 05 y gráfico 05, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 100% de familias encuestadas almacenan agua.

6. ¿En qué tipo de depósito almacena el agua?

Tabla N° 06

Detalle	Frecuencia	Frecuencia %
Tinajas o vasijas de barro	2	4%
Baldes	29	60%
Galones	16	33%
Cilindros	1	2%
Pozos	0	0%
Otro	0	0%
Total	48	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

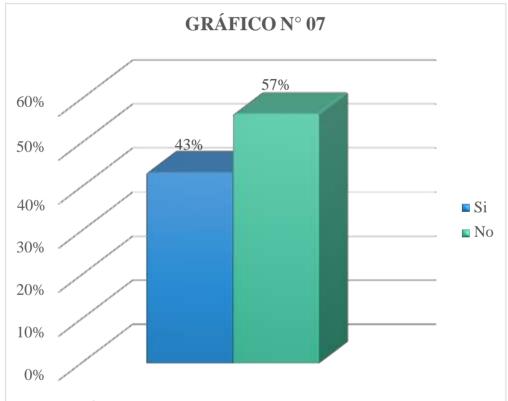

Interpretación: En la tabla 06 y gráfico 06, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 4% de familias almacenan agua en tinajas o vasijas de barro, el 60% almacenan en baldes, el 33% almacenan en galones y 2% almacenan en cilindros.

6.a. ¿observación de los depósitos?

Tabla N° 06.a

Detalle	Frecuencia	Frecuencia %
Limpios	33	66%
Sucios	17	34%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

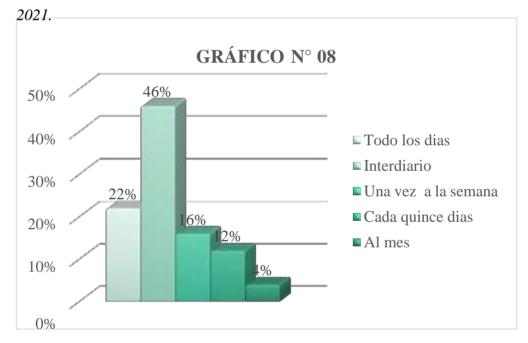

Interpretación: En la tabla 06.a y gráfico 06.a, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 66% de los depósitos que almacenan el agua están limpios y 34% de los depósitos están sucios.

7. ¿los depósitos están protegidos con tapa?

Tabla N° 07

Detalle	Frecuencia	Frecuencia %
Si	26	43%
No	34	57%
Total	60	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

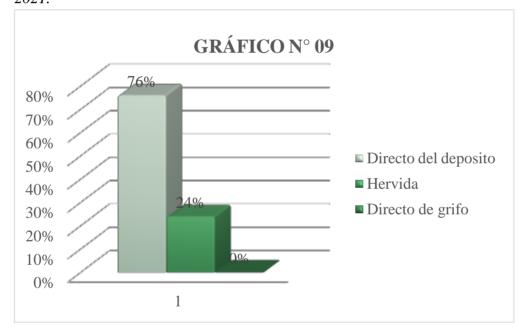

Interpretación: En la tabla 07 y gráfico 07, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 57% de los depósitos que almacenan agua están con tapa y 43% de los depósitos que almacenan agua no cuentan con una tapa.

8. ¿cada que tiempo lava los depósitos donde guarda el agua?

Tabla N° 08

Detalle	Frecuencia	Frecuencia %
Todo los días	11	22%
Inter diario	23	46%
Una vez a la semana	8	16%
Cada quince días	6	12%
Al mes	2	4%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-


Interpretación: En la tabla 08 y gráfico 08, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 22% de los habitantes lavan sus depósitos todos los días, el 46% lavan su depósito inter diario, 16% lavan sus depósitos una vez a la semana, el 12% lavan sus depósitos cada quince días y el 4% lavan sus depósitos de agua una vez al mes.

9. ¿Cómo consume el agua para tomar?

Tabla N° 09

Detalle	Frecuencia	Frecuencia %
Directo del deposito	38	76%
Hervida	12	24%
Directo de grifo	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

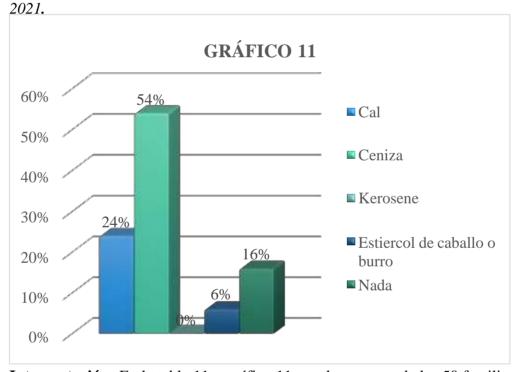

Interpretación: En la tabla 09 y gráfico 09, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 76% de la población toma agua directo del depósito y 24% toman agua hervida.

10. ¿Dónde hacen normalmente sus necesidades?

Tabla N° 10

Detalle	Frecuencia	Frecuencia %
Campo abierto	6	12%
Hueco (letrina de gato)	7	14%
Acequia	0	0%
Letrina	37	74%
Baños con desagüe	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

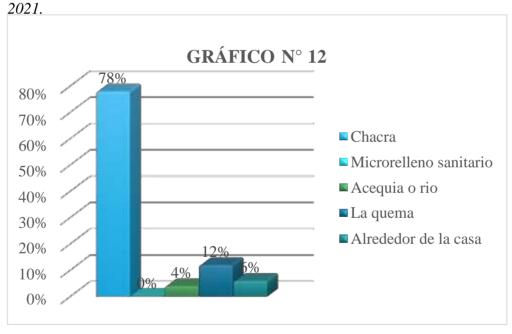

Interpretación: En la tabla 10 y gráfico 10, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 12% de habitantes hacen sus necesidades a campo abierto, el 14% en huecos (letrina de gato) y el 74% en letrinas.

11. ¿Qué echa en la letrina para evitar el mal olor?

Tabla N° 11

Detalle	Frecuencia	Frecuencia %
Cal	12	24%
Ceniza	27	54%
Kerosene	0	0%
Estiércol de caballo o burro	3	6%
Nada	8	16%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-

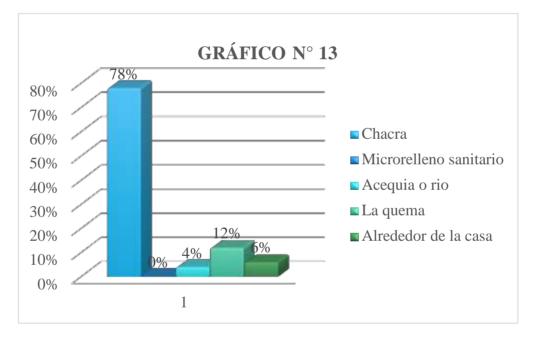

Interpretación: En la tabla 11 y gráfico 11, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 24% habitantes utiliza cal, el 54% utiliza ceniza, 6% utiliza estiércol de caballo o de burro y 16% no echa nada.

12. ¿Dónde eliminan la basura de la casa?

Tabla N° 12

Tabla N° 12		
Detalle	Frecuencia	Frecuencia %
Chacra	39	78%
Micro relleno sanitario	0	0%
Acequia o rio	2	4%
La quema	6	12%
Alrededor de la casa	3	6%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-


Interpretación: En la tabla 12 y gráfico 12, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 78% de los habitantes elimina la basura en las chacras, el 4% elimina en las acequias o ríos, el 12% lo queman y 6% elimina alrededor de su casa.

13. ¿Dónde elimina el agua usada de la cocina, lavado de ropa servicios, etc.?

Tabla N° 13

Detalle	Frecuencia	Frecuencia %
Chacra	9	18%
Alrededor de la casa	41	82%
Acequia o rio	0	0%
Pozo de drenaje	0	0%
Otros	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

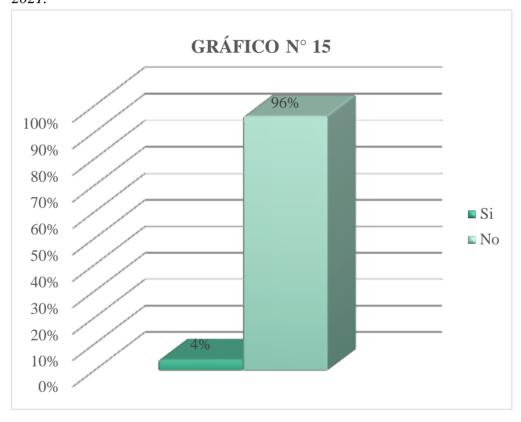
Interpretación: En la tabla 12 y gráfico 12, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 78% de los habitantes elimina la basura en las chacras, el 4% elimina en las acequias o ríos, el 12% lo queman y 6% elimina alrededor de su casa.

14. ¿Tiene niños menores de 5 años?

Tabla N° 14

Detalle	Cantidad	Frecuencia	Frecuencia %
Si	20	26	52%
No	0	24	48%
Total	20	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

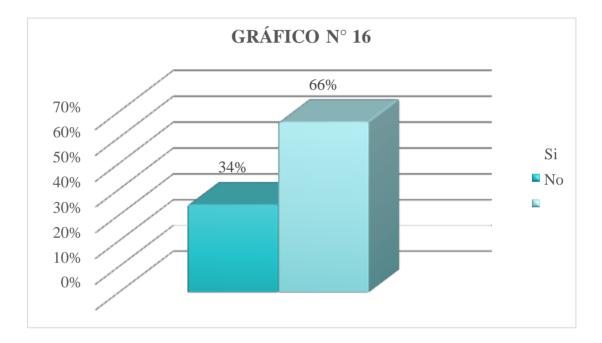

Interpretación: En la tabla 14 y gráfico 14, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 52% de familias encuestadas tienen niños menores de 5 años y el 48% no tienen niños.

15. ¿En los últimos quince días, alguno de estos niños a tenido diarrea?

Tabla N° 15

Detalle	Frecuencia	Frecuencia %	
Si	2	4%	
No	48	96%	
Total	50	100%	

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

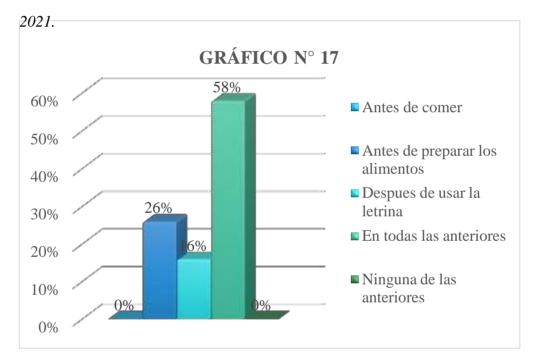

Interpretación: En la tabla 15 y gráfico 15, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. Del 100% de los habitantes encuestados; el 4% han tenido niños con diarrea y el 96% de los niños restantes no han presentado ningún síntoma.

16. ¿Se lava las manos con: jabón, ceniza o detergente?

Tabla N° 16

Detalle	Frecuencia	Frecuencia %
Si	17	34%
No	33	66%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

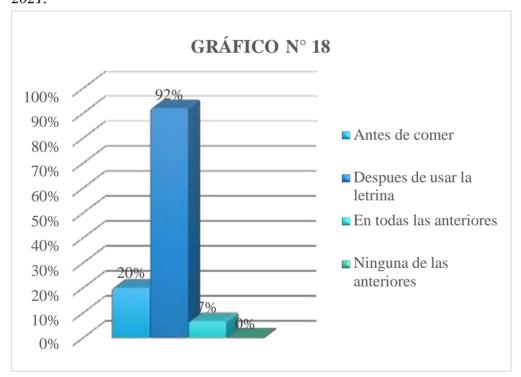

Interpretación: En la tabla 16 y gráfico 16, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 34% de los habitantes encuestados se lavan las manos con jabón, ceniza o detergente y el 66% se lava sus manos solo con agua.

17. ¿En qué momento se lava las manos?

Tabla N° 17

Detalle	Frecuencia	Frecuencia %
Antes de comer	0	0%
Antes de preparar los alimentos	13	26%
Después de usar la letrina	8	16%
En todas las anteriores	29	58%
Ninguna de las anteriores	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-


Interpretación: En la tabla 17 y gráfico 17, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 26 % de los encuestados se lavan las manos antes de preparar los alimentos, el 16% se lava las manos después de usar la letrina y el 58% se lavan las manos antes de comer, antes de preparar los alimentos y después de ir utilizar la letrina.

18. ¿En qué momento sus niños se lavan las manos?

Tabla N° 18

Detalle	Frecuencia	Frecuencia %
Antes de comer	0	0%
Después de usar la letrina	0	0%
En todas las anteriores	50	100%
Ninguna de las anteriores	0	0%
Total	50	100%

Fuente: Encuesta realizada a los pobladores del caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021.

Interpretación: En la tabla 18 y gráfico 18, se observa que de las 50 familias encuestadas en el caserío de Cochamarca, distrito de Mollepata, provincia de Santiago de Chuco, región de La Libertad-2021. El 100% de los niños se lavan las manos antes de comer; después de usar la letrina.

Anexo 06: cálculos hidráulicos de los componentes del sistema de abastecimiento.

Anexo 06.1: cámara de captación.

CALCULO DE LA CAPTACIÓN DEL MANANTIAL LADERA - LA CABRECASHA

MEMORIA DE CÁLCULO

Elaborado por: Paredes Zavaleta Helf Wilson
Centro poblado: Caserío de Cochamarca
Nombre de la fuente: La Cabrecasha
Fecha: 28/10/2021

a) Aforamiento

La toma de muestras se realizó mediante un balde de 18 lts

N° de pruevas	Volúmen	Tiempo (seg)	Caudal Q (L/s)
1	18	38	0.47
2	18	39	0.46
3	18	42	0.43
4	18	44	0.41
5	18	38	0.47
Promedio	-		0.45

Caudal

Volúmen del recipiente

= 2 = (1)² ()

v= 24630,09 Cm³

b) Cálculo de la población futura

El método más utilzado para la determinación futura en las poblaciones rurales es el método artmético

Fórmula:

$$Pf = Pa(1 + \frac{r \times t}{1000})$$

Dónde:

 $\boldsymbol{Pf} = población \ futura$

 $\mathbf{Pf} = \text{población actual}$

 \mathbf{r} = coeficiente de crecimiento anual por 1000 habitantes

t = tiempo en años

Población actual Pa = 252 hab. Periodo de diseño (t) = 20 años

MÉTODO ANALÍTICO						
AÑO	Pa (hab)	t (años)	P (Pf-Pa)	Pa x t	r (P/pa x t)	rxt
2001	120	-	-	-	-	-
2011	172	10	52	1200	0.04	0.43
2021	252	10	80	1720	0.05	0.47
Total	-	20	-		0.09	0.90

Reemplazando:

Pf= 5
$$(1 + \frac{0 \cdot 2 \cdot 20}{}) = 478$$

Años	100 0 0
Pf	478 hab

Dotación 57 L/hab/día

Descripción	Dotación (lts/alum.Día)
Educación primaria e inferior (sin residencia)	20
educación secundaria y superior (sin residencia)	25
educación en general (con residencia)	50

Fuente ministerio de salud

Dotacion por región		
Región	Dotación (l/hab/dia)	
Costa	60	
Sierra	50	
Selva	70	

Fuente ministerio de salud

Dotación por número de habitantes				
Población (habitantes)		Dotación (l/hab/día)		
0	500	0	60	
500	1000	60	80	
1000	2000	80	100	

Fuente ministerio de salud

c) Cálculo promedio diario anual

			0 = P a ()
r =	44.92		ь а
Qm	0.33	I/s.	
Pf	478	hab.	
d	60	l/hab/dia.	
Om =	Consumo pror	nedio diario (1/s)	

Pf=

Poblacion futura

Dotacion (l/hab/dia)

Coef. De crecimiento anual por 1000 hab.

d) Consumo maximo diario (Qmd) y horario (Qmh)

Consumo máximo diario (Qmd) es una serie de registros observados durante los 365 del año y se considerará un coeficiente de K1 =1,30

Qm	0.33	1/s
Qmd	0.43	1/s
Qmh	0.66	1/s

(Qmd) = 1,30 Qm (L/s)

(Qmd) = 2,00 Qm (L/s)

Fuente: RNE (resolución ministerial 1993-2019)

El consumo máximo horario (Qmh) se define como la hora máxima de consumo registrada durante todo el día y se considerará un coeficiente K2 =1,80 a 2,50

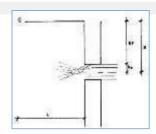
Qm	Consumo promedio diario anua
Qmd	Consumo maximo diario
Qmh	Consumo maximo horario

1. Datos

Gasto Maximo diario real	Qmd	0.43 lts/s	Calculado
Gasto Máximo Diario de Diseño	Qmd	0.44 lts/s	Azumido
Gasto Máximo Diario de la fuente	Qmáx	0.45 lts/s	Calculado

2. Cálculo de la distancia entre el punto de afloramiento y la camara húmeda

h0 v H Hf	0.02 0.50 0.40 0.38	m. m/s. m. m.	Se recomiendan valores ≤ 0.6 m/s Se recomiendan valores entre 0.4 y 0.5 m		
v	Carga necesaria sobre el orificio de entrada Velocidad de pase				
H Hf	Altura entre el afloramiento y el orificio de entrada Perdida de carga				



2.1. Distancia entre el afloramiento y la cámara humeda

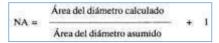
L

Distancia entre el afloramiento y la cámara humeda

3. Cálculo de la pantalla

Qmax	0.0004	m^3/s.	
Cd	0.70		Se recomienda valores de 0.6 a 0.8 m/s
V	0.5	m/s.	
A	0.0013	m^2.	
D	4.0429	Cm.	
			•

Qmax	Caudal maximo de la fuente
Cd	Coeficiente de descarga
V	Velocidad de pase
	Area del orificio de pantalla
D	Diametro de orificios de pantalla


3.1. Diametro en pulgadas equivalente (Diametro calculado)

3.2. Cálculo de número de orificios (NA)

Da	1.5	Plg.	Se recomienda usar $D \le 1$ "		
Na	3.53	»	Asumiendose NA =	4	\rightarrow

Da Diametro asumido

D Diametro de la tuberia de entrada

a Numero de orificios

NA =	$(D_1/D_1)^2 + 1$	1
1111-	(D,D,) T	٨.

3.3. Cálculo del ancho de la pantalla (b)

Na	4	Unds.
Da	1.5	Plg.
b	50	cm.

Para el diseño se asume b = 1.00 m

$$b = 2(6D) + NAD + 3D(NA-1)$$

Da	Diametro de la tuberia de entrada
Na	Numero de orificios
b	Ancho de la pantalla

3.4. Distribucion de orificios

D	5.08
3*D	15.24
6*D	30.48

4.Cálculo de altura de la camara humeda Ht

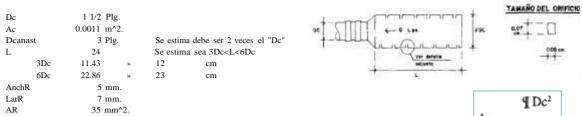
A	10	cm.	Se condisera altura minima de 10 cm
В	5.08	cm.	Se considera diametro asumido de orificio de entrada cm
H	30	cm.	Se recomienda altura minima de 30 cm
D	3	cm.	Se condisera minima de 3 cm
E	20	cm.	Se considera de 10 a 30 cm

1	A	Altura minima que permita la sedimentacion de la arena
	В	Mitad del diametro de la canastilla
	Н	Altura del agua o carga requerida
	D	Desnivel minimo entre el nivel de ingreso del agua y el afloramiento
	Е	Borde libre

4.1. Cálculo carga requerida H(m)

 $\begin{array}{cccc} Qmd & 0.00036 \text{ m}^3\text{/s}. \\ A & 0.0020268 \text{ m}^2\text{.} \\ g & 9.81 \text{ m}/\text{S}^2\text{.} \\ H & 0.25 \text{ Cm.} \end{array}$

Para facilitar el paso del agua se asume una altura minima de


Ht 68.08 cm

Ht =	A .	12	н.	D	F

Ht	Altura de la camara humeda
Qmd	Gasto maximo diario en m3/s
A	Area de la tuberia de salida m2
g	Aceleracion gravitacional m/s2
Н	Altura del agua o carga requerida m

11 1.56	V2		Q ² md
H = 1.30	2g	- = 1.30	2g A ²

5. Calculo de dimensionamiento de la canastilla

At	0.0022802 m^2.	Se recomienda 2"Ac"
Nº	65.15 Und.	» 65

Γ	Эс	Diametro de la tuberia de salida a la linea de conduccion
Α	Ac	Area de la seccion transversal de la tuberia de salida a la linea de conduccion
Dca	anas	Diametro de canastilla
1	L	Longitud de la canastilla asumido
An	chR	Ancho de la ranura
La	arR	Largo de la ranura
Α	AR.	Area de la ranura
F	4t	Area total de las ranuras
N	Nº	Numero de ranuras

Nº de ranuras =	Área total de ramurus	
	Área de ranuras	

6.Calculo de Rebose y limpieza

En la tubería de rebose y de limpia se recomienda pendientes de 1 a 1.5% y considerando Qmax. La tubería de rebose y limpia tienen el mismo diámetro y se calculan mediante la siguiente ecuación:

Qmáx : gasto máximo de la fuente (l/s)

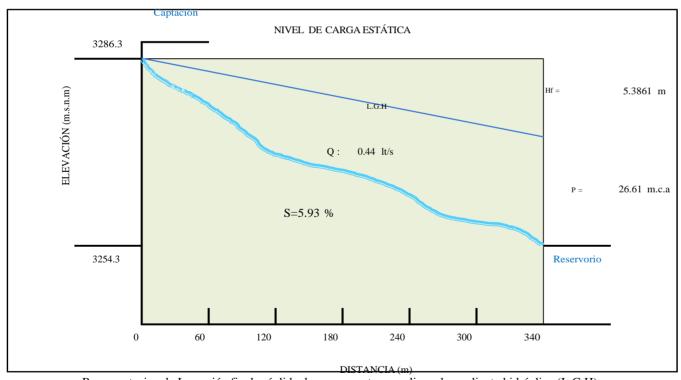
perdida de carga unitaria en (m/m) - (valor recomendado: 0.015 m/m)

Dr: diámetro de la tubería de rebose (pulg)

Obtenemos:

S:	1.50%	asumido
Qmáx:	0.45 lt/s	calculado
hf:	0.015 m/m	recomendado

D	1.27	
Qmax	0.45	1/s.
hf	0.015	m/m.


$$D = \frac{0.71 \times Q^{0.38}}{hf^{0.21}}$$

Anexo 06.2: línea de conducción.

DISEÑO DE LA LÍNEA DE CONDUCIÓN DEL SISTEMA DE ABSTECIMIENTO DE AGUA POTABLE

LÍNEA DE CONDUCCIÓN - CÁLCULO HIDRÁULICO EN EL TRAMO														
Tramo	Caudal Qmd (lt/s)	Longitud L (m)	Cota de terreno		Desnivel	Pérdida de	Diàmatra D	Diàmetro D		Pérdida de	Pérdida de	Cota piezométrica		
			Inicial (m.s.n.m)	Final (m.s.n.m)	del terreno (m)	carga unitaria disponible	carga unitaria cálculado	asumido (pulg)	Velocidad V (m/s)	carga Unitaria hf (m/m)	carga Tramo Hf (m)	Inicial (m.s.n.m)	Final (m.s.n.m)	Presión (m)
Capt - Reserv	0.44	540.00	3286.30	3254.30	32.00	0.05926	0.9408	3/4	1.54	0.0099743	5.3861	3286.3	3280.914	26.61

COMO LA DIFERENCIA DE ALTURAS ES MENOR A 50 M NO SE CONSIDERARÁ (CRP)

Representacion de Ia presión final, pérdida de carga por tramo y linea de gradiente hidráulica (L.G.H)

CÁLCULO HIDRÁULICO

7.1. longitud de tramo

$$L = 540.00$$
 m

7.2. Carga estática

7.3. Cauldal de diseño (Qmd)

Qmd =	0.44	ml	=	0.0004	m3/s
-------	------	----	---	--------	------

7.4. Coeficiente de rugosidad

Tipo de Tuberia	"C"		
polietileno	140		
policloruro de vinillo (PVC)	150		

7.5. Perdida de carga unitaria asumida (hf)

$$=\frac{H}{m}$$
 hf = $\frac{5.39}{540}$ = **0.0100** m

7.6. Diametro de l caudal (Dc)

$$= \left(\frac{Q}{...5 * * 0...}\right)^{\frac{1}{2}}$$

$$D = 0.03298 \quad m = 0.03298$$

$$D = \frac{0.71 \times Q^{0.38}}{hf^{0.21}}$$

7.7. Diametro Nominal Asumido (Da)

$$Da = 1.30$$
 pulg $a = 0.0294$ m

7.8. Ve locidad

$$V = \frac{*}{*(*)^2} = 0.6482 \quad \text{m/s2}$$

$$V = 1.9735 \quad \frac{Q}{D^2}$$

7.9. Pe rdida de carga unitaria (hf)

$$= \left(\frac{Q}{S_{0} + S_{0} + S_{0} + S_{0}} \right)^{\frac{1}{0.}}$$

7.10. Pe rdida de carga por tramo (Hf)

$$f = f * Hf = 9.43 m$$

7.11. Presión Dinamica (p)

$$P = f$$

$$P = 22.57 m$$

Anexo 06.3: Reservorio de almacenamiento.

a) Volúmen del reservorio:

1- Volumen de regulacion:

$$V \text{ reg} = \left[\left(\frac{Qm}{1000} \right) * 0.25 * 86400 \right]$$

Vreg Vreg 5.40 m3 6.00 m3

Azumido

Volumen de incendio:

Según la OS 030 no se considera

0 m3

Volumen de reserva:

=

7% caudal máximo diario

Vres

0.42 m3

Vres

0.5 m3

Azumido

Volumen de reservorio:

+

6.50

7.00

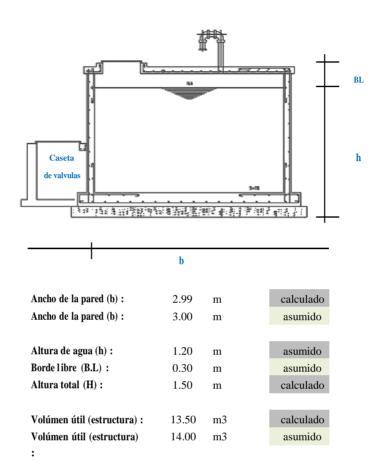
7 m3 7 m3

Azumido

5-Ti empo de llenado:

Vtotal: Qmd:

7 0.44 m3 lt/s


calculado asumido

Tl lenado: Tl lenado: 15909.1

seg 4.42 horas

calculado

b) 2. Dimenciones del reservorio:

131

Anexo 07: Panel fotográfico.

Imagen01: vista panorámica del caserío de Cochamarca, distrito de Molllepata, provincia Santiago de Chuco, región la Libertad-2018.

Fuente: Elaboración propia (2021).

Imagen II: vista panorámica del manantial ubicado en el caserío de Cochamarca, distrito de Molllepata, provincia Santiago de Chuco, región la Libertad-2018.

Fuente: Elaboración propia (2021).

Imagen III: medición del caudal de la fuente de abastecimiento de agua del caserío de Cochamarca, distrito de Molllepata, provincia Santiago de Chuco, región la

Libertad-2018.

Fuente: Elaboración propia (2021).

Imagen IV: levantamiento topográfico del caserío de Cochamarca, distrito de Molllepata, provincia Santiago de Chuco, región la Libertad-2018.

Fuente: Elaboración propia (2021).

Anexo 8: fichas técnicas.

	Persona entrevistad	la.	Madre	0		Padre	0	Hij o[]	Otro[]	
Apelli	dos y nombres:									
	Fecha de en	trevista			Hora Día Mes Provincia Regió la población a otro vivienda: Semanas[] Meces[] Alquilada[] Prestada[]	Año				
			Lugar del j	proj	recto					
	Anexo	Distrit	lo		Prov	incia		Re	gión	
2.5										
		Idioma	que domir	na la	pobla	ıción				
	español		Quec	hua		\neg		otro		
					1000					
		Info	rmación de	la v	deland	la.				
Tiemp	o que habita:	IIII	Días[]	IA V		77.76	1	fannel 1	A4F1	
-	ienda es:		Propia[]	_			_	***	Años[]	
	e material de la vivier	nda.	Concreto		-		-		Otro[]	
-	lad de personas que v	35103A55	125-2012/2019 201	ш	Mad	cra[]	A	bobe[]	Otro[]	
Nº	Apellidos y nomb	A. S. W. C. W. W. C.	Edad	_	Sava	Miss	1 4-	0		
	ripellidos y Ilollid	nes .	Load		эсло			Ocupacio	n Ingreso	
+				+						
Cı	uenta con energía	Si[]	No[]	1	Cantio	lad de p	ago p	or mes:	<u></u>	
Cuen	ta con agua desagüe	Si[]	No[]		Cantio	lad de p	ago p	or mes:		
		En caso	de no conti	ar c	on des	agüe				
Poz	to séptico[] E	Baños seco	os[]		Letrin	as[]	$\neg \tau$	Otro	osf 1	

neme. elaboración propia

135

LÍNEA DE CONDUCCIÓN POR GRAVEDAD

_						_		*****		COMO		HI ON C	MATEU			_										
		_		Titulo																						
	1	-cv)	Yesista													Fe	cha								
1		ADECH	9	Asesor															_		Caja	U. Caud	ales			
(0.	NI O CH		Lugar						Distrito									hasas	-33						
				provincia						Departame	ento								Nivel	estático	1	-				
		18110	ER I	100	28.12	120	NAV.	OF AUT	MEA	DE CONIE	HICCH	N DOD C	RAVEDA		Sec	(dec	MA	1		30		200		310		
	٥,				113				NEA	DE CONE	occic	IN PUR C	KAVEDA				N IE									
	_							NOTA	i:(las tu	berías de co	nducció	n se encuen	tran superfic	ciales)												
tramo		Viviendas actuales	Viviendas futuras	Longitud tomada	Cot	2777	Diferencia de cotas	% de Increment	Total de	Longitud de diseño	Q diseño	Diámetro	Diámetro Interno	Tipo tuberia	cte. de	perdid a Hf	velocid ad	plezon	77/11/11			presión elastica				obs.
E P.	0	actuales		(m)	Inicial	final		۰	tubos	en (m)	(l/s)	(pulg)	(pulg)	tuperia		(m)	(m/s)	inicial	final	inicial	final	Inicial	final	1		
	1				1																					
	1																									
	1																			J.,						
	1																							П		
	T																									
	I																									
	T			0																						

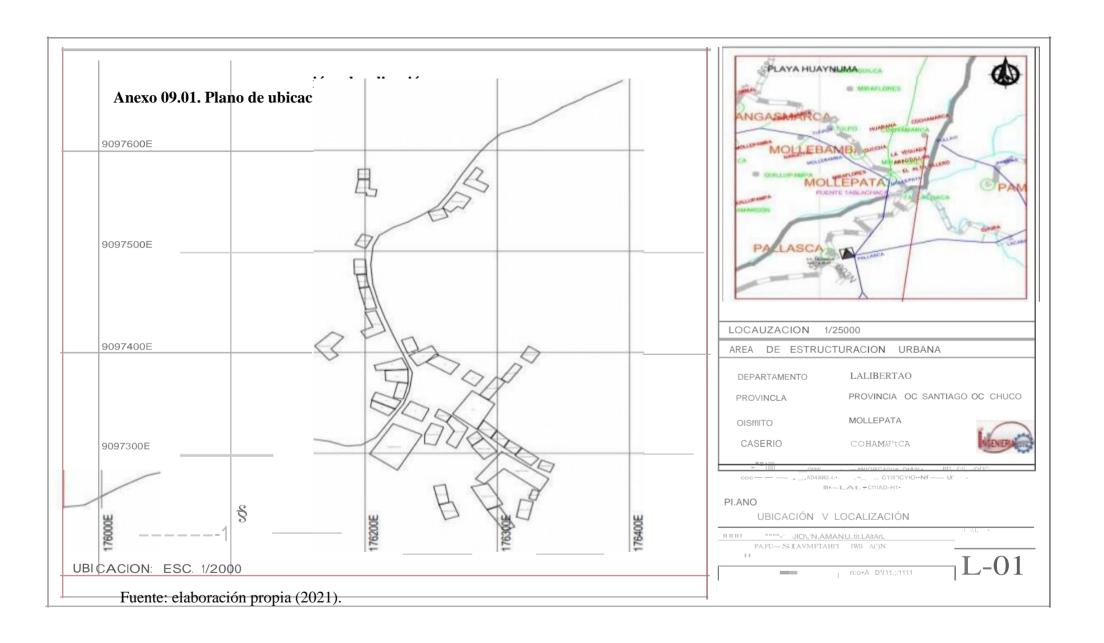
ACHARA NOTRIGUEZ DAVID JOSE ING. CAN. Schulydos Insperiente Reg. CIP 19466 The Barney Change Change may foo over consist rose

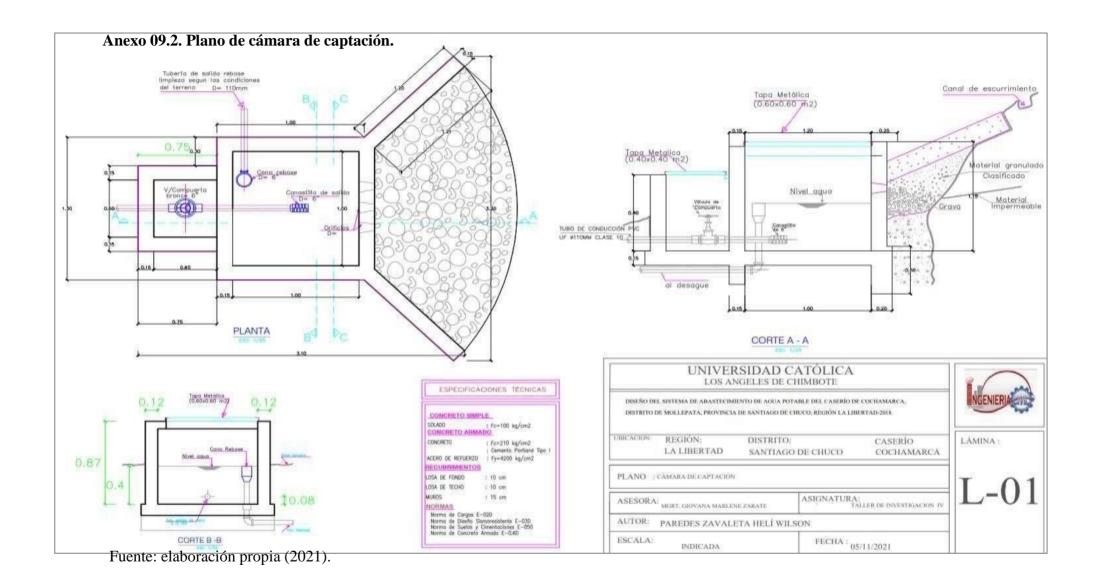
	Título															
ULADECH	Tesista							Fecha								
(ULADE O	Asesor															
CATOL	Lugar			Distrito				Nivel Estático								
Name and Address of the Owner, or the Owner,	Provincia		Departan		-				in contact							
			PER PROPERTY.	CAPTA	CION DE	UN MAI		District Control	100							
Caudal Máximo	\vdash					ALTU	RA DE LA	CÁMARA HÚ	MEDA							
Caudal Mínimo		Altura	de filtre	Altura r	m/mlmm	Diáme	tro de la	a canastilla de								
Gasto Máximo Diario		Alturat	Je illuo	Autura	ura minima		salida			Borde	libre	8	Altura de	agua		
Ancho de Pantalla											Т	\neg	T	_		
Diámetro de Tubería de Salida:												\top	1	+		
			D	IMENCIO	NAMIEN	TO DE LA	CANAST	THIA			_	_	_			
Altura de ranura				go de ran					Área t	ntal de	ranura					
19-1-170000						cifico del s	uelo		The car	otal de	Tanura	_	iente de e	moule		
Reboce	y limpieza		Diseño d	Diseño de Ángulo de rozamiento interno del suelo					+	Empu	je del					
				_	Coeficiente de fricción				+	suelo	sobre -	Siendo la altura del terreno				
Diámetro en pulg.				Tn/m3 Peso específico del concre						el m	uro	Result	1			
Gasto Máximo de la Fuente		Momento de Vuelco							Momento de estabilización (Mr) y el peso W:							
sosto manimo de la ruente				Mo=	Mo = P x Y				T					,		
Pérdida de carga unitaria				Considerar	ndo Y = h/3	Y = h/3							T	1		
eroida de carga dintaria			Chequer	0	Por	olteo				w	\neg	W (kg)	X (m)	(kg/m)		
Resultado			de la	1	Máxima ca	rga unitari)					1.01	1()	1,		
Nesurtado.		estructura			Por deslizamiento								+	+		
Saget Leit Ingellier (1997)	MAND JOSE										bunga Chi	Nez				

	RESE	RVORIO DE ALMA	ACEAMIENT)			
_					fecha		
		00	strito				
	DISENO	DE RESERVORIO DE	epartamento ALMACENAI	MIENTO			PRATEW
de pa			Distrito Departamento IO DE ALMACENAMIEN Borde libre:			Altura de total:	
_		Peso especifico del a	agua	T		Capacidad portante	
2	P.Yaxh			2.b/2	P.Yaxh	El empuje	del agua es: V.Y
_							

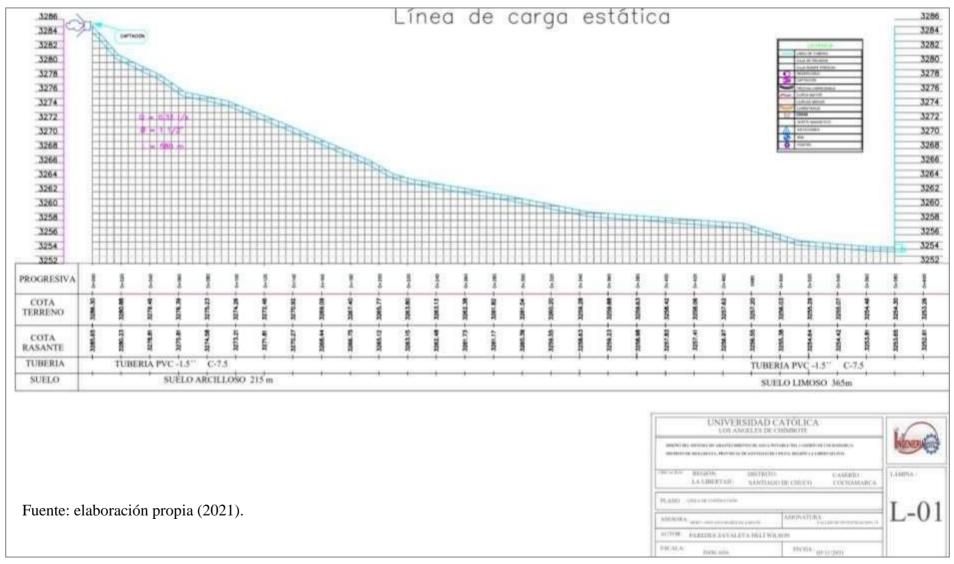
_	_	-		fico del te	MALE OF THE PARTY	$\overline{}$			Peso esp	ecifico d	el agua				- 4	Capaci					1 1 1 1 1
-	26	$\overline{}$			ua es: V.Y	h^2 h/2	P.Y	axh	Elem	puje del	agua es	: V _• Ya.h^2	1.b/2	P.Y.	axh		El es	mpuje	del agu	a es: V.Y	a.h^2.b/2
P.	.Ya x f	3.	Ei emp	ole nei ak	OR CO. TAT												Datos de diseño Datos de diseño ción de la armadura de la losa de fo				
_	_	_	Losa d	ie cubiert	a				Espeso	or de la p	ared		\perp				Datos	de dis	eno		
			Loye t	T	T			T					_	-						-	
\dashv											-	\rightarrow	\rightarrow	+							
\dashv								1	_	-	-	+	\rightarrow	+							
								+	-	+-	-	+	-	-	\vdash						
									100	a de fon	do		\rightarrow		Dis	tribuc	ión de	a arma	adura d	e pared	
		Di	tribución	n de la arr	madura			-	LOS	a de ion	T	T	\neg								
				_	-	-	-	+	+	+	+	+	\neg	\neg							
				-	+	+	-	+	+	+	+	1	\neg								
				+	+	+	-	+	+	_						- 8					_
		_	_	+	+-		+	-													
		-	4515	madan d	In loca da	fondo	Dis	tribucio	ón de la ar	madura	de losa	de cubier	ta			Che	queo di	e la los	a de fo	ndo	
_	Distri	bució	de la ar	magura (de losa de	10.100	I	T	1	T	T								-		_
		_	-	+	+-		1	\neg										_			_
	-	-	-	+	+	_	1	\neg		-					-	_		-	-	\vdash	
	-	-	-	+	+	+	\vdash								-	-	-		-	\vdash	_
_	-	\vdash	\vdash	+	_											_	_		_	_	
_		_	_													-	-				

ACUSCAR ROCKSTOR 2010/D JOSE NG. CWS. Comple of Registering Reg. CIP 19880

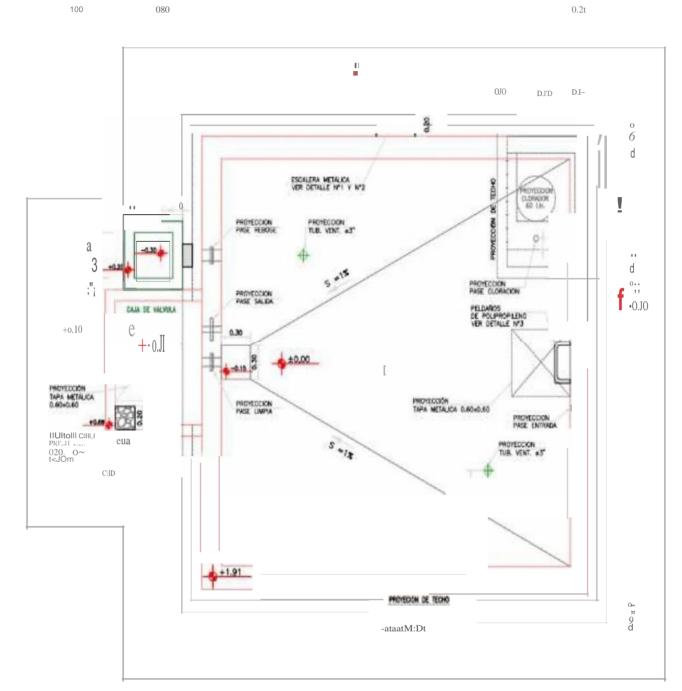

Tesista Asesor Lugar provincia


Altura de agua:

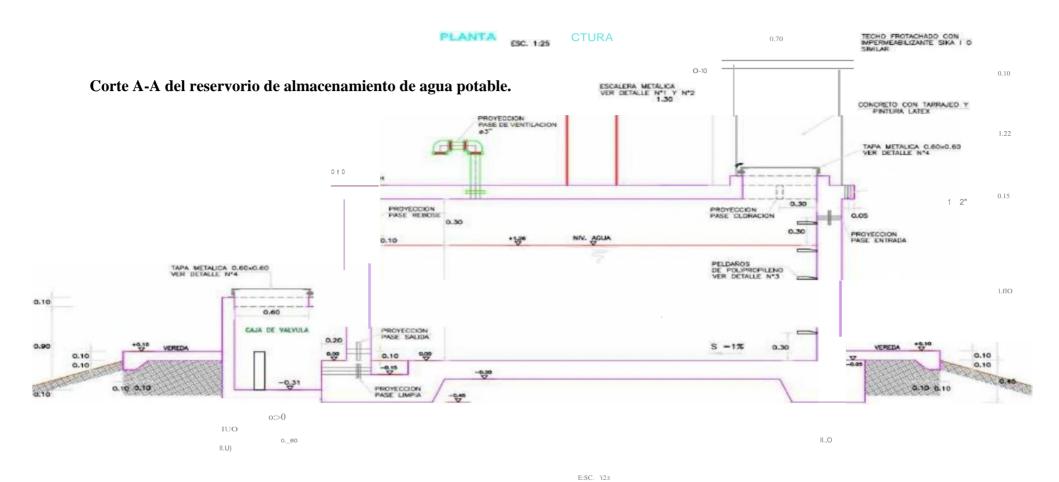
Ancho


Ing. Dhridge Chungs Charez

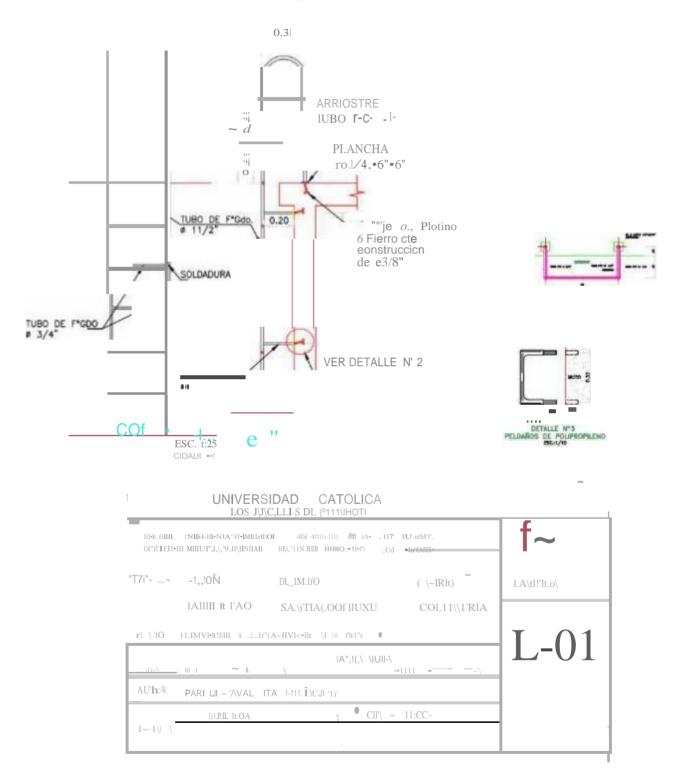
Anexo 09: planos



Anexo 09.3. Plano de la línea de conducción.


Anexo 09.3. Plano de reservorio de almacenamiento.

Fuente: elaboración propia (2021).


ď

Detalles del reservorio de almacenamiento de agua potable.

DETALLE N91 es-·LERA ~111111EJ,1.a

Fuente: elaboración propia (2021).

ACTA DE CONSTATACIÓN

En el caserio de Cochamarca, distrito Mollepata, provincia Santiago de chuco, departamento de la libertad siendo las J 1:00 am del dfa viernes 13 de julio del 2018.

El estudiante Paredes Zavaleta Hell Wllson nos explicó que el motivo de su visita al caserío de Cochamarca fue para realizar un proyecto de investigación científica de un mejoramiento de cclmar~.de captación, líneas de conducción y reservarlo de sistema de abastecimiento de agua potable, asl mismo nos informó que es un proyecto de investigación para optar su bachiller de la universidad católica los Ángeles de Chimbote, facultad de Ingeniería ClvII, para mayor constatación de su visita pasan a firmar y sellar dichas auto ridades.

TURNINTE GOBERNADOR